1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Jason Ekstrand (jason@jlekstrand.net)
25  *
26  */
27 
28 #include "nir.h"
29 #include "nir_builder.h"
30 #include "nir_vla.h"
31 
32 /*
33  * This file implements an out-of-SSA pass as described in "Revisiting
34  * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by
35  * Boissinot et al.
36  */
37 
38 struct from_ssa_state {
39    nir_builder builder;
40    void *dead_ctx;
41    bool phi_webs_only;
42    struct hash_table *merge_node_table;
43    nir_instr *instr;
44    bool progress;
45 };
46 
47 /* Returns true if a dominates b */
48 static bool
ssa_def_dominates(nir_ssa_def * a,nir_ssa_def * b)49 ssa_def_dominates(nir_ssa_def *a, nir_ssa_def *b)
50 {
51    if (a->live_index == 0) {
52       /* SSA undefs always dominate */
53       return true;
54    } else if (b->live_index < a->live_index) {
55       return false;
56    } else if (a->parent_instr->block == b->parent_instr->block) {
57       return a->live_index <= b->live_index;
58    } else {
59       return nir_block_dominates(a->parent_instr->block,
60                                  b->parent_instr->block);
61    }
62 }
63 
64 
65 /* The following data structure, which I have named merge_set is a way of
66  * representing a set registers of non-interfering registers.  This is
67  * based on the concept of a "dominance forest" presented in "Fast Copy
68  * Coalescing and Live-Range Identification" by Budimlic et al. but the
69  * implementation concept is taken from  "Revisiting Out-of-SSA Translation
70  * for Correctness, Code Quality, and Efficiency" by Boissinot et al.
71  *
72  * Each SSA definition is associated with a merge_node and the association
73  * is represented by a combination of a hash table and the "def" parameter
74  * in the merge_node structure.  The merge_set stores a linked list of
75  * merge_nodes in dominance order of the ssa definitions.  (Since the
76  * liveness analysis pass indexes the SSA values in dominance order for us,
77  * this is an easy thing to keep up.)  It is assumed that no pair of the
78  * nodes in a given set interfere.  Merging two sets or checking for
79  * interference can be done in a single linear-time merge-sort walk of the
80  * two lists of nodes.
81  */
82 struct merge_set;
83 
84 typedef struct {
85    struct exec_node node;
86    struct merge_set *set;
87    nir_ssa_def *def;
88 } merge_node;
89 
90 typedef struct merge_set {
91    struct exec_list nodes;
92    unsigned size;
93    nir_register *reg;
94 } merge_set;
95 
96 #if 0
97 static void
98 merge_set_dump(merge_set *set, FILE *fp)
99 {
100    nir_ssa_def *dom[set->size];
101    int dom_idx = -1;
102 
103    foreach_list_typed(merge_node, node, node, &set->nodes) {
104       while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def))
105          dom_idx--;
106 
107       for (int i = 0; i <= dom_idx; i++)
108          fprintf(fp, "  ");
109 
110       if (node->def->name)
111          fprintf(fp, "ssa_%d /* %s */\n", node->def->index, node->def->name);
112       else
113          fprintf(fp, "ssa_%d\n", node->def->index);
114 
115       dom[++dom_idx] = node->def;
116    }
117 }
118 #endif
119 
120 static merge_node *
get_merge_node(nir_ssa_def * def,struct from_ssa_state * state)121 get_merge_node(nir_ssa_def *def, struct from_ssa_state *state)
122 {
123    struct hash_entry *entry =
124       _mesa_hash_table_search(state->merge_node_table, def);
125    if (entry)
126       return entry->data;
127 
128    merge_set *set = ralloc(state->dead_ctx, merge_set);
129    exec_list_make_empty(&set->nodes);
130    set->size = 1;
131    set->reg = NULL;
132 
133    merge_node *node = ralloc(state->dead_ctx, merge_node);
134    node->set = set;
135    node->def = def;
136    exec_list_push_head(&set->nodes, &node->node);
137 
138    _mesa_hash_table_insert(state->merge_node_table, def, node);
139 
140    return node;
141 }
142 
143 static bool
merge_nodes_interfere(merge_node * a,merge_node * b)144 merge_nodes_interfere(merge_node *a, merge_node *b)
145 {
146    return nir_ssa_defs_interfere(a->def, b->def);
147 }
148 
149 /* Merges b into a */
150 static merge_set *
merge_merge_sets(merge_set * a,merge_set * b)151 merge_merge_sets(merge_set *a, merge_set *b)
152 {
153    struct exec_node *an = exec_list_get_head(&a->nodes);
154    struct exec_node *bn = exec_list_get_head(&b->nodes);
155    while (!exec_node_is_tail_sentinel(bn)) {
156       merge_node *a_node = exec_node_data(merge_node, an, node);
157       merge_node *b_node = exec_node_data(merge_node, bn, node);
158 
159       if (exec_node_is_tail_sentinel(an) ||
160           a_node->def->live_index > b_node->def->live_index) {
161          struct exec_node *next = bn->next;
162          exec_node_remove(bn);
163          exec_node_insert_node_before(an, bn);
164          exec_node_data(merge_node, bn, node)->set = a;
165          bn = next;
166       } else {
167          an = an->next;
168       }
169    }
170 
171    a->size += b->size;
172    b->size = 0;
173 
174    return a;
175 }
176 
177 /* Checks for any interference between two merge sets
178  *
179  * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA
180  * Translation for Correctness, Code Quality, and Efficiency" by
181  * Boissinot et al.
182  */
183 static bool
merge_sets_interfere(merge_set * a,merge_set * b)184 merge_sets_interfere(merge_set *a, merge_set *b)
185 {
186    NIR_VLA(merge_node *, dom, a->size + b->size);
187    int dom_idx = -1;
188 
189    struct exec_node *an = exec_list_get_head(&a->nodes);
190    struct exec_node *bn = exec_list_get_head(&b->nodes);
191    while (!exec_node_is_tail_sentinel(an) ||
192           !exec_node_is_tail_sentinel(bn)) {
193 
194       merge_node *current;
195       if (exec_node_is_tail_sentinel(an)) {
196          current = exec_node_data(merge_node, bn, node);
197          bn = bn->next;
198       } else if (exec_node_is_tail_sentinel(bn)) {
199          current = exec_node_data(merge_node, an, node);
200          an = an->next;
201       } else {
202          merge_node *a_node = exec_node_data(merge_node, an, node);
203          merge_node *b_node = exec_node_data(merge_node, bn, node);
204 
205          if (a_node->def->live_index <= b_node->def->live_index) {
206             current = a_node;
207             an = an->next;
208          } else {
209             current = b_node;
210             bn = bn->next;
211          }
212       }
213 
214       while (dom_idx >= 0 &&
215              !ssa_def_dominates(dom[dom_idx]->def, current->def))
216          dom_idx--;
217 
218       if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx]))
219          return true;
220 
221       dom[++dom_idx] = current;
222    }
223 
224    return false;
225 }
226 
227 static bool
add_parallel_copy_to_end_of_block(nir_block * block,void * dead_ctx)228 add_parallel_copy_to_end_of_block(nir_block *block, void *dead_ctx)
229 {
230 
231    bool need_end_copy = false;
232    if (block->successors[0]) {
233       nir_instr *instr = nir_block_first_instr(block->successors[0]);
234       if (instr && instr->type == nir_instr_type_phi)
235          need_end_copy = true;
236    }
237 
238    if (block->successors[1]) {
239       nir_instr *instr = nir_block_first_instr(block->successors[1]);
240       if (instr && instr->type == nir_instr_type_phi)
241          need_end_copy = true;
242    }
243 
244    if (need_end_copy) {
245       /* If one of our successors has at least one phi node, we need to
246        * create a parallel copy at the end of the block but before the jump
247        * (if there is one).
248        */
249       nir_parallel_copy_instr *pcopy =
250          nir_parallel_copy_instr_create(dead_ctx);
251 
252       nir_instr_insert(nir_after_block_before_jump(block), &pcopy->instr);
253    }
254 
255    return true;
256 }
257 
258 static nir_parallel_copy_instr *
get_parallel_copy_at_end_of_block(nir_block * block)259 get_parallel_copy_at_end_of_block(nir_block *block)
260 {
261    nir_instr *last_instr = nir_block_last_instr(block);
262    if (last_instr == NULL)
263       return NULL;
264 
265    /* The last instruction may be a jump in which case the parallel copy is
266     * right before it.
267     */
268    if (last_instr->type == nir_instr_type_jump)
269       last_instr = nir_instr_prev(last_instr);
270 
271    if (last_instr && last_instr->type == nir_instr_type_parallel_copy)
272       return nir_instr_as_parallel_copy(last_instr);
273    else
274       return NULL;
275 }
276 
277 /** Isolate phi nodes with parallel copies
278  *
279  * In order to solve the dependency problems with the sources and
280  * destinations of phi nodes, we first isolate them by adding parallel
281  * copies to the beginnings and ends of basic blocks.  For every block with
282  * phi nodes, we add a parallel copy immediately following the last phi
283  * node that copies the destinations of all of the phi nodes to new SSA
284  * values.  We also add a parallel copy to the end of every block that has
285  * a successor with phi nodes that, for each phi node in each successor,
286  * copies the corresponding sorce of the phi node and adjust the phi to
287  * used the destination of the parallel copy.
288  *
289  * In SSA form, each value has exactly one definition.  What this does is
290  * ensure that each value used in a phi also has exactly one use.  The
291  * destinations of phis are only used by the parallel copy immediately
292  * following the phi nodes and.  Thanks to the parallel copy at the end of
293  * the predecessor block, the sources of phi nodes are are the only use of
294  * that value.  This allows us to immediately assign all the sources and
295  * destinations of any given phi node to the same register without worrying
296  * about interference at all.  We do coalescing to get rid of the parallel
297  * copies where possible.
298  *
299  * Before this pass can be run, we have to iterate over the blocks with
300  * add_parallel_copy_to_end_of_block to ensure that the parallel copies at
301  * the ends of blocks exist.  We can create the ones at the beginnings as
302  * we go, but the ones at the ends of blocks need to be created ahead of
303  * time because of potential back-edges in the CFG.
304  */
305 static bool
isolate_phi_nodes_block(nir_block * block,void * dead_ctx)306 isolate_phi_nodes_block(nir_block *block, void *dead_ctx)
307 {
308    nir_instr *last_phi_instr = NULL;
309    nir_foreach_instr(instr, block) {
310       /* Phi nodes only ever come at the start of a block */
311       if (instr->type != nir_instr_type_phi)
312          break;
313 
314       last_phi_instr = instr;
315    }
316 
317    /* If we don't have any phis, then there's nothing for us to do. */
318    if (last_phi_instr == NULL)
319       return true;
320 
321    /* If we have phi nodes, we need to create a parallel copy at the
322     * start of this block but after the phi nodes.
323     */
324    nir_parallel_copy_instr *block_pcopy =
325       nir_parallel_copy_instr_create(dead_ctx);
326    nir_instr_insert_after(last_phi_instr, &block_pcopy->instr);
327 
328    nir_foreach_instr(instr, block) {
329       /* Phi nodes only ever come at the start of a block */
330       if (instr->type != nir_instr_type_phi)
331          break;
332 
333       nir_phi_instr *phi = nir_instr_as_phi(instr);
334       assert(phi->dest.is_ssa);
335       nir_foreach_phi_src(src, phi) {
336          nir_parallel_copy_instr *pcopy =
337             get_parallel_copy_at_end_of_block(src->pred);
338          assert(pcopy);
339 
340          nir_parallel_copy_entry *entry = rzalloc(dead_ctx,
341                                                   nir_parallel_copy_entry);
342          nir_ssa_dest_init(&pcopy->instr, &entry->dest,
343                            phi->dest.ssa.num_components,
344                            phi->dest.ssa.bit_size, src->src.ssa->name);
345          exec_list_push_tail(&pcopy->entries, &entry->node);
346 
347          assert(src->src.is_ssa);
348          nir_instr_rewrite_src(&pcopy->instr, &entry->src, src->src);
349 
350          nir_instr_rewrite_src(&phi->instr, &src->src,
351                                nir_src_for_ssa(&entry->dest.ssa));
352       }
353 
354       nir_parallel_copy_entry *entry = rzalloc(dead_ctx,
355                                                nir_parallel_copy_entry);
356       nir_ssa_dest_init(&block_pcopy->instr, &entry->dest,
357                         phi->dest.ssa.num_components, phi->dest.ssa.bit_size,
358                         phi->dest.ssa.name);
359       exec_list_push_tail(&block_pcopy->entries, &entry->node);
360 
361       nir_ssa_def_rewrite_uses(&phi->dest.ssa,
362                                nir_src_for_ssa(&entry->dest.ssa));
363 
364       nir_instr_rewrite_src(&block_pcopy->instr, &entry->src,
365                             nir_src_for_ssa(&phi->dest.ssa));
366    }
367 
368    return true;
369 }
370 
371 static bool
coalesce_phi_nodes_block(nir_block * block,struct from_ssa_state * state)372 coalesce_phi_nodes_block(nir_block *block, struct from_ssa_state *state)
373 {
374    nir_foreach_instr(instr, block) {
375       /* Phi nodes only ever come at the start of a block */
376       if (instr->type != nir_instr_type_phi)
377          break;
378 
379       nir_phi_instr *phi = nir_instr_as_phi(instr);
380 
381       assert(phi->dest.is_ssa);
382       merge_node *dest_node = get_merge_node(&phi->dest.ssa, state);
383 
384       nir_foreach_phi_src(src, phi) {
385          assert(src->src.is_ssa);
386          merge_node *src_node = get_merge_node(src->src.ssa, state);
387          if (src_node->set != dest_node->set)
388             merge_merge_sets(dest_node->set, src_node->set);
389       }
390    }
391 
392    return true;
393 }
394 
395 static void
aggressive_coalesce_parallel_copy(nir_parallel_copy_instr * pcopy,struct from_ssa_state * state)396 aggressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy,
397                                  struct from_ssa_state *state)
398 {
399    nir_foreach_parallel_copy_entry(entry, pcopy) {
400       if (!entry->src.is_ssa)
401          continue;
402 
403       /* Since load_const instructions are SSA only, we can't replace their
404        * destinations with registers and, therefore, can't coalesce them.
405        */
406       if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const)
407          continue;
408 
409       /* Don't try and coalesce these */
410       if (entry->dest.ssa.num_components != entry->src.ssa->num_components)
411          continue;
412 
413       merge_node *src_node = get_merge_node(entry->src.ssa, state);
414       merge_node *dest_node = get_merge_node(&entry->dest.ssa, state);
415 
416       if (src_node->set == dest_node->set)
417          continue;
418 
419       if (!merge_sets_interfere(src_node->set, dest_node->set))
420          merge_merge_sets(src_node->set, dest_node->set);
421    }
422 }
423 
424 static bool
aggressive_coalesce_block(nir_block * block,struct from_ssa_state * state)425 aggressive_coalesce_block(nir_block *block, struct from_ssa_state *state)
426 {
427    nir_parallel_copy_instr *start_pcopy = NULL;
428    nir_foreach_instr(instr, block) {
429       /* Phi nodes only ever come at the start of a block */
430       if (instr->type != nir_instr_type_phi) {
431          if (instr->type != nir_instr_type_parallel_copy)
432             break; /* The parallel copy must be right after the phis */
433 
434          start_pcopy = nir_instr_as_parallel_copy(instr);
435 
436          aggressive_coalesce_parallel_copy(start_pcopy, state);
437 
438          break;
439       }
440    }
441 
442    nir_parallel_copy_instr *end_pcopy =
443       get_parallel_copy_at_end_of_block(block);
444 
445    if (end_pcopy && end_pcopy != start_pcopy)
446       aggressive_coalesce_parallel_copy(end_pcopy, state);
447 
448    return true;
449 }
450 
451 static nir_register *
create_reg_for_ssa_def(nir_ssa_def * def,nir_function_impl * impl)452 create_reg_for_ssa_def(nir_ssa_def *def, nir_function_impl *impl)
453 {
454    nir_register *reg = nir_local_reg_create(impl);
455 
456    reg->name = def->name;
457    reg->num_components = def->num_components;
458    reg->bit_size = def->bit_size;
459    reg->num_array_elems = 0;
460 
461    return reg;
462 }
463 
464 static bool
rewrite_ssa_def(nir_ssa_def * def,void * void_state)465 rewrite_ssa_def(nir_ssa_def *def, void *void_state)
466 {
467    struct from_ssa_state *state = void_state;
468    nir_register *reg;
469 
470    struct hash_entry *entry =
471       _mesa_hash_table_search(state->merge_node_table, def);
472    if (entry) {
473       /* In this case, we're part of a phi web.  Use the web's register. */
474       merge_node *node = (merge_node *)entry->data;
475 
476       /* If it doesn't have a register yet, create one.  Note that all of
477        * the things in the merge set should be the same so it doesn't
478        * matter which node's definition we use.
479        */
480       if (node->set->reg == NULL)
481          node->set->reg = create_reg_for_ssa_def(def, state->builder.impl);
482 
483       reg = node->set->reg;
484    } else {
485       if (state->phi_webs_only)
486          return true;
487 
488       /* We leave load_const SSA values alone.  They act as immediates to
489        * the backend.  If it got coalesced into a phi, that's ok.
490        */
491       if (def->parent_instr->type == nir_instr_type_load_const)
492          return true;
493 
494       reg = create_reg_for_ssa_def(def, state->builder.impl);
495    }
496 
497    nir_ssa_def_rewrite_uses(def, nir_src_for_reg(reg));
498    assert(list_empty(&def->uses) && list_empty(&def->if_uses));
499 
500    if (def->parent_instr->type == nir_instr_type_ssa_undef) {
501       /* If it's an ssa_undef instruction, remove it since we know we just got
502        * rid of all its uses.
503        */
504       nir_instr *parent_instr = def->parent_instr;
505       nir_instr_remove(parent_instr);
506       ralloc_steal(state->dead_ctx, parent_instr);
507       state->progress = true;
508       return true;
509    }
510 
511    assert(def->parent_instr->type != nir_instr_type_load_const);
512 
513    /* At this point we know a priori that this SSA def is part of a
514     * nir_dest.  We can use exec_node_data to get the dest pointer.
515     */
516    nir_dest *dest = exec_node_data(nir_dest, def, ssa);
517 
518    nir_instr_rewrite_dest(state->instr, dest, nir_dest_for_reg(reg));
519    state->progress = true;
520    return true;
521 }
522 
523 /* Resolves ssa definitions to registers.  While we're at it, we also
524  * remove phi nodes.
525  */
526 static void
resolve_registers_block(nir_block * block,struct from_ssa_state * state)527 resolve_registers_block(nir_block *block, struct from_ssa_state *state)
528 {
529    nir_foreach_instr_safe(instr, block) {
530       state->instr = instr;
531       nir_foreach_ssa_def(instr, rewrite_ssa_def, state);
532 
533       if (instr->type == nir_instr_type_phi) {
534          nir_instr_remove(instr);
535          ralloc_steal(state->dead_ctx, instr);
536          state->progress = true;
537       }
538    }
539    state->instr = NULL;
540 }
541 
542 static void
emit_copy(nir_builder * b,nir_src src,nir_src dest_src)543 emit_copy(nir_builder *b, nir_src src, nir_src dest_src)
544 {
545    assert(!dest_src.is_ssa &&
546           dest_src.reg.indirect == NULL &&
547           dest_src.reg.base_offset == 0);
548 
549    if (src.is_ssa)
550       assert(src.ssa->num_components >= dest_src.reg.reg->num_components);
551    else
552       assert(src.reg.reg->num_components >= dest_src.reg.reg->num_components);
553 
554    nir_alu_instr *mov = nir_alu_instr_create(b->shader, nir_op_imov);
555    nir_src_copy(&mov->src[0].src, &src, mov);
556    mov->dest.dest = nir_dest_for_reg(dest_src.reg.reg);
557    mov->dest.write_mask = (1 << dest_src.reg.reg->num_components) - 1;
558 
559    nir_builder_instr_insert(b, &mov->instr);
560 }
561 
562 /* Resolves a single parallel copy operation into a sequence of movs
563  *
564  * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for
565  * Correctness, Code Quality, and Efficiency" by Boissinot et al.
566  * However, I never got the algorithm to work as written, so this version
567  * is slightly modified.
568  *
569  * The algorithm works by playing this little shell game with the values.
570  * We start by recording where every source value is and which source value
571  * each destination value should receive.  We then grab any copy whose
572  * destination is "empty", i.e. not used as a source, and do the following:
573  *  - Find where its source value currently lives
574  *  - Emit the move instruction
575  *  - Set the location of the source value to the destination
576  *  - Mark the location containing the source value
577  *  - Mark the destination as no longer needing to be copied
578  *
579  * When we run out of "empty" destinations, we have a cycle and so we
580  * create a temporary register, copy to that register, and mark the value
581  * we copied as living in that temporary.  Now, the cycle is broken, so we
582  * can continue with the above steps.
583  */
584 static void
resolve_parallel_copy(nir_parallel_copy_instr * pcopy,struct from_ssa_state * state)585 resolve_parallel_copy(nir_parallel_copy_instr *pcopy,
586                       struct from_ssa_state *state)
587 {
588    unsigned num_copies = 0;
589    nir_foreach_parallel_copy_entry(entry, pcopy) {
590       /* Sources may be SSA */
591       if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
592          continue;
593 
594       num_copies++;
595    }
596 
597    if (num_copies == 0) {
598       /* Hooray, we don't need any copies! */
599       nir_instr_remove(&pcopy->instr);
600       return;
601    }
602 
603    /* The register/source corresponding to the given index */
604    NIR_VLA_ZERO(nir_src, values, num_copies * 2);
605 
606    /* The current location of a given piece of data.  We will use -1 for "null" */
607    NIR_VLA_FILL(int, loc, num_copies * 2, -1);
608 
609    /* The piece of data that the given piece of data is to be copied from.  We will use -1 for "null" */
610    NIR_VLA_FILL(int, pred, num_copies * 2, -1);
611 
612    /* The destinations we have yet to properly fill */
613    NIR_VLA(int, to_do, num_copies * 2);
614    int to_do_idx = -1;
615 
616    state->builder.cursor = nir_before_instr(&pcopy->instr);
617 
618    /* Now we set everything up:
619     *  - All values get assigned a temporary index
620     *  - Current locations are set from sources
621     *  - Predicessors are recorded from sources and destinations
622     */
623    int num_vals = 0;
624    nir_foreach_parallel_copy_entry(entry, pcopy) {
625       /* Sources may be SSA */
626       if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
627          continue;
628 
629       int src_idx = -1;
630       for (int i = 0; i < num_vals; ++i) {
631          if (nir_srcs_equal(values[i], entry->src))
632             src_idx = i;
633       }
634       if (src_idx < 0) {
635          src_idx = num_vals++;
636          values[src_idx] = entry->src;
637       }
638 
639       nir_src dest_src = nir_src_for_reg(entry->dest.reg.reg);
640 
641       int dest_idx = -1;
642       for (int i = 0; i < num_vals; ++i) {
643          if (nir_srcs_equal(values[i], dest_src)) {
644             /* Each destination of a parallel copy instruction should be
645              * unique.  A destination may get used as a source, so we still
646              * have to walk the list.  However, the predecessor should not,
647              * at this point, be set yet, so we should have -1 here.
648              */
649             assert(pred[i] == -1);
650             dest_idx = i;
651          }
652       }
653       if (dest_idx < 0) {
654          dest_idx = num_vals++;
655          values[dest_idx] = dest_src;
656       }
657 
658       loc[src_idx] = src_idx;
659       pred[dest_idx] = src_idx;
660 
661       to_do[++to_do_idx] = dest_idx;
662    }
663 
664    /* Currently empty destinations we can go ahead and fill */
665    NIR_VLA(int, ready, num_copies * 2);
666    int ready_idx = -1;
667 
668    /* Mark the ones that are ready for copying.  We know an index is a
669     * destination if it has a predecessor and it's ready for copying if
670     * it's not marked as containing data.
671     */
672    for (int i = 0; i < num_vals; i++) {
673       if (pred[i] != -1 && loc[i] == -1)
674          ready[++ready_idx] = i;
675    }
676 
677    while (to_do_idx >= 0) {
678       while (ready_idx >= 0) {
679          int b = ready[ready_idx--];
680          int a = pred[b];
681          emit_copy(&state->builder, values[loc[a]], values[b]);
682 
683          /* If any other copies want a they can find it at b */
684          loc[a] = b;
685 
686          /* b has been filled, mark it as not needing to be copied */
687          pred[b] = -1;
688 
689          /* If a needs to be filled, it's ready for copying now */
690          if (pred[a] != -1)
691             ready[++ready_idx] = a;
692       }
693       int b = to_do[to_do_idx--];
694       if (pred[b] == -1)
695          continue;
696 
697       /* If we got here, then we don't have any more trivial copies that we
698        * can do.  We have to break a cycle, so we create a new temporary
699        * register for that purpose.  Normally, if going out of SSA after
700        * register allocation, you would want to avoid creating temporary
701        * registers.  However, we are going out of SSA before register
702        * allocation, so we would rather not create extra register
703        * dependencies for the backend to deal with.  If it wants, the
704        * backend can coalesce the (possibly multiple) temporaries.
705        */
706       assert(num_vals < num_copies * 2);
707       nir_register *reg = nir_local_reg_create(state->builder.impl);
708       reg->name = "copy_temp";
709       reg->num_array_elems = 0;
710       if (values[b].is_ssa)
711          reg->num_components = values[b].ssa->num_components;
712       else
713          reg->num_components = values[b].reg.reg->num_components;
714       values[num_vals].is_ssa = false;
715       values[num_vals].reg.reg = reg;
716 
717       emit_copy(&state->builder, values[b], values[num_vals]);
718       loc[b] = num_vals;
719       ready[++ready_idx] = b;
720       num_vals++;
721    }
722 
723    nir_instr_remove(&pcopy->instr);
724 }
725 
726 /* Resolves the parallel copies in a block.  Each block can have at most
727  * two:  One at the beginning, right after all the phi noces, and one at
728  * the end (or right before the final jump if it exists).
729  */
730 static bool
resolve_parallel_copies_block(nir_block * block,struct from_ssa_state * state)731 resolve_parallel_copies_block(nir_block *block, struct from_ssa_state *state)
732 {
733    /* At this point, we have removed all of the phi nodes.  If a parallel
734     * copy existed right after the phi nodes in this block, it is now the
735     * first instruction.
736     */
737    nir_instr *first_instr = nir_block_first_instr(block);
738    if (first_instr == NULL)
739       return true; /* Empty, nothing to do. */
740 
741    if (first_instr->type == nir_instr_type_parallel_copy) {
742       nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(first_instr);
743 
744       resolve_parallel_copy(pcopy, state);
745    }
746 
747    /* It's possible that the above code already cleaned up the end parallel
748     * copy.  However, doing so removed it form the instructions list so we
749     * won't find it here.  Therefore, it's safe to go ahead and just look
750     * for one and clean it up if it exists.
751     */
752    nir_parallel_copy_instr *end_pcopy =
753       get_parallel_copy_at_end_of_block(block);
754    if (end_pcopy)
755       resolve_parallel_copy(end_pcopy, state);
756 
757    return true;
758 }
759 
760 static bool
nir_convert_from_ssa_impl(nir_function_impl * impl,bool phi_webs_only)761 nir_convert_from_ssa_impl(nir_function_impl *impl, bool phi_webs_only)
762 {
763    struct from_ssa_state state;
764 
765    nir_builder_init(&state.builder, impl);
766    state.dead_ctx = ralloc_context(NULL);
767    state.phi_webs_only = phi_webs_only;
768    state.merge_node_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
769                                                     _mesa_key_pointer_equal);
770    state.progress = false;
771 
772    nir_foreach_block(block, impl) {
773       add_parallel_copy_to_end_of_block(block, state.dead_ctx);
774    }
775 
776    nir_foreach_block(block, impl) {
777       isolate_phi_nodes_block(block, state.dead_ctx);
778    }
779 
780    /* Mark metadata as dirty before we ask for liveness analysis */
781    nir_metadata_preserve(impl, nir_metadata_block_index |
782                                nir_metadata_dominance);
783 
784    nir_metadata_require(impl, nir_metadata_live_ssa_defs |
785                               nir_metadata_dominance);
786 
787    nir_foreach_block(block, impl) {
788       coalesce_phi_nodes_block(block, &state);
789    }
790 
791    nir_foreach_block(block, impl) {
792       aggressive_coalesce_block(block, &state);
793    }
794 
795    nir_foreach_block(block, impl) {
796       resolve_registers_block(block, &state);
797    }
798 
799    nir_foreach_block(block, impl) {
800       resolve_parallel_copies_block(block, &state);
801    }
802 
803    nir_metadata_preserve(impl, nir_metadata_block_index |
804                                nir_metadata_dominance);
805 
806    /* Clean up dead instructions and the hash tables */
807    _mesa_hash_table_destroy(state.merge_node_table, NULL);
808    ralloc_free(state.dead_ctx);
809    return state.progress;
810 }
811 
812 bool
nir_convert_from_ssa(nir_shader * shader,bool phi_webs_only)813 nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only)
814 {
815    bool progress = false;
816 
817    nir_foreach_function(function, shader) {
818       if (function->impl)
819          progress |= nir_convert_from_ssa_impl(function->impl, phi_webs_only);
820    }
821 
822    return progress;
823 }
824 
825 
826 static void
place_phi_read(nir_shader * shader,nir_register * reg,nir_ssa_def * def,nir_block * block)827 place_phi_read(nir_shader *shader, nir_register *reg,
828                nir_ssa_def *def, nir_block *block)
829 {
830    if (block != def->parent_instr->block) {
831       /* Try to go up the single-successor tree */
832       bool all_single_successors = true;
833       struct set_entry *entry;
834       set_foreach(block->predecessors, entry) {
835          nir_block *pred = (nir_block *)entry->key;
836          if (pred->successors[0] && pred->successors[1]) {
837             all_single_successors = false;
838             break;
839          }
840       }
841 
842       if (all_single_successors) {
843          /* All predecessors of this block have exactly one successor and it
844           * is this block so they must eventually lead here without
845           * intersecting each other.  Place the reads in the predecessors
846           * instead of this block.
847           */
848          set_foreach(block->predecessors, entry)
849             place_phi_read(shader, reg, def, (nir_block *)entry->key);
850          return;
851       }
852    }
853 
854    nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_imov);
855    mov->src[0].src = nir_src_for_ssa(def);
856    mov->dest.dest = nir_dest_for_reg(reg);
857    mov->dest.write_mask = (1 << reg->num_components) - 1;
858    nir_instr_insert(nir_after_block_before_jump(block), &mov->instr);
859 }
860 
861 /** Lower all of the phi nodes in a block to imovs to and from a register
862  *
863  * This provides a very quick-and-dirty out-of-SSA pass that you can run on a
864  * single block to convert all of its phis to a register and some imovs.
865  * The code that is generated, while not optimal for actual codegen in a
866  * back-end, is easy to generate, correct, and will turn into the same set of
867  * phis after you call regs_to_ssa and do some copy propagation.
868  *
869  * The one intelligent thing this pass does is that it places the moves from
870  * the phi sources as high up the predecessor tree as possible instead of in
871  * the exact predecessor.  This means that, in particular, it will crawl into
872  * the deepest nesting of any if-ladders.  In order to ensure that doing so is
873  * safe, it stops as soon as one of the predecessors has multiple successors.
874  */
875 bool
nir_lower_phis_to_regs_block(nir_block * block)876 nir_lower_phis_to_regs_block(nir_block *block)
877 {
878    nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node);
879    nir_shader *shader = impl->function->shader;
880 
881    bool progress = false;
882    nir_foreach_instr_safe(instr, block) {
883       if (instr->type != nir_instr_type_phi)
884          break;
885 
886       nir_phi_instr *phi = nir_instr_as_phi(instr);
887       assert(phi->dest.is_ssa);
888 
889       nir_register *reg = create_reg_for_ssa_def(&phi->dest.ssa, impl);
890 
891       nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_imov);
892       mov->src[0].src = nir_src_for_reg(reg);
893       mov->dest.write_mask = (1 << phi->dest.ssa.num_components) - 1;
894       nir_ssa_dest_init(&mov->instr, &mov->dest.dest,
895                         phi->dest.ssa.num_components, phi->dest.ssa.bit_size,
896                         phi->dest.ssa.name);
897       nir_instr_insert(nir_after_instr(&phi->instr), &mov->instr);
898 
899       nir_ssa_def_rewrite_uses(&phi->dest.ssa,
900                                nir_src_for_ssa(&mov->dest.dest.ssa));
901 
902       nir_foreach_phi_src(src, phi) {
903          assert(src->src.is_ssa);
904          place_phi_read(shader, reg, src->src.ssa, src->pred);
905       }
906 
907       nir_instr_remove(&phi->instr);
908 
909       progress = true;
910    }
911 
912    return progress;
913 }
914 
915 struct ssa_def_to_reg_state {
916    nir_function_impl *impl;
917    bool progress;
918 };
919 
920 static bool
dest_replace_ssa_with_reg(nir_dest * dest,void * void_state)921 dest_replace_ssa_with_reg(nir_dest *dest, void *void_state)
922 {
923    struct ssa_def_to_reg_state *state = void_state;
924 
925    if (!dest->is_ssa)
926       return true;
927 
928    nir_register *reg = create_reg_for_ssa_def(&dest->ssa, state->impl);
929 
930    nir_ssa_def_rewrite_uses(&dest->ssa, nir_src_for_reg(reg));
931 
932    nir_instr *instr = dest->ssa.parent_instr;
933    *dest = nir_dest_for_reg(reg);
934    dest->reg.parent_instr = instr;
935    list_addtail(&dest->reg.def_link, &reg->defs);
936 
937    state->progress = true;
938 
939    return true;
940 }
941 
942 /** Lower all of the SSA defs in a block to registers
943  *
944  * This performs the very simple operation of blindly replacing all of the SSA
945  * defs in the given block with registers.  If not used carefully, this may
946  * result in phi nodes with register sources which is technically invalid.
947  * Fortunately, the register-based into-SSA pass handles them anyway.
948  */
949 bool
nir_lower_ssa_defs_to_regs_block(nir_block * block)950 nir_lower_ssa_defs_to_regs_block(nir_block *block)
951 {
952    nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node);
953    nir_shader *shader = impl->function->shader;
954 
955    struct ssa_def_to_reg_state state = {
956       .impl = impl,
957       .progress = false,
958    };
959 
960    nir_foreach_instr(instr, block) {
961       if (instr->type == nir_instr_type_ssa_undef) {
962          /* Undefs are just a read of something never written. */
963          nir_ssa_undef_instr *undef = nir_instr_as_ssa_undef(instr);
964          nir_register *reg = create_reg_for_ssa_def(&undef->def, state.impl);
965          nir_ssa_def_rewrite_uses(&undef->def, nir_src_for_reg(reg));
966       } else if (instr->type == nir_instr_type_load_const) {
967          /* Constant loads are SSA-only, we need to insert a move */
968          nir_load_const_instr *load = nir_instr_as_load_const(instr);
969          nir_register *reg = create_reg_for_ssa_def(&load->def, state.impl);
970          nir_ssa_def_rewrite_uses(&load->def, nir_src_for_reg(reg));
971 
972          nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_imov);
973          mov->src[0].src = nir_src_for_ssa(&load->def);
974          mov->dest.dest = nir_dest_for_reg(reg);
975          mov->dest.write_mask = (1 << reg->num_components) - 1;
976          nir_instr_insert(nir_after_instr(&load->instr), &mov->instr);
977       } else {
978          nir_foreach_dest(instr, dest_replace_ssa_with_reg, &state);
979       }
980    }
981 
982    return state.progress;
983 }
984