1 /*
2  * Copyright (C) 2018 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "actions/ngram-model.h"
18 
19 #include <algorithm>
20 
21 #include "actions/feature-processor.h"
22 #include "utils/hash/farmhash.h"
23 #include "utils/strings/stringpiece.h"
24 
25 namespace libtextclassifier3 {
26 namespace {
27 
28 // An iterator to iterate over the initial tokens of the n-grams of a model.
29 class FirstTokenIterator
30     : public std::iterator<std::random_access_iterator_tag,
31                            /*value_type=*/uint32, /*difference_type=*/ptrdiff_t,
32                            /*pointer=*/const uint32*,
33                            /*reference=*/uint32&> {
34  public:
FirstTokenIterator(const NGramLinearRegressionModel * model,int index)35   explicit FirstTokenIterator(const NGramLinearRegressionModel* model,
36                               int index)
37       : model_(model), index_(index) {}
38 
operator ++()39   FirstTokenIterator& operator++() {
40     index_++;
41     return *this;
42   }
operator +=(ptrdiff_t dist)43   FirstTokenIterator& operator+=(ptrdiff_t dist) {
44     index_ += dist;
45     return *this;
46   }
operator -(const FirstTokenIterator & other_it) const47   ptrdiff_t operator-(const FirstTokenIterator& other_it) const {
48     return index_ - other_it.index_;
49   }
operator *() const50   uint32 operator*() const {
51     const uint32 token_offset = (*model_->ngram_start_offsets())[index_];
52     return (*model_->hashed_ngram_tokens())[token_offset];
53   }
index() const54   int index() const { return index_; }
55 
56  private:
57   const NGramLinearRegressionModel* model_;
58   int index_;
59 };
60 
61 }  // anonymous namespace
62 
Create(const NGramLinearRegressionModel * model,const Tokenizer * tokenizer,const UniLib * unilib)63 std::unique_ptr<NGramModel> NGramModel::Create(
64     const NGramLinearRegressionModel* model, const Tokenizer* tokenizer,
65     const UniLib* unilib) {
66   if (model == nullptr) {
67     return nullptr;
68   }
69   if (tokenizer == nullptr && model->tokenizer_options() == nullptr) {
70     TC3_LOG(ERROR) << "No tokenizer options specified.";
71     return nullptr;
72   }
73   return std::unique_ptr<NGramModel>(new NGramModel(model, tokenizer, unilib));
74 }
75 
NGramModel(const NGramLinearRegressionModel * model,const Tokenizer * tokenizer,const UniLib * unilib)76 NGramModel::NGramModel(const NGramLinearRegressionModel* model,
77                        const Tokenizer* tokenizer, const UniLib* unilib)
78     : model_(model) {
79   // Create new tokenizer if options are specified, reuse feature processor
80   // tokenizer otherwise.
81   if (model->tokenizer_options() != nullptr) {
82     owned_tokenizer_ = CreateTokenizer(model->tokenizer_options(), unilib);
83     tokenizer_ = owned_tokenizer_.get();
84   } else {
85     tokenizer_ = tokenizer;
86   }
87 }
88 
89 // Returns whether a given n-gram matches the token stream.
IsNGramMatch(const uint32 * tokens,size_t num_tokens,const uint32 * ngram_tokens,size_t num_ngram_tokens,int max_skips) const90 bool NGramModel::IsNGramMatch(const uint32* tokens, size_t num_tokens,
91                               const uint32* ngram_tokens,
92                               size_t num_ngram_tokens, int max_skips) const {
93   int token_idx = 0, ngram_token_idx = 0, skip_remain = 0;
94   for (; token_idx < num_tokens && ngram_token_idx < num_ngram_tokens;) {
95     if (tokens[token_idx] == ngram_tokens[ngram_token_idx]) {
96       // Token matches. Advance both and reset the skip budget.
97       ++token_idx;
98       ++ngram_token_idx;
99       skip_remain = max_skips;
100     } else if (skip_remain > 0) {
101       // No match, but we have skips left, so just advance over the token.
102       ++token_idx;
103       skip_remain--;
104     } else {
105       // No match and we're out of skips. Reject.
106       return false;
107     }
108   }
109   return ngram_token_idx == num_ngram_tokens;
110 }
111 
112 // Calculates the total number of skip-grams that can be created for a stream
113 // with the given number of tokens.
GetNumSkipGrams(int num_tokens,int max_ngram_length,int max_skips)114 uint64 NGramModel::GetNumSkipGrams(int num_tokens, int max_ngram_length,
115                                    int max_skips) {
116   // Start with unigrams.
117   uint64 total = num_tokens;
118   for (int ngram_len = 2;
119        ngram_len <= max_ngram_length && ngram_len <= num_tokens; ++ngram_len) {
120     // We can easily compute the expected length of the n-gram (with skips),
121     // but it doesn't account for the fact that they may be longer than the
122     // input and should be pruned.
123     // Instead, we iterate over the distribution of effective n-gram lengths
124     // and add each length individually.
125     const int num_gaps = ngram_len - 1;
126     const int len_min = ngram_len;
127     const int len_max = ngram_len + num_gaps * max_skips;
128     const int len_mid = (len_max + len_min) / 2;
129     for (int len_i = len_min; len_i <= len_max; ++len_i) {
130       if (len_i > num_tokens) continue;
131       const int num_configs_of_len_i =
132           len_i <= len_mid ? len_i - len_min + 1 : len_max - len_i + 1;
133       const int num_start_offsets = num_tokens - len_i + 1;
134       total += num_configs_of_len_i * num_start_offsets;
135     }
136   }
137   return total;
138 }
139 
GetFirstTokenMatches(uint32 token_hash) const140 std::pair<int, int> NGramModel::GetFirstTokenMatches(uint32 token_hash) const {
141   const int num_ngrams = model_->ngram_weights()->size();
142   const auto start_it = FirstTokenIterator(model_, 0);
143   const auto end_it = FirstTokenIterator(model_, num_ngrams);
144   const int start = std::lower_bound(start_it, end_it, token_hash).index();
145   const int end = std::upper_bound(start_it, end_it, token_hash).index();
146   return std::make_pair(start, end);
147 }
148 
Eval(const UnicodeText & text,float * score) const149 bool NGramModel::Eval(const UnicodeText& text, float* score) const {
150   const std::vector<Token> raw_tokens = tokenizer_->Tokenize(text);
151 
152   // If we have no tokens, then just bail early.
153   if (raw_tokens.empty()) {
154     if (score != nullptr) {
155       *score = model_->default_token_weight();
156     }
157     return false;
158   }
159 
160   // Hash the tokens.
161   std::vector<uint32> tokens;
162   tokens.reserve(raw_tokens.size());
163   for (const Token& raw_token : raw_tokens) {
164     tokens.push_back(tc3farmhash::Fingerprint32(raw_token.value.data(),
165                                                 raw_token.value.length()));
166   }
167 
168   // Calculate the total number of skip-grams that can be generated for the
169   // input text.
170   const uint64 num_candidates = GetNumSkipGrams(
171       tokens.size(), model_->max_denom_ngram_length(), model_->max_skips());
172 
173   // For each token, see whether it denotes the start of an n-gram in the model.
174   int num_matches = 0;
175   float weight_matches = 0.f;
176   for (size_t start_i = 0; start_i < tokens.size(); ++start_i) {
177     const std::pair<int, int> ngram_range =
178         GetFirstTokenMatches(tokens[start_i]);
179     for (int ngram_idx = ngram_range.first; ngram_idx < ngram_range.second;
180          ++ngram_idx) {
181       const uint16 ngram_tokens_begin =
182           (*model_->ngram_start_offsets())[ngram_idx];
183       const uint16 ngram_tokens_end =
184           (*model_->ngram_start_offsets())[ngram_idx + 1];
185       if (IsNGramMatch(
186               /*tokens=*/tokens.data() + start_i,
187               /*num_tokens=*/tokens.size() - start_i,
188               /*ngram_tokens=*/model_->hashed_ngram_tokens()->data() +
189                   ngram_tokens_begin,
190               /*num_ngram_tokens=*/ngram_tokens_end - ngram_tokens_begin,
191               /*max_skips=*/model_->max_skips())) {
192         ++num_matches;
193         weight_matches += (*model_->ngram_weights())[ngram_idx];
194       }
195     }
196   }
197 
198   // Calculate the score.
199   const int num_misses = num_candidates - num_matches;
200   const float internal_score =
201       (weight_matches + (model_->default_token_weight() * num_misses)) /
202       num_candidates;
203   if (score != nullptr) {
204     *score = internal_score;
205   }
206   return internal_score > model_->threshold();
207 }
208 
209 }  // namespace libtextclassifier3
210