1# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15
16"""Logging and Summary Operations."""
17# pylint: disable=protected-access
18from __future__ import absolute_import
19from __future__ import division
20from __future__ import print_function
21
22import pprint
23import random
24import sys
25
26import six
27
28from tensorflow.python import pywrap_tensorflow
29from tensorflow.python.framework import dtypes
30from tensorflow.python.framework import ops
31from tensorflow.python.framework import sparse_tensor
32from tensorflow.python.framework import tensor_util
33from tensorflow.python.ops import gen_logging_ops
34from tensorflow.python.ops import string_ops
35# go/tf-wildcard-import
36# pylint: disable=wildcard-import
37from tensorflow.python.ops.gen_logging_ops import *
38# pylint: enable=wildcard-import
39from tensorflow.python.platform import tf_logging
40from tensorflow.python.util import nest
41from tensorflow.python.util.deprecation import deprecated
42from tensorflow.python.util.tf_export import tf_export
43
44# Register printing to the cell output if we are in a Colab or Jupyter Notebook.
45try:
46  get_ipython()  # Exists in an ipython env like Jupyter or Colab
47  pywrap_tensorflow.TFE_Py_EnableInteractivePythonLogging()
48except NameError:
49  pass
50
51
52# The python wrapper for Assert is in control_flow_ops, as the Assert
53# call relies on certain conditionals for its dependencies.  Use
54# control_flow_ops.Assert.
55
56
57# Assert and Print are special symbols in python, so we must
58# have an upper-case version of them.
59#
60# For users with Python 3 or Python 2.7
61# with `from __future__ import print_function`, we could also allow lowercase.
62# See https://github.com/tensorflow/tensorflow/issues/18053
63
64
65# pylint: disable=invalid-name
66@deprecated("2018-08-20", "Use tf.print instead of tf.Print. Note that "
67                          "tf.print returns a no-output operator that directly "
68                          "prints the output. Outside of defuns or eager mode, "
69                          "this operator will not be executed unless it is "
70                          "directly specified in session.run or used as a "
71                          "control dependency for other operators. This is "
72                          "only a concern in graph mode. Below is an example "
73                          "of how to ensure tf.print executes in graph mode:\n"
74                          """```python
75    sess = tf.Session()
76    with sess.as_default():
77        tensor = tf.range(10)
78        print_op = tf.print(tensor)
79        with tf.control_dependencies([print_op]):
80          out = tf.add(tensor, tensor)
81        sess.run(out)
82    ```
83Additionally, to use tf.print in python 2.7, users must make sure to import
84the following:
85
86  `from __future__ import print_function`
87""")
88@tf_export(v1=["Print"])
89def Print(input_, data, message=None, first_n=None, summarize=None,
90          name=None):
91  """Prints a list of tensors.
92
93  This is an identity op (behaves like `tf.identity`) with the side effect
94  of printing `data` when evaluating.
95
96  Note: This op prints to the standard error. It is not currently compatible
97    with jupyter notebook (printing to the notebook *server's* output, not into
98    the notebook).
99
100  Args:
101    input_: A tensor passed through this op.
102    data: A list of tensors to print out when op is evaluated.
103    message: A string, prefix of the error message.
104    first_n: Only log `first_n` number of times. Negative numbers log always;
105             this is the default.
106    summarize: Only print this many entries of each tensor. If None, then a
107               maximum of 3 elements are printed per input tensor.
108    name: A name for the operation (optional).
109
110  Returns:
111    A `Tensor`. Has the same type and contents as `input_`.
112  """
113  return gen_logging_ops._print(input_, data, message, first_n, summarize, name)
114# pylint: enable=invalid-name
115
116
117def _generate_placeholder_string(x, default_placeholder="{}"):
118  """Generate and return a string that does not appear in `x`."""
119  placeholder = default_placeholder
120  rng = random.Random(5)
121  while placeholder in x:
122    placeholder = placeholder + str(rng.randint(0, 9))
123  return placeholder
124
125
126def _is_filepath(output_stream):
127  """Returns True if output_stream is a file path."""
128  return isinstance(output_stream, str) and output_stream.startswith("file://")
129
130
131# Temporarily disable pylint g-doc-args error to allow giving more context
132# about what the kwargs are.
133# Because we are using arbitrary-length positional arguments, python 2
134# does not support explicitly specifying the keyword arguments in the
135# function definition.
136# pylint: disable=g-doc-args
137@tf_export("print")
138def print_v2(*inputs, **kwargs):
139  """Print the specified inputs.
140
141  Returns an operator that prints the specified inputs to a desired
142  output stream or logging level. The inputs may be dense or sparse Tensors,
143  primitive python objects, data structures that contain Tensors, and printable
144  python objects. Printed tensors will recursively show the first and last
145  `summarize` elements of each dimension.
146
147  With eager execution enabled and/or inside a `tf.contrib.eager.defun` this
148  operator will automatically execute, and users only need to call `tf.print`
149  without using the return value. When constructing graphs outside of a
150  `tf.contrib.eager.defun`, one must either include the returned op
151  in the input to `session.run`, or use the operator as a control dependency for
152  executed ops by specifying `with tf.control_dependencies([print_op])`.
153
154  @compatibility(python2)
155  In python 2.7, make sure to import the following:
156  `from __future__ import print_function`
157  @end_compatibility
158
159  Example:
160    Single-input usage:
161    ```python
162    tf.enable_eager_execution()
163    tensor = tf.range(10)
164    tf.print(tensor, output_stream=sys.stderr)
165    ```
166    (This prints "[0 1 2 ... 7 8 9]" to sys.stderr)
167
168    Multi-input usage:
169    ```python
170    tf.enable_eager_execution()
171    tensor = tf.range(10)
172    tf.print("tensors:", tensor, {2: tensor * 2}, output_stream=sys.stdout)
173    ```
174    (This prints "tensors: [0 1 2 ... 7 8 9] {2: [0 2 4 ... 14 16 18]}" to
175    sys.stdout)
176
177    Usage in a defun:
178    ```python
179    tf.enable_eager_execution()
180
181    @tf.contrib.eager.defun
182    def f():
183        tensor = tf.range(10)
184        tf.print(tensor, output_stream=sys.stderr)
185        return tensor
186
187    range_tensor = f()
188    ```
189    (This prints "[0 1 2 ... 7 8 9]" to sys.stderr)
190
191    Usage when constructing graphs:
192    ```python
193    sess = tf.Session()
194    with sess.as_default():
195        tensor = tf.range(10)
196        print_op = tf.print("tensors:", tensor, {2: tensor * 2},
197                            output_stream=sys.stdout)
198        with tf.control_dependencies([print_op]):
199          tripled_tensor = tensor * 3
200        sess.run(tripled_tensor)
201    ```
202    (This prints "tensors: [0 1 2 ... 7 8 9] {2: [0 2 4 ... 14 16 18]}" to
203    sys.stdout)
204
205  Note: In Jupyter notebooks and colabs, this operator prints to the notebook
206    cell outputs. It will not write to the notebook kernel's console logs.
207
208  Args:
209    *inputs: Positional arguments that are the inputs to print. Inputs in the
210      printed output will be separated by spaces. Inputs may be python
211      primitives, tensors, data structures such as dicts and lists that
212      may contain tensors (with the data structures possibly nested in
213      arbitrary ways), and printable python objects.
214    output_stream: The output stream, logging level, or file to print to.
215      Defaults to sys.stderr, but sys.stdout, tf.logging.info,
216      tf.logging.warning, and tf.logging.error are also supported. To print to
217      a file, pass a string started with "file://" followed by the file path,
218      e.g., "file:///tmp/foo.out".
219    summarize: The first and last `summarize` elements within each dimension are
220      recursively printed per Tensor. If None, then the first 3 and last 3
221      elements of each dimension are printed for each tensor. If set to -1, it
222      will print all elements of every tensor.
223    name: A name for the operation (optional).
224
225  Returns:
226    A print operator that prints the specified inputs in the specified output
227    stream or logging level.
228
229  Raises:
230    ValueError: If an unsupported output stream is specified.
231  """
232  # Because we are using arbitrary-length positional arguments, python 2
233  # does not support explicitly specifying the keyword arguments in the
234  # function definition. So, we manually get the keyword arguments w/ default
235  # values here.
236  output_stream = kwargs.pop("output_stream", sys.stderr)
237  name = kwargs.pop("name", None)
238  summarize = kwargs.pop("summarize", 3)
239  if kwargs:
240    raise ValueError("Unrecognized keyword arguments for tf.print: %s" % kwargs)
241  format_name = None
242  if name:
243    format_name = name + "_format"
244
245  # Match the C++ string constants representing the different output streams.
246  # Keep this updated!
247  output_stream_to_constant = {
248      sys.stdout: "stdout",
249      sys.stderr: "stderr",
250      tf_logging.INFO: "log(info)",
251      tf_logging.info: "log(info)",
252      tf_logging.WARN: "log(warning)",
253      tf_logging.warning: "log(warning)",
254      tf_logging.warn: "log(warning)",
255      tf_logging.ERROR: "log(error)",
256      tf_logging.error: "log(error)",
257  }
258
259  if _is_filepath(output_stream):
260    output_stream_string = output_stream
261  else:
262    output_stream_string = output_stream_to_constant.get(output_stream)
263    if not output_stream_string:
264      raise ValueError(
265          "Unsupported output stream, logging level, or file." +
266          str(output_stream) + ". Supported streams are sys.stdout, "
267          "sys.stderr, tf.logging.info, "
268          "tf.logging.warning, tf.logging.error. " +
269          "File needs to be in the form of 'file://<filepath>'.")
270
271  # If we are only printing a single string scalar, there is no need to format
272  if (len(inputs) == 1 and tensor_util.is_tensor(inputs[0])
273      and (not isinstance(inputs[0], sparse_tensor.SparseTensor))
274      and (inputs[0].shape.ndims == 0)and (inputs[0].dtype == dtypes.string)):
275    formatted_string = inputs[0]
276  # Otherwise, we construct an appropriate template for the tensors we are
277  # printing, and format the template using those tensors.
278  else:
279    # For each input to this print function, we extract any nested tensors,
280    # and construct an appropriate template to format representing the
281    # printed input.
282    templates = []
283    tensors = []
284    tensor_free_structure = nest.map_structure(
285        lambda x: "" if tensor_util.is_tensor(x) else x,
286        inputs)
287    tensor_free_template = " ".join(pprint.pformat(x)
288                                    for x in tensor_free_structure)
289    placeholder = _generate_placeholder_string(tensor_free_template)
290
291    for input_ in inputs:
292      placeholders = []
293      # Use the nest utilities to flatten & process any nested elements in this
294      # input. The placeholder for a tensor in the template should be the
295      # placeholder string, and the placeholder for a non-tensor can just be
296      # the printed value of the non-tensor itself.
297      for x in nest.flatten(input_):
298        # support sparse tensors
299        if isinstance(x, sparse_tensor.SparseTensor):
300          tensors.extend([x.indices, x.values, x.dense_shape])
301          placeholders.append(
302              "SparseTensor(indices={}, values={}, shape={})".format(
303                  placeholder, placeholder, placeholder)
304          )
305        elif tensor_util.is_tensor(x):
306          tensors.append(x)
307          placeholders.append(placeholder)
308        else:
309          placeholders.append(x)
310
311      if isinstance(input_, six.string_types):
312        # If the current input to format/print is a normal string, that string
313        # can act as the template.
314        cur_template = input_
315      else:
316        # We pack the placeholders into a data structure that matches the
317        # input data structure format, then format that data structure
318        # into a string template.
319        #
320        # NOTE: We must use pprint.pformat here for building the template for
321        # unordered data structures such as `dict`, because `str` doesn't
322        # guarantee orderings, while pprint prints in sorted order. pprint
323        # will match the ordering of `nest.flatten`.
324        # This even works when nest.flatten reorders OrderedDicts, because
325        # pprint is printing *after* the OrderedDicts have been reordered.
326        cur_template = pprint.pformat(
327            nest.pack_sequence_as(input_, placeholders))
328      templates.append(cur_template)
329
330    # We join the templates for the various inputs into a single larger
331    # template. We also remove all quotes surrounding the placeholders, so that
332    # the formatted/printed output will not contain quotes around tensors.
333    # (example of where these quotes might appear: if we have added a
334    # placeholder string into a list, then pretty-formatted that list)
335    template = " ".join(templates)
336    template = template.replace("'" + placeholder + "'", placeholder)
337    formatted_string = string_ops.string_format(
338        inputs=tensors, template=template, placeholder=placeholder,
339        summarize=summarize,
340        name=format_name)
341
342  return gen_logging_ops.print_v2(formatted_string,
343                                  output_stream=output_stream_string,
344                                  name=name)
345# pylint: enable=g-doc-args
346
347
348@ops.RegisterGradient("Print")
349def _PrintGrad(op, *grad):
350  return list(grad) + [None] * (len(op.inputs) - 1)
351
352
353def _Collect(val, collections, default_collections):
354  if collections is None:
355    collections = default_collections
356  for key in collections:
357    ops.add_to_collection(key, val)
358
359
360@deprecated(
361    "2016-11-30", "Please switch to tf.summary.histogram. Note that "
362    "tf.summary.histogram uses the node name instead of the tag. "
363    "This means that TensorFlow will automatically de-duplicate summary "
364    "names based on the scope they are created in.")
365def histogram_summary(tag, values, collections=None, name=None):
366  # pylint: disable=line-too-long
367  """Outputs a `Summary` protocol buffer with a histogram.
368
369  This ops is deprecated. Please switch to tf.summary.histogram.
370
371  For an explanation of why this op was deprecated, and information on how to
372  migrate, look ['here'](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/deprecated/__init__.py)
373
374  The generated
375  [`Summary`](https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto)
376  has one summary value containing a histogram for `values`.
377
378  This op reports an `InvalidArgument` error if any value is not finite.
379
380  Args:
381    tag: A `string` `Tensor`. 0-D.  Tag to use for the summary value.
382    values: A real numeric `Tensor`. Any shape. Values to use to
383      build the histogram.
384    collections: Optional list of graph collections keys. The new summary op is
385      added to these collections. Defaults to `[GraphKeys.SUMMARIES]`.
386    name: A name for the operation (optional).
387
388  Returns:
389    A scalar `Tensor` of type `string`. The serialized `Summary` protocol
390    buffer.
391  """
392  with ops.name_scope(name, "HistogramSummary", [tag, values]) as scope:
393    val = gen_logging_ops.histogram_summary(
394        tag=tag, values=values, name=scope)
395    _Collect(val, collections, [ops.GraphKeys.SUMMARIES])
396  return val
397
398
399@deprecated(
400    "2016-11-30", "Please switch to tf.summary.image. Note that "
401    "tf.summary.image uses the node name instead of the tag. "
402    "This means that TensorFlow will automatically de-duplicate summary "
403    "names based on the scope they are created in. Also, the max_images "
404    "argument was renamed to max_outputs.")
405def image_summary(tag, tensor, max_images=3, collections=None, name=None):
406  # pylint: disable=line-too-long
407  """Outputs a `Summary` protocol buffer with images.
408
409  For an explanation of why this op was deprecated, and information on how to
410  migrate, look ['here'](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/deprecated/__init__.py)
411
412  The summary has up to `max_images` summary values containing images. The
413  images are built from `tensor` which must be 4-D with shape `[batch_size,
414  height, width, channels]` and where `channels` can be:
415
416  *  1: `tensor` is interpreted as Grayscale.
417  *  3: `tensor` is interpreted as RGB.
418  *  4: `tensor` is interpreted as RGBA.
419
420  The images have the same number of channels as the input tensor. For float
421  input, the values are normalized one image at a time to fit in the range
422  `[0, 255]`.  `uint8` values are unchanged.  The op uses two different
423  normalization algorithms:
424
425  *  If the input values are all positive, they are rescaled so the largest one
426     is 255.
427
428  *  If any input value is negative, the values are shifted so input value 0.0
429     is at 127.  They are then rescaled so that either the smallest value is 0,
430     or the largest one is 255.
431
432  The `tag` argument is a scalar `Tensor` of type `string`.  It is used to
433  build the `tag` of the summary values:
434
435  *  If `max_images` is 1, the summary value tag is '*tag*/image'.
436  *  If `max_images` is greater than 1, the summary value tags are
437     generated sequentially as '*tag*/image/0', '*tag*/image/1', etc.
438
439  Args:
440    tag: A scalar `Tensor` of type `string`. Used to build the `tag`
441      of the summary values.
442    tensor: A 4-D `uint8` or `float32` `Tensor` of shape `[batch_size, height,
443      width, channels]` where `channels` is 1, 3, or 4.
444    max_images: Max number of batch elements to generate images for.
445    collections: Optional list of ops.GraphKeys.  The collections to add the
446      summary to.  Defaults to [ops.GraphKeys.SUMMARIES]
447    name: A name for the operation (optional).
448
449  Returns:
450    A scalar `Tensor` of type `string`. The serialized `Summary` protocol
451    buffer.
452  """
453  with ops.name_scope(name, "ImageSummary", [tag, tensor]) as scope:
454    val = gen_logging_ops.image_summary(
455        tag=tag, tensor=tensor, max_images=max_images, name=scope)
456    _Collect(val, collections, [ops.GraphKeys.SUMMARIES])
457  return val
458
459
460@deprecated(
461    "2016-11-30", "Please switch to tf.summary.audio. Note that "
462    "tf.summary.audio uses the node name instead of the tag. "
463    "This means that TensorFlow will automatically de-duplicate summary "
464    "names based on the scope they are created in.")
465def audio_summary(tag,
466                  tensor,
467                  sample_rate,
468                  max_outputs=3,
469                  collections=None,
470                  name=None):
471  # pylint: disable=line-too-long
472  """Outputs a `Summary` protocol buffer with audio.
473
474  This op is deprecated. Please switch to tf.summary.audio.
475  For an explanation of why this op was deprecated, and information on how to
476  migrate, look ['here'](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/deprecated/__init__.py)
477
478  The summary has up to `max_outputs` summary values containing audio. The
479  audio is built from `tensor` which must be 3-D with shape `[batch_size,
480  frames, channels]` or 2-D with shape `[batch_size, frames]`. The values are
481  assumed to be in the range of `[-1.0, 1.0]` with a sample rate of
482  `sample_rate`.
483
484  The `tag` argument is a scalar `Tensor` of type `string`.  It is used to
485  build the `tag` of the summary values:
486
487  *  If `max_outputs` is 1, the summary value tag is '*tag*/audio'.
488  *  If `max_outputs` is greater than 1, the summary value tags are
489     generated sequentially as '*tag*/audio/0', '*tag*/audio/1', etc.
490
491  Args:
492    tag: A scalar `Tensor` of type `string`. Used to build the `tag`
493      of the summary values.
494    tensor: A 3-D `float32` `Tensor` of shape `[batch_size, frames, channels]`
495      or a 2-D `float32` `Tensor` of shape `[batch_size, frames]`.
496    sample_rate: A Scalar `float32` `Tensor` indicating the sample rate of the
497      signal in hertz.
498    max_outputs: Max number of batch elements to generate audio for.
499    collections: Optional list of ops.GraphKeys.  The collections to add the
500      summary to.  Defaults to [ops.GraphKeys.SUMMARIES]
501    name: A name for the operation (optional).
502
503  Returns:
504    A scalar `Tensor` of type `string`. The serialized `Summary` protocol
505    buffer.
506  """
507  with ops.name_scope(name, "AudioSummary", [tag, tensor]) as scope:
508    sample_rate = ops.convert_to_tensor(sample_rate, dtype=dtypes.float32,
509                                        name="sample_rate")
510    val = gen_logging_ops.audio_summary_v2(
511        tag=tag,
512        tensor=tensor,
513        max_outputs=max_outputs,
514        sample_rate=sample_rate,
515        name=scope)
516    _Collect(val, collections, [ops.GraphKeys.SUMMARIES])
517  return val
518
519
520@deprecated("2016-11-30", "Please switch to tf.summary.merge.")
521def merge_summary(inputs, collections=None, name=None):
522  # pylint: disable=line-too-long
523  """Merges summaries.
524
525  This op is deprecated. Please switch to tf.summary.merge, which has identical
526  behavior.
527
528  This op creates a
529  [`Summary`](https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto)
530  protocol buffer that contains the union of all the values in the input
531  summaries.
532
533  When the Op is run, it reports an `InvalidArgument` error if multiple values
534  in the summaries to merge use the same tag.
535
536  Args:
537    inputs: A list of `string` `Tensor` objects containing serialized `Summary`
538      protocol buffers.
539    collections: Optional list of graph collections keys. The new summary op is
540      added to these collections. Defaults to `[GraphKeys.SUMMARIES]`.
541    name: A name for the operation (optional).
542
543  Returns:
544    A scalar `Tensor` of type `string`. The serialized `Summary` protocol
545    buffer resulting from the merging.
546  """
547  with ops.name_scope(name, "MergeSummary", inputs):
548    val = gen_logging_ops.merge_summary(inputs=inputs, name=name)
549    _Collect(val, collections, [])
550  return val
551
552
553@deprecated("2016-11-30", "Please switch to tf.summary.merge_all.")
554def merge_all_summaries(key=ops.GraphKeys.SUMMARIES):
555  """Merges all summaries collected in the default graph.
556
557  This op is deprecated. Please switch to tf.summary.merge_all, which has
558  identical behavior.
559
560  Args:
561    key: `GraphKey` used to collect the summaries.  Defaults to
562      `GraphKeys.SUMMARIES`.
563
564  Returns:
565    If no summaries were collected, returns None.  Otherwise returns a scalar
566    `Tensor` of type `string` containing the serialized `Summary` protocol
567    buffer resulting from the merging.
568  """
569  summary_ops = ops.get_collection(key)
570  if not summary_ops:
571    return None
572  else:
573    return merge_summary(summary_ops)
574
575
576def get_summary_op():
577  """Returns a single Summary op that would run all summaries.
578
579  Either existing one from `SUMMARY_OP` collection or merges all existing
580  summaries.
581
582  Returns:
583    If no summaries were collected, returns None. Otherwise returns a scalar
584    `Tensor` of type `string` containing the serialized `Summary` protocol
585    buffer resulting from the merging.
586  """
587  summary_op = ops.get_collection(ops.GraphKeys.SUMMARY_OP)
588  if summary_op is not None:
589    if summary_op:
590      summary_op = summary_op[0]
591    else:
592      summary_op = None
593  if summary_op is None:
594    summary_op = merge_all_summaries()
595    if summary_op is not None:
596      ops.add_to_collection(ops.GraphKeys.SUMMARY_OP, summary_op)
597  return summary_op
598
599
600@deprecated(
601    "2016-11-30", "Please switch to tf.summary.scalar. Note that "
602    "tf.summary.scalar uses the node name instead of the tag. "
603    "This means that TensorFlow will automatically de-duplicate summary "
604    "names based on the scope they are created in. Also, passing a "
605    "tensor or list of tags to a scalar summary op is no longer "
606    "supported.")
607def scalar_summary(tags, values, collections=None, name=None):
608  # pylint: disable=line-too-long
609  """Outputs a `Summary` protocol buffer with scalar values.
610
611  This ops is deprecated. Please switch to tf.summary.scalar.
612  For an explanation of why this op was deprecated, and information on how to
613  migrate, look ['here'](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/deprecated/__init__.py)
614
615  The input `tags` and `values` must have the same shape.  The generated
616  summary has a summary value for each tag-value pair in `tags` and `values`.
617
618  Args:
619    tags: A `string` `Tensor`.  Tags for the summaries.
620    values: A real numeric Tensor.  Values for the summaries.
621    collections: Optional list of graph collections keys. The new summary op is
622      added to these collections. Defaults to `[GraphKeys.SUMMARIES]`.
623    name: A name for the operation (optional).
624
625  Returns:
626    A scalar `Tensor` of type `string`. The serialized `Summary` protocol
627    buffer.
628  """
629  with ops.name_scope(name, "ScalarSummary", [tags, values]) as scope:
630    val = gen_logging_ops.scalar_summary(tags=tags, values=values, name=scope)
631    _Collect(val, collections, [ops.GraphKeys.SUMMARIES])
632  return val
633
634ops.NotDifferentiable("HistogramSummary")
635ops.NotDifferentiable("ImageSummary")
636ops.NotDifferentiable("AudioSummary")
637ops.NotDifferentiable("AudioSummaryV2")
638ops.NotDifferentiable("MergeSummary")
639ops.NotDifferentiable("ScalarSummary")
640ops.NotDifferentiable("TensorSummary")
641ops.NotDifferentiable("TensorSummaryV2")
642ops.NotDifferentiable("Timestamp")
643