1 /*******************************************************************************
2 * Copyright 2013-2018 Intel Corporation
3 * All Rights Reserved.
4 *
5 * If this  software was obtained  under the  Intel Simplified  Software License,
6 * the following terms apply:
7 *
8 * The source code,  information  and material  ("Material") contained  herein is
9 * owned by Intel Corporation or its  suppliers or licensors,  and  title to such
10 * Material remains with Intel  Corporation or its  suppliers or  licensors.  The
11 * Material  contains  proprietary  information  of  Intel or  its suppliers  and
12 * licensors.  The Material is protected by  worldwide copyright  laws and treaty
13 * provisions.  No part  of  the  Material   may  be  used,  copied,  reproduced,
14 * modified, published,  uploaded, posted, transmitted,  distributed or disclosed
15 * in any way without Intel's prior express written permission.  No license under
16 * any patent,  copyright or other  intellectual property rights  in the Material
17 * is granted to  or  conferred  upon  you,  either   expressly,  by implication,
18 * inducement,  estoppel  or  otherwise.  Any  license   under such  intellectual
19 * property rights must be express and approved by Intel in writing.
20 *
21 * Unless otherwise agreed by Intel in writing,  you may not remove or alter this
22 * notice or  any  other  notice   embedded  in  Materials  by  Intel  or Intel's
23 * suppliers or licensors in any way.
24 *
25 *
26 * If this  software  was obtained  under the  Apache License,  Version  2.0 (the
27 * "License"), the following terms apply:
28 *
29 * You may  not use this  file except  in compliance  with  the License.  You may
30 * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
31 *
32 *
33 * Unless  required  by   applicable  law  or  agreed  to  in  writing,  software
34 * distributed under the License  is distributed  on an  "AS IS"  BASIS,  WITHOUT
35 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
36 *
37 * See the   License  for the   specific  language   governing   permissions  and
38 * limitations under the License.
39 *******************************************************************************/
40 
41 /*
42 //
43 //  Purpose:
44 //     Cryptography Primitive.
45 //     RSA Functions
46 //
47 //
48 */
49 
50 #include "owndefs.h"
51 #include "owncp.h"
52 #include "pcpbn.h"
53 #include "pcpprimeg.h"
54 #include "pcpprng.h"
55 #include "pcpngrsa.h"
56 
57 
cpMillerRabinTest(BNU_CHUNK_T * pW,cpSize nsW,const BNU_CHUNK_T * pE,cpSize bitsizeE,int k,const BNU_CHUNK_T * pPrime1,gsModEngine * pMont,BNU_CHUNK_T * pBuffer)58 static int cpMillerRabinTest(BNU_CHUNK_T* pW, cpSize nsW,
59     const BNU_CHUNK_T* pE, cpSize bitsizeE,
60     int k,
61     const BNU_CHUNK_T* pPrime1,
62     gsModEngine* pMont,
63     BNU_CHUNK_T* pBuffer)
64 {
65     cpSize nsP = MOD_LEN(pMont);
66 
67     /* to Montgomery Domain */
68     ZEXPAND_BNU(pW, nsW, nsP);
69     MOD_METHOD(pMont)->encode(pW, pW, pMont);
70 
71     /* w = exp(w,e) */
72     gsMontExpWin_BNU_sscm(pW, pW, nsP, pE, bitsizeE, pMont, pBuffer);
73 
74     /* if (w==1) ||(w==prime-1) => probably prime */
75     if ((0 == cpCmp_BNU(pW, nsP, MOD_MNT_R(pMont), nsP))
76         || (0 == cpCmp_BNU(pW, nsP, pPrime1, nsP)))
77         return 1;      /* witness of the primality */
78 
79     while (--k) {
80         MOD_METHOD(pMont)->sqr(pW, pW, pMont);
81 
82         if (0 == cpCmp_BNU(pW, nsP, MOD_MNT_R(pMont), nsP))
83             return 0;   /* witness of the compositeness */
84         if (0 == cpCmp_BNU(pW, nsP, pPrime1, nsP))
85             return 1;   /* witness of the primality */
86     }
87     return 0;
88 }
89 
90 /* test if P is prime
91 
92 returns:
93 IPP_IS_PRIME     (==1) - prime value has been detected
94 IPP_IS_COMPOSITE (==0) - composite value has been detected
95 -1 - if internal error (ippStsNoErr != rndFunc())
96 */
cpIsProbablyPrime(BNU_CHUNK_T * pPrime,int bitSize,int nTrials,IppBitSupplier rndFunc,void * pRndParam,gsModEngine * pME,BNU_CHUNK_T * pBuffer)97 static int cpIsProbablyPrime(BNU_CHUNK_T* pPrime, int bitSize,
98     int nTrials,
99     IppBitSupplier rndFunc, void* pRndParam,
100     gsModEngine* pME,
101     BNU_CHUNK_T* pBuffer)
102 {
103     /* if test for trivial divisors passed*/
104     int ret = cpMimimalPrimeTest((Ipp32u*)pPrime, BITS2WORD32_SIZE(bitSize));
105 
106     /* appy Miller-Rabin test */
107     if (ret) {
108         int ns = BITS_BNU_CHUNK(bitSize);
109         BNU_CHUNK_T* pPrime1 = pBuffer;
110         BNU_CHUNK_T* pOdd = pPrime1 + ns;
111         BNU_CHUNK_T* pWitness = pOdd + ns;
112         BNU_CHUNK_T* pMontPrime1 = pWitness + ns;
113         BNU_CHUNK_T* pScratchBuffer = pMontPrime1 + ns;
114         int k, a, lenOdd;
115 
116         /* prime1 = prime-1 = odd*2^a */
117         cpDec_BNU(pPrime1, pPrime, ns, 1);
118         for (k = 0, a = 0; k<ns; k++) {
119             cpSize da = cpNTZ_BNU(pPrime1[k]);
120             a += da;
121             if (BNU_CHUNK_BITS != da)
122                 break;
123         }
124         lenOdd = cpLSR_BNU(pOdd, pPrime1, ns, a);
125         FIX_BNU(pOdd, lenOdd);
126 
127         /* prime1 to (Montgomery Domain) */
128         cpSub_BNU(pMontPrime1, pPrime, MOD_MNT_R(pME), ns);
129 
130         for (k = 0, ret = 0; k<nTrials && !ret; k++) {
131             BNU_CHUNK_T one = 1;
132             ret = cpPRNGenRange(pWitness, &one, 1, pPrime1, ns, rndFunc, pRndParam);
133             if (ret <= 0) break; /* internal error */
134                                  /* test primality */
135             ret = cpMillerRabinTest(pWitness, ns,
136                 //pOdd, lenOdd, a,
137                 pOdd, bitSize - a, a,
138                 pMontPrime1,
139                 pME, pScratchBuffer);
140         }
141     }
142     return ret;
143 }