1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Freescale i.MX28 NAND flash driver
4 *
5 * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
6 * on behalf of DENX Software Engineering GmbH
7 *
8 * Based on code from LTIB:
9 * Freescale GPMI NFC NAND Flash Driver
10 *
11 * Copyright (C) 2010 Freescale Semiconductor, Inc.
12 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
13 */
14
15 #include <common.h>
16 #include <dm.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/sizes.h>
19 #include <linux/types.h>
20 #include <malloc.h>
21 #include <linux/errno.h>
22 #include <asm/io.h>
23 #include <asm/arch/clock.h>
24 #include <asm/arch/imx-regs.h>
25 #include <asm/mach-imx/regs-bch.h>
26 #include <asm/mach-imx/regs-gpmi.h>
27 #include <asm/arch/sys_proto.h>
28 #include "mxs_nand.h"
29
30 #define MXS_NAND_DMA_DESCRIPTOR_COUNT 4
31
32 #if (defined(CONFIG_MX6) || defined(CONFIG_MX7))
33 #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 2
34 #else
35 #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 0
36 #endif
37 #define MXS_NAND_METADATA_SIZE 10
38 #define MXS_NAND_BITS_PER_ECC_LEVEL 13
39
40 #if !defined(CONFIG_SYS_CACHELINE_SIZE) || CONFIG_SYS_CACHELINE_SIZE < 32
41 #define MXS_NAND_COMMAND_BUFFER_SIZE 32
42 #else
43 #define MXS_NAND_COMMAND_BUFFER_SIZE CONFIG_SYS_CACHELINE_SIZE
44 #endif
45
46 #define MXS_NAND_BCH_TIMEOUT 10000
47
48 struct nand_ecclayout fake_ecc_layout;
49
50 /*
51 * Cache management functions
52 */
53 #ifndef CONFIG_SYS_DCACHE_OFF
mxs_nand_flush_data_buf(struct mxs_nand_info * info)54 static void mxs_nand_flush_data_buf(struct mxs_nand_info *info)
55 {
56 uint32_t addr = (uint32_t)info->data_buf;
57
58 flush_dcache_range(addr, addr + info->data_buf_size);
59 }
60
mxs_nand_inval_data_buf(struct mxs_nand_info * info)61 static void mxs_nand_inval_data_buf(struct mxs_nand_info *info)
62 {
63 uint32_t addr = (uint32_t)info->data_buf;
64
65 invalidate_dcache_range(addr, addr + info->data_buf_size);
66 }
67
mxs_nand_flush_cmd_buf(struct mxs_nand_info * info)68 static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info)
69 {
70 uint32_t addr = (uint32_t)info->cmd_buf;
71
72 flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE);
73 }
74 #else
mxs_nand_flush_data_buf(struct mxs_nand_info * info)75 static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {}
mxs_nand_inval_data_buf(struct mxs_nand_info * info)76 static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {}
mxs_nand_flush_cmd_buf(struct mxs_nand_info * info)77 static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {}
78 #endif
79
mxs_nand_get_dma_desc(struct mxs_nand_info * info)80 static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
81 {
82 struct mxs_dma_desc *desc;
83
84 if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
85 printf("MXS NAND: Too many DMA descriptors requested\n");
86 return NULL;
87 }
88
89 desc = info->desc[info->desc_index];
90 info->desc_index++;
91
92 return desc;
93 }
94
mxs_nand_return_dma_descs(struct mxs_nand_info * info)95 static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
96 {
97 int i;
98 struct mxs_dma_desc *desc;
99
100 for (i = 0; i < info->desc_index; i++) {
101 desc = info->desc[i];
102 memset(desc, 0, sizeof(struct mxs_dma_desc));
103 desc->address = (dma_addr_t)desc;
104 }
105
106 info->desc_index = 0;
107 }
108
mxs_nand_aux_status_offset(void)109 static uint32_t mxs_nand_aux_status_offset(void)
110 {
111 return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
112 }
113
mxs_nand_calc_mark_offset(struct bch_geometry * geo,uint32_t page_data_size)114 static inline int mxs_nand_calc_mark_offset(struct bch_geometry *geo,
115 uint32_t page_data_size)
116 {
117 uint32_t chunk_data_size_in_bits = geo->ecc_chunk_size * 8;
118 uint32_t chunk_ecc_size_in_bits = geo->ecc_strength * geo->gf_len;
119 uint32_t chunk_total_size_in_bits;
120 uint32_t block_mark_chunk_number;
121 uint32_t block_mark_chunk_bit_offset;
122 uint32_t block_mark_bit_offset;
123
124 chunk_total_size_in_bits =
125 chunk_data_size_in_bits + chunk_ecc_size_in_bits;
126
127 /* Compute the bit offset of the block mark within the physical page. */
128 block_mark_bit_offset = page_data_size * 8;
129
130 /* Subtract the metadata bits. */
131 block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
132
133 /*
134 * Compute the chunk number (starting at zero) in which the block mark
135 * appears.
136 */
137 block_mark_chunk_number =
138 block_mark_bit_offset / chunk_total_size_in_bits;
139
140 /*
141 * Compute the bit offset of the block mark within its chunk, and
142 * validate it.
143 */
144 block_mark_chunk_bit_offset = block_mark_bit_offset -
145 (block_mark_chunk_number * chunk_total_size_in_bits);
146
147 if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
148 return -EINVAL;
149
150 /*
151 * Now that we know the chunk number in which the block mark appears,
152 * we can subtract all the ECC bits that appear before it.
153 */
154 block_mark_bit_offset -=
155 block_mark_chunk_number * chunk_ecc_size_in_bits;
156
157 geo->block_mark_byte_offset = block_mark_bit_offset >> 3;
158 geo->block_mark_bit_offset = block_mark_bit_offset & 0x7;
159
160 return 0;
161 }
162
mxs_nand_calc_ecc_layout_by_info(struct bch_geometry * geo,struct mtd_info * mtd,unsigned int ecc_strength,unsigned int ecc_step)163 static inline int mxs_nand_calc_ecc_layout_by_info(struct bch_geometry *geo,
164 struct mtd_info *mtd,
165 unsigned int ecc_strength,
166 unsigned int ecc_step)
167 {
168 struct nand_chip *chip = mtd_to_nand(mtd);
169 struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
170
171 switch (ecc_step) {
172 case SZ_512:
173 geo->gf_len = 13;
174 break;
175 case SZ_1K:
176 geo->gf_len = 14;
177 break;
178 default:
179 return -EINVAL;
180 }
181
182 geo->ecc_chunk_size = ecc_step;
183 geo->ecc_strength = round_up(ecc_strength, 2);
184
185 /* Keep the C >= O */
186 if (geo->ecc_chunk_size < mtd->oobsize)
187 return -EINVAL;
188
189 if (geo->ecc_strength > nand_info->max_ecc_strength_supported)
190 return -EINVAL;
191
192 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
193
194 return 0;
195 }
196
mxs_nand_calc_ecc_layout(struct bch_geometry * geo,struct mtd_info * mtd)197 static inline int mxs_nand_calc_ecc_layout(struct bch_geometry *geo,
198 struct mtd_info *mtd)
199 {
200 struct nand_chip *chip = mtd_to_nand(mtd);
201 struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
202
203 /* The default for the length of Galois Field. */
204 geo->gf_len = 13;
205
206 /* The default for chunk size. */
207 geo->ecc_chunk_size = 512;
208
209 if (geo->ecc_chunk_size < mtd->oobsize) {
210 geo->gf_len = 14;
211 geo->ecc_chunk_size *= 2;
212 }
213
214 if (mtd->oobsize > geo->ecc_chunk_size) {
215 printf("Not support the NAND chips whose oob size is larger then %d bytes!\n",
216 geo->ecc_chunk_size);
217 return -EINVAL;
218 }
219
220 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
221
222 /*
223 * Determine the ECC layout with the formula:
224 * ECC bits per chunk = (total page spare data bits) /
225 * (bits per ECC level) / (chunks per page)
226 * where:
227 * total page spare data bits =
228 * (page oob size - meta data size) * (bits per byte)
229 */
230 geo->ecc_strength = ((mtd->oobsize - MXS_NAND_METADATA_SIZE) * 8)
231 / (geo->gf_len * geo->ecc_chunk_count);
232
233 geo->ecc_strength = min(round_down(geo->ecc_strength, 2),
234 nand_info->max_ecc_strength_supported);
235
236 return 0;
237 }
238
239 /*
240 * Wait for BCH complete IRQ and clear the IRQ
241 */
mxs_nand_wait_for_bch_complete(struct mxs_nand_info * nand_info)242 static int mxs_nand_wait_for_bch_complete(struct mxs_nand_info *nand_info)
243 {
244 int timeout = MXS_NAND_BCH_TIMEOUT;
245 int ret;
246
247 ret = mxs_wait_mask_set(&nand_info->bch_regs->hw_bch_ctrl_reg,
248 BCH_CTRL_COMPLETE_IRQ, timeout);
249
250 writel(BCH_CTRL_COMPLETE_IRQ, &nand_info->bch_regs->hw_bch_ctrl_clr);
251
252 return ret;
253 }
254
255 /*
256 * This is the function that we install in the cmd_ctrl function pointer of the
257 * owning struct nand_chip. The only functions in the reference implementation
258 * that use these functions pointers are cmdfunc and select_chip.
259 *
260 * In this driver, we implement our own select_chip, so this function will only
261 * be called by the reference implementation's cmdfunc. For this reason, we can
262 * ignore the chip enable bit and concentrate only on sending bytes to the NAND
263 * Flash.
264 */
mxs_nand_cmd_ctrl(struct mtd_info * mtd,int data,unsigned int ctrl)265 static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
266 {
267 struct nand_chip *nand = mtd_to_nand(mtd);
268 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
269 struct mxs_dma_desc *d;
270 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
271 int ret;
272
273 /*
274 * If this condition is true, something is _VERY_ wrong in MTD
275 * subsystem!
276 */
277 if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
278 printf("MXS NAND: Command queue too long\n");
279 return;
280 }
281
282 /*
283 * Every operation begins with a command byte and a series of zero or
284 * more address bytes. These are distinguished by either the Address
285 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
286 * asserted. When MTD is ready to execute the command, it will
287 * deasert both latch enables.
288 *
289 * Rather than run a separate DMA operation for every single byte, we
290 * queue them up and run a single DMA operation for the entire series
291 * of command and data bytes.
292 */
293 if (ctrl & (NAND_ALE | NAND_CLE)) {
294 if (data != NAND_CMD_NONE)
295 nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
296 return;
297 }
298
299 /*
300 * If control arrives here, MTD has deasserted both the ALE and CLE,
301 * which means it's ready to run an operation. Check if we have any
302 * bytes to send.
303 */
304 if (nand_info->cmd_queue_len == 0)
305 return;
306
307 /* Compile the DMA descriptor -- a descriptor that sends command. */
308 d = mxs_nand_get_dma_desc(nand_info);
309 d->cmd.data =
310 MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
311 MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
312 MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
313 (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
314
315 d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
316
317 d->cmd.pio_words[0] =
318 GPMI_CTRL0_COMMAND_MODE_WRITE |
319 GPMI_CTRL0_WORD_LENGTH |
320 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
321 GPMI_CTRL0_ADDRESS_NAND_CLE |
322 GPMI_CTRL0_ADDRESS_INCREMENT |
323 nand_info->cmd_queue_len;
324
325 mxs_dma_desc_append(channel, d);
326
327 /* Flush caches */
328 mxs_nand_flush_cmd_buf(nand_info);
329
330 /* Execute the DMA chain. */
331 ret = mxs_dma_go(channel);
332 if (ret)
333 printf("MXS NAND: Error sending command\n");
334
335 mxs_nand_return_dma_descs(nand_info);
336
337 /* Reset the command queue. */
338 nand_info->cmd_queue_len = 0;
339 }
340
341 /*
342 * Test if the NAND flash is ready.
343 */
mxs_nand_device_ready(struct mtd_info * mtd)344 static int mxs_nand_device_ready(struct mtd_info *mtd)
345 {
346 struct nand_chip *chip = mtd_to_nand(mtd);
347 struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
348 uint32_t tmp;
349
350 tmp = readl(&nand_info->gpmi_regs->hw_gpmi_stat);
351 tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
352
353 return tmp & 1;
354 }
355
356 /*
357 * Select the NAND chip.
358 */
mxs_nand_select_chip(struct mtd_info * mtd,int chip)359 static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
360 {
361 struct nand_chip *nand = mtd_to_nand(mtd);
362 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
363
364 nand_info->cur_chip = chip;
365 }
366
367 /*
368 * Handle block mark swapping.
369 *
370 * Note that, when this function is called, it doesn't know whether it's
371 * swapping the block mark, or swapping it *back* -- but it doesn't matter
372 * because the the operation is the same.
373 */
mxs_nand_swap_block_mark(struct bch_geometry * geo,uint8_t * data_buf,uint8_t * oob_buf)374 static void mxs_nand_swap_block_mark(struct bch_geometry *geo,
375 uint8_t *data_buf, uint8_t *oob_buf)
376 {
377 uint32_t bit_offset = geo->block_mark_bit_offset;
378 uint32_t buf_offset = geo->block_mark_byte_offset;
379
380 uint32_t src;
381 uint32_t dst;
382
383 /*
384 * Get the byte from the data area that overlays the block mark. Since
385 * the ECC engine applies its own view to the bits in the page, the
386 * physical block mark won't (in general) appear on a byte boundary in
387 * the data.
388 */
389 src = data_buf[buf_offset] >> bit_offset;
390 src |= data_buf[buf_offset + 1] << (8 - bit_offset);
391
392 dst = oob_buf[0];
393
394 oob_buf[0] = src;
395
396 data_buf[buf_offset] &= ~(0xff << bit_offset);
397 data_buf[buf_offset + 1] &= 0xff << bit_offset;
398
399 data_buf[buf_offset] |= dst << bit_offset;
400 data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
401 }
402
403 /*
404 * Read data from NAND.
405 */
mxs_nand_read_buf(struct mtd_info * mtd,uint8_t * buf,int length)406 static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
407 {
408 struct nand_chip *nand = mtd_to_nand(mtd);
409 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
410 struct mxs_dma_desc *d;
411 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
412 int ret;
413
414 if (length > NAND_MAX_PAGESIZE) {
415 printf("MXS NAND: DMA buffer too big\n");
416 return;
417 }
418
419 if (!buf) {
420 printf("MXS NAND: DMA buffer is NULL\n");
421 return;
422 }
423
424 /* Compile the DMA descriptor - a descriptor that reads data. */
425 d = mxs_nand_get_dma_desc(nand_info);
426 d->cmd.data =
427 MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
428 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
429 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
430 (length << MXS_DMA_DESC_BYTES_OFFSET);
431
432 d->cmd.address = (dma_addr_t)nand_info->data_buf;
433
434 d->cmd.pio_words[0] =
435 GPMI_CTRL0_COMMAND_MODE_READ |
436 GPMI_CTRL0_WORD_LENGTH |
437 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
438 GPMI_CTRL0_ADDRESS_NAND_DATA |
439 length;
440
441 mxs_dma_desc_append(channel, d);
442
443 /*
444 * A DMA descriptor that waits for the command to end and the chip to
445 * become ready.
446 *
447 * I think we actually should *not* be waiting for the chip to become
448 * ready because, after all, we don't care. I think the original code
449 * did that and no one has re-thought it yet.
450 */
451 d = mxs_nand_get_dma_desc(nand_info);
452 d->cmd.data =
453 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
454 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
455 MXS_DMA_DESC_WAIT4END | (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
456
457 d->cmd.address = 0;
458
459 d->cmd.pio_words[0] =
460 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
461 GPMI_CTRL0_WORD_LENGTH |
462 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
463 GPMI_CTRL0_ADDRESS_NAND_DATA;
464
465 mxs_dma_desc_append(channel, d);
466
467 /* Invalidate caches */
468 mxs_nand_inval_data_buf(nand_info);
469
470 /* Execute the DMA chain. */
471 ret = mxs_dma_go(channel);
472 if (ret) {
473 printf("MXS NAND: DMA read error\n");
474 goto rtn;
475 }
476
477 /* Invalidate caches */
478 mxs_nand_inval_data_buf(nand_info);
479
480 memcpy(buf, nand_info->data_buf, length);
481
482 rtn:
483 mxs_nand_return_dma_descs(nand_info);
484 }
485
486 /*
487 * Write data to NAND.
488 */
mxs_nand_write_buf(struct mtd_info * mtd,const uint8_t * buf,int length)489 static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
490 int length)
491 {
492 struct nand_chip *nand = mtd_to_nand(mtd);
493 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
494 struct mxs_dma_desc *d;
495 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
496 int ret;
497
498 if (length > NAND_MAX_PAGESIZE) {
499 printf("MXS NAND: DMA buffer too big\n");
500 return;
501 }
502
503 if (!buf) {
504 printf("MXS NAND: DMA buffer is NULL\n");
505 return;
506 }
507
508 memcpy(nand_info->data_buf, buf, length);
509
510 /* Compile the DMA descriptor - a descriptor that writes data. */
511 d = mxs_nand_get_dma_desc(nand_info);
512 d->cmd.data =
513 MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
514 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
515 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
516 (length << MXS_DMA_DESC_BYTES_OFFSET);
517
518 d->cmd.address = (dma_addr_t)nand_info->data_buf;
519
520 d->cmd.pio_words[0] =
521 GPMI_CTRL0_COMMAND_MODE_WRITE |
522 GPMI_CTRL0_WORD_LENGTH |
523 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
524 GPMI_CTRL0_ADDRESS_NAND_DATA |
525 length;
526
527 mxs_dma_desc_append(channel, d);
528
529 /* Flush caches */
530 mxs_nand_flush_data_buf(nand_info);
531
532 /* Execute the DMA chain. */
533 ret = mxs_dma_go(channel);
534 if (ret)
535 printf("MXS NAND: DMA write error\n");
536
537 mxs_nand_return_dma_descs(nand_info);
538 }
539
540 /*
541 * Read a single byte from NAND.
542 */
mxs_nand_read_byte(struct mtd_info * mtd)543 static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
544 {
545 uint8_t buf;
546 mxs_nand_read_buf(mtd, &buf, 1);
547 return buf;
548 }
549
550 /*
551 * Read a page from NAND.
552 */
mxs_nand_ecc_read_page(struct mtd_info * mtd,struct nand_chip * nand,uint8_t * buf,int oob_required,int page)553 static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
554 uint8_t *buf, int oob_required,
555 int page)
556 {
557 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
558 struct bch_geometry *geo = &nand_info->bch_geometry;
559 struct mxs_dma_desc *d;
560 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
561 uint32_t corrected = 0, failed = 0;
562 uint8_t *status;
563 int i, ret;
564
565 /* Compile the DMA descriptor - wait for ready. */
566 d = mxs_nand_get_dma_desc(nand_info);
567 d->cmd.data =
568 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
569 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
570 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
571
572 d->cmd.address = 0;
573
574 d->cmd.pio_words[0] =
575 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
576 GPMI_CTRL0_WORD_LENGTH |
577 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
578 GPMI_CTRL0_ADDRESS_NAND_DATA;
579
580 mxs_dma_desc_append(channel, d);
581
582 /* Compile the DMA descriptor - enable the BCH block and read. */
583 d = mxs_nand_get_dma_desc(nand_info);
584 d->cmd.data =
585 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
586 MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
587
588 d->cmd.address = 0;
589
590 d->cmd.pio_words[0] =
591 GPMI_CTRL0_COMMAND_MODE_READ |
592 GPMI_CTRL0_WORD_LENGTH |
593 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
594 GPMI_CTRL0_ADDRESS_NAND_DATA |
595 (mtd->writesize + mtd->oobsize);
596 d->cmd.pio_words[1] = 0;
597 d->cmd.pio_words[2] =
598 GPMI_ECCCTRL_ENABLE_ECC |
599 GPMI_ECCCTRL_ECC_CMD_DECODE |
600 GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
601 d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
602 d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
603 d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
604
605 mxs_dma_desc_append(channel, d);
606
607 /* Compile the DMA descriptor - disable the BCH block. */
608 d = mxs_nand_get_dma_desc(nand_info);
609 d->cmd.data =
610 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
611 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
612 (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
613
614 d->cmd.address = 0;
615
616 d->cmd.pio_words[0] =
617 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
618 GPMI_CTRL0_WORD_LENGTH |
619 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
620 GPMI_CTRL0_ADDRESS_NAND_DATA |
621 (mtd->writesize + mtd->oobsize);
622 d->cmd.pio_words[1] = 0;
623 d->cmd.pio_words[2] = 0;
624
625 mxs_dma_desc_append(channel, d);
626
627 /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
628 d = mxs_nand_get_dma_desc(nand_info);
629 d->cmd.data =
630 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
631 MXS_DMA_DESC_DEC_SEM;
632
633 d->cmd.address = 0;
634
635 mxs_dma_desc_append(channel, d);
636
637 /* Invalidate caches */
638 mxs_nand_inval_data_buf(nand_info);
639
640 /* Execute the DMA chain. */
641 ret = mxs_dma_go(channel);
642 if (ret) {
643 printf("MXS NAND: DMA read error\n");
644 goto rtn;
645 }
646
647 ret = mxs_nand_wait_for_bch_complete(nand_info);
648 if (ret) {
649 printf("MXS NAND: BCH read timeout\n");
650 goto rtn;
651 }
652
653 /* Invalidate caches */
654 mxs_nand_inval_data_buf(nand_info);
655
656 /* Read DMA completed, now do the mark swapping. */
657 mxs_nand_swap_block_mark(geo, nand_info->data_buf, nand_info->oob_buf);
658
659 /* Loop over status bytes, accumulating ECC status. */
660 status = nand_info->oob_buf + mxs_nand_aux_status_offset();
661 for (i = 0; i < geo->ecc_chunk_count; i++) {
662 if (status[i] == 0x00)
663 continue;
664
665 if (status[i] == 0xff)
666 continue;
667
668 if (status[i] == 0xfe) {
669 failed++;
670 continue;
671 }
672
673 corrected += status[i];
674 }
675
676 /* Propagate ECC status to the owning MTD. */
677 mtd->ecc_stats.failed += failed;
678 mtd->ecc_stats.corrected += corrected;
679
680 /*
681 * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
682 * details about our policy for delivering the OOB.
683 *
684 * We fill the caller's buffer with set bits, and then copy the block
685 * mark to the caller's buffer. Note that, if block mark swapping was
686 * necessary, it has already been done, so we can rely on the first
687 * byte of the auxiliary buffer to contain the block mark.
688 */
689 memset(nand->oob_poi, 0xff, mtd->oobsize);
690
691 nand->oob_poi[0] = nand_info->oob_buf[0];
692
693 memcpy(buf, nand_info->data_buf, mtd->writesize);
694
695 rtn:
696 mxs_nand_return_dma_descs(nand_info);
697
698 return ret;
699 }
700
701 /*
702 * Write a page to NAND.
703 */
mxs_nand_ecc_write_page(struct mtd_info * mtd,struct nand_chip * nand,const uint8_t * buf,int oob_required,int page)704 static int mxs_nand_ecc_write_page(struct mtd_info *mtd,
705 struct nand_chip *nand, const uint8_t *buf,
706 int oob_required, int page)
707 {
708 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
709 struct bch_geometry *geo = &nand_info->bch_geometry;
710 struct mxs_dma_desc *d;
711 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
712 int ret;
713
714 memcpy(nand_info->data_buf, buf, mtd->writesize);
715 memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
716
717 /* Handle block mark swapping. */
718 mxs_nand_swap_block_mark(geo, nand_info->data_buf, nand_info->oob_buf);
719
720 /* Compile the DMA descriptor - write data. */
721 d = mxs_nand_get_dma_desc(nand_info);
722 d->cmd.data =
723 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
724 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
725 (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
726
727 d->cmd.address = 0;
728
729 d->cmd.pio_words[0] =
730 GPMI_CTRL0_COMMAND_MODE_WRITE |
731 GPMI_CTRL0_WORD_LENGTH |
732 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
733 GPMI_CTRL0_ADDRESS_NAND_DATA;
734 d->cmd.pio_words[1] = 0;
735 d->cmd.pio_words[2] =
736 GPMI_ECCCTRL_ENABLE_ECC |
737 GPMI_ECCCTRL_ECC_CMD_ENCODE |
738 GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
739 d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
740 d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
741 d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
742
743 mxs_dma_desc_append(channel, d);
744
745 /* Flush caches */
746 mxs_nand_flush_data_buf(nand_info);
747
748 /* Execute the DMA chain. */
749 ret = mxs_dma_go(channel);
750 if (ret) {
751 printf("MXS NAND: DMA write error\n");
752 goto rtn;
753 }
754
755 ret = mxs_nand_wait_for_bch_complete(nand_info);
756 if (ret) {
757 printf("MXS NAND: BCH write timeout\n");
758 goto rtn;
759 }
760
761 rtn:
762 mxs_nand_return_dma_descs(nand_info);
763 return 0;
764 }
765
766 /*
767 * Read OOB from NAND.
768 *
769 * This function is a veneer that replaces the function originally installed by
770 * the NAND Flash MTD code.
771 */
mxs_nand_hook_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)772 static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
773 struct mtd_oob_ops *ops)
774 {
775 struct nand_chip *chip = mtd_to_nand(mtd);
776 struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
777 int ret;
778
779 if (ops->mode == MTD_OPS_RAW)
780 nand_info->raw_oob_mode = 1;
781 else
782 nand_info->raw_oob_mode = 0;
783
784 ret = nand_info->hooked_read_oob(mtd, from, ops);
785
786 nand_info->raw_oob_mode = 0;
787
788 return ret;
789 }
790
791 /*
792 * Write OOB to NAND.
793 *
794 * This function is a veneer that replaces the function originally installed by
795 * the NAND Flash MTD code.
796 */
mxs_nand_hook_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)797 static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
798 struct mtd_oob_ops *ops)
799 {
800 struct nand_chip *chip = mtd_to_nand(mtd);
801 struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
802 int ret;
803
804 if (ops->mode == MTD_OPS_RAW)
805 nand_info->raw_oob_mode = 1;
806 else
807 nand_info->raw_oob_mode = 0;
808
809 ret = nand_info->hooked_write_oob(mtd, to, ops);
810
811 nand_info->raw_oob_mode = 0;
812
813 return ret;
814 }
815
816 /*
817 * Mark a block bad in NAND.
818 *
819 * This function is a veneer that replaces the function originally installed by
820 * the NAND Flash MTD code.
821 */
mxs_nand_hook_block_markbad(struct mtd_info * mtd,loff_t ofs)822 static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
823 {
824 struct nand_chip *chip = mtd_to_nand(mtd);
825 struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
826 int ret;
827
828 nand_info->marking_block_bad = 1;
829
830 ret = nand_info->hooked_block_markbad(mtd, ofs);
831
832 nand_info->marking_block_bad = 0;
833
834 return ret;
835 }
836
837 /*
838 * There are several places in this driver where we have to handle the OOB and
839 * block marks. This is the function where things are the most complicated, so
840 * this is where we try to explain it all. All the other places refer back to
841 * here.
842 *
843 * These are the rules, in order of decreasing importance:
844 *
845 * 1) Nothing the caller does can be allowed to imperil the block mark, so all
846 * write operations take measures to protect it.
847 *
848 * 2) In read operations, the first byte of the OOB we return must reflect the
849 * true state of the block mark, no matter where that block mark appears in
850 * the physical page.
851 *
852 * 3) ECC-based read operations return an OOB full of set bits (since we never
853 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
854 * return).
855 *
856 * 4) "Raw" read operations return a direct view of the physical bytes in the
857 * page, using the conventional definition of which bytes are data and which
858 * are OOB. This gives the caller a way to see the actual, physical bytes
859 * in the page, without the distortions applied by our ECC engine.
860 *
861 * What we do for this specific read operation depends on whether we're doing
862 * "raw" read, or an ECC-based read.
863 *
864 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
865 * easy. When reading a page, for example, the NAND Flash MTD code calls our
866 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
867 * ECC-based or raw view of the page is implicit in which function it calls
868 * (there is a similar pair of ECC-based/raw functions for writing).
869 *
870 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
871 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
872 * caller wants an ECC-based or raw view of the page is not propagated down to
873 * this driver.
874 *
875 * Since our OOB *is* covered by ECC, we need this information. So, we hook the
876 * ecc.read_oob and ecc.write_oob function pointers in the owning
877 * struct mtd_info with our own functions. These hook functions set the
878 * raw_oob_mode field so that, when control finally arrives here, we'll know
879 * what to do.
880 */
mxs_nand_ecc_read_oob(struct mtd_info * mtd,struct nand_chip * nand,int page)881 static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
882 int page)
883 {
884 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
885
886 /*
887 * First, fill in the OOB buffer. If we're doing a raw read, we need to
888 * get the bytes from the physical page. If we're not doing a raw read,
889 * we need to fill the buffer with set bits.
890 */
891 if (nand_info->raw_oob_mode) {
892 /*
893 * If control arrives here, we're doing a "raw" read. Send the
894 * command to read the conventional OOB and read it.
895 */
896 nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
897 nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
898 } else {
899 /*
900 * If control arrives here, we're not doing a "raw" read. Fill
901 * the OOB buffer with set bits and correct the block mark.
902 */
903 memset(nand->oob_poi, 0xff, mtd->oobsize);
904
905 nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
906 mxs_nand_read_buf(mtd, nand->oob_poi, 1);
907 }
908
909 return 0;
910
911 }
912
913 /*
914 * Write OOB data to NAND.
915 */
mxs_nand_ecc_write_oob(struct mtd_info * mtd,struct nand_chip * nand,int page)916 static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
917 int page)
918 {
919 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
920 uint8_t block_mark = 0;
921
922 /*
923 * There are fundamental incompatibilities between the i.MX GPMI NFC and
924 * the NAND Flash MTD model that make it essentially impossible to write
925 * the out-of-band bytes.
926 *
927 * We permit *ONE* exception. If the *intent* of writing the OOB is to
928 * mark a block bad, we can do that.
929 */
930
931 if (!nand_info->marking_block_bad) {
932 printf("NXS NAND: Writing OOB isn't supported\n");
933 return -EIO;
934 }
935
936 /* Write the block mark. */
937 nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
938 nand->write_buf(mtd, &block_mark, 1);
939 nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
940
941 /* Check if it worked. */
942 if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
943 return -EIO;
944
945 return 0;
946 }
947
948 /*
949 * Claims all blocks are good.
950 *
951 * In principle, this function is *only* called when the NAND Flash MTD system
952 * isn't allowed to keep an in-memory bad block table, so it is forced to ask
953 * the driver for bad block information.
954 *
955 * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
956 * this function is *only* called when we take it away.
957 *
958 * Thus, this function is only called when we want *all* blocks to look good,
959 * so it *always* return success.
960 */
mxs_nand_block_bad(struct mtd_info * mtd,loff_t ofs)961 static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
962 {
963 return 0;
964 }
965
mxs_nand_set_geometry(struct mtd_info * mtd,struct bch_geometry * geo)966 static int mxs_nand_set_geometry(struct mtd_info *mtd, struct bch_geometry *geo)
967 {
968 struct nand_chip *chip = mtd_to_nand(mtd);
969 struct nand_chip *nand = mtd_to_nand(mtd);
970 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
971
972 if (chip->ecc.strength > 0 && chip->ecc.size > 0)
973 return mxs_nand_calc_ecc_layout_by_info(geo, mtd,
974 chip->ecc.strength, chip->ecc.size);
975
976 if (nand_info->use_minimum_ecc ||
977 mxs_nand_calc_ecc_layout(geo, mtd)) {
978 if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0))
979 return -EINVAL;
980
981 return mxs_nand_calc_ecc_layout_by_info(geo, mtd,
982 chip->ecc_strength_ds, chip->ecc_step_ds);
983 }
984
985 return 0;
986 }
987
988 /*
989 * At this point, the physical NAND Flash chips have been identified and
990 * counted, so we know the physical geometry. This enables us to make some
991 * important configuration decisions.
992 *
993 * The return value of this function propagates directly back to this driver's
994 * board_nand_init(). Anything other than zero will cause this driver to
995 * tear everything down and declare failure.
996 */
mxs_nand_setup_ecc(struct mtd_info * mtd)997 int mxs_nand_setup_ecc(struct mtd_info *mtd)
998 {
999 struct nand_chip *nand = mtd_to_nand(mtd);
1000 struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
1001 struct bch_geometry *geo = &nand_info->bch_geometry;
1002 struct mxs_bch_regs *bch_regs = nand_info->bch_regs;
1003 uint32_t tmp;
1004 int ret;
1005
1006 ret = mxs_nand_set_geometry(mtd, geo);
1007 if (ret)
1008 return ret;
1009
1010 mxs_nand_calc_mark_offset(geo, mtd->writesize);
1011
1012 /* Configure BCH and set NFC geometry */
1013 mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
1014
1015 /* Configure layout 0 */
1016 tmp = (geo->ecc_chunk_count - 1) << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
1017 tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
1018 tmp |= (geo->ecc_strength >> 1) << BCH_FLASHLAYOUT0_ECC0_OFFSET;
1019 tmp |= geo->ecc_chunk_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
1020 tmp |= (geo->gf_len == 14 ? 1 : 0) <<
1021 BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET;
1022 writel(tmp, &bch_regs->hw_bch_flash0layout0);
1023
1024 tmp = (mtd->writesize + mtd->oobsize)
1025 << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
1026 tmp |= (geo->ecc_strength >> 1) << BCH_FLASHLAYOUT1_ECCN_OFFSET;
1027 tmp |= geo->ecc_chunk_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
1028 tmp |= (geo->gf_len == 14 ? 1 : 0) <<
1029 BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET;
1030 writel(tmp, &bch_regs->hw_bch_flash0layout1);
1031
1032 /* Set *all* chip selects to use layout 0 */
1033 writel(0, &bch_regs->hw_bch_layoutselect);
1034
1035 /* Enable BCH complete interrupt */
1036 writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);
1037
1038 /* Hook some operations at the MTD level. */
1039 if (mtd->_read_oob != mxs_nand_hook_read_oob) {
1040 nand_info->hooked_read_oob = mtd->_read_oob;
1041 mtd->_read_oob = mxs_nand_hook_read_oob;
1042 }
1043
1044 if (mtd->_write_oob != mxs_nand_hook_write_oob) {
1045 nand_info->hooked_write_oob = mtd->_write_oob;
1046 mtd->_write_oob = mxs_nand_hook_write_oob;
1047 }
1048
1049 if (mtd->_block_markbad != mxs_nand_hook_block_markbad) {
1050 nand_info->hooked_block_markbad = mtd->_block_markbad;
1051 mtd->_block_markbad = mxs_nand_hook_block_markbad;
1052 }
1053
1054 return 0;
1055 }
1056
1057 /*
1058 * Allocate DMA buffers
1059 */
mxs_nand_alloc_buffers(struct mxs_nand_info * nand_info)1060 int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
1061 {
1062 uint8_t *buf;
1063 const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
1064
1065 nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT);
1066
1067 /* DMA buffers */
1068 buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size);
1069 if (!buf) {
1070 printf("MXS NAND: Error allocating DMA buffers\n");
1071 return -ENOMEM;
1072 }
1073
1074 memset(buf, 0, nand_info->data_buf_size);
1075
1076 nand_info->data_buf = buf;
1077 nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
1078 /* Command buffers */
1079 nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
1080 MXS_NAND_COMMAND_BUFFER_SIZE);
1081 if (!nand_info->cmd_buf) {
1082 free(buf);
1083 printf("MXS NAND: Error allocating command buffers\n");
1084 return -ENOMEM;
1085 }
1086 memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
1087 nand_info->cmd_queue_len = 0;
1088
1089 return 0;
1090 }
1091
1092 /*
1093 * Initializes the NFC hardware.
1094 */
mxs_nand_init_dma(struct mxs_nand_info * info)1095 int mxs_nand_init_dma(struct mxs_nand_info *info)
1096 {
1097 int i = 0, j, ret = 0;
1098
1099 info->desc = malloc(sizeof(struct mxs_dma_desc *) *
1100 MXS_NAND_DMA_DESCRIPTOR_COUNT);
1101 if (!info->desc) {
1102 ret = -ENOMEM;
1103 goto err1;
1104 }
1105
1106 /* Allocate the DMA descriptors. */
1107 for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
1108 info->desc[i] = mxs_dma_desc_alloc();
1109 if (!info->desc[i]) {
1110 ret = -ENOMEM;
1111 goto err2;
1112 }
1113 }
1114
1115 /* Init the DMA controller. */
1116 mxs_dma_init();
1117 for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0;
1118 j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) {
1119 ret = mxs_dma_init_channel(j);
1120 if (ret)
1121 goto err3;
1122 }
1123
1124 /* Reset the GPMI block. */
1125 mxs_reset_block(&info->gpmi_regs->hw_gpmi_ctrl0_reg);
1126 mxs_reset_block(&info->bch_regs->hw_bch_ctrl_reg);
1127
1128 /*
1129 * Choose NAND mode, set IRQ polarity, disable write protection and
1130 * select BCH ECC.
1131 */
1132 clrsetbits_le32(&info->gpmi_regs->hw_gpmi_ctrl1,
1133 GPMI_CTRL1_GPMI_MODE,
1134 GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
1135 GPMI_CTRL1_BCH_MODE);
1136
1137 return 0;
1138
1139 err3:
1140 for (--j; j >= MXS_DMA_CHANNEL_AHB_APBH_GPMI0; j--)
1141 mxs_dma_release(j);
1142 err2:
1143 for (--i; i >= 0; i--)
1144 mxs_dma_desc_free(info->desc[i]);
1145 free(info->desc);
1146 err1:
1147 if (ret == -ENOMEM)
1148 printf("MXS NAND: Unable to allocate DMA descriptors\n");
1149 return ret;
1150 }
1151
mxs_nand_init_spl(struct nand_chip * nand)1152 int mxs_nand_init_spl(struct nand_chip *nand)
1153 {
1154 struct mxs_nand_info *nand_info;
1155 int err;
1156
1157 nand_info = malloc(sizeof(struct mxs_nand_info));
1158 if (!nand_info) {
1159 printf("MXS NAND: Failed to allocate private data\n");
1160 return -ENOMEM;
1161 }
1162 memset(nand_info, 0, sizeof(struct mxs_nand_info));
1163
1164 nand_info->gpmi_regs = (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
1165 nand_info->bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
1166 err = mxs_nand_alloc_buffers(nand_info);
1167 if (err)
1168 return err;
1169
1170 err = mxs_nand_init_dma(nand_info);
1171 if (err)
1172 return err;
1173
1174 nand_set_controller_data(nand, nand_info);
1175
1176 nand->options |= NAND_NO_SUBPAGE_WRITE;
1177
1178 nand->cmd_ctrl = mxs_nand_cmd_ctrl;
1179 nand->dev_ready = mxs_nand_device_ready;
1180 nand->select_chip = mxs_nand_select_chip;
1181
1182 nand->read_byte = mxs_nand_read_byte;
1183 nand->read_buf = mxs_nand_read_buf;
1184
1185 nand->ecc.read_page = mxs_nand_ecc_read_page;
1186
1187 nand->ecc.mode = NAND_ECC_HW;
1188 nand->ecc.bytes = 9;
1189 nand->ecc.size = 512;
1190 nand->ecc.strength = 8;
1191
1192 return 0;
1193 }
1194
mxs_nand_init_ctrl(struct mxs_nand_info * nand_info)1195 int mxs_nand_init_ctrl(struct mxs_nand_info *nand_info)
1196 {
1197 struct mtd_info *mtd;
1198 struct nand_chip *nand;
1199 int err;
1200
1201 nand = &nand_info->chip;
1202 mtd = nand_to_mtd(nand);
1203 err = mxs_nand_alloc_buffers(nand_info);
1204 if (err)
1205 return err;
1206
1207 err = mxs_nand_init_dma(nand_info);
1208 if (err)
1209 goto err_free_buffers;
1210
1211 memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
1212
1213 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1214 nand->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1215 #endif
1216
1217 nand_set_controller_data(nand, nand_info);
1218 nand->options |= NAND_NO_SUBPAGE_WRITE;
1219
1220 if (nand_info->dev)
1221 nand->flash_node = dev_of_offset(nand_info->dev);
1222
1223 nand->cmd_ctrl = mxs_nand_cmd_ctrl;
1224
1225 nand->dev_ready = mxs_nand_device_ready;
1226 nand->select_chip = mxs_nand_select_chip;
1227 nand->block_bad = mxs_nand_block_bad;
1228
1229 nand->read_byte = mxs_nand_read_byte;
1230
1231 nand->read_buf = mxs_nand_read_buf;
1232 nand->write_buf = mxs_nand_write_buf;
1233
1234 /* first scan to find the device and get the page size */
1235 if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL))
1236 goto err_free_buffers;
1237
1238 if (mxs_nand_setup_ecc(mtd))
1239 goto err_free_buffers;
1240
1241 nand->ecc.read_page = mxs_nand_ecc_read_page;
1242 nand->ecc.write_page = mxs_nand_ecc_write_page;
1243 nand->ecc.read_oob = mxs_nand_ecc_read_oob;
1244 nand->ecc.write_oob = mxs_nand_ecc_write_oob;
1245
1246 nand->ecc.layout = &fake_ecc_layout;
1247 nand->ecc.mode = NAND_ECC_HW;
1248 nand->ecc.size = nand_info->bch_geometry.ecc_chunk_size;
1249 nand->ecc.strength = nand_info->bch_geometry.ecc_strength;
1250
1251 /* second phase scan */
1252 err = nand_scan_tail(mtd);
1253 if (err)
1254 goto err_free_buffers;
1255
1256 err = nand_register(0, mtd);
1257 if (err)
1258 goto err_free_buffers;
1259
1260 return 0;
1261
1262 err_free_buffers:
1263 free(nand_info->data_buf);
1264 free(nand_info->cmd_buf);
1265
1266 return err;
1267 }
1268
1269 #ifndef CONFIG_NAND_MXS_DT
board_nand_init(void)1270 void board_nand_init(void)
1271 {
1272 struct mxs_nand_info *nand_info;
1273
1274 nand_info = malloc(sizeof(struct mxs_nand_info));
1275 if (!nand_info) {
1276 printf("MXS NAND: Failed to allocate private data\n");
1277 return;
1278 }
1279 memset(nand_info, 0, sizeof(struct mxs_nand_info));
1280
1281 nand_info->gpmi_regs = (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
1282 nand_info->bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
1283
1284 /* Refer to Chapter 17 for i.MX6DQ, Chapter 18 for i.MX6SX */
1285 if (is_mx6sx() || is_mx7())
1286 nand_info->max_ecc_strength_supported = 62;
1287 else
1288 nand_info->max_ecc_strength_supported = 40;
1289
1290 #ifdef CONFIG_NAND_MXS_USE_MINIMUM_ECC
1291 nand_info->use_minimum_ecc = true;
1292 #endif
1293
1294 if (mxs_nand_init_ctrl(nand_info) < 0)
1295 goto err;
1296
1297 return;
1298
1299 err:
1300 free(nand_info);
1301 }
1302 #endif
1303