1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "load_store_elimination.h"
18
19 #include "base/array_ref.h"
20 #include "base/scoped_arena_allocator.h"
21 #include "base/scoped_arena_containers.h"
22 #include "escape.h"
23 #include "load_store_analysis.h"
24 #include "side_effects_analysis.h"
25
26 #include <iostream>
27
28 /**
29 * The general algorithm of load-store elimination (LSE).
30 * Load-store analysis in the previous pass collects a list of heap locations
31 * and does alias analysis of those heap locations.
32 * LSE keeps track of a list of heap values corresponding to the heap
33 * locations. It visits basic blocks in reverse post order and for
34 * each basic block, visits instructions sequentially, and processes
35 * instructions as follows:
36 * - If the instruction is a load, and the heap location for that load has a
37 * valid heap value, the load can be eliminated. In order to maintain the
38 * validity of all heap locations during the optimization phase, the real
39 * elimination is delayed till the end of LSE.
40 * - If the instruction is a store, it updates the heap value for the heap
41 * location of the store with the store instruction. The real heap value
42 * can be fetched from the store instruction. Heap values are invalidated
43 * for heap locations that may alias with the store instruction's heap
44 * location. The store instruction can be eliminated unless the value stored
45 * is later needed e.g. by a load from the same/aliased heap location or
46 * the heap location persists at method return/deoptimization.
47 * The store instruction is also needed if it's not used to track the heap
48 * value anymore, e.g. when it fails to merge with the heap values from other
49 * predecessors.
50 * - A store that stores the same value as the heap value is eliminated.
51 * - The list of heap values are merged at basic block entry from the basic
52 * block's predecessors. The algorithm is single-pass, so loop side-effects is
53 * used as best effort to decide if a heap location is stored inside the loop.
54 * - A special type of objects called singletons are instantiated in the method
55 * and have a single name, i.e. no aliases. Singletons have exclusive heap
56 * locations since they have no aliases. Singletons are helpful in narrowing
57 * down the life span of a heap location such that they do not always
58 * need to participate in merging heap values. Allocation of a singleton
59 * can be eliminated if that singleton is not used and does not persist
60 * at method return/deoptimization.
61 * - For newly instantiated instances, their heap values are initialized to
62 * language defined default values.
63 * - Some instructions such as invokes are treated as loading and invalidating
64 * all the heap values, depending on the instruction's side effects.
65 * - Finalizable objects are considered as persisting at method
66 * return/deoptimization.
67 * - Currently this LSE algorithm doesn't handle SIMD graph, e.g. with VecLoad
68 * and VecStore instructions.
69 * - Currently this LSE algorithm doesn't handle graph with try-catch, due to
70 * the special block merging structure.
71 */
72
73 namespace art {
74
75 // An unknown heap value. Loads with such a value in the heap location cannot be eliminated.
76 // A heap location can be set to kUnknownHeapValue when:
77 // - initially set a value.
78 // - killed due to aliasing, merging, invocation, or loop side effects.
79 static HInstruction* const kUnknownHeapValue =
80 reinterpret_cast<HInstruction*>(static_cast<uintptr_t>(-1));
81
82 // Default heap value after an allocation.
83 // A heap location can be set to that value right after an allocation.
84 static HInstruction* const kDefaultHeapValue =
85 reinterpret_cast<HInstruction*>(static_cast<uintptr_t>(-2));
86
87 // Use HGraphDelegateVisitor for which all VisitInvokeXXX() delegate to VisitInvoke().
88 class LSEVisitor : public HGraphDelegateVisitor {
89 public:
LSEVisitor(HGraph * graph,const HeapLocationCollector & heap_locations_collector,const SideEffectsAnalysis & side_effects,OptimizingCompilerStats * stats)90 LSEVisitor(HGraph* graph,
91 const HeapLocationCollector& heap_locations_collector,
92 const SideEffectsAnalysis& side_effects,
93 OptimizingCompilerStats* stats)
94 : HGraphDelegateVisitor(graph, stats),
95 heap_location_collector_(heap_locations_collector),
96 side_effects_(side_effects),
97 allocator_(graph->GetArenaStack()),
98 heap_values_for_(graph->GetBlocks().size(),
99 ScopedArenaVector<HInstruction*>(heap_locations_collector.
100 GetNumberOfHeapLocations(),
101 kUnknownHeapValue,
102 allocator_.Adapter(kArenaAllocLSE)),
103 allocator_.Adapter(kArenaAllocLSE)),
104 removed_loads_(allocator_.Adapter(kArenaAllocLSE)),
105 substitute_instructions_for_loads_(allocator_.Adapter(kArenaAllocLSE)),
106 possibly_removed_stores_(allocator_.Adapter(kArenaAllocLSE)),
107 singleton_new_instances_(allocator_.Adapter(kArenaAllocLSE)) {
108 }
109
VisitBasicBlock(HBasicBlock * block)110 void VisitBasicBlock(HBasicBlock* block) override {
111 // Populate the heap_values array for this block.
112 // TODO: try to reuse the heap_values array from one predecessor if possible.
113 if (block->IsLoopHeader()) {
114 HandleLoopSideEffects(block);
115 } else {
116 MergePredecessorValues(block);
117 }
118 HGraphVisitor::VisitBasicBlock(block);
119 }
120
AddTypeConversionIfNecessary(HInstruction * instruction,HInstruction * value,DataType::Type expected_type)121 HTypeConversion* AddTypeConversionIfNecessary(HInstruction* instruction,
122 HInstruction* value,
123 DataType::Type expected_type) {
124 HTypeConversion* type_conversion = nullptr;
125 // Should never add type conversion into boolean value.
126 if (expected_type != DataType::Type::kBool &&
127 !DataType::IsTypeConversionImplicit(value->GetType(), expected_type)) {
128 type_conversion = new (GetGraph()->GetAllocator()) HTypeConversion(
129 expected_type, value, instruction->GetDexPc());
130 instruction->GetBlock()->InsertInstructionBefore(type_conversion, instruction);
131 }
132 return type_conversion;
133 }
134
135 // Find an instruction's substitute if it's a removed load.
136 // Return the same instruction if it should not be removed.
FindSubstitute(HInstruction * instruction)137 HInstruction* FindSubstitute(HInstruction* instruction) {
138 if (!IsLoad(instruction)) {
139 return instruction;
140 }
141 size_t size = removed_loads_.size();
142 for (size_t i = 0; i < size; i++) {
143 if (removed_loads_[i] == instruction) {
144 HInstruction* substitute = substitute_instructions_for_loads_[i];
145 // The substitute list is a flat hierarchy.
146 DCHECK_EQ(FindSubstitute(substitute), substitute);
147 return substitute;
148 }
149 }
150 return instruction;
151 }
152
AddRemovedLoad(HInstruction * load,HInstruction * heap_value)153 void AddRemovedLoad(HInstruction* load, HInstruction* heap_value) {
154 DCHECK(IsLoad(load));
155 DCHECK_EQ(FindSubstitute(heap_value), heap_value) <<
156 "Unexpected heap_value that has a substitute " << heap_value->DebugName();
157 removed_loads_.push_back(load);
158 substitute_instructions_for_loads_.push_back(heap_value);
159 }
160
161 // Scan the list of removed loads to see if we can reuse `type_conversion`, if
162 // the other removed load has the same substitute and type and is dominated
163 // by `type_conversion`.
TryToReuseTypeConversion(HInstruction * type_conversion,size_t index)164 void TryToReuseTypeConversion(HInstruction* type_conversion, size_t index) {
165 size_t size = removed_loads_.size();
166 HInstruction* load = removed_loads_[index];
167 HInstruction* substitute = substitute_instructions_for_loads_[index];
168 for (size_t j = index + 1; j < size; j++) {
169 HInstruction* load2 = removed_loads_[j];
170 HInstruction* substitute2 = substitute_instructions_for_loads_[j];
171 if (load2 == nullptr) {
172 DCHECK(substitute2->IsTypeConversion());
173 continue;
174 }
175 DCHECK(load2->IsInstanceFieldGet() ||
176 load2->IsStaticFieldGet() ||
177 load2->IsArrayGet());
178 DCHECK(substitute2 != nullptr);
179 if (substitute2 == substitute &&
180 load2->GetType() == load->GetType() &&
181 type_conversion->GetBlock()->Dominates(load2->GetBlock()) &&
182 // Don't share across irreducible loop headers.
183 // TODO: can be more fine-grained than this by testing each dominator.
184 (load2->GetBlock() == type_conversion->GetBlock() ||
185 !GetGraph()->HasIrreducibleLoops())) {
186 // The removed_loads_ are added in reverse post order.
187 DCHECK(type_conversion->StrictlyDominates(load2));
188 load2->ReplaceWith(type_conversion);
189 load2->GetBlock()->RemoveInstruction(load2);
190 removed_loads_[j] = nullptr;
191 substitute_instructions_for_loads_[j] = type_conversion;
192 }
193 }
194 }
195
196 // Remove recorded instructions that should be eliminated.
RemoveInstructions()197 void RemoveInstructions() {
198 size_t size = removed_loads_.size();
199 DCHECK_EQ(size, substitute_instructions_for_loads_.size());
200 for (size_t i = 0; i < size; i++) {
201 HInstruction* load = removed_loads_[i];
202 if (load == nullptr) {
203 // The load has been handled in the scan for type conversion below.
204 DCHECK(substitute_instructions_for_loads_[i]->IsTypeConversion());
205 continue;
206 }
207 DCHECK(load->IsInstanceFieldGet() ||
208 load->IsStaticFieldGet() ||
209 load->IsArrayGet());
210 HInstruction* substitute = substitute_instructions_for_loads_[i];
211 DCHECK(substitute != nullptr);
212 // We proactively retrieve the substitute for a removed load, so
213 // a load that has a substitute should not be observed as a heap
214 // location value.
215 DCHECK_EQ(FindSubstitute(substitute), substitute);
216
217 // The load expects to load the heap value as type load->GetType().
218 // However the tracked heap value may not be of that type. An explicit
219 // type conversion may be needed.
220 // There are actually three types involved here:
221 // (1) tracked heap value's type (type A)
222 // (2) heap location (field or element)'s type (type B)
223 // (3) load's type (type C)
224 // We guarantee that type A stored as type B and then fetched out as
225 // type C is the same as casting from type A to type C directly, since
226 // type B and type C will have the same size which is guarenteed in
227 // HInstanceFieldGet/HStaticFieldGet/HArrayGet's SetType().
228 // So we only need one type conversion from type A to type C.
229 HTypeConversion* type_conversion = AddTypeConversionIfNecessary(
230 load, substitute, load->GetType());
231 if (type_conversion != nullptr) {
232 TryToReuseTypeConversion(type_conversion, i);
233 load->ReplaceWith(type_conversion);
234 substitute_instructions_for_loads_[i] = type_conversion;
235 } else {
236 load->ReplaceWith(substitute);
237 }
238 load->GetBlock()->RemoveInstruction(load);
239 }
240
241 // At this point, stores in possibly_removed_stores_ can be safely removed.
242 for (HInstruction* store : possibly_removed_stores_) {
243 DCHECK(store->IsInstanceFieldSet() || store->IsStaticFieldSet() || store->IsArraySet());
244 store->GetBlock()->RemoveInstruction(store);
245 }
246
247 // Eliminate singleton-classified instructions:
248 // * - Constructor fences (they never escape this thread).
249 // * - Allocations (if they are unused).
250 for (HInstruction* new_instance : singleton_new_instances_) {
251 size_t removed = HConstructorFence::RemoveConstructorFences(new_instance);
252 MaybeRecordStat(stats_,
253 MethodCompilationStat::kConstructorFenceRemovedLSE,
254 removed);
255
256 if (!new_instance->HasNonEnvironmentUses()) {
257 new_instance->RemoveEnvironmentUsers();
258 new_instance->GetBlock()->RemoveInstruction(new_instance);
259 }
260 }
261 }
262
263 private:
IsLoad(HInstruction * instruction)264 static bool IsLoad(HInstruction* instruction) {
265 if (instruction == kUnknownHeapValue || instruction == kDefaultHeapValue) {
266 return false;
267 }
268 // Unresolved load is not treated as a load.
269 return instruction->IsInstanceFieldGet() ||
270 instruction->IsStaticFieldGet() ||
271 instruction->IsArrayGet();
272 }
273
IsStore(HInstruction * instruction)274 static bool IsStore(HInstruction* instruction) {
275 if (instruction == kUnknownHeapValue || instruction == kDefaultHeapValue) {
276 return false;
277 }
278 // Unresolved store is not treated as a store.
279 return instruction->IsInstanceFieldSet() ||
280 instruction->IsArraySet() ||
281 instruction->IsStaticFieldSet();
282 }
283
284 // Returns the real heap value by finding its substitute or by "peeling"
285 // a store instruction.
GetRealHeapValue(HInstruction * heap_value)286 HInstruction* GetRealHeapValue(HInstruction* heap_value) {
287 if (IsLoad(heap_value)) {
288 return FindSubstitute(heap_value);
289 }
290 if (!IsStore(heap_value)) {
291 return heap_value;
292 }
293
294 // We keep track of store instructions as the heap values which might be
295 // eliminated if the stores are later found not necessary. The real stored
296 // value needs to be fetched from the store instruction.
297 if (heap_value->IsInstanceFieldSet()) {
298 heap_value = heap_value->AsInstanceFieldSet()->GetValue();
299 } else if (heap_value->IsStaticFieldSet()) {
300 heap_value = heap_value->AsStaticFieldSet()->GetValue();
301 } else {
302 DCHECK(heap_value->IsArraySet());
303 heap_value = heap_value->AsArraySet()->GetValue();
304 }
305 // heap_value may already be a removed load.
306 return FindSubstitute(heap_value);
307 }
308
309 // If heap_value is a store, need to keep the store.
310 // This is necessary if a heap value is killed or replaced by another value,
311 // so that the store is no longer used to track heap value.
KeepIfIsStore(HInstruction * heap_value)312 void KeepIfIsStore(HInstruction* heap_value) {
313 if (!IsStore(heap_value)) {
314 return;
315 }
316 auto idx = std::find(possibly_removed_stores_.begin(),
317 possibly_removed_stores_.end(), heap_value);
318 if (idx != possibly_removed_stores_.end()) {
319 // Make sure the store is kept.
320 possibly_removed_stores_.erase(idx);
321 }
322 }
323
324 // If a heap location X may alias with heap location at `loc_index`
325 // and heap_values of that heap location X holds a store, keep that store.
326 // It's needed for a dependent load that's not eliminated since any store
327 // that may put value into the load's heap location needs to be kept.
KeepStoresIfAliasedToLocation(ScopedArenaVector<HInstruction * > & heap_values,size_t loc_index)328 void KeepStoresIfAliasedToLocation(ScopedArenaVector<HInstruction*>& heap_values,
329 size_t loc_index) {
330 for (size_t i = 0; i < heap_values.size(); i++) {
331 if ((i == loc_index) || heap_location_collector_.MayAlias(i, loc_index)) {
332 KeepIfIsStore(heap_values[i]);
333 }
334 }
335 }
336
HandleLoopSideEffects(HBasicBlock * block)337 void HandleLoopSideEffects(HBasicBlock* block) {
338 DCHECK(block->IsLoopHeader());
339 int block_id = block->GetBlockId();
340 ScopedArenaVector<HInstruction*>& heap_values = heap_values_for_[block_id];
341 HBasicBlock* pre_header = block->GetLoopInformation()->GetPreHeader();
342 ScopedArenaVector<HInstruction*>& pre_header_heap_values =
343 heap_values_for_[pre_header->GetBlockId()];
344
345 // Don't eliminate loads in irreducible loops.
346 // Also keep the stores before the loop.
347 if (block->GetLoopInformation()->IsIrreducible()) {
348 if (kIsDebugBuild) {
349 for (size_t i = 0; i < heap_values.size(); i++) {
350 DCHECK_EQ(heap_values[i], kUnknownHeapValue);
351 }
352 }
353 for (size_t i = 0; i < heap_values.size(); i++) {
354 KeepIfIsStore(pre_header_heap_values[i]);
355 }
356 return;
357 }
358
359 // Inherit the values from pre-header.
360 for (size_t i = 0; i < heap_values.size(); i++) {
361 heap_values[i] = pre_header_heap_values[i];
362 }
363
364 // We do a single pass in reverse post order. For loops, use the side effects as a hint
365 // to see if the heap values should be killed.
366 if (side_effects_.GetLoopEffects(block).DoesAnyWrite()) {
367 for (size_t i = 0; i < heap_values.size(); i++) {
368 HeapLocation* location = heap_location_collector_.GetHeapLocation(i);
369 ReferenceInfo* ref_info = location->GetReferenceInfo();
370 if (ref_info->IsSingleton() && !location->IsValueKilledByLoopSideEffects()) {
371 // A singleton's field that's not stored into inside a loop is
372 // invariant throughout the loop. Nothing to do.
373 } else {
374 // heap value is killed by loop side effects.
375 KeepIfIsStore(pre_header_heap_values[i]);
376 heap_values[i] = kUnknownHeapValue;
377 }
378 }
379 } else {
380 // The loop doesn't kill any value.
381 }
382 }
383
MergePredecessorValues(HBasicBlock * block)384 void MergePredecessorValues(HBasicBlock* block) {
385 ArrayRef<HBasicBlock* const> predecessors(block->GetPredecessors());
386 if (predecessors.size() == 0) {
387 return;
388 }
389 if (block->IsExitBlock()) {
390 // Exit block doesn't really merge values since the control flow ends in
391 // its predecessors. Each predecessor needs to make sure stores are kept
392 // if necessary.
393 return;
394 }
395
396 ScopedArenaVector<HInstruction*>& heap_values = heap_values_for_[block->GetBlockId()];
397 for (size_t i = 0; i < heap_values.size(); i++) {
398 HInstruction* merged_value = nullptr;
399 // If we can merge the store itself from the predecessors, we keep
400 // the store as the heap value as long as possible. In case we cannot
401 // merge the store, we try to merge the values of the stores.
402 HInstruction* merged_store_value = nullptr;
403 // Whether merged_value is a result that's merged from all predecessors.
404 bool from_all_predecessors = true;
405 ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo();
406 HInstruction* ref = ref_info->GetReference();
407 HInstruction* singleton_ref = nullptr;
408 if (ref_info->IsSingleton()) {
409 // We do more analysis based on singleton's liveness when merging
410 // heap values for such cases.
411 singleton_ref = ref;
412 }
413
414 for (HBasicBlock* predecessor : predecessors) {
415 HInstruction* pred_value = heap_values_for_[predecessor->GetBlockId()][i];
416 if (!IsStore(pred_value)) {
417 pred_value = FindSubstitute(pred_value);
418 }
419 DCHECK(pred_value != nullptr);
420 HInstruction* pred_store_value = GetRealHeapValue(pred_value);
421 if ((singleton_ref != nullptr) &&
422 !singleton_ref->GetBlock()->Dominates(predecessor)) {
423 // singleton_ref is not live in this predecessor. No need to merge
424 // since singleton_ref is not live at the beginning of this block.
425 DCHECK_EQ(pred_value, kUnknownHeapValue);
426 from_all_predecessors = false;
427 break;
428 }
429 if (merged_value == nullptr) {
430 // First seen heap value.
431 DCHECK(pred_value != nullptr);
432 merged_value = pred_value;
433 } else if (pred_value != merged_value) {
434 // There are conflicting values.
435 merged_value = kUnknownHeapValue;
436 // We may still be able to merge store values.
437 }
438
439 // Conflicting stores may be storing the same value. We do another merge
440 // of real stored values.
441 if (merged_store_value == nullptr) {
442 // First seen store value.
443 DCHECK(pred_store_value != nullptr);
444 merged_store_value = pred_store_value;
445 } else if (pred_store_value != merged_store_value) {
446 // There are conflicting store values.
447 merged_store_value = kUnknownHeapValue;
448 // There must be conflicting stores also.
449 DCHECK_EQ(merged_value, kUnknownHeapValue);
450 // No need to merge anymore.
451 break;
452 }
453 }
454
455 if (merged_value == nullptr) {
456 DCHECK(!from_all_predecessors);
457 DCHECK(singleton_ref != nullptr);
458 }
459 if (from_all_predecessors) {
460 if (ref_info->IsSingletonAndRemovable() &&
461 (block->IsSingleReturnOrReturnVoidAllowingPhis() ||
462 (block->EndsWithReturn() && (merged_value != kUnknownHeapValue ||
463 merged_store_value != kUnknownHeapValue)))) {
464 // Values in the singleton are not needed anymore:
465 // (1) if this block consists of a sole return, or
466 // (2) if this block returns and a usable merged value is obtained
467 // (loads prior to the return will always use that value).
468 } else if (!IsStore(merged_value)) {
469 // We don't track merged value as a store anymore. We have to
470 // hold the stores in predecessors live here.
471 for (HBasicBlock* predecessor : predecessors) {
472 ScopedArenaVector<HInstruction*>& pred_values =
473 heap_values_for_[predecessor->GetBlockId()];
474 KeepIfIsStore(pred_values[i]);
475 }
476 }
477 } else {
478 DCHECK(singleton_ref != nullptr);
479 // singleton_ref is non-existing at the beginning of the block. There is
480 // no need to keep the stores.
481 }
482
483 if (!from_all_predecessors) {
484 DCHECK(singleton_ref != nullptr);
485 DCHECK((singleton_ref->GetBlock() == block) ||
486 !singleton_ref->GetBlock()->Dominates(block))
487 << "method: " << GetGraph()->GetMethodName();
488 // singleton_ref is not defined before block or defined only in some of its
489 // predecessors, so block doesn't really have the location at its entry.
490 heap_values[i] = kUnknownHeapValue;
491 } else if (predecessors.size() == 1) {
492 // Inherit heap value from the single predecessor.
493 DCHECK_EQ(heap_values_for_[predecessors[0]->GetBlockId()][i], merged_value);
494 heap_values[i] = merged_value;
495 } else {
496 DCHECK(merged_value == kUnknownHeapValue ||
497 merged_value == kDefaultHeapValue ||
498 merged_value->GetBlock()->Dominates(block));
499 if (merged_value != kUnknownHeapValue) {
500 heap_values[i] = merged_value;
501 } else {
502 // Stores in different predecessors may be storing the same value.
503 heap_values[i] = merged_store_value;
504 }
505 }
506 }
507 }
508
509 // `instruction` is being removed. Try to see if the null check on it
510 // can be removed. This can happen if the same value is set in two branches
511 // but not in dominators. Such as:
512 // int[] a = foo();
513 // if () {
514 // a[0] = 2;
515 // } else {
516 // a[0] = 2;
517 // }
518 // // a[0] can now be replaced with constant 2, and the null check on it can be removed.
TryRemovingNullCheck(HInstruction * instruction)519 void TryRemovingNullCheck(HInstruction* instruction) {
520 HInstruction* prev = instruction->GetPrevious();
521 if ((prev != nullptr) && prev->IsNullCheck() && (prev == instruction->InputAt(0))) {
522 // Previous instruction is a null check for this instruction. Remove the null check.
523 prev->ReplaceWith(prev->InputAt(0));
524 prev->GetBlock()->RemoveInstruction(prev);
525 }
526 }
527
GetDefaultValue(DataType::Type type)528 HInstruction* GetDefaultValue(DataType::Type type) {
529 switch (type) {
530 case DataType::Type::kReference:
531 return GetGraph()->GetNullConstant();
532 case DataType::Type::kBool:
533 case DataType::Type::kUint8:
534 case DataType::Type::kInt8:
535 case DataType::Type::kUint16:
536 case DataType::Type::kInt16:
537 case DataType::Type::kInt32:
538 return GetGraph()->GetIntConstant(0);
539 case DataType::Type::kInt64:
540 return GetGraph()->GetLongConstant(0);
541 case DataType::Type::kFloat32:
542 return GetGraph()->GetFloatConstant(0);
543 case DataType::Type::kFloat64:
544 return GetGraph()->GetDoubleConstant(0);
545 default:
546 UNREACHABLE();
547 }
548 }
549
VisitGetLocation(HInstruction * instruction,size_t idx)550 void VisitGetLocation(HInstruction* instruction, size_t idx) {
551 DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound);
552 ScopedArenaVector<HInstruction*>& heap_values =
553 heap_values_for_[instruction->GetBlock()->GetBlockId()];
554 HInstruction* heap_value = heap_values[idx];
555 if (heap_value == kDefaultHeapValue) {
556 HInstruction* constant = GetDefaultValue(instruction->GetType());
557 AddRemovedLoad(instruction, constant);
558 heap_values[idx] = constant;
559 return;
560 }
561 heap_value = GetRealHeapValue(heap_value);
562 if (heap_value == kUnknownHeapValue) {
563 // Load isn't eliminated. Put the load as the value into the HeapLocation.
564 // This acts like GVN but with better aliasing analysis.
565 heap_values[idx] = instruction;
566 KeepStoresIfAliasedToLocation(heap_values, idx);
567 } else {
568 // Load is eliminated.
569 AddRemovedLoad(instruction, heap_value);
570 TryRemovingNullCheck(instruction);
571 }
572 }
573
Equal(HInstruction * heap_value,HInstruction * value)574 bool Equal(HInstruction* heap_value, HInstruction* value) {
575 DCHECK(!IsStore(value)) << value->DebugName();
576 if (heap_value == kUnknownHeapValue) {
577 // Don't compare kUnknownHeapValue with other values.
578 return false;
579 }
580 if (heap_value == value) {
581 return true;
582 }
583 if (heap_value == kDefaultHeapValue && GetDefaultValue(value->GetType()) == value) {
584 return true;
585 }
586 HInstruction* real_heap_value = GetRealHeapValue(heap_value);
587 if (real_heap_value != heap_value) {
588 return Equal(real_heap_value, value);
589 }
590 return false;
591 }
592
VisitSetLocation(HInstruction * instruction,size_t idx,HInstruction * value)593 void VisitSetLocation(HInstruction* instruction, size_t idx, HInstruction* value) {
594 DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound);
595 DCHECK(!IsStore(value)) << value->DebugName();
596 // value may already have a substitute.
597 value = FindSubstitute(value);
598 ScopedArenaVector<HInstruction*>& heap_values =
599 heap_values_for_[instruction->GetBlock()->GetBlockId()];
600 HInstruction* heap_value = heap_values[idx];
601 bool possibly_redundant = false;
602
603 if (Equal(heap_value, value)) {
604 // Store into the heap location with the same value.
605 // This store can be eliminated right away.
606 instruction->GetBlock()->RemoveInstruction(instruction);
607 return;
608 } else {
609 HLoopInformation* loop_info = instruction->GetBlock()->GetLoopInformation();
610 if (loop_info == nullptr) {
611 // Store is not in a loop. We try to precisely track the heap value by
612 // the store.
613 possibly_redundant = true;
614 } else if (!loop_info->IsIrreducible()) {
615 // instruction is a store in the loop so the loop must do write.
616 DCHECK(side_effects_.GetLoopEffects(loop_info->GetHeader()).DoesAnyWrite());
617 ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(idx)->GetReferenceInfo();
618 if (ref_info->IsSingleton() && !loop_info->IsDefinedOutOfTheLoop(ref_info->GetReference())) {
619 // original_ref is created inside the loop. Value stored to it isn't needed at
620 // the loop header. This is true for outer loops also.
621 possibly_redundant = true;
622 } else {
623 // Keep the store since its value may be needed at the loop header.
624 }
625 } else {
626 // Keep the store inside irreducible loops.
627 }
628 }
629 if (possibly_redundant) {
630 possibly_removed_stores_.push_back(instruction);
631 }
632
633 // Put the store as the heap value. If the value is loaded or needed after
634 // return/deoptimization later, this store isn't really redundant.
635 heap_values[idx] = instruction;
636
637 // This store may kill values in other heap locations due to aliasing.
638 for (size_t i = 0; i < heap_values.size(); i++) {
639 if (i == idx) {
640 continue;
641 }
642 if (Equal(heap_values[i], value)) {
643 // Same value should be kept even if aliasing happens.
644 continue;
645 }
646 if (heap_values[i] == kUnknownHeapValue) {
647 // Value is already unknown, no need for aliasing check.
648 continue;
649 }
650 if (heap_location_collector_.MayAlias(i, idx)) {
651 // Kill heap locations that may alias and as a result if the heap value
652 // is a store, the store needs to be kept.
653 KeepIfIsStore(heap_values[i]);
654 heap_values[i] = kUnknownHeapValue;
655 }
656 }
657 }
658
VisitInstanceFieldGet(HInstanceFieldGet * instruction)659 void VisitInstanceFieldGet(HInstanceFieldGet* instruction) override {
660 HInstruction* object = instruction->InputAt(0);
661 const FieldInfo& field = instruction->GetFieldInfo();
662 VisitGetLocation(instruction, heap_location_collector_.GetFieldHeapLocation(object, &field));
663 }
664
VisitInstanceFieldSet(HInstanceFieldSet * instruction)665 void VisitInstanceFieldSet(HInstanceFieldSet* instruction) override {
666 HInstruction* object = instruction->InputAt(0);
667 const FieldInfo& field = instruction->GetFieldInfo();
668 HInstruction* value = instruction->InputAt(1);
669 size_t idx = heap_location_collector_.GetFieldHeapLocation(object, &field);
670 VisitSetLocation(instruction, idx, value);
671 }
672
VisitStaticFieldGet(HStaticFieldGet * instruction)673 void VisitStaticFieldGet(HStaticFieldGet* instruction) override {
674 HInstruction* cls = instruction->InputAt(0);
675 const FieldInfo& field = instruction->GetFieldInfo();
676 VisitGetLocation(instruction, heap_location_collector_.GetFieldHeapLocation(cls, &field));
677 }
678
VisitStaticFieldSet(HStaticFieldSet * instruction)679 void VisitStaticFieldSet(HStaticFieldSet* instruction) override {
680 HInstruction* cls = instruction->InputAt(0);
681 const FieldInfo& field = instruction->GetFieldInfo();
682 size_t idx = heap_location_collector_.GetFieldHeapLocation(cls, &field);
683 VisitSetLocation(instruction, idx, instruction->InputAt(1));
684 }
685
VisitArrayGet(HArrayGet * instruction)686 void VisitArrayGet(HArrayGet* instruction) override {
687 VisitGetLocation(instruction, heap_location_collector_.GetArrayHeapLocation(instruction));
688 }
689
VisitArraySet(HArraySet * instruction)690 void VisitArraySet(HArraySet* instruction) override {
691 size_t idx = heap_location_collector_.GetArrayHeapLocation(instruction);
692 VisitSetLocation(instruction, idx, instruction->InputAt(2));
693 }
694
VisitDeoptimize(HDeoptimize * instruction)695 void VisitDeoptimize(HDeoptimize* instruction) override {
696 const ScopedArenaVector<HInstruction*>& heap_values =
697 heap_values_for_[instruction->GetBlock()->GetBlockId()];
698 for (HInstruction* heap_value : heap_values) {
699 // A store is kept as the heap value for possibly removed stores.
700 // That value stored is generally observeable after deoptimization, except
701 // for singletons that don't escape after deoptimization.
702 if (IsStore(heap_value)) {
703 if (heap_value->IsStaticFieldSet()) {
704 KeepIfIsStore(heap_value);
705 continue;
706 }
707 HInstruction* reference = heap_value->InputAt(0);
708 if (heap_location_collector_.FindReferenceInfoOf(reference)->IsSingleton()) {
709 if (reference->IsNewInstance() && reference->AsNewInstance()->IsFinalizable()) {
710 // Finalizable objects alway escape.
711 KeepIfIsStore(heap_value);
712 continue;
713 }
714 // Check whether the reference for a store is used by an environment local of
715 // HDeoptimize. If not, the singleton is not observed after
716 // deoptimizion.
717 for (const HUseListNode<HEnvironment*>& use : reference->GetEnvUses()) {
718 HEnvironment* user = use.GetUser();
719 if (user->GetHolder() == instruction) {
720 // The singleton for the store is visible at this deoptimization
721 // point. Need to keep the store so that the heap value is
722 // seen by the interpreter.
723 KeepIfIsStore(heap_value);
724 }
725 }
726 } else {
727 KeepIfIsStore(heap_value);
728 }
729 }
730 }
731 }
732
733 // Keep necessary stores before exiting a method via return/throw.
HandleExit(HBasicBlock * block)734 void HandleExit(HBasicBlock* block) {
735 const ScopedArenaVector<HInstruction*>& heap_values =
736 heap_values_for_[block->GetBlockId()];
737 for (size_t i = 0; i < heap_values.size(); i++) {
738 HInstruction* heap_value = heap_values[i];
739 ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo();
740 if (!ref_info->IsSingletonAndRemovable()) {
741 KeepIfIsStore(heap_value);
742 }
743 }
744 }
745
VisitReturn(HReturn * instruction)746 void VisitReturn(HReturn* instruction) override {
747 HandleExit(instruction->GetBlock());
748 }
749
VisitReturnVoid(HReturnVoid * return_void)750 void VisitReturnVoid(HReturnVoid* return_void) override {
751 HandleExit(return_void->GetBlock());
752 }
753
VisitThrow(HThrow * throw_instruction)754 void VisitThrow(HThrow* throw_instruction) override {
755 HandleExit(throw_instruction->GetBlock());
756 }
757
HandleInvoke(HInstruction * instruction)758 void HandleInvoke(HInstruction* instruction) {
759 SideEffects side_effects = instruction->GetSideEffects();
760 ScopedArenaVector<HInstruction*>& heap_values =
761 heap_values_for_[instruction->GetBlock()->GetBlockId()];
762 for (size_t i = 0; i < heap_values.size(); i++) {
763 ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo();
764 if (ref_info->IsSingleton()) {
765 // Singleton references cannot be seen by the callee.
766 } else {
767 if (side_effects.DoesAnyRead()) {
768 // Invocation may read the heap value.
769 KeepIfIsStore(heap_values[i]);
770 }
771 if (side_effects.DoesAnyWrite()) {
772 // Keep the store since it's not used to track the heap value anymore.
773 KeepIfIsStore(heap_values[i]);
774 heap_values[i] = kUnknownHeapValue;
775 }
776 }
777 }
778 }
779
VisitInvoke(HInvoke * invoke)780 void VisitInvoke(HInvoke* invoke) override {
781 HandleInvoke(invoke);
782 }
783
VisitClinitCheck(HClinitCheck * clinit)784 void VisitClinitCheck(HClinitCheck* clinit) override {
785 HandleInvoke(clinit);
786 }
787
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)788 void VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet* instruction) override {
789 // Conservatively treat it as an invocation.
790 HandleInvoke(instruction);
791 }
792
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)793 void VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet* instruction) override {
794 // Conservatively treat it as an invocation.
795 HandleInvoke(instruction);
796 }
797
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)798 void VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet* instruction) override {
799 // Conservatively treat it as an invocation.
800 HandleInvoke(instruction);
801 }
802
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)803 void VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet* instruction) override {
804 // Conservatively treat it as an invocation.
805 HandleInvoke(instruction);
806 }
807
VisitNewInstance(HNewInstance * new_instance)808 void VisitNewInstance(HNewInstance* new_instance) override {
809 ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(new_instance);
810 if (ref_info == nullptr) {
811 // new_instance isn't used for field accesses. No need to process it.
812 return;
813 }
814 if (ref_info->IsSingletonAndRemovable() && !new_instance->NeedsChecks()) {
815 DCHECK(!new_instance->IsFinalizable());
816 // new_instance can potentially be eliminated.
817 singleton_new_instances_.push_back(new_instance);
818 }
819 ScopedArenaVector<HInstruction*>& heap_values =
820 heap_values_for_[new_instance->GetBlock()->GetBlockId()];
821 for (size_t i = 0; i < heap_values.size(); i++) {
822 HInstruction* ref =
823 heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo()->GetReference();
824 size_t offset = heap_location_collector_.GetHeapLocation(i)->GetOffset();
825 if (ref == new_instance && offset >= mirror::kObjectHeaderSize) {
826 // Instance fields except the header fields are set to default heap values.
827 heap_values[i] = kDefaultHeapValue;
828 }
829 }
830 }
831
VisitNewArray(HNewArray * new_array)832 void VisitNewArray(HNewArray* new_array) override {
833 ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(new_array);
834 if (ref_info == nullptr) {
835 // new_array isn't used for array accesses. No need to process it.
836 return;
837 }
838 if (ref_info->IsSingletonAndRemovable()) {
839 if (new_array->GetLength()->IsIntConstant() &&
840 new_array->GetLength()->AsIntConstant()->GetValue() >= 0) {
841 // new_array can potentially be eliminated.
842 singleton_new_instances_.push_back(new_array);
843 } else {
844 // new_array may throw NegativeArraySizeException. Keep it.
845 }
846 }
847 ScopedArenaVector<HInstruction*>& heap_values =
848 heap_values_for_[new_array->GetBlock()->GetBlockId()];
849 for (size_t i = 0; i < heap_values.size(); i++) {
850 HeapLocation* location = heap_location_collector_.GetHeapLocation(i);
851 HInstruction* ref = location->GetReferenceInfo()->GetReference();
852 if (ref == new_array && location->GetIndex() != nullptr) {
853 // Array elements are set to default heap values.
854 heap_values[i] = kDefaultHeapValue;
855 }
856 }
857 }
858
859 const HeapLocationCollector& heap_location_collector_;
860 const SideEffectsAnalysis& side_effects_;
861
862 // Use local allocator for allocating memory.
863 ScopedArenaAllocator allocator_;
864
865 // One array of heap values for each block.
866 ScopedArenaVector<ScopedArenaVector<HInstruction*>> heap_values_for_;
867
868 // We record the instructions that should be eliminated but may be
869 // used by heap locations. They'll be removed in the end.
870 ScopedArenaVector<HInstruction*> removed_loads_;
871 ScopedArenaVector<HInstruction*> substitute_instructions_for_loads_;
872
873 // Stores in this list may be removed from the list later when it's
874 // found that the store cannot be eliminated.
875 ScopedArenaVector<HInstruction*> possibly_removed_stores_;
876
877 ScopedArenaVector<HInstruction*> singleton_new_instances_;
878
879 DISALLOW_COPY_AND_ASSIGN(LSEVisitor);
880 };
881
Run()882 bool LoadStoreElimination::Run() {
883 if (graph_->IsDebuggable() || graph_->HasTryCatch()) {
884 // Debugger may set heap values or trigger deoptimization of callers.
885 // Try/catch support not implemented yet.
886 // Skip this optimization.
887 return false;
888 }
889 const HeapLocationCollector& heap_location_collector = lsa_.GetHeapLocationCollector();
890 if (heap_location_collector.GetNumberOfHeapLocations() == 0) {
891 // No HeapLocation information from LSA, skip this optimization.
892 return false;
893 }
894
895 // TODO: analyze VecLoad/VecStore better.
896 if (graph_->HasSIMD()) {
897 return false;
898 }
899
900 LSEVisitor lse_visitor(graph_, heap_location_collector, side_effects_, stats_);
901 for (HBasicBlock* block : graph_->GetReversePostOrder()) {
902 lse_visitor.VisitBasicBlock(block);
903 }
904 lse_visitor.RemoveInstructions();
905
906 return true;
907 }
908
909 } // namespace art
910