1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #include "main.h"
11
12 #include <Eigen/CXX11/Tensor>
13
14 using Eigen::Tensor;
15
16 template<typename>
test_simple_reshape()17 static void test_simple_reshape()
18 {
19 Tensor<float, 5> tensor1(2,3,1,7,1);
20 tensor1.setRandom();
21
22 Tensor<float, 3> tensor2(2,3,7);
23 Tensor<float, 2> tensor3(6,7);
24 Tensor<float, 2> tensor4(2,21);
25
26 Tensor<float, 3>::Dimensions dim1(2,3,7);
27 tensor2 = tensor1.reshape(dim1);
28 Tensor<float, 2>::Dimensions dim2(6,7);
29 tensor3 = tensor1.reshape(dim2);
30 Tensor<float, 2>::Dimensions dim3(2,21);
31 tensor4 = tensor1.reshape(dim1).reshape(dim3);
32
33 for (int i = 0; i < 2; ++i) {
34 for (int j = 0; j < 3; ++j) {
35 for (int k = 0; k < 7; ++k) {
36 VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor2(i,j,k));
37 VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor3(i+2*j,k));
38 VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor4(i,j+3*k));
39 }
40 }
41 }
42 }
43
44 template<typename>
test_reshape_in_expr()45 static void test_reshape_in_expr() {
46 MatrixXf m1(2,3*5*7*11);
47 MatrixXf m2(3*5*7*11,13);
48 m1.setRandom();
49 m2.setRandom();
50 MatrixXf m3 = m1 * m2;
51
52 TensorMap<Tensor<float, 5>> tensor1(m1.data(), 2,3,5,7,11);
53 TensorMap<Tensor<float, 5>> tensor2(m2.data(), 3,5,7,11,13);
54 Tensor<float, 2>::Dimensions newDims1(2,3*5*7*11);
55 Tensor<float, 2>::Dimensions newDims2(3*5*7*11,13);
56 typedef Tensor<float, 1>::DimensionPair DimPair;
57 array<DimPair, 1> contract_along{{DimPair(1, 0)}};
58 Tensor<float, 2> tensor3(2,13);
59 tensor3 = tensor1.reshape(newDims1).contract(tensor2.reshape(newDims2), contract_along);
60
61 Map<MatrixXf> res(tensor3.data(), 2, 13);
62 for (int i = 0; i < 2; ++i) {
63 for (int j = 0; j < 13; ++j) {
64 VERIFY_IS_APPROX(res(i,j), m3(i,j));
65 }
66 }
67 }
68
69 template<typename>
test_reshape_as_lvalue()70 static void test_reshape_as_lvalue()
71 {
72 Tensor<float, 3> tensor(2,3,7);
73 tensor.setRandom();
74
75 Tensor<float, 2> tensor2d(6,7);
76 Tensor<float, 3>::Dimensions dim(2,3,7);
77 tensor2d.reshape(dim) = tensor;
78
79 float scratch[2*3*1*7*1];
80 TensorMap<Tensor<float, 5>> tensor5d(scratch, 2,3,1,7,1);
81 tensor5d.reshape(dim).device(Eigen::DefaultDevice()) = tensor;
82
83 for (int i = 0; i < 2; ++i) {
84 for (int j = 0; j < 3; ++j) {
85 for (int k = 0; k < 7; ++k) {
86 VERIFY_IS_EQUAL(tensor2d(i+2*j,k), tensor(i,j,k));
87 VERIFY_IS_EQUAL(tensor5d(i,j,0,k,0), tensor(i,j,k));
88 }
89 }
90 }
91 }
92
93 template<int DataLayout>
test_simple_slice()94 static void test_simple_slice()
95 {
96 Tensor<float, 5, DataLayout> tensor(2,3,5,7,11);
97 tensor.setRandom();
98
99 Tensor<float, 5, DataLayout> slice1(1,1,1,1,1);
100 Eigen::DSizes<ptrdiff_t, 5> indices(1,2,3,4,5);
101 Eigen::DSizes<ptrdiff_t, 5> sizes(1,1,1,1,1);
102 slice1 = tensor.slice(indices, sizes);
103 VERIFY_IS_EQUAL(slice1(0,0,0,0,0), tensor(1,2,3,4,5));
104
105 Tensor<float, 5, DataLayout> slice2(1,1,2,2,3);
106 Eigen::DSizes<ptrdiff_t, 5> indices2(1,1,3,4,5);
107 Eigen::DSizes<ptrdiff_t, 5> sizes2(1,1,2,2,3);
108 slice2 = tensor.slice(indices2, sizes2);
109 for (int i = 0; i < 2; ++i) {
110 for (int j = 0; j < 2; ++j) {
111 for (int k = 0; k < 3; ++k) {
112 VERIFY_IS_EQUAL(slice2(0,0,i,j,k), tensor(1,1,3+i,4+j,5+k));
113 }
114 }
115 }
116 }
117
118 template<typename=void>
test_const_slice()119 static void test_const_slice()
120 {
121 const float b[1] = {42};
122 TensorMap<Tensor<const float, 1> > m(b, 1);
123 DSizes<DenseIndex, 1> offsets;
124 offsets[0] = 0;
125 TensorRef<Tensor<const float, 1> > slice_ref(m.slice(offsets, m.dimensions()));
126 VERIFY_IS_EQUAL(slice_ref(0), 42);
127 }
128
129 template<int DataLayout>
test_slice_in_expr()130 static void test_slice_in_expr() {
131 typedef Matrix<float, Dynamic, Dynamic, DataLayout> Mtx;
132 Mtx m1(7,7);
133 Mtx m2(3,3);
134 m1.setRandom();
135 m2.setRandom();
136
137 Mtx m3 = m1.block(1, 2, 3, 3) * m2.block(0, 2, 3, 1);
138
139 TensorMap<Tensor<float, 2, DataLayout>> tensor1(m1.data(), 7, 7);
140 TensorMap<Tensor<float, 2, DataLayout>> tensor2(m2.data(), 3, 3);
141 Tensor<float, 2, DataLayout> tensor3(3,1);
142 typedef Tensor<float, 1>::DimensionPair DimPair;
143 array<DimPair, 1> contract_along{{DimPair(1, 0)}};
144
145 Eigen::DSizes<ptrdiff_t, 2> indices1(1,2);
146 Eigen::DSizes<ptrdiff_t, 2> sizes1(3,3);
147 Eigen::DSizes<ptrdiff_t, 2> indices2(0,2);
148 Eigen::DSizes<ptrdiff_t, 2> sizes2(3,1);
149 tensor3 = tensor1.slice(indices1, sizes1).contract(tensor2.slice(indices2, sizes2), contract_along);
150
151 Map<Mtx> res(tensor3.data(), 3, 1);
152 for (int i = 0; i < 3; ++i) {
153 for (int j = 0; j < 1; ++j) {
154 VERIFY_IS_APPROX(res(i,j), m3(i,j));
155 }
156 }
157
158 // Take an arbitrary slice of an arbitrarily sized tensor.
159 TensorMap<Tensor<const float, 2, DataLayout>> tensor4(m1.data(), 7, 7);
160 Tensor<float, 1, DataLayout> tensor6 = tensor4.reshape(DSizes<ptrdiff_t, 1>(7*7)).exp().slice(DSizes<ptrdiff_t, 1>(0), DSizes<ptrdiff_t, 1>(35));
161 for (int i = 0; i < 35; ++i) {
162 VERIFY_IS_APPROX(tensor6(i), expf(tensor4.data()[i]));
163 }
164 }
165
166 template<int DataLayout>
test_slice_as_lvalue()167 static void test_slice_as_lvalue()
168 {
169 Tensor<float, 3, DataLayout> tensor1(2,2,7);
170 tensor1.setRandom();
171 Tensor<float, 3, DataLayout> tensor2(2,2,7);
172 tensor2.setRandom();
173 Tensor<float, 3, DataLayout> tensor3(4,3,5);
174 tensor3.setRandom();
175 Tensor<float, 3, DataLayout> tensor4(4,3,2);
176 tensor4.setRandom();
177 Tensor<float, 3, DataLayout> tensor5(10,13,12);
178 tensor5.setRandom();
179
180 Tensor<float, 3, DataLayout> result(4,5,7);
181 Eigen::DSizes<ptrdiff_t, 3> sizes12(2,2,7);
182 Eigen::DSizes<ptrdiff_t, 3> first_slice(0,0,0);
183 result.slice(first_slice, sizes12) = tensor1;
184 Eigen::DSizes<ptrdiff_t, 3> second_slice(2,0,0);
185 result.slice(second_slice, sizes12).device(Eigen::DefaultDevice()) = tensor2;
186
187 Eigen::DSizes<ptrdiff_t, 3> sizes3(4,3,5);
188 Eigen::DSizes<ptrdiff_t, 3> third_slice(0,2,0);
189 result.slice(third_slice, sizes3) = tensor3;
190
191 Eigen::DSizes<ptrdiff_t, 3> sizes4(4,3,2);
192 Eigen::DSizes<ptrdiff_t, 3> fourth_slice(0,2,5);
193 result.slice(fourth_slice, sizes4) = tensor4;
194
195 for (int j = 0; j < 2; ++j) {
196 for (int k = 0; k < 7; ++k) {
197 for (int i = 0; i < 2; ++i) {
198 VERIFY_IS_EQUAL(result(i,j,k), tensor1(i,j,k));
199 VERIFY_IS_EQUAL(result(i+2,j,k), tensor2(i,j,k));
200 }
201 }
202 }
203 for (int i = 0; i < 4; ++i) {
204 for (int j = 2; j < 5; ++j) {
205 for (int k = 0; k < 5; ++k) {
206 VERIFY_IS_EQUAL(result(i,j,k), tensor3(i,j-2,k));
207 }
208 for (int k = 5; k < 7; ++k) {
209 VERIFY_IS_EQUAL(result(i,j,k), tensor4(i,j-2,k-5));
210 }
211 }
212 }
213
214 Eigen::DSizes<ptrdiff_t, 3> sizes5(4,5,7);
215 Eigen::DSizes<ptrdiff_t, 3> fifth_slice(0,0,0);
216 result.slice(fifth_slice, sizes5) = tensor5.slice(fifth_slice, sizes5);
217 for (int i = 0; i < 4; ++i) {
218 for (int j = 2; j < 5; ++j) {
219 for (int k = 0; k < 7; ++k) {
220 VERIFY_IS_EQUAL(result(i,j,k), tensor5(i,j,k));
221 }
222 }
223 }
224 }
225
226 template<int DataLayout>
test_slice_raw_data()227 static void test_slice_raw_data()
228 {
229 Tensor<float, 4, DataLayout> tensor(3,5,7,11);
230 tensor.setRandom();
231
232 Eigen::DSizes<ptrdiff_t, 4> offsets(1,2,3,4);
233 Eigen::DSizes<ptrdiff_t, 4> extents(1,1,1,1);
234 typedef TensorEvaluator<decltype(tensor.slice(offsets, extents)), DefaultDevice> SliceEvaluator;
235 auto slice1 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice());
236 VERIFY_IS_EQUAL(slice1.dimensions().TotalSize(), 1);
237 VERIFY_IS_EQUAL(slice1.data()[0], tensor(1,2,3,4));
238
239 if (DataLayout == ColMajor) {
240 extents = Eigen::DSizes<ptrdiff_t, 4>(2,1,1,1);
241 auto slice2 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice());
242 VERIFY_IS_EQUAL(slice2.dimensions().TotalSize(), 2);
243 VERIFY_IS_EQUAL(slice2.data()[0], tensor(1,2,3,4));
244 VERIFY_IS_EQUAL(slice2.data()[1], tensor(2,2,3,4));
245 } else {
246 extents = Eigen::DSizes<ptrdiff_t, 4>(1,1,1,2);
247 auto slice2 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice());
248 VERIFY_IS_EQUAL(slice2.dimensions().TotalSize(), 2);
249 VERIFY_IS_EQUAL(slice2.data()[0], tensor(1,2,3,4));
250 VERIFY_IS_EQUAL(slice2.data()[1], tensor(1,2,3,5));
251 }
252
253 extents = Eigen::DSizes<ptrdiff_t, 4>(1,2,1,1);
254 auto slice3 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice());
255 VERIFY_IS_EQUAL(slice3.dimensions().TotalSize(), 2);
256 VERIFY_IS_EQUAL(slice3.data(), static_cast<float*>(0));
257
258 if (DataLayout == ColMajor) {
259 offsets = Eigen::DSizes<ptrdiff_t, 4>(0,2,3,4);
260 extents = Eigen::DSizes<ptrdiff_t, 4>(3,2,1,1);
261 auto slice4 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice());
262 VERIFY_IS_EQUAL(slice4.dimensions().TotalSize(), 6);
263 for (int i = 0; i < 3; ++i) {
264 for (int j = 0; j < 2; ++j) {
265 VERIFY_IS_EQUAL(slice4.data()[i+3*j], tensor(i,2+j,3,4));
266 }
267 }
268 } else {
269 offsets = Eigen::DSizes<ptrdiff_t, 4>(1,2,3,0);
270 extents = Eigen::DSizes<ptrdiff_t, 4>(1,1,2,11);
271 auto slice4 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice());
272 VERIFY_IS_EQUAL(slice4.dimensions().TotalSize(), 22);
273 for (int l = 0; l < 11; ++l) {
274 for (int k = 0; k < 2; ++k) {
275 VERIFY_IS_EQUAL(slice4.data()[l+11*k], tensor(1,2,3+k,l));
276 }
277 }
278 }
279
280 if (DataLayout == ColMajor) {
281 offsets = Eigen::DSizes<ptrdiff_t, 4>(0,0,0,4);
282 extents = Eigen::DSizes<ptrdiff_t, 4>(3,5,7,2);
283 auto slice5 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice());
284 VERIFY_IS_EQUAL(slice5.dimensions().TotalSize(), 210);
285 for (int i = 0; i < 3; ++i) {
286 for (int j = 0; j < 5; ++j) {
287 for (int k = 0; k < 7; ++k) {
288 for (int l = 0; l < 2; ++l) {
289 int slice_index = i + 3 * (j + 5 * (k + 7 * l));
290 VERIFY_IS_EQUAL(slice5.data()[slice_index], tensor(i,j,k,l+4));
291 }
292 }
293 }
294 }
295 } else {
296 offsets = Eigen::DSizes<ptrdiff_t, 4>(1,0,0,0);
297 extents = Eigen::DSizes<ptrdiff_t, 4>(2,5,7,11);
298 auto slice5 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice());
299 VERIFY_IS_EQUAL(slice5.dimensions().TotalSize(), 770);
300 for (int l = 0; l < 11; ++l) {
301 for (int k = 0; k < 7; ++k) {
302 for (int j = 0; j < 5; ++j) {
303 for (int i = 0; i < 2; ++i) {
304 int slice_index = l + 11 * (k + 7 * (j + 5 * i));
305 VERIFY_IS_EQUAL(slice5.data()[slice_index], tensor(i+1,j,k,l));
306 }
307 }
308 }
309 }
310
311 }
312
313 offsets = Eigen::DSizes<ptrdiff_t, 4>(0,0,0,0);
314 extents = Eigen::DSizes<ptrdiff_t, 4>(3,5,7,11);
315 auto slice6 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice());
316 VERIFY_IS_EQUAL(slice6.dimensions().TotalSize(), 3*5*7*11);
317 VERIFY_IS_EQUAL(slice6.data(), tensor.data());
318 }
319
320
321 template<int DataLayout>
test_strided_slice()322 static void test_strided_slice()
323 {
324 typedef Tensor<float, 5, DataLayout> Tensor5f;
325 typedef Eigen::DSizes<Eigen::DenseIndex, 5> Index5;
326 typedef Tensor<float, 2, DataLayout> Tensor2f;
327 typedef Eigen::DSizes<Eigen::DenseIndex, 2> Index2;
328 Tensor<float, 5, DataLayout> tensor(2,3,5,7,11);
329 Tensor<float, 2, DataLayout> tensor2(7,11);
330 tensor.setRandom();
331 tensor2.setRandom();
332
333 if (true) {
334 Tensor2f slice(2,3);
335 Index2 strides(-2,-1);
336 Index2 indicesStart(5,7);
337 Index2 indicesStop(0,4);
338 slice = tensor2.stridedSlice(indicesStart, indicesStop, strides);
339 for (int j = 0; j < 2; ++j) {
340 for (int k = 0; k < 3; ++k) {
341 VERIFY_IS_EQUAL(slice(j,k), tensor2(5-2*j,7-k));
342 }
343 }
344 }
345
346 if(true) {
347 Tensor2f slice(0,1);
348 Index2 strides(1,1);
349 Index2 indicesStart(5,4);
350 Index2 indicesStop(5,5);
351 slice = tensor2.stridedSlice(indicesStart, indicesStop, strides);
352 }
353
354 if(true) { // test clamped degenerate interavls
355 Tensor2f slice(7,11);
356 Index2 strides(1,-1);
357 Index2 indicesStart(-3,20); // should become 0,10
358 Index2 indicesStop(20,-11); // should become 11, -1
359 slice = tensor2.stridedSlice(indicesStart, indicesStop, strides);
360 for (int j = 0; j < 7; ++j) {
361 for (int k = 0; k < 11; ++k) {
362 VERIFY_IS_EQUAL(slice(j,k), tensor2(j,10-k));
363 }
364 }
365 }
366
367 if(true) {
368 Tensor5f slice1(1,1,1,1,1);
369 Eigen::DSizes<Eigen::DenseIndex, 5> indicesStart(1, 2, 3, 4, 5);
370 Eigen::DSizes<Eigen::DenseIndex, 5> indicesStop(2, 3, 4, 5, 6);
371 Eigen::DSizes<Eigen::DenseIndex, 5> strides(1, 1, 1, 1, 1);
372 slice1 = tensor.stridedSlice(indicesStart, indicesStop, strides);
373 VERIFY_IS_EQUAL(slice1(0,0,0,0,0), tensor(1,2,3,4,5));
374 }
375
376 if(true) {
377 Tensor5f slice(1,1,2,2,3);
378 Index5 start(1, 1, 3, 4, 5);
379 Index5 stop(2, 2, 5, 6, 8);
380 Index5 strides(1, 1, 1, 1, 1);
381 slice = tensor.stridedSlice(start, stop, strides);
382 for (int i = 0; i < 2; ++i) {
383 for (int j = 0; j < 2; ++j) {
384 for (int k = 0; k < 3; ++k) {
385 VERIFY_IS_EQUAL(slice(0,0,i,j,k), tensor(1,1,3+i,4+j,5+k));
386 }
387 }
388 }
389 }
390
391 if(true) {
392 Tensor5f slice(1,1,2,2,3);
393 Index5 strides3(1, 1, -2, 1, -1);
394 Index5 indices3Start(1, 1, 4, 4, 7);
395 Index5 indices3Stop(2, 2, 0, 6, 4);
396 slice = tensor.stridedSlice(indices3Start, indices3Stop, strides3);
397 for (int i = 0; i < 2; ++i) {
398 for (int j = 0; j < 2; ++j) {
399 for (int k = 0; k < 3; ++k) {
400 VERIFY_IS_EQUAL(slice(0,0,i,j,k), tensor(1,1,4-2*i,4+j,7-k));
401 }
402 }
403 }
404 }
405
406 if(false) { // tests degenerate interval
407 Tensor5f slice(1,1,2,2,3);
408 Index5 strides3(1, 1, 2, 1, 1);
409 Index5 indices3Start(1, 1, 4, 4, 7);
410 Index5 indices3Stop(2, 2, 0, 6, 4);
411 slice = tensor.stridedSlice(indices3Start, indices3Stop, strides3);
412 }
413 }
414
415 template<int DataLayout>
test_strided_slice_write()416 static void test_strided_slice_write()
417 {
418 typedef Tensor<float, 2, DataLayout> Tensor2f;
419 typedef Eigen::DSizes<Eigen::DenseIndex, 2> Index2;
420
421 Tensor<float, 2, DataLayout> tensor(7,11),tensor2(7,11);
422 tensor.setRandom();
423 tensor2=tensor;
424 Tensor2f slice(2,3);
425
426 slice.setRandom();
427
428 Index2 strides(1,1);
429 Index2 indicesStart(3,4);
430 Index2 indicesStop(5,7);
431 Index2 lengths(2,3);
432
433 tensor.slice(indicesStart,lengths)=slice;
434 tensor2.stridedSlice(indicesStart,indicesStop,strides)=slice;
435
436 for(int i=0;i<7;i++) for(int j=0;j<11;j++){
437 VERIFY_IS_EQUAL(tensor(i,j), tensor2(i,j));
438 }
439 }
440
441
442 template<int DataLayout>
test_composition()443 static void test_composition()
444 {
445 Eigen::Tensor<float, 2, DataLayout> matrix(7, 11);
446 matrix.setRandom();
447
448 const DSizes<ptrdiff_t, 3> newDims(1, 1, 11);
449 Eigen::Tensor<float, 3, DataLayout> tensor =
450 matrix.slice(DSizes<ptrdiff_t, 2>(2, 0), DSizes<ptrdiff_t, 2>(1, 11)).reshape(newDims);
451
452 VERIFY_IS_EQUAL(tensor.dimensions().TotalSize(), 11);
453 VERIFY_IS_EQUAL(tensor.dimension(0), 1);
454 VERIFY_IS_EQUAL(tensor.dimension(1), 1);
455 VERIFY_IS_EQUAL(tensor.dimension(2), 11);
456 for (int i = 0; i < 11; ++i) {
457 VERIFY_IS_EQUAL(tensor(0,0,i), matrix(2,i));
458 }
459 }
460
461
test_cxx11_tensor_morphing()462 void test_cxx11_tensor_morphing()
463 {
464 CALL_SUBTEST_1(test_simple_reshape<void>());
465 CALL_SUBTEST_1(test_reshape_in_expr<void>());
466 CALL_SUBTEST_1(test_reshape_as_lvalue<void>());
467
468 CALL_SUBTEST_1(test_simple_slice<ColMajor>());
469 CALL_SUBTEST_1(test_simple_slice<RowMajor>());
470 CALL_SUBTEST_1(test_const_slice());
471 CALL_SUBTEST_2(test_slice_in_expr<ColMajor>());
472 CALL_SUBTEST_3(test_slice_in_expr<RowMajor>());
473 CALL_SUBTEST_4(test_slice_as_lvalue<ColMajor>());
474 CALL_SUBTEST_4(test_slice_as_lvalue<RowMajor>());
475 CALL_SUBTEST_5(test_slice_raw_data<ColMajor>());
476 CALL_SUBTEST_5(test_slice_raw_data<RowMajor>());
477
478 CALL_SUBTEST_6(test_strided_slice_write<ColMajor>());
479 CALL_SUBTEST_6(test_strided_slice<ColMajor>());
480 CALL_SUBTEST_6(test_strided_slice_write<RowMajor>());
481 CALL_SUBTEST_6(test_strided_slice<RowMajor>());
482
483 CALL_SUBTEST_7(test_composition<ColMajor>());
484 CALL_SUBTEST_7(test_composition<RowMajor>());
485 }
486