1 /* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 #include <iterator>
16 #include <memory>
17 #include <string>
18 #include <unordered_set>
19 #include <vector>
20 
21 #include "tensorflow/lite/toco/graph_transformations/graph_transformations.h"
22 #include "tensorflow/lite/toco/model.h"
23 #include "tensorflow/lite/toco/tooling_util.h"
24 #include "tensorflow/core/platform/logging.h"
25 
26 namespace toco {
27 
28 namespace {
29 
IsElementwiseOperator(OperatorType optype)30 bool IsElementwiseOperator(OperatorType optype) {
31   switch (optype) {
32     case OperatorType::kCast:
33     case OperatorType::kCeil:
34     case OperatorType::kExp:
35     case OperatorType::kFloor:
36     case OperatorType::kNeg:
37     case OperatorType::kRelu:
38     case OperatorType::kRelu1:
39     case OperatorType::kRelu6:
40     case OperatorType::kTanh:
41     case OperatorType::kSqrt:
42     case OperatorType::kSquare:
43       return true;
44     default:
45       return false;
46   }
47 }
48 
IsMoveOperator(OperatorType optype)49 bool IsMoveOperator(OperatorType optype) {
50   switch (optype) {
51     case OperatorType::kDepthToSpace:
52     case OperatorType::kExpandDims:
53     case OperatorType::kSpaceToDepth:
54     case OperatorType::kSqueeze:
55     case OperatorType::kReshape:
56     case OperatorType::kTranspose:
57       return true;
58     default:
59       return false;
60   }
61 }
62 
63 }  // namespace
64 
65 // Swap elementwise operators such that all value operators occur before all
66 // element move operators, e.g. negation then transpose.
Run(Model * model,std::size_t op_index,bool * modified)67 ::tensorflow::Status ReorderElementwiseUnary::Run(Model* model,
68                                                   std::size_t op_index,
69                                                   bool* modified) {
70   *modified = false;
71   const auto element_op_it = model->operators.begin() + op_index;
72   std::unique_ptr<Operator>& element_op = *element_op_it;
73   if (!IsElementwiseOperator(element_op->type)) {
74     return ::tensorflow::Status::OK();
75   }
76 
77   const string intermediate_name = element_op->inputs[0];
78   auto it = FindOpWithOutput(*model, intermediate_name);
79   if (it == model->operators.end()) {
80     AddMessageF("No preceding operator");
81     return ::tensorflow::Status::OK();
82   }
83 
84   std::unique_ptr<Operator>& move_op = *it;
85   if (!IsMoveOperator(move_op->type)) {
86     AddMessageF("Preceding operator is not a move operator");
87     return ::tensorflow::Status::OK();
88   }
89 
90   if (CountOpsWithInput(*model, intermediate_name) != 1) {
91     AddMessageF("Input %s used elsewhere", intermediate_name);
92     return ::tensorflow::Status::OK();
93   }
94 
95   // Check that the intermediate is discardable.
96   if (!IsDiscardableArray(*model, intermediate_name)) {
97     AddMessageF(
98         "Cannot swap elementwise as it would invalidate %s which is "
99         "an output array.",
100         intermediate_name);
101     return ::tensorflow::Status::OK();
102   }
103 
104   // op->inputs may change so we need to keep a value by copy.
105   const string input_name = move_op->inputs[0];
106   const string output_name = element_op->outputs[0];
107 
108   AddMessageF("Swapping around operators with %s and %s", LogName(*element_op),
109               LogName(*move_op));
110 
111   // If the output array is an exit node for the graph then we need to retain
112   // the name as an output node. This makes the naming scheme a little confusing
113   // but is required in this rare case.
114   if (!IsDiscardableArray(*model, output_name)) {
115     // The output name of the sequence needs to stay static, so create a new
116     // array new use for the intermediate.
117     const auto new_intermediate_name =
118         AvailableArrayName(*model, element_op->outputs[0] + "_reorder");
119     AddMessageF("Adding new array %s to preserve output array name %s",
120                 new_intermediate_name, output_name);
121 
122     element_op->inputs[0] = input_name;
123     element_op->outputs[0] = new_intermediate_name;
124     model->EraseArray(intermediate_name);
125     move_op->inputs[0] = new_intermediate_name;
126     move_op->outputs[0] = output_name;
127   } else {
128     // The intermediate array is now the output array.
129     for (int i = 0; i < model->operators.size(); i++) {
130       Operator* consumer = model->operators[i].get();
131       for (int j = 0; j < consumer->inputs.size(); j++) {
132         if (consumer->inputs[j] == output_name) {
133           consumer->inputs[j] = intermediate_name;
134         }
135       }
136     }
137 
138     element_op->inputs[0] = input_name;
139     move_op->inputs[0] = output_name;
140   }
141 
142   // Reset both arrays as shape, type, min/max, etc can all change because of
143   // the position swap.
144   model->EraseArray(element_op->outputs[0]);
145   model->EraseArray(move_op->outputs[0]);
146 
147   // Reconstruct.
148   model->GetOrCreateArray(element_op->outputs[0]);
149   model->GetOrCreateArray(move_op->outputs[0]);
150 
151   // Swap the order of the operators.
152   element_op.swap(move_op);
153 
154   *modified = true;
155   return ::tensorflow::Status::OK();
156 }
157 
158 }  // namespace toco
159