1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "image_writer.h"
18 
19 #include <lz4.h>
20 #include <lz4hc.h>
21 #include <sys/stat.h>
22 #include <zlib.h>
23 
24 #include <memory>
25 #include <numeric>
26 #include <unordered_set>
27 #include <vector>
28 
29 #include "art_field-inl.h"
30 #include "art_method-inl.h"
31 #include "base/callee_save_type.h"
32 #include "base/enums.h"
33 #include "base/globals.h"
34 #include "base/logging.h"  // For VLOG.
35 #include "base/stl_util.h"
36 #include "base/unix_file/fd_file.h"
37 #include "class_linker-inl.h"
38 #include "class_root.h"
39 #include "compiled_method.h"
40 #include "dex/dex_file-inl.h"
41 #include "dex/dex_file_types.h"
42 #include "driver/compiler_options.h"
43 #include "elf/elf_utils.h"
44 #include "elf_file.h"
45 #include "gc/accounting/card_table-inl.h"
46 #include "gc/accounting/heap_bitmap.h"
47 #include "gc/accounting/space_bitmap-inl.h"
48 #include "gc/collector/concurrent_copying.h"
49 #include "gc/heap-visit-objects-inl.h"
50 #include "gc/heap.h"
51 #include "gc/space/large_object_space.h"
52 #include "gc/space/region_space.h"
53 #include "gc/space/space-inl.h"
54 #include "gc/verification.h"
55 #include "handle_scope-inl.h"
56 #include "image.h"
57 #include "imt_conflict_table.h"
58 #include "intern_table-inl.h"
59 #include "jni/jni_internal.h"
60 #include "linear_alloc.h"
61 #include "lock_word.h"
62 #include "mirror/array-inl.h"
63 #include "mirror/class-inl.h"
64 #include "mirror/class_ext-inl.h"
65 #include "mirror/class_loader.h"
66 #include "mirror/dex_cache-inl.h"
67 #include "mirror/dex_cache.h"
68 #include "mirror/executable.h"
69 #include "mirror/method.h"
70 #include "mirror/object-inl.h"
71 #include "mirror/object-refvisitor-inl.h"
72 #include "mirror/object_array-alloc-inl.h"
73 #include "mirror/object_array-inl.h"
74 #include "mirror/string-inl.h"
75 #include "oat.h"
76 #include "oat_file.h"
77 #include "oat_file_manager.h"
78 #include "optimizing/intrinsic_objects.h"
79 #include "runtime.h"
80 #include "scoped_thread_state_change-inl.h"
81 #include "subtype_check.h"
82 #include "utils/dex_cache_arrays_layout-inl.h"
83 #include "well_known_classes.h"
84 
85 using ::art::mirror::Class;
86 using ::art::mirror::DexCache;
87 using ::art::mirror::Object;
88 using ::art::mirror::ObjectArray;
89 using ::art::mirror::String;
90 
91 namespace art {
92 namespace linker {
93 
MaybeCompressData(ArrayRef<const uint8_t> source,ImageHeader::StorageMode image_storage_mode,std::vector<uint8_t> * storage)94 static ArrayRef<const uint8_t> MaybeCompressData(ArrayRef<const uint8_t> source,
95                                                  ImageHeader::StorageMode image_storage_mode,
96                                                  /*out*/ std::vector<uint8_t>* storage) {
97   const uint64_t compress_start_time = NanoTime();
98 
99   switch (image_storage_mode) {
100     case ImageHeader::kStorageModeLZ4: {
101       storage->resize(LZ4_compressBound(source.size()));
102       size_t data_size = LZ4_compress_default(
103           reinterpret_cast<char*>(const_cast<uint8_t*>(source.data())),
104           reinterpret_cast<char*>(storage->data()),
105           source.size(),
106           storage->size());
107       storage->resize(data_size);
108       break;
109     }
110     case ImageHeader::kStorageModeLZ4HC: {
111       // Bound is same as non HC.
112       storage->resize(LZ4_compressBound(source.size()));
113       size_t data_size = LZ4_compress_HC(
114           reinterpret_cast<const char*>(const_cast<uint8_t*>(source.data())),
115           reinterpret_cast<char*>(storage->data()),
116           source.size(),
117           storage->size(),
118           LZ4HC_CLEVEL_MAX);
119       storage->resize(data_size);
120       break;
121     }
122     case ImageHeader::kStorageModeUncompressed: {
123       return source;
124     }
125     default: {
126       LOG(FATAL) << "Unsupported";
127       UNREACHABLE();
128     }
129   }
130 
131   DCHECK(image_storage_mode == ImageHeader::kStorageModeLZ4 ||
132          image_storage_mode == ImageHeader::kStorageModeLZ4HC);
133   VLOG(compiler) << "Compressed from " << source.size() << " to " << storage->size() << " in "
134                  << PrettyDuration(NanoTime() - compress_start_time);
135   if (kIsDebugBuild) {
136     std::vector<uint8_t> decompressed(source.size());
137     const size_t decompressed_size = LZ4_decompress_safe(
138         reinterpret_cast<char*>(storage->data()),
139         reinterpret_cast<char*>(decompressed.data()),
140         storage->size(),
141         decompressed.size());
142     CHECK_EQ(decompressed_size, decompressed.size());
143     CHECK_EQ(memcmp(source.data(), decompressed.data(), source.size()), 0) << image_storage_mode;
144   }
145   return ArrayRef<const uint8_t>(*storage);
146 }
147 
148 // Separate objects into multiple bins to optimize dirty memory use.
149 static constexpr bool kBinObjects = true;
150 
GetAppClassLoader() const151 ObjPtr<mirror::ClassLoader> ImageWriter::GetAppClassLoader() const
152     REQUIRES_SHARED(Locks::mutator_lock_) {
153   return compiler_options_.IsAppImage()
154       ? ObjPtr<mirror::ClassLoader>::DownCast(Thread::Current()->DecodeJObject(app_class_loader_))
155       : nullptr;
156 }
157 
IsImageObject(ObjPtr<mirror::Object> obj) const158 bool ImageWriter::IsImageObject(ObjPtr<mirror::Object> obj) const {
159   // For boot image, we keep all objects remaining after the GC in PrepareImageAddressSpace().
160   if (compiler_options_.IsBootImage()) {
161     return true;
162   }
163   // Objects already in the boot image do not belong to the image being written.
164   if (IsInBootImage(obj.Ptr())) {
165     return false;
166   }
167   // DexCaches for the boot class path components that are not a part of the boot image
168   // cannot be garbage collected in PrepareImageAddressSpace() but we do not want to
169   // include them in the app image. So make sure we include only the app DexCaches.
170   if (obj->IsDexCache() &&
171       !ContainsElement(compiler_options_.GetDexFilesForOatFile(),
172                        obj->AsDexCache()->GetDexFile())) {
173     return false;
174   }
175   return true;
176 }
177 
178 // Return true if an object is already in an image space.
IsInBootImage(const void * obj) const179 bool ImageWriter::IsInBootImage(const void* obj) const {
180   gc::Heap* const heap = Runtime::Current()->GetHeap();
181   if (compiler_options_.IsBootImage()) {
182     DCHECK(heap->GetBootImageSpaces().empty());
183     return false;
184   }
185   for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
186     const uint8_t* image_begin = boot_image_space->Begin();
187     // Real image end including ArtMethods and ArtField sections.
188     const uint8_t* image_end = image_begin + boot_image_space->GetImageHeader().GetImageSize();
189     if (image_begin <= obj && obj < image_end) {
190       return true;
191     }
192   }
193   return false;
194 }
195 
IsInBootOatFile(const void * ptr) const196 bool ImageWriter::IsInBootOatFile(const void* ptr) const {
197   gc::Heap* const heap = Runtime::Current()->GetHeap();
198   if (compiler_options_.IsBootImage()) {
199     DCHECK(heap->GetBootImageSpaces().empty());
200     return false;
201   }
202   for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
203     const ImageHeader& image_header = boot_image_space->GetImageHeader();
204     if (image_header.GetOatFileBegin() <= ptr && ptr < image_header.GetOatFileEnd()) {
205       return true;
206     }
207   }
208   return false;
209 }
210 
ClearDexFileCookies()211 static void ClearDexFileCookies() REQUIRES_SHARED(Locks::mutator_lock_) {
212   auto visitor = [](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
213     DCHECK(obj != nullptr);
214     Class* klass = obj->GetClass();
215     if (klass == WellKnownClasses::ToClass(WellKnownClasses::dalvik_system_DexFile)) {
216       ArtField* field = jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_cookie);
217       // Null out the cookie to enable determinism. b/34090128
218       field->SetObject</*kTransactionActive*/false>(obj, nullptr);
219     }
220   };
221   Runtime::Current()->GetHeap()->VisitObjects(visitor);
222 }
223 
PrepareImageAddressSpace(TimingLogger * timings)224 bool ImageWriter::PrepareImageAddressSpace(TimingLogger* timings) {
225   target_ptr_size_ = InstructionSetPointerSize(compiler_options_.GetInstructionSet());
226 
227   Thread* const self = Thread::Current();
228 
229   gc::Heap* const heap = Runtime::Current()->GetHeap();
230   {
231     ScopedObjectAccess soa(self);
232     {
233       TimingLogger::ScopedTiming t("PruneNonImageClasses", timings);
234       PruneNonImageClasses();  // Remove junk
235     }
236 
237     if (compiler_options_.IsAppImage()) {
238       TimingLogger::ScopedTiming t("ClearDexFileCookies", timings);
239       // Clear dex file cookies for app images to enable app image determinism. This is required
240       // since the cookie field contains long pointers to DexFiles which are not deterministic.
241       // b/34090128
242       ClearDexFileCookies();
243     }
244   }
245 
246   {
247     TimingLogger::ScopedTiming t("CollectGarbage", timings);
248     heap->CollectGarbage(/* clear_soft_references */ false);  // Remove garbage.
249   }
250 
251   if (kIsDebugBuild) {
252     ScopedObjectAccess soa(self);
253     CheckNonImageClassesRemoved();
254   }
255 
256   {
257     // Preload deterministic contents to the dex cache arrays we're going to write.
258     ScopedObjectAccess soa(self);
259     ObjPtr<mirror::ClassLoader> class_loader = GetAppClassLoader();
260     std::vector<ObjPtr<mirror::DexCache>> dex_caches = FindDexCaches(self);
261     for (ObjPtr<mirror::DexCache> dex_cache : dex_caches) {
262       if (!IsImageObject(dex_cache)) {
263         continue;  // Boot image DexCache is not written to the app image.
264       }
265       PreloadDexCache(dex_cache, class_loader);
266     }
267   }
268 
269   // Used to store information that will later be used to calculate image
270   // offsets to string references in the AppImage.
271   std::vector<HeapReferencePointerInfo> string_ref_info;
272   if (ClassLinker::kAppImageMayContainStrings && compiler_options_.IsAppImage()) {
273     // Count the number of string fields so we can allocate the appropriate
274     // amount of space in the image section.
275     TimingLogger::ScopedTiming t("AppImage:CollectStringReferenceInfo", timings);
276     ScopedObjectAccess soa(self);
277 
278     if (kIsDebugBuild) {
279       VerifyNativeGCRootInvariants();
280       CHECK_EQ(image_infos_.size(), 1u);
281     }
282 
283     string_ref_info = CollectStringReferenceInfo();
284     image_infos_.back().num_string_references_ = string_ref_info.size();
285   }
286 
287   {
288     TimingLogger::ScopedTiming t("CalculateNewObjectOffsets", timings);
289     ScopedObjectAccess soa(self);
290     CalculateNewObjectOffsets();
291   }
292 
293   // Obtain class count for debugging purposes
294   if (VLOG_IS_ON(compiler) && compiler_options_.IsAppImage()) {
295     ScopedObjectAccess soa(self);
296 
297     size_t app_image_class_count  = 0;
298 
299     for (ImageInfo& info : image_infos_) {
300       info.class_table_->Visit([&](ObjPtr<mirror::Class> klass)
301                                    REQUIRES_SHARED(Locks::mutator_lock_) {
302         if (!IsInBootImage(klass.Ptr())) {
303           ++app_image_class_count;
304         }
305 
306         // Indicate that we would like to continue visiting classes.
307         return true;
308       });
309     }
310 
311     VLOG(compiler) << "Dex2Oat:AppImage:classCount = " << app_image_class_count;
312   }
313 
314   if (ClassLinker::kAppImageMayContainStrings && compiler_options_.IsAppImage()) {
315     // Use the string reference information obtained earlier to calculate image
316     // offsets.  These will later be written to the image by Write/CopyMetadata.
317     TimingLogger::ScopedTiming t("AppImage:CalculateImageOffsets", timings);
318     ScopedObjectAccess soa(self);
319 
320     size_t managed_string_refs = 0;
321     size_t native_string_refs = 0;
322 
323     /*
324      * Iterate over the string reference info and calculate image offsets.
325      * The first element of the pair is either the object the reference belongs
326      * to or the beginning of the native reference array it is located in.  In
327      * the first case the second element is the offset of the field relative to
328      * the object's base address.  In the second case, it is the index of the
329      * StringDexCacheType object in the array.
330      */
331     for (const HeapReferencePointerInfo& ref_info : string_ref_info) {
332       uint32_t base_offset;
333 
334       if (HasDexCacheStringNativeRefTag(ref_info.first)) {
335         ++native_string_refs;
336         auto* obj_ptr = reinterpret_cast<mirror::Object*>(ClearDexCacheNativeRefTags(
337             ref_info.first));
338         base_offset = SetDexCacheStringNativeRefTag(GetImageOffset(obj_ptr));
339       } else if (HasDexCachePreResolvedStringNativeRefTag(ref_info.first)) {
340         ++native_string_refs;
341         auto* obj_ptr = reinterpret_cast<mirror::Object*>(ClearDexCacheNativeRefTags(
342             ref_info.first));
343         base_offset = SetDexCachePreResolvedStringNativeRefTag(GetImageOffset(obj_ptr));
344       } else {
345         ++managed_string_refs;
346         base_offset = GetImageOffset(reinterpret_cast<mirror::Object*>(ref_info.first));
347       }
348 
349       string_reference_offsets_.emplace_back(base_offset, ref_info.second);
350     }
351 
352     CHECK_EQ(image_infos_.back().num_string_references_,
353              string_reference_offsets_.size());
354 
355     VLOG(compiler) << "Dex2Oat:AppImage:stringReferences = " << string_reference_offsets_.size();
356     VLOG(compiler) << "Dex2Oat:AppImage:managedStringReferences = " << managed_string_refs;
357     VLOG(compiler) << "Dex2Oat:AppImage:nativeStringReferences = " << native_string_refs;
358   }
359 
360   // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and
361   // bin size sums being calculated.
362   TimingLogger::ScopedTiming t("AllocMemory", timings);
363   return AllocMemory();
364 }
365 
366 class ImageWriter::CollectStringReferenceVisitor {
367  public:
CollectStringReferenceVisitor(const ImageWriter & image_writer)368   explicit CollectStringReferenceVisitor(const ImageWriter& image_writer)
369       : image_writer_(image_writer),
370         curr_obj_(nullptr),
371         string_ref_info_(0),
372         dex_cache_string_ref_counter_(0) {}
373 
374   // Used to prevent repeated null checks in the code that calls the visitor.
375   ALWAYS_INLINE
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const376   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
377       REQUIRES_SHARED(Locks::mutator_lock_) {
378     if (!root->IsNull()) {
379       VisitRoot(root);
380     }
381   }
382 
383   /*
384    * Counts the number of native references to strings reachable through
385    * DexCache objects for verification later.
386    */
387   ALWAYS_INLINE
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const388   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
389       REQUIRES_SHARED(Locks::mutator_lock_)  {
390     ObjPtr<mirror::Object> referred_obj = root->AsMirrorPtr();
391 
392     if (curr_obj_->IsDexCache() &&
393         image_writer_.IsValidAppImageStringReference(referred_obj)) {
394       ++dex_cache_string_ref_counter_;
395     }
396   }
397 
398   // Collects info for managed fields that reference managed Strings.
399   ALWAYS_INLINE
operator ()(ObjPtr<mirror::Object> obj,MemberOffset member_offset,bool is_static ATTRIBUTE_UNUSED) const400   void operator() (ObjPtr<mirror::Object> obj,
401                    MemberOffset member_offset,
402                    bool is_static ATTRIBUTE_UNUSED) const
403       REQUIRES_SHARED(Locks::mutator_lock_) {
404     ObjPtr<mirror::Object> referred_obj =
405         obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(
406             member_offset);
407 
408     if (image_writer_.IsValidAppImageStringReference(referred_obj)) {
409       string_ref_info_.emplace_back(reinterpret_cast<uintptr_t>(obj.Ptr()),
410                                     member_offset.Uint32Value());
411     }
412   }
413 
414   ALWAYS_INLINE
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const415   void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
416                    ObjPtr<mirror::Reference> ref) const
417       REQUIRES_SHARED(Locks::mutator_lock_) {
418     operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
419   }
420 
AddStringRefInfo(uint32_t first,uint32_t second)421   void AddStringRefInfo(uint32_t first, uint32_t second) {
422     string_ref_info_.emplace_back(first, second);
423   }
424 
MoveRefInfo()425   std::vector<HeapReferencePointerInfo>&& MoveRefInfo() {
426     return std::move(string_ref_info_);
427   }
428 
429   // Used by the wrapper function to obtain a native reference count.
GetDexCacheStringRefCount() const430   size_t GetDexCacheStringRefCount() const {
431     return dex_cache_string_ref_counter_;
432   }
433 
SetObject(ObjPtr<mirror::Object> obj)434   void SetObject(ObjPtr<mirror::Object> obj) {
435     curr_obj_ = obj;
436     dex_cache_string_ref_counter_ = 0;
437   }
438 
439  private:
440   const ImageWriter& image_writer_;
441   ObjPtr<mirror::Object> curr_obj_;
442   mutable std::vector<HeapReferencePointerInfo> string_ref_info_;
443   mutable size_t dex_cache_string_ref_counter_;
444 };
445 
CollectStringReferenceInfo() const446 std::vector<ImageWriter::HeapReferencePointerInfo> ImageWriter::CollectStringReferenceInfo() const
447     REQUIRES_SHARED(Locks::mutator_lock_) {
448   gc::Heap* const heap = Runtime::Current()->GetHeap();
449   CollectStringReferenceVisitor visitor(*this);
450 
451   /*
452    * References to managed strings can occur either in the managed heap or in
453    * native memory regions.  Information about managed references is collected
454    * by the CollectStringReferenceVisitor and directly added to the internal
455    * info vector.
456    *
457    * Native references to managed strings can only occur through DexCache
458    * objects.  This is verified by VerifyNativeGCRootInvariants().  Due to the
459    * fact that these native references are encapsulated in std::atomic objects
460    * the VisitReferences() function can't pass the visiting object the address
461    * of the reference.  Instead, the VisitReferences() function loads the
462    * reference into a temporary variable and passes that address to the
463    * visitor.  As a consequence of this we can't uniquely identify the location
464    * of the string reference in the visitor.
465    *
466    * Due to these limitations, the visitor will only count the number of
467    * managed strings reachable through the native references of a DexCache
468    * object.  If there are any such strings, this function will then iterate
469    * over the native references, test the string for membership in the
470    * AppImage, and add the tagged DexCache pointer and string array offset to
471    * the info vector if necessary.
472    */
473   heap->VisitObjects([this, &visitor](ObjPtr<mirror::Object> object)
474       REQUIRES_SHARED(Locks::mutator_lock_) {
475     if (IsImageObject(object)) {
476       visitor.SetObject(object);
477 
478       if (object->IsDexCache()) {
479         object->VisitReferences</* kVisitNativeRoots= */ true,
480                                 kVerifyNone,
481                                 kWithoutReadBarrier>(visitor, visitor);
482 
483         if (visitor.GetDexCacheStringRefCount() > 0) {
484           size_t string_info_collected = 0;
485 
486           ObjPtr<mirror::DexCache> dex_cache = object->AsDexCache();
487           // Both of the dex cache string arrays are visited, so add up the total in the check.
488           DCHECK_LE(visitor.GetDexCacheStringRefCount(),
489                     dex_cache->NumPreResolvedStrings() + dex_cache->NumStrings());
490 
491           for (uint32_t index = 0; index < dex_cache->NumStrings(); ++index) {
492             // GetResolvedString() can't be used here due to the circular
493             // nature of the cache and the collision detection this requires.
494             ObjPtr<mirror::String> referred_string =
495                 dex_cache->GetStrings()[index].load().object.Read();
496 
497             if (IsValidAppImageStringReference(referred_string)) {
498               ++string_info_collected;
499               visitor.AddStringRefInfo(
500                   SetDexCacheStringNativeRefTag(reinterpret_cast<uintptr_t>(object.Ptr())), index);
501             }
502           }
503 
504           // Visit all of the preinitialized strings.
505           GcRoot<mirror::String>* preresolved_strings = dex_cache->GetPreResolvedStrings();
506           for (size_t index = 0; index < dex_cache->NumPreResolvedStrings(); ++index) {
507             ObjPtr<mirror::String> referred_string = preresolved_strings[index].Read();
508             if (IsValidAppImageStringReference(referred_string)) {
509               ++string_info_collected;
510               visitor.AddStringRefInfo(SetDexCachePreResolvedStringNativeRefTag(
511                 reinterpret_cast<uintptr_t>(object.Ptr())),
512                 index);
513             }
514           }
515 
516           DCHECK_EQ(string_info_collected, visitor.GetDexCacheStringRefCount());
517         }
518       } else {
519         object->VisitReferences</* kVisitNativeRoots= */ false,
520                                 kVerifyNone,
521                                 kWithoutReadBarrier>(visitor, visitor);
522       }
523     }
524   });
525 
526   return visitor.MoveRefInfo();
527 }
528 
529 class ImageWriter::NativeGCRootInvariantVisitor {
530  public:
NativeGCRootInvariantVisitor(const ImageWriter & image_writer)531   explicit NativeGCRootInvariantVisitor(const ImageWriter& image_writer) :
532     curr_obj_(nullptr), class_violation_(false), class_loader_violation_(false),
533     image_writer_(image_writer) {}
534 
535   ALWAYS_INLINE
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const536   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
537       REQUIRES_SHARED(Locks::mutator_lock_) {
538     if (!root->IsNull()) {
539       VisitRoot(root);
540     }
541   }
542 
543   ALWAYS_INLINE
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const544   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
545       REQUIRES_SHARED(Locks::mutator_lock_)  {
546     ObjPtr<mirror::Object> referred_obj = root->AsMirrorPtr();
547 
548     if (curr_obj_->IsClass()) {
549       class_violation_ = class_violation_ ||
550                          image_writer_.IsValidAppImageStringReference(referred_obj);
551 
552     } else if (curr_obj_->IsClassLoader()) {
553       class_loader_violation_ = class_loader_violation_ ||
554                                 image_writer_.IsValidAppImageStringReference(referred_obj);
555 
556     } else if (!curr_obj_->IsDexCache()) {
557       LOG(FATAL) << "Dex2Oat:AppImage | " <<
558                     "Native reference to String found in unexpected object type.";
559     }
560   }
561 
562   ALWAYS_INLINE
operator ()(ObjPtr<mirror::Object> obj ATTRIBUTE_UNUSED,MemberOffset member_offset ATTRIBUTE_UNUSED,bool is_static ATTRIBUTE_UNUSED) const563   void operator() (ObjPtr<mirror::Object> obj ATTRIBUTE_UNUSED,
564                    MemberOffset member_offset ATTRIBUTE_UNUSED,
565                    bool is_static ATTRIBUTE_UNUSED) const
566       REQUIRES_SHARED(Locks::mutator_lock_) {}
567 
568   ALWAYS_INLINE
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const569   void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
570                    ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const
571       REQUIRES_SHARED(Locks::mutator_lock_) {}
572 
573   // Returns true iff the only reachable native string references are through DexCache objects.
InvariantsHold() const574   bool InvariantsHold() const {
575     return !(class_violation_ || class_loader_violation_);
576   }
577 
578   ObjPtr<mirror::Object> curr_obj_;
579   mutable bool class_violation_;
580   mutable bool class_loader_violation_;
581 
582  private:
583   const ImageWriter& image_writer_;
584 };
585 
VerifyNativeGCRootInvariants() const586 void ImageWriter::VerifyNativeGCRootInvariants() const REQUIRES_SHARED(Locks::mutator_lock_) {
587   gc::Heap* const heap = Runtime::Current()->GetHeap();
588 
589   NativeGCRootInvariantVisitor visitor(*this);
590 
591   heap->VisitObjects([this, &visitor](ObjPtr<mirror::Object> object)
592       REQUIRES_SHARED(Locks::mutator_lock_) {
593     visitor.curr_obj_ = object;
594 
595     if (!IsInBootImage(object.Ptr())) {
596       object->VisitReferences</* kVisitNativeReferences= */ true,
597                               kVerifyNone,
598                               kWithoutReadBarrier>(visitor, visitor);
599     }
600   });
601 
602   bool error = false;
603   std::ostringstream error_str;
604 
605   /*
606    * Build the error string
607    */
608 
609   if (UNLIKELY(visitor.class_violation_)) {
610     error_str << "Class";
611     error = true;
612   }
613 
614   if (UNLIKELY(visitor.class_loader_violation_)) {
615     if (error) {
616       error_str << ", ";
617     }
618 
619     error_str << "ClassLoader";
620   }
621 
622   CHECK(visitor.InvariantsHold()) <<
623     "Native GC root invariant failure. String ref invariants don't hold for the following " <<
624     "object types: " << error_str.str();
625 }
626 
CopyMetadata()627 void ImageWriter::CopyMetadata() {
628   DCHECK(compiler_options_.IsAppImage());
629   CHECK_EQ(image_infos_.size(), 1u);
630 
631   const ImageInfo& image_info = image_infos_.back();
632   std::vector<ImageSection> image_sections = image_info.CreateImageSections().second;
633 
634   auto* sfo_section_base = reinterpret_cast<AppImageReferenceOffsetInfo*>(
635       image_info.image_.Begin() +
636       image_sections[ImageHeader::kSectionStringReferenceOffsets].Offset());
637 
638   std::copy(string_reference_offsets_.begin(),
639             string_reference_offsets_.end(),
640             sfo_section_base);
641 }
642 
IsValidAppImageStringReference(ObjPtr<mirror::Object> referred_obj) const643 bool ImageWriter::IsValidAppImageStringReference(ObjPtr<mirror::Object> referred_obj) const {
644   return referred_obj != nullptr &&
645          !IsInBootImage(referred_obj.Ptr()) &&
646          referred_obj->IsString();
647 }
648 
649 // Helper class that erases the image file if it isn't properly flushed and closed.
650 class ImageWriter::ImageFileGuard {
651  public:
652   ImageFileGuard() noexcept = default;
653   ImageFileGuard(ImageFileGuard&& other) noexcept = default;
654   ImageFileGuard& operator=(ImageFileGuard&& other) noexcept = default;
655 
~ImageFileGuard()656   ~ImageFileGuard() {
657     if (image_file_ != nullptr) {
658       // Failure, erase the image file.
659       image_file_->Erase();
660     }
661   }
662 
reset(File * image_file)663   void reset(File* image_file) {
664     image_file_.reset(image_file);
665   }
666 
operator ==(std::nullptr_t)667   bool operator==(std::nullptr_t) {
668     return image_file_ == nullptr;
669   }
670 
operator !=(std::nullptr_t)671   bool operator!=(std::nullptr_t) {
672     return image_file_ != nullptr;
673   }
674 
operator ->() const675   File* operator->() const {
676     return image_file_.get();
677   }
678 
WriteHeaderAndClose(const std::string & image_filename,const ImageHeader * image_header)679   bool WriteHeaderAndClose(const std::string& image_filename, const ImageHeader* image_header) {
680     // The header is uncompressed since it contains whether the image is compressed or not.
681     if (!image_file_->PwriteFully(image_header, sizeof(ImageHeader), 0)) {
682       PLOG(ERROR) << "Failed to write image file header " << image_filename;
683       return false;
684     }
685 
686     // FlushCloseOrErase() takes care of erasing, so the destructor does not need
687     // to do that whether the FlushCloseOrErase() succeeds or fails.
688     std::unique_ptr<File> image_file = std::move(image_file_);
689     if (image_file->FlushCloseOrErase() != 0) {
690       PLOG(ERROR) << "Failed to flush and close image file " << image_filename;
691       return false;
692     }
693 
694     return true;
695   }
696 
697  private:
698   std::unique_ptr<File> image_file_;
699 };
700 
Write(int image_fd,const std::vector<std::string> & image_filenames,const std::vector<std::string> & oat_filenames)701 bool ImageWriter::Write(int image_fd,
702                         const std::vector<std::string>& image_filenames,
703                         const std::vector<std::string>& oat_filenames) {
704   // If image_fd or oat_fd are not kInvalidFd then we may have empty strings in image_filenames or
705   // oat_filenames.
706   CHECK(!image_filenames.empty());
707   if (image_fd != kInvalidFd) {
708     CHECK_EQ(image_filenames.size(), 1u);
709   }
710   CHECK(!oat_filenames.empty());
711   CHECK_EQ(image_filenames.size(), oat_filenames.size());
712 
713   Thread* const self = Thread::Current();
714   {
715     ScopedObjectAccess soa(self);
716     for (size_t i = 0; i < oat_filenames.size(); ++i) {
717       CreateHeader(i);
718       CopyAndFixupNativeData(i);
719     }
720   }
721 
722   {
723     // TODO: heap validation can't handle these fix up passes.
724     ScopedObjectAccess soa(self);
725     Runtime::Current()->GetHeap()->DisableObjectValidation();
726     CopyAndFixupObjects();
727   }
728 
729   if (compiler_options_.IsAppImage()) {
730     CopyMetadata();
731   }
732 
733   // Primary image header shall be written last for two reasons. First, this ensures
734   // that we shall not end up with a valid primary image and invalid secondary image.
735   // Second, its checksum shall include the checksums of the secondary images (XORed).
736   // This way only the primary image checksum needs to be checked to determine whether
737   // any of the images or oat files are out of date. (Oat file checksums are included
738   // in the image checksum calculation.)
739   ImageHeader* primary_header = reinterpret_cast<ImageHeader*>(image_infos_[0].image_.Begin());
740   ImageFileGuard primary_image_file;
741   for (size_t i = 0; i < image_filenames.size(); ++i) {
742     const std::string& image_filename = image_filenames[i];
743     ImageInfo& image_info = GetImageInfo(i);
744     ImageFileGuard image_file;
745     if (image_fd != kInvalidFd) {
746       if (image_filename.empty()) {
747         image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage));
748         // Empty the file in case it already exists.
749         if (image_file != nullptr) {
750           TEMP_FAILURE_RETRY(image_file->SetLength(0));
751           TEMP_FAILURE_RETRY(image_file->Flush());
752         }
753       } else {
754         LOG(ERROR) << "image fd " << image_fd << " name " << image_filename;
755       }
756     } else {
757       image_file.reset(OS::CreateEmptyFile(image_filename.c_str()));
758     }
759 
760     if (image_file == nullptr) {
761       LOG(ERROR) << "Failed to open image file " << image_filename;
762       return false;
763     }
764 
765     if (!compiler_options_.IsAppImage() && fchmod(image_file->Fd(), 0644) != 0) {
766       PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
767       return EXIT_FAILURE;
768     }
769 
770     // Image data size excludes the bitmap and the header.
771     ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin());
772 
773     // Block sources (from the image).
774     const bool is_compressed = image_storage_mode_ != ImageHeader::kStorageModeUncompressed;
775     std::vector<std::pair<uint32_t, uint32_t>> block_sources;
776     std::vector<ImageHeader::Block> blocks;
777 
778     // Add a set of solid blocks such that no block is larger than the maximum size. A solid block
779     // is a block that must be decompressed all at once.
780     auto add_blocks = [&](uint32_t offset, uint32_t size) {
781       while (size != 0u) {
782         const uint32_t cur_size = std::min(size, compiler_options_.MaxImageBlockSize());
783         block_sources.emplace_back(offset, cur_size);
784         offset += cur_size;
785         size -= cur_size;
786       }
787     };
788 
789     add_blocks(sizeof(ImageHeader), image_header->GetImageSize() - sizeof(ImageHeader));
790 
791     // Checksum of compressed image data and header.
792     uint32_t image_checksum = adler32(0L, Z_NULL, 0);
793     image_checksum = adler32(image_checksum,
794                              reinterpret_cast<const uint8_t*>(image_header),
795                              sizeof(ImageHeader));
796     // Copy and compress blocks.
797     size_t out_offset = sizeof(ImageHeader);
798     for (const std::pair<uint32_t, uint32_t> block : block_sources) {
799       ArrayRef<const uint8_t> raw_image_data(image_info.image_.Begin() + block.first,
800                                              block.second);
801       std::vector<uint8_t> compressed_data;
802       ArrayRef<const uint8_t> image_data =
803           MaybeCompressData(raw_image_data, image_storage_mode_, &compressed_data);
804 
805       if (!is_compressed) {
806         // For uncompressed, preserve alignment since the image will be directly mapped.
807         out_offset = block.first;
808       }
809 
810       // Fill in the compressed location of the block.
811       blocks.emplace_back(ImageHeader::Block(
812           image_storage_mode_,
813           /*data_offset=*/ out_offset,
814           /*data_size=*/ image_data.size(),
815           /*image_offset=*/ block.first,
816           /*image_size=*/ block.second));
817 
818       // Write out the image + fields + methods.
819       if (!image_file->PwriteFully(image_data.data(), image_data.size(), out_offset)) {
820         PLOG(ERROR) << "Failed to write image file data " << image_filename;
821         image_file->Erase();
822         return false;
823       }
824       out_offset += image_data.size();
825       image_checksum = adler32(image_checksum, image_data.data(), image_data.size());
826     }
827 
828     // Write the block metadata directly after the image sections.
829     // Note: This is not part of the mapped image and is not preserved after decompressing, it's
830     // only used for image loading. For this reason, only write it out for compressed images.
831     if (is_compressed) {
832       // Align up since the compressed data is not necessarily aligned.
833       out_offset = RoundUp(out_offset, alignof(ImageHeader::Block));
834       CHECK(!blocks.empty());
835       const size_t blocks_bytes = blocks.size() * sizeof(blocks[0]);
836       if (!image_file->PwriteFully(&blocks[0], blocks_bytes, out_offset)) {
837         PLOG(ERROR) << "Failed to write image blocks " << image_filename;
838         image_file->Erase();
839         return false;
840       }
841       image_header->blocks_offset_ = out_offset;
842       image_header->blocks_count_ = blocks.size();
843       out_offset += blocks_bytes;
844     }
845 
846     // Data size includes everything except the bitmap.
847     image_header->data_size_ = out_offset - sizeof(ImageHeader);
848 
849     // Update and write the bitmap section. Note that the bitmap section is relative to the
850     // possibly compressed image.
851     ImageSection& bitmap_section = image_header->GetImageSection(ImageHeader::kSectionImageBitmap);
852     // Align up since data size may be unaligned if the image is compressed.
853     out_offset = RoundUp(out_offset, kPageSize);
854     bitmap_section = ImageSection(out_offset, bitmap_section.Size());
855 
856     if (!image_file->PwriteFully(image_info.image_bitmap_->Begin(),
857                                  bitmap_section.Size(),
858                                  bitmap_section.Offset())) {
859       PLOG(ERROR) << "Failed to write image file bitmap " << image_filename;
860       return false;
861     }
862 
863     int err = image_file->Flush();
864     if (err < 0) {
865       PLOG(ERROR) << "Failed to flush image file " << image_filename << " with result " << err;
866       return false;
867     }
868 
869     // Calculate the image checksum of the remaining data.
870     image_checksum = adler32(image_checksum,
871                              reinterpret_cast<const uint8_t*>(image_info.image_bitmap_->Begin()),
872                              bitmap_section.Size());
873     image_header->SetImageChecksum(image_checksum);
874 
875     if (VLOG_IS_ON(compiler)) {
876       const size_t separately_written_section_size = bitmap_section.Size();
877       const size_t total_uncompressed_size = image_info.image_size_ +
878           separately_written_section_size;
879       const size_t total_compressed_size = out_offset + separately_written_section_size;
880 
881       VLOG(compiler) << "Dex2Oat:uncompressedImageSize = " << total_uncompressed_size;
882       if (total_uncompressed_size != total_compressed_size) {
883         VLOG(compiler) << "Dex2Oat:compressedImageSize = " << total_compressed_size;
884       }
885     }
886 
887     CHECK_EQ(bitmap_section.End(), static_cast<size_t>(image_file->GetLength()))
888         << "Bitmap should be at the end of the file";
889 
890     // Write header last in case the compiler gets killed in the middle of image writing.
891     // We do not want to have a corrupted image with a valid header.
892     // Delay the writing of the primary image header until after writing secondary images.
893     if (i == 0u) {
894       primary_image_file = std::move(image_file);
895     } else {
896       if (!image_file.WriteHeaderAndClose(image_filename, image_header)) {
897         return false;
898       }
899       // Update the primary image checksum with the secondary image checksum.
900       primary_header->SetImageChecksum(primary_header->GetImageChecksum() ^ image_checksum);
901     }
902   }
903   DCHECK(primary_image_file != nullptr);
904   if (!primary_image_file.WriteHeaderAndClose(image_filenames[0], primary_header)) {
905     return false;
906   }
907 
908   return true;
909 }
910 
SetImageOffset(mirror::Object * object,size_t offset)911 void ImageWriter::SetImageOffset(mirror::Object* object, size_t offset) {
912   DCHECK(object != nullptr);
913   DCHECK_NE(offset, 0U);
914 
915   // The object is already deflated from when we set the bin slot. Just overwrite the lock word.
916   object->SetLockWord(LockWord::FromForwardingAddress(offset), false);
917   DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
918   DCHECK(IsImageOffsetAssigned(object));
919 }
920 
UpdateImageOffset(mirror::Object * obj,uintptr_t offset)921 void ImageWriter::UpdateImageOffset(mirror::Object* obj, uintptr_t offset) {
922   DCHECK(IsImageOffsetAssigned(obj)) << obj << " " << offset;
923   obj->SetLockWord(LockWord::FromForwardingAddress(offset), false);
924   DCHECK_EQ(obj->GetLockWord(false).ReadBarrierState(), 0u);
925 }
926 
AssignImageOffset(mirror::Object * object,ImageWriter::BinSlot bin_slot)927 void ImageWriter::AssignImageOffset(mirror::Object* object, ImageWriter::BinSlot bin_slot) {
928   DCHECK(object != nullptr);
929   DCHECK_NE(image_objects_offset_begin_, 0u);
930 
931   size_t oat_index = GetOatIndex(object);
932   ImageInfo& image_info = GetImageInfo(oat_index);
933   size_t bin_slot_offset = image_info.GetBinSlotOffset(bin_slot.GetBin());
934   size_t new_offset = bin_slot_offset + bin_slot.GetIndex();
935   DCHECK_ALIGNED(new_offset, kObjectAlignment);
936 
937   SetImageOffset(object, new_offset);
938   DCHECK_LT(new_offset, image_info.image_end_);
939 }
940 
IsImageOffsetAssigned(mirror::Object * object) const941 bool ImageWriter::IsImageOffsetAssigned(mirror::Object* object) const {
942   // Will also return true if the bin slot was assigned since we are reusing the lock word.
943   DCHECK(object != nullptr);
944   return object->GetLockWord(false).GetState() == LockWord::kForwardingAddress;
945 }
946 
GetImageOffset(mirror::Object * object) const947 size_t ImageWriter::GetImageOffset(mirror::Object* object) const {
948   DCHECK(object != nullptr);
949   DCHECK(IsImageOffsetAssigned(object));
950   LockWord lock_word = object->GetLockWord(false);
951   size_t offset = lock_word.ForwardingAddress();
952   size_t oat_index = GetOatIndex(object);
953   const ImageInfo& image_info = GetImageInfo(oat_index);
954   DCHECK_LT(offset, image_info.image_end_);
955   return offset;
956 }
957 
SetImageBinSlot(mirror::Object * object,BinSlot bin_slot)958 void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) {
959   DCHECK(object != nullptr);
960   DCHECK(!IsImageOffsetAssigned(object));
961   DCHECK(!IsImageBinSlotAssigned(object));
962 
963   // Before we stomp over the lock word, save the hash code for later.
964   LockWord lw(object->GetLockWord(false));
965   switch (lw.GetState()) {
966     case LockWord::kFatLocked:
967       FALLTHROUGH_INTENDED;
968     case LockWord::kThinLocked: {
969       std::ostringstream oss;
970       bool thin = (lw.GetState() == LockWord::kThinLocked);
971       oss << (thin ? "Thin" : "Fat")
972           << " locked object " << object << "(" << object->PrettyTypeOf()
973           << ") found during object copy";
974       if (thin) {
975         oss << ". Lock owner:" << lw.ThinLockOwner();
976       }
977       LOG(FATAL) << oss.str();
978       UNREACHABLE();
979     }
980     case LockWord::kUnlocked:
981       // No hash, don't need to save it.
982       break;
983     case LockWord::kHashCode:
984       DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end());
985       saved_hashcode_map_.emplace(object, lw.GetHashCode());
986       break;
987     default:
988       LOG(FATAL) << "Unreachable.";
989       UNREACHABLE();
990   }
991   object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()), false);
992   DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
993   DCHECK(IsImageBinSlotAssigned(object));
994 }
995 
PrepareDexCacheArraySlots()996 void ImageWriter::PrepareDexCacheArraySlots() {
997   // Prepare dex cache array starts based on the ordering specified in the CompilerOptions.
998   // Set the slot size early to avoid DCHECK() failures in IsImageBinSlotAssigned()
999   // when AssignImageBinSlot() assigns their indexes out or order.
1000   for (const DexFile* dex_file : compiler_options_.GetDexFilesForOatFile()) {
1001     auto it = dex_file_oat_index_map_.find(dex_file);
1002     DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
1003     ImageInfo& image_info = GetImageInfo(it->second);
1004     image_info.dex_cache_array_starts_.Put(
1005         dex_file, image_info.GetBinSlotSize(Bin::kDexCacheArray));
1006     DexCacheArraysLayout layout(target_ptr_size_, dex_file);
1007     image_info.IncrementBinSlotSize(Bin::kDexCacheArray, layout.Size());
1008   }
1009 
1010   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1011   Thread* const self = Thread::Current();
1012   ReaderMutexLock mu(self, *Locks::dex_lock_);
1013   for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1014     ObjPtr<mirror::DexCache> dex_cache =
1015         ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
1016     if (dex_cache == nullptr || !IsImageObject(dex_cache)) {
1017       continue;
1018     }
1019     const DexFile* dex_file = dex_cache->GetDexFile();
1020     CHECK(dex_file_oat_index_map_.find(dex_file) != dex_file_oat_index_map_.end())
1021         << "Dex cache should have been pruned " << dex_file->GetLocation()
1022         << "; possibly in class path";
1023     DexCacheArraysLayout layout(target_ptr_size_, dex_file);
1024     DCHECK(layout.Valid());
1025     size_t oat_index = GetOatIndexForDexCache(dex_cache);
1026     ImageInfo& image_info = GetImageInfo(oat_index);
1027     uint32_t start = image_info.dex_cache_array_starts_.Get(dex_file);
1028     DCHECK_EQ(dex_file->NumTypeIds() != 0u, dex_cache->GetResolvedTypes() != nullptr);
1029     AddDexCacheArrayRelocation(dex_cache->GetResolvedTypes(),
1030                                start + layout.TypesOffset(),
1031                                oat_index);
1032     DCHECK_EQ(dex_file->NumMethodIds() != 0u, dex_cache->GetResolvedMethods() != nullptr);
1033     AddDexCacheArrayRelocation(dex_cache->GetResolvedMethods(),
1034                                start + layout.MethodsOffset(),
1035                                oat_index);
1036     DCHECK_EQ(dex_file->NumFieldIds() != 0u, dex_cache->GetResolvedFields() != nullptr);
1037     AddDexCacheArrayRelocation(dex_cache->GetResolvedFields(),
1038                                start + layout.FieldsOffset(),
1039                                oat_index);
1040     DCHECK_EQ(dex_file->NumStringIds() != 0u, dex_cache->GetStrings() != nullptr);
1041     AddDexCacheArrayRelocation(dex_cache->GetStrings(), start + layout.StringsOffset(), oat_index);
1042 
1043     AddDexCacheArrayRelocation(dex_cache->GetResolvedMethodTypes(),
1044                                start + layout.MethodTypesOffset(),
1045                                oat_index);
1046     AddDexCacheArrayRelocation(dex_cache->GetResolvedCallSites(),
1047                                 start + layout.CallSitesOffset(),
1048                                 oat_index);
1049 
1050     // Preresolved strings aren't part of the special layout.
1051     GcRoot<mirror::String>* preresolved_strings = dex_cache->GetPreResolvedStrings();
1052     if (preresolved_strings != nullptr) {
1053       DCHECK(!IsInBootImage(preresolved_strings));
1054       // Add the array to the metadata section.
1055       const size_t count = dex_cache->NumPreResolvedStrings();
1056       auto bin = BinTypeForNativeRelocationType(NativeObjectRelocationType::kGcRootPointer);
1057       for (size_t i = 0; i < count; ++i) {
1058         native_object_relocations_.emplace(&preresolved_strings[i],
1059             NativeObjectRelocation { oat_index,
1060                                      image_info.GetBinSlotSize(bin),
1061                                      NativeObjectRelocationType::kGcRootPointer });
1062         image_info.IncrementBinSlotSize(bin, sizeof(GcRoot<mirror::Object>));
1063       }
1064     }
1065   }
1066 }
1067 
AddDexCacheArrayRelocation(void * array,size_t offset,size_t oat_index)1068 void ImageWriter::AddDexCacheArrayRelocation(void* array,
1069                                              size_t offset,
1070                                              size_t oat_index) {
1071   if (array != nullptr) {
1072     DCHECK(!IsInBootImage(array));
1073     native_object_relocations_.emplace(array,
1074         NativeObjectRelocation { oat_index, offset, NativeObjectRelocationType::kDexCacheArray });
1075   }
1076 }
1077 
AddMethodPointerArray(ObjPtr<mirror::PointerArray> arr)1078 void ImageWriter::AddMethodPointerArray(ObjPtr<mirror::PointerArray> arr) {
1079   DCHECK(arr != nullptr);
1080   if (kIsDebugBuild) {
1081     for (size_t i = 0, len = arr->GetLength(); i < len; i++) {
1082       ArtMethod* method = arr->GetElementPtrSize<ArtMethod*>(i, target_ptr_size_);
1083       if (method != nullptr && !method->IsRuntimeMethod()) {
1084         ObjPtr<mirror::Class> klass = method->GetDeclaringClass();
1085         CHECK(klass == nullptr || KeepClass(klass))
1086             << Class::PrettyClass(klass) << " should be a kept class";
1087       }
1088     }
1089   }
1090   // kBinArtMethodClean picked arbitrarily, just required to differentiate between ArtFields and
1091   // ArtMethods.
1092   pointer_arrays_.emplace(arr.Ptr(), Bin::kArtMethodClean);
1093 }
1094 
AssignImageBinSlot(mirror::Object * object,size_t oat_index)1095 void ImageWriter::AssignImageBinSlot(mirror::Object* object, size_t oat_index) {
1096   DCHECK(object != nullptr);
1097   size_t object_size = object->SizeOf();
1098 
1099   // The magic happens here. We segregate objects into different bins based
1100   // on how likely they are to get dirty at runtime.
1101   //
1102   // Likely-to-dirty objects get packed together into the same bin so that
1103   // at runtime their page dirtiness ratio (how many dirty objects a page has) is
1104   // maximized.
1105   //
1106   // This means more pages will stay either clean or shared dirty (with zygote) and
1107   // the app will use less of its own (private) memory.
1108   Bin bin = Bin::kRegular;
1109 
1110   if (kBinObjects) {
1111     //
1112     // Changing the bin of an object is purely a memory-use tuning.
1113     // It has no change on runtime correctness.
1114     //
1115     // Memory analysis has determined that the following types of objects get dirtied
1116     // the most:
1117     //
1118     // * Dex cache arrays are stored in a special bin. The arrays for each dex cache have
1119     //   a fixed layout which helps improve generated code (using PC-relative addressing),
1120     //   so we pre-calculate their offsets separately in PrepareDexCacheArraySlots().
1121     //   Since these arrays are huge, most pages do not overlap other objects and it's not
1122     //   really important where they are for the clean/dirty separation. Due to their
1123     //   special PC-relative addressing, we arbitrarily keep them at the end.
1124     // * Class'es which are verified [their clinit runs only at runtime]
1125     //   - classes in general [because their static fields get overwritten]
1126     //   - initialized classes with all-final statics are unlikely to be ever dirty,
1127     //     so bin them separately
1128     // * Art Methods that are:
1129     //   - native [their native entry point is not looked up until runtime]
1130     //   - have declaring classes that aren't initialized
1131     //            [their interpreter/quick entry points are trampolines until the class
1132     //             becomes initialized]
1133     //
1134     // We also assume the following objects get dirtied either never or extremely rarely:
1135     //  * Strings (they are immutable)
1136     //  * Art methods that aren't native and have initialized declared classes
1137     //
1138     // We assume that "regular" bin objects are highly unlikely to become dirtied,
1139     // so packing them together will not result in a noticeably tighter dirty-to-clean ratio.
1140     //
1141     if (object->IsClass()) {
1142       bin = Bin::kClassVerified;
1143       ObjPtr<mirror::Class> klass = object->AsClass();
1144 
1145       // Add non-embedded vtable to the pointer array table if there is one.
1146       ObjPtr<mirror::PointerArray> vtable = klass->GetVTable();
1147       if (vtable != nullptr) {
1148         AddMethodPointerArray(vtable);
1149       }
1150       ObjPtr<mirror::IfTable> iftable = klass->GetIfTable();
1151       if (iftable != nullptr) {
1152         for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
1153           if (iftable->GetMethodArrayCount(i) > 0) {
1154             AddMethodPointerArray(iftable->GetMethodArray(i));
1155           }
1156         }
1157       }
1158 
1159       // Move known dirty objects into their own sections. This includes:
1160       //   - classes with dirty static fields.
1161       if (dirty_image_objects_ != nullptr &&
1162           dirty_image_objects_->find(klass->PrettyDescriptor()) != dirty_image_objects_->end()) {
1163         bin = Bin::kKnownDirty;
1164       } else if (klass->GetStatus() == ClassStatus::kInitialized) {
1165         bin = Bin::kClassInitialized;
1166 
1167         // If the class's static fields are all final, put it into a separate bin
1168         // since it's very likely it will stay clean.
1169         uint32_t num_static_fields = klass->NumStaticFields();
1170         if (num_static_fields == 0) {
1171           bin = Bin::kClassInitializedFinalStatics;
1172         } else {
1173           // Maybe all the statics are final?
1174           bool all_final = true;
1175           for (uint32_t i = 0; i < num_static_fields; ++i) {
1176             ArtField* field = klass->GetStaticField(i);
1177             if (!field->IsFinal()) {
1178               all_final = false;
1179               break;
1180             }
1181           }
1182 
1183           if (all_final) {
1184             bin = Bin::kClassInitializedFinalStatics;
1185           }
1186         }
1187       }
1188     } else if (object->GetClass<kVerifyNone>()->IsStringClass()) {
1189       bin = Bin::kString;  // Strings are almost always immutable (except for object header).
1190     } else if (object->GetClass<kVerifyNone>() == GetClassRoot<mirror::Object>()) {
1191       // Instance of java lang object, probably a lock object. This means it will be dirty when we
1192       // synchronize on it.
1193       bin = Bin::kMiscDirty;
1194     } else if (object->IsDexCache()) {
1195       // Dex file field becomes dirty when the image is loaded.
1196       bin = Bin::kMiscDirty;
1197     }
1198     // else bin = kBinRegular
1199   }
1200 
1201   // Assign the oat index too.
1202   DCHECK(oat_index_map_.find(object) == oat_index_map_.end());
1203   oat_index_map_.emplace(object, oat_index);
1204 
1205   ImageInfo& image_info = GetImageInfo(oat_index);
1206 
1207   size_t offset_delta = RoundUp(object_size, kObjectAlignment);  // 64-bit alignment
1208   // How many bytes the current bin is at (aligned).
1209   size_t current_offset = image_info.GetBinSlotSize(bin);
1210   // Move the current bin size up to accommodate the object we just assigned a bin slot.
1211   image_info.IncrementBinSlotSize(bin, offset_delta);
1212 
1213   BinSlot new_bin_slot(bin, current_offset);
1214   SetImageBinSlot(object, new_bin_slot);
1215 
1216   image_info.IncrementBinSlotCount(bin, 1u);
1217 
1218   // Grow the image closer to the end by the object we just assigned.
1219   image_info.image_end_ += offset_delta;
1220 }
1221 
WillMethodBeDirty(ArtMethod * m) const1222 bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const {
1223   if (m->IsNative()) {
1224     return true;
1225   }
1226   ObjPtr<mirror::Class> declaring_class = m->GetDeclaringClass();
1227   // Initialized is highly unlikely to dirty since there's no entry points to mutate.
1228   return declaring_class == nullptr || declaring_class->GetStatus() != ClassStatus::kInitialized;
1229 }
1230 
IsImageBinSlotAssigned(mirror::Object * object) const1231 bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const {
1232   DCHECK(object != nullptr);
1233 
1234   // We always stash the bin slot into a lockword, in the 'forwarding address' state.
1235   // If it's in some other state, then we haven't yet assigned an image bin slot.
1236   if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) {
1237     return false;
1238   } else if (kIsDebugBuild) {
1239     LockWord lock_word = object->GetLockWord(false);
1240     size_t offset = lock_word.ForwardingAddress();
1241     BinSlot bin_slot(offset);
1242     size_t oat_index = GetOatIndex(object);
1243     const ImageInfo& image_info = GetImageInfo(oat_index);
1244     DCHECK_LT(bin_slot.GetIndex(), image_info.GetBinSlotSize(bin_slot.GetBin()))
1245         << "bin slot offset should not exceed the size of that bin";
1246   }
1247   return true;
1248 }
1249 
GetImageBinSlot(mirror::Object * object) const1250 ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object) const {
1251   DCHECK(object != nullptr);
1252   DCHECK(IsImageBinSlotAssigned(object));
1253 
1254   LockWord lock_word = object->GetLockWord(false);
1255   size_t offset = lock_word.ForwardingAddress();  // TODO: ForwardingAddress should be uint32_t
1256   DCHECK_LE(offset, std::numeric_limits<uint32_t>::max());
1257 
1258   BinSlot bin_slot(static_cast<uint32_t>(offset));
1259   size_t oat_index = GetOatIndex(object);
1260   const ImageInfo& image_info = GetImageInfo(oat_index);
1261   DCHECK_LT(bin_slot.GetIndex(), image_info.GetBinSlotSize(bin_slot.GetBin()));
1262 
1263   return bin_slot;
1264 }
1265 
AllocMemory()1266 bool ImageWriter::AllocMemory() {
1267   for (ImageInfo& image_info : image_infos_) {
1268     const size_t length = RoundUp(image_info.CreateImageSections().first, kPageSize);
1269 
1270     std::string error_msg;
1271     image_info.image_ = MemMap::MapAnonymous("image writer image",
1272                                              length,
1273                                              PROT_READ | PROT_WRITE,
1274                                              /*low_4gb=*/ false,
1275                                              &error_msg);
1276     if (UNLIKELY(!image_info.image_.IsValid())) {
1277       LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg;
1278       return false;
1279     }
1280 
1281     // Create the image bitmap, only needs to cover mirror object section which is up to image_end_.
1282     CHECK_LE(image_info.image_end_, length);
1283     image_info.image_bitmap_.reset(gc::accounting::ContinuousSpaceBitmap::Create(
1284         "image bitmap", image_info.image_.Begin(), RoundUp(image_info.image_end_, kPageSize)));
1285     if (image_info.image_bitmap_.get() == nullptr) {
1286       LOG(ERROR) << "Failed to allocate memory for image bitmap";
1287       return false;
1288     }
1289   }
1290   return true;
1291 }
1292 
IsBootClassLoaderClass(ObjPtr<mirror::Class> klass)1293 static bool IsBootClassLoaderClass(ObjPtr<mirror::Class> klass)
1294     REQUIRES_SHARED(Locks::mutator_lock_) {
1295   return klass->GetClassLoader() == nullptr;
1296 }
1297 
IsBootClassLoaderNonImageClass(mirror::Class * klass)1298 bool ImageWriter::IsBootClassLoaderNonImageClass(mirror::Class* klass) {
1299   return IsBootClassLoaderClass(klass) && !IsInBootImage(klass);
1300 }
1301 
1302 // This visitor follows the references of an instance, recursively then prune this class
1303 // if a type of any field is pruned.
1304 class ImageWriter::PruneObjectReferenceVisitor {
1305  public:
PruneObjectReferenceVisitor(ImageWriter * image_writer,bool * early_exit,std::unordered_set<mirror::Object * > * visited,bool * result)1306   PruneObjectReferenceVisitor(ImageWriter* image_writer,
1307                         bool* early_exit,
1308                         std::unordered_set<mirror::Object*>* visited,
1309                         bool* result)
1310       : image_writer_(image_writer), early_exit_(early_exit), visited_(visited), result_(result) {}
1311 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const1312   ALWAYS_INLINE void VisitRootIfNonNull(
1313       mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const
1314       REQUIRES_SHARED(Locks::mutator_lock_) { }
1315 
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const1316   ALWAYS_INLINE void VisitRoot(
1317       mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const
1318       REQUIRES_SHARED(Locks::mutator_lock_) { }
1319 
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1320   ALWAYS_INLINE void operator() (ObjPtr<mirror::Object> obj,
1321                                  MemberOffset offset,
1322                                  bool is_static ATTRIBUTE_UNUSED) const
1323       REQUIRES_SHARED(Locks::mutator_lock_) {
1324     mirror::Object* ref =
1325         obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
1326     if (ref == nullptr || visited_->find(ref) != visited_->end()) {
1327       return;
1328     }
1329 
1330     ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
1331         Runtime::Current()->GetClassLinker()->GetClassRoots();
1332     ObjPtr<mirror::Class> klass = ref->IsClass() ? ref->AsClass() : ref->GetClass();
1333     if (klass == GetClassRoot<mirror::Method>(class_roots) ||
1334         klass == GetClassRoot<mirror::Constructor>(class_roots)) {
1335       // Prune all classes using reflection because the content they held will not be fixup.
1336       *result_ = true;
1337     }
1338 
1339     if (ref->IsClass()) {
1340       *result_ = *result_ ||
1341           image_writer_->PruneAppImageClassInternal(ref->AsClass(), early_exit_, visited_);
1342     } else {
1343       // Record the object visited in case of circular reference.
1344       visited_->emplace(ref);
1345       *result_ = *result_ ||
1346           image_writer_->PruneAppImageClassInternal(klass, early_exit_, visited_);
1347       ref->VisitReferences(*this, *this);
1348       // Clean up before exit for next call of this function.
1349       visited_->erase(ref);
1350     }
1351   }
1352 
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const1353   ALWAYS_INLINE void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
1354                                  ObjPtr<mirror::Reference> ref) const
1355       REQUIRES_SHARED(Locks::mutator_lock_) {
1356     operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
1357   }
1358 
GetResult() const1359   ALWAYS_INLINE bool GetResult() const {
1360     return result_;
1361   }
1362 
1363  private:
1364   ImageWriter* image_writer_;
1365   bool* early_exit_;
1366   std::unordered_set<mirror::Object*>* visited_;
1367   bool* const result_;
1368 };
1369 
1370 
PruneAppImageClass(ObjPtr<mirror::Class> klass)1371 bool ImageWriter::PruneAppImageClass(ObjPtr<mirror::Class> klass) {
1372   bool early_exit = false;
1373   std::unordered_set<mirror::Object*> visited;
1374   return PruneAppImageClassInternal(klass, &early_exit, &visited);
1375 }
1376 
PruneAppImageClassInternal(ObjPtr<mirror::Class> klass,bool * early_exit,std::unordered_set<mirror::Object * > * visited)1377 bool ImageWriter::PruneAppImageClassInternal(
1378     ObjPtr<mirror::Class> klass,
1379     bool* early_exit,
1380     std::unordered_set<mirror::Object*>* visited) {
1381   DCHECK(early_exit != nullptr);
1382   DCHECK(visited != nullptr);
1383   DCHECK(compiler_options_.IsAppImage());
1384   if (klass == nullptr || IsInBootImage(klass.Ptr())) {
1385     return false;
1386   }
1387   auto found = prune_class_memo_.find(klass.Ptr());
1388   if (found != prune_class_memo_.end()) {
1389     // Already computed, return the found value.
1390     return found->second;
1391   }
1392   // Circular dependencies, return false but do not store the result in the memoization table.
1393   if (visited->find(klass.Ptr()) != visited->end()) {
1394     *early_exit = true;
1395     return false;
1396   }
1397   visited->emplace(klass.Ptr());
1398   bool result = IsBootClassLoaderClass(klass);
1399   std::string temp;
1400   // Prune if not an image class, this handles any broken sets of image classes such as having a
1401   // class in the set but not it's superclass.
1402   result = result || !compiler_options_.IsImageClass(klass->GetDescriptor(&temp));
1403   bool my_early_exit = false;  // Only for ourselves, ignore caller.
1404   // Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the
1405   // app image.
1406   if (klass->IsErroneous()) {
1407     result = true;
1408   } else {
1409     ObjPtr<mirror::ClassExt> ext(klass->GetExtData());
1410     CHECK(ext.IsNull() || ext->GetVerifyError() == nullptr) << klass->PrettyClass();
1411   }
1412   if (!result) {
1413     // Check interfaces since these wont be visited through VisitReferences.)
1414     ObjPtr<mirror::IfTable> if_table = klass->GetIfTable();
1415     for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) {
1416       result = result || PruneAppImageClassInternal(if_table->GetInterface(i),
1417                                                     &my_early_exit,
1418                                                     visited);
1419     }
1420   }
1421   if (klass->IsObjectArrayClass()) {
1422     result = result || PruneAppImageClassInternal(klass->GetComponentType(),
1423                                                   &my_early_exit,
1424                                                   visited);
1425   }
1426   // Check static fields and their classes.
1427   if (klass->IsResolved() && klass->NumReferenceStaticFields() != 0) {
1428     size_t num_static_fields = klass->NumReferenceStaticFields();
1429     // Presumably GC can happen when we are cross compiling, it should not cause performance
1430     // problems to do pointer size logic.
1431     MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(
1432         Runtime::Current()->GetClassLinker()->GetImagePointerSize());
1433     for (size_t i = 0u; i < num_static_fields; ++i) {
1434       mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset);
1435       if (ref != nullptr) {
1436         if (ref->IsClass()) {
1437           result = result || PruneAppImageClassInternal(ref->AsClass(),
1438                                                         &my_early_exit,
1439                                                         visited);
1440         } else {
1441           mirror::Class* type = ref->GetClass();
1442           result = result || PruneAppImageClassInternal(type,
1443                                                         &my_early_exit,
1444                                                         visited);
1445           if (!result) {
1446             // For non-class case, also go through all the types mentioned by it's fields'
1447             // references recursively to decide whether to keep this class.
1448             bool tmp = false;
1449             PruneObjectReferenceVisitor visitor(this, &my_early_exit, visited, &tmp);
1450             ref->VisitReferences(visitor, visitor);
1451             result = result || tmp;
1452           }
1453         }
1454       }
1455       field_offset = MemberOffset(field_offset.Uint32Value() +
1456                                   sizeof(mirror::HeapReference<mirror::Object>));
1457     }
1458   }
1459   result = result || PruneAppImageClassInternal(klass->GetSuperClass(),
1460                                                 &my_early_exit,
1461                                                 visited);
1462   // Remove the class if the dex file is not in the set of dex files. This happens for classes that
1463   // are from uses-library if there is no profile. b/30688277
1464   ObjPtr<mirror::DexCache> dex_cache = klass->GetDexCache();
1465   if (dex_cache != nullptr) {
1466     result = result ||
1467         dex_file_oat_index_map_.find(dex_cache->GetDexFile()) == dex_file_oat_index_map_.end();
1468   }
1469   // Erase the element we stored earlier since we are exiting the function.
1470   auto it = visited->find(klass.Ptr());
1471   DCHECK(it != visited->end());
1472   visited->erase(it);
1473   // Only store result if it is true or none of the calls early exited due to circular
1474   // dependencies. If visited is empty then we are the root caller, in this case the cycle was in
1475   // a child call and we can remember the result.
1476   if (result == true || !my_early_exit || visited->empty()) {
1477     prune_class_memo_[klass.Ptr()] = result;
1478   }
1479   *early_exit |= my_early_exit;
1480   return result;
1481 }
1482 
KeepClass(ObjPtr<mirror::Class> klass)1483 bool ImageWriter::KeepClass(ObjPtr<mirror::Class> klass) {
1484   if (klass == nullptr) {
1485     return false;
1486   }
1487   if (!compiler_options_.IsBootImage() &&
1488       Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) {
1489     // Already in boot image, return true.
1490     return true;
1491   }
1492   std::string temp;
1493   if (!compiler_options_.IsImageClass(klass->GetDescriptor(&temp))) {
1494     return false;
1495   }
1496   if (compiler_options_.IsAppImage()) {
1497     // For app images, we need to prune boot loader classes that are not in the boot image since
1498     // these may have already been loaded when the app image is loaded.
1499     // Keep classes in the boot image space since we don't want to re-resolve these.
1500     return !PruneAppImageClass(klass);
1501   }
1502   return true;
1503 }
1504 
1505 class ImageWriter::PruneClassesVisitor : public ClassVisitor {
1506  public:
PruneClassesVisitor(ImageWriter * image_writer,ObjPtr<mirror::ClassLoader> class_loader)1507   PruneClassesVisitor(ImageWriter* image_writer, ObjPtr<mirror::ClassLoader> class_loader)
1508       : image_writer_(image_writer),
1509         class_loader_(class_loader),
1510         classes_to_prune_(),
1511         defined_class_count_(0u) { }
1512 
operator ()(ObjPtr<mirror::Class> klass)1513   bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) {
1514     if (!image_writer_->KeepClass(klass.Ptr())) {
1515       classes_to_prune_.insert(klass.Ptr());
1516       if (klass->GetClassLoader() == class_loader_) {
1517         ++defined_class_count_;
1518       }
1519     }
1520     return true;
1521   }
1522 
Prune()1523   size_t Prune() REQUIRES_SHARED(Locks::mutator_lock_) {
1524     ClassTable* class_table =
1525         Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader_);
1526     for (mirror::Class* klass : classes_to_prune_) {
1527       std::string storage;
1528       const char* descriptor = klass->GetDescriptor(&storage);
1529       bool result = class_table->Remove(descriptor);
1530       DCHECK(result);
1531       DCHECK(!class_table->Remove(descriptor)) << descriptor;
1532     }
1533     return defined_class_count_;
1534   }
1535 
1536  private:
1537   ImageWriter* const image_writer_;
1538   const ObjPtr<mirror::ClassLoader> class_loader_;
1539   std::unordered_set<mirror::Class*> classes_to_prune_;
1540   size_t defined_class_count_;
1541 };
1542 
1543 class ImageWriter::PruneClassLoaderClassesVisitor : public ClassLoaderVisitor {
1544  public:
PruneClassLoaderClassesVisitor(ImageWriter * image_writer)1545   explicit PruneClassLoaderClassesVisitor(ImageWriter* image_writer)
1546       : image_writer_(image_writer), removed_class_count_(0) {}
1547 
Visit(ObjPtr<mirror::ClassLoader> class_loader)1548   void Visit(ObjPtr<mirror::ClassLoader> class_loader) override
1549       REQUIRES_SHARED(Locks::mutator_lock_) {
1550     PruneClassesVisitor classes_visitor(image_writer_, class_loader);
1551     ClassTable* class_table =
1552         Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader);
1553     class_table->Visit(classes_visitor);
1554     removed_class_count_ += classes_visitor.Prune();
1555   }
1556 
GetRemovedClassCount() const1557   size_t GetRemovedClassCount() const {
1558     return removed_class_count_;
1559   }
1560 
1561  private:
1562   ImageWriter* const image_writer_;
1563   size_t removed_class_count_;
1564 };
1565 
VisitClassLoaders(ClassLoaderVisitor * visitor)1566 void ImageWriter::VisitClassLoaders(ClassLoaderVisitor* visitor) {
1567   WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
1568   visitor->Visit(nullptr);  // Visit boot class loader.
1569   Runtime::Current()->GetClassLinker()->VisitClassLoaders(visitor);
1570 }
1571 
PruneDexCache(ObjPtr<mirror::DexCache> dex_cache,ObjPtr<mirror::ClassLoader> class_loader)1572 void ImageWriter::PruneDexCache(ObjPtr<mirror::DexCache> dex_cache,
1573                                 ObjPtr<mirror::ClassLoader> class_loader) {
1574   Runtime* runtime = Runtime::Current();
1575   ClassLinker* class_linker = runtime->GetClassLinker();
1576   const DexFile& dex_file = *dex_cache->GetDexFile();
1577   // Prune methods.
1578   dex::TypeIndex last_class_idx;  // Initialized to invalid index.
1579   ObjPtr<mirror::Class> last_class = nullptr;
1580   mirror::MethodDexCacheType* resolved_methods = dex_cache->GetResolvedMethods();
1581   for (size_t slot_idx = 0, num = dex_cache->NumResolvedMethods(); slot_idx != num; ++slot_idx) {
1582     auto pair =
1583         mirror::DexCache::GetNativePairPtrSize(resolved_methods, slot_idx, target_ptr_size_);
1584     uint32_t stored_index = pair.index;
1585     ArtMethod* method = pair.object;
1586     if (method == nullptr) {
1587       continue;  // Empty entry.
1588     }
1589     // Check if the referenced class is in the image. Note that we want to check the referenced
1590     // class rather than the declaring class to preserve the semantics, i.e. using a MethodId
1591     // results in resolving the referenced class and that can for example throw OOME.
1592     const dex::MethodId& method_id = dex_file.GetMethodId(stored_index);
1593     if (method_id.class_idx_ != last_class_idx) {
1594       last_class_idx = method_id.class_idx_;
1595       last_class = class_linker->LookupResolvedType(last_class_idx, dex_cache, class_loader);
1596       if (last_class != nullptr && !KeepClass(last_class)) {
1597         last_class = nullptr;
1598       }
1599     }
1600     if (last_class == nullptr) {
1601       dex_cache->ClearResolvedMethod(stored_index, target_ptr_size_);
1602     }
1603   }
1604   // Prune fields.
1605   mirror::FieldDexCacheType* resolved_fields = dex_cache->GetResolvedFields();
1606   last_class_idx = dex::TypeIndex();  // Initialized to invalid index.
1607   last_class = nullptr;
1608   for (size_t slot_idx = 0, num = dex_cache->NumResolvedFields(); slot_idx != num; ++slot_idx) {
1609     auto pair = mirror::DexCache::GetNativePairPtrSize(resolved_fields, slot_idx, target_ptr_size_);
1610     uint32_t stored_index = pair.index;
1611     ArtField* field = pair.object;
1612     if (field == nullptr) {
1613       continue;  // Empty entry.
1614     }
1615     // Check if the referenced class is in the image. Note that we want to check the referenced
1616     // class rather than the declaring class to preserve the semantics, i.e. using a FieldId
1617     // results in resolving the referenced class and that can for example throw OOME.
1618     const dex::FieldId& field_id = dex_file.GetFieldId(stored_index);
1619     if (field_id.class_idx_ != last_class_idx) {
1620       last_class_idx = field_id.class_idx_;
1621       last_class = class_linker->LookupResolvedType(last_class_idx, dex_cache, class_loader);
1622       if (last_class != nullptr && !KeepClass(last_class)) {
1623         last_class = nullptr;
1624       }
1625     }
1626     if (last_class == nullptr) {
1627       dex_cache->ClearResolvedField(stored_index, target_ptr_size_);
1628     }
1629   }
1630   // Prune types.
1631   for (size_t slot_idx = 0, num = dex_cache->NumResolvedTypes(); slot_idx != num; ++slot_idx) {
1632     mirror::TypeDexCachePair pair =
1633         dex_cache->GetResolvedTypes()[slot_idx].load(std::memory_order_relaxed);
1634     uint32_t stored_index = pair.index;
1635     ObjPtr<mirror::Class> klass = pair.object.Read();
1636     if (klass != nullptr && !KeepClass(klass)) {
1637       dex_cache->ClearResolvedType(dex::TypeIndex(stored_index));
1638     }
1639   }
1640   // Strings do not need pruning.
1641 }
1642 
PreloadDexCache(ObjPtr<mirror::DexCache> dex_cache,ObjPtr<mirror::ClassLoader> class_loader)1643 void ImageWriter::PreloadDexCache(ObjPtr<mirror::DexCache> dex_cache,
1644                                   ObjPtr<mirror::ClassLoader> class_loader) {
1645   // To ensure deterministic contents of the hash-based arrays, each slot shall contain
1646   // the candidate with the lowest index. As we're processing entries in increasing index
1647   // order, this means trying to look up the entry for the current index if the slot is
1648   // empty or if it contains a higher index.
1649 
1650   Runtime* runtime = Runtime::Current();
1651   ClassLinker* class_linker = runtime->GetClassLinker();
1652   const DexFile& dex_file = *dex_cache->GetDexFile();
1653   // Preload the methods array and make the contents deterministic.
1654   mirror::MethodDexCacheType* resolved_methods = dex_cache->GetResolvedMethods();
1655   dex::TypeIndex last_class_idx;  // Initialized to invalid index.
1656   ObjPtr<mirror::Class> last_class = nullptr;
1657   for (size_t i = 0, num = dex_cache->GetDexFile()->NumMethodIds(); i != num; ++i) {
1658     uint32_t slot_idx = dex_cache->MethodSlotIndex(i);
1659     auto pair =
1660         mirror::DexCache::GetNativePairPtrSize(resolved_methods, slot_idx, target_ptr_size_);
1661     uint32_t stored_index = pair.index;
1662     ArtMethod* method = pair.object;
1663     if (method != nullptr && i > stored_index) {
1664       continue;  // Already checked.
1665     }
1666     // Check if the referenced class is in the image. Note that we want to check the referenced
1667     // class rather than the declaring class to preserve the semantics, i.e. using a MethodId
1668     // results in resolving the referenced class and that can for example throw OOME.
1669     const dex::MethodId& method_id = dex_file.GetMethodId(i);
1670     if (method_id.class_idx_ != last_class_idx) {
1671       last_class_idx = method_id.class_idx_;
1672       last_class = class_linker->LookupResolvedType(last_class_idx, dex_cache, class_loader);
1673     }
1674     if (method == nullptr || i < stored_index) {
1675       if (last_class != nullptr) {
1676         // Try to resolve the method with the class linker, which will insert
1677         // it into the dex cache if successful.
1678         method = class_linker->FindResolvedMethod(last_class, dex_cache, class_loader, i);
1679         DCHECK(method == nullptr || dex_cache->GetResolvedMethod(i, target_ptr_size_) == method);
1680       }
1681     } else {
1682       DCHECK_EQ(i, stored_index);
1683       DCHECK(last_class != nullptr);
1684     }
1685   }
1686   // Preload the fields array and make the contents deterministic.
1687   mirror::FieldDexCacheType* resolved_fields = dex_cache->GetResolvedFields();
1688   last_class_idx = dex::TypeIndex();  // Initialized to invalid index.
1689   last_class = nullptr;
1690   for (size_t i = 0, end = dex_file.NumFieldIds(); i < end; ++i) {
1691     uint32_t slot_idx = dex_cache->FieldSlotIndex(i);
1692     auto pair = mirror::DexCache::GetNativePairPtrSize(resolved_fields, slot_idx, target_ptr_size_);
1693     uint32_t stored_index = pair.index;
1694     ArtField* field = pair.object;
1695     if (field != nullptr && i > stored_index) {
1696       continue;  // Already checked.
1697     }
1698     // Check if the referenced class is in the image. Note that we want to check the referenced
1699     // class rather than the declaring class to preserve the semantics, i.e. using a FieldId
1700     // results in resolving the referenced class and that can for example throw OOME.
1701     const dex::FieldId& field_id = dex_file.GetFieldId(i);
1702     if (field_id.class_idx_ != last_class_idx) {
1703       last_class_idx = field_id.class_idx_;
1704       last_class = class_linker->LookupResolvedType(last_class_idx, dex_cache, class_loader);
1705       if (last_class != nullptr && !KeepClass(last_class)) {
1706         last_class = nullptr;
1707       }
1708     }
1709     if (field == nullptr || i < stored_index) {
1710       if (last_class != nullptr) {
1711         // Try to resolve the field with the class linker, which will insert
1712         // it into the dex cache if successful.
1713         field = class_linker->FindResolvedFieldJLS(last_class, dex_cache, class_loader, i);
1714         DCHECK(field == nullptr || dex_cache->GetResolvedField(i, target_ptr_size_) == field);
1715       }
1716     } else {
1717       DCHECK_EQ(i, stored_index);
1718       DCHECK(last_class != nullptr);
1719     }
1720   }
1721   // Preload the types array and make the contents deterministic.
1722   // This is done after fields and methods as their lookup can touch the types array.
1723   for (size_t i = 0, end = dex_cache->GetDexFile()->NumTypeIds(); i < end; ++i) {
1724     dex::TypeIndex type_idx(i);
1725     uint32_t slot_idx = dex_cache->TypeSlotIndex(type_idx);
1726     mirror::TypeDexCachePair pair =
1727         dex_cache->GetResolvedTypes()[slot_idx].load(std::memory_order_relaxed);
1728     uint32_t stored_index = pair.index;
1729     ObjPtr<mirror::Class> klass = pair.object.Read();
1730     if (klass == nullptr || i < stored_index) {
1731       klass = class_linker->LookupResolvedType(type_idx, dex_cache, class_loader);
1732       DCHECK(klass == nullptr || dex_cache->GetResolvedType(type_idx) == klass);
1733     }
1734   }
1735   // Preload the strings array and make the contents deterministic.
1736   for (size_t i = 0, end = dex_cache->GetDexFile()->NumStringIds(); i < end; ++i) {
1737     dex::StringIndex string_idx(i);
1738     uint32_t slot_idx = dex_cache->StringSlotIndex(string_idx);
1739     mirror::StringDexCachePair pair =
1740         dex_cache->GetStrings()[slot_idx].load(std::memory_order_relaxed);
1741     uint32_t stored_index = pair.index;
1742     ObjPtr<mirror::String> string = pair.object.Read();
1743     if (string == nullptr || i < stored_index) {
1744       string = class_linker->LookupString(string_idx, dex_cache);
1745       DCHECK(string == nullptr || dex_cache->GetResolvedString(string_idx) == string);
1746     }
1747   }
1748 }
1749 
PruneNonImageClasses()1750 void ImageWriter::PruneNonImageClasses() {
1751   Runtime* runtime = Runtime::Current();
1752   ClassLinker* class_linker = runtime->GetClassLinker();
1753   Thread* self = Thread::Current();
1754   ScopedAssertNoThreadSuspension sa(__FUNCTION__);
1755 
1756   // Prune uses-library dex caches. Only prune the uses-library dex caches since we want to make
1757   // sure the other ones don't get unloaded before the OatWriter runs.
1758   class_linker->VisitClassTables(
1759       [&](ClassTable* table) REQUIRES_SHARED(Locks::mutator_lock_) {
1760     table->RemoveStrongRoots(
1761         [&](GcRoot<mirror::Object> root) REQUIRES_SHARED(Locks::mutator_lock_) {
1762       ObjPtr<mirror::Object> obj = root.Read();
1763       if (obj->IsDexCache()) {
1764         // Return true if the dex file is not one of the ones in the map.
1765         return dex_file_oat_index_map_.find(obj->AsDexCache()->GetDexFile()) ==
1766             dex_file_oat_index_map_.end();
1767       }
1768       // Return false to avoid removing.
1769       return false;
1770     });
1771   });
1772 
1773   // Remove the undesired classes from the class roots.
1774   {
1775     PruneClassLoaderClassesVisitor class_loader_visitor(this);
1776     VisitClassLoaders(&class_loader_visitor);
1777     VLOG(compiler) << "Pruned " << class_loader_visitor.GetRemovedClassCount() << " classes";
1778   }
1779 
1780   // Clear references to removed classes from the DexCaches.
1781   std::vector<ObjPtr<mirror::DexCache>> dex_caches = FindDexCaches(self);
1782   for (ObjPtr<mirror::DexCache> dex_cache : dex_caches) {
1783     // Pass the class loader associated with the DexCache. This can either be
1784     // the app's `class_loader` or `nullptr` if boot class loader.
1785     bool is_app_image_dex_cache = compiler_options_.IsAppImage() && IsImageObject(dex_cache);
1786     PruneDexCache(dex_cache, is_app_image_dex_cache ? GetAppClassLoader() : nullptr);
1787   }
1788 
1789   // Drop the array class cache in the ClassLinker, as these are roots holding those classes live.
1790   class_linker->DropFindArrayClassCache();
1791 
1792   // Clear to save RAM.
1793   prune_class_memo_.clear();
1794 }
1795 
FindDexCaches(Thread * self)1796 std::vector<ObjPtr<mirror::DexCache>> ImageWriter::FindDexCaches(Thread* self) {
1797   std::vector<ObjPtr<mirror::DexCache>> dex_caches;
1798   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1799   ReaderMutexLock mu2(self, *Locks::dex_lock_);
1800   dex_caches.reserve(class_linker->GetDexCachesData().size());
1801   for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1802     if (self->IsJWeakCleared(data.weak_root)) {
1803       continue;
1804     }
1805     dex_caches.push_back(self->DecodeJObject(data.weak_root)->AsDexCache());
1806   }
1807   return dex_caches;
1808 }
1809 
CheckNonImageClassesRemoved()1810 void ImageWriter::CheckNonImageClassesRemoved() {
1811   auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1812     if (obj->IsClass() && !IsInBootImage(obj)) {
1813       ObjPtr<Class> klass = obj->AsClass();
1814       if (!KeepClass(klass)) {
1815         DumpImageClasses();
1816         CHECK(KeepClass(klass))
1817             << Runtime::Current()->GetHeap()->GetVerification()->FirstPathFromRootSet(klass);
1818       }
1819     }
1820   };
1821   gc::Heap* heap = Runtime::Current()->GetHeap();
1822   heap->VisitObjects(visitor);
1823 }
1824 
DumpImageClasses()1825 void ImageWriter::DumpImageClasses() {
1826   for (const std::string& image_class : compiler_options_.GetImageClasses()) {
1827     LOG(INFO) << " " << image_class;
1828   }
1829 }
1830 
FindInternedString(mirror::String * string)1831 mirror::String* ImageWriter::FindInternedString(mirror::String* string) {
1832   Thread* const self = Thread::Current();
1833   for (const ImageInfo& image_info : image_infos_) {
1834     const ObjPtr<mirror::String> found = image_info.intern_table_->LookupStrong(self, string);
1835     DCHECK(image_info.intern_table_->LookupWeak(self, string) == nullptr)
1836         << string->ToModifiedUtf8();
1837     if (found != nullptr) {
1838       return found.Ptr();
1839     }
1840   }
1841   if (!compiler_options_.IsBootImage()) {
1842     Runtime* const runtime = Runtime::Current();
1843     ObjPtr<mirror::String> found = runtime->GetInternTable()->LookupStrong(self, string);
1844     // If we found it in the runtime intern table it could either be in the boot image or interned
1845     // during app image compilation. If it was in the boot image return that, otherwise return null
1846     // since it belongs to another image space.
1847     if (found != nullptr && runtime->GetHeap()->ObjectIsInBootImageSpace(found.Ptr())) {
1848       return found.Ptr();
1849     }
1850     DCHECK(runtime->GetInternTable()->LookupWeak(self, string) == nullptr)
1851         << string->ToModifiedUtf8();
1852   }
1853   return nullptr;
1854 }
1855 
CollectDexCaches(Thread * self,size_t oat_index) const1856 ObjPtr<mirror::ObjectArray<mirror::Object>> ImageWriter::CollectDexCaches(Thread* self,
1857                                                                           size_t oat_index) const {
1858   std::unordered_set<const DexFile*> image_dex_files;
1859   for (auto& pair : dex_file_oat_index_map_) {
1860     const DexFile* image_dex_file = pair.first;
1861     size_t image_oat_index = pair.second;
1862     if (oat_index == image_oat_index) {
1863       image_dex_files.insert(image_dex_file);
1864     }
1865   }
1866 
1867   // build an Object[] of all the DexCaches used in the source_space_.
1868   // Since we can't hold the dex lock when allocating the dex_caches
1869   // ObjectArray, we lock the dex lock twice, first to get the number
1870   // of dex caches first and then lock it again to copy the dex
1871   // caches. We check that the number of dex caches does not change.
1872   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1873   size_t dex_cache_count = 0;
1874   {
1875     ReaderMutexLock mu(self, *Locks::dex_lock_);
1876     // Count number of dex caches not in the boot image.
1877     for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1878       ObjPtr<mirror::DexCache> dex_cache =
1879           ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
1880       if (dex_cache == nullptr) {
1881         continue;
1882       }
1883       const DexFile* dex_file = dex_cache->GetDexFile();
1884       if (IsImageObject(dex_cache)) {
1885         dex_cache_count += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
1886       }
1887     }
1888   }
1889   ObjPtr<ObjectArray<Object>> dex_caches = ObjectArray<Object>::Alloc(
1890       self, GetClassRoot<ObjectArray<Object>>(class_linker), dex_cache_count);
1891   CHECK(dex_caches != nullptr) << "Failed to allocate a dex cache array.";
1892   {
1893     ReaderMutexLock mu(self, *Locks::dex_lock_);
1894     size_t non_image_dex_caches = 0;
1895     // Re-count number of non image dex caches.
1896     for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1897       ObjPtr<mirror::DexCache> dex_cache =
1898           ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
1899       if (dex_cache == nullptr) {
1900         continue;
1901       }
1902       const DexFile* dex_file = dex_cache->GetDexFile();
1903       if (IsImageObject(dex_cache)) {
1904         non_image_dex_caches += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
1905       }
1906     }
1907     CHECK_EQ(dex_cache_count, non_image_dex_caches)
1908         << "The number of non-image dex caches changed.";
1909     size_t i = 0;
1910     for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1911       ObjPtr<mirror::DexCache> dex_cache =
1912           ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
1913       if (dex_cache == nullptr) {
1914         continue;
1915       }
1916       const DexFile* dex_file = dex_cache->GetDexFile();
1917       if (IsImageObject(dex_cache) &&
1918           image_dex_files.find(dex_file) != image_dex_files.end()) {
1919         dex_caches->Set<false>(i, dex_cache.Ptr());
1920         ++i;
1921       }
1922     }
1923   }
1924   return dex_caches;
1925 }
1926 
CreateImageRoots(size_t oat_index,Handle<mirror::ObjectArray<mirror::Object>> boot_image_live_objects) const1927 ObjPtr<ObjectArray<Object>> ImageWriter::CreateImageRoots(
1928     size_t oat_index,
1929     Handle<mirror::ObjectArray<mirror::Object>> boot_image_live_objects) const {
1930   Runtime* runtime = Runtime::Current();
1931   ClassLinker* class_linker = runtime->GetClassLinker();
1932   Thread* self = Thread::Current();
1933   StackHandleScope<2> hs(self);
1934 
1935   Handle<ObjectArray<Object>> dex_caches(hs.NewHandle(CollectDexCaches(self, oat_index)));
1936 
1937   // build an Object[] of the roots needed to restore the runtime
1938   int32_t image_roots_size = ImageHeader::NumberOfImageRoots(compiler_options_.IsAppImage());
1939   Handle<ObjectArray<Object>> image_roots(hs.NewHandle(ObjectArray<Object>::Alloc(
1940       self, GetClassRoot<ObjectArray<Object>>(class_linker), image_roots_size)));
1941   image_roots->Set<false>(ImageHeader::kDexCaches, dex_caches.Get());
1942   image_roots->Set<false>(ImageHeader::kClassRoots, class_linker->GetClassRoots());
1943   image_roots->Set<false>(ImageHeader::kOomeWhenThrowingException,
1944                           runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingException());
1945   image_roots->Set<false>(ImageHeader::kOomeWhenThrowingOome,
1946                           runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME());
1947   image_roots->Set<false>(ImageHeader::kOomeWhenHandlingStackOverflow,
1948                           runtime->GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow());
1949   image_roots->Set<false>(ImageHeader::kNoClassDefFoundError,
1950                           runtime->GetPreAllocatedNoClassDefFoundError());
1951   if (!compiler_options_.IsAppImage()) {
1952     DCHECK(boot_image_live_objects != nullptr);
1953     image_roots->Set<false>(ImageHeader::kBootImageLiveObjects, boot_image_live_objects.Get());
1954   } else {
1955     DCHECK(boot_image_live_objects == nullptr);
1956   }
1957   for (int32_t i = 0; i != image_roots_size; ++i) {
1958     if (compiler_options_.IsAppImage() && i == ImageHeader::kAppImageClassLoader) {
1959       // image_roots[ImageHeader::kAppImageClassLoader] will be set later for app image.
1960       continue;
1961     }
1962     CHECK(image_roots->Get(i) != nullptr);
1963   }
1964   return image_roots.Get();
1965 }
1966 
TryAssignBinSlot(WorkStack & work_stack,mirror::Object * obj,size_t oat_index)1967 mirror::Object* ImageWriter::TryAssignBinSlot(WorkStack& work_stack,
1968                                               mirror::Object* obj,
1969                                               size_t oat_index) {
1970   if (obj == nullptr || !IsImageObject(obj)) {
1971     // Object is null or already in the image, there is no work to do.
1972     return obj;
1973   }
1974   if (!IsImageBinSlotAssigned(obj)) {
1975     // We want to intern all strings but also assign offsets for the source string. Since the
1976     // pruning phase has already happened, if we intern a string to one in the image we still
1977     // end up copying an unreachable string.
1978     if (obj->IsString()) {
1979       // Need to check if the string is already interned in another image info so that we don't have
1980       // the intern tables of two different images contain the same string.
1981       mirror::String* interned = FindInternedString(obj->AsString().Ptr());
1982       if (interned == nullptr) {
1983         // Not in another image space, insert to our table.
1984         interned =
1985             GetImageInfo(oat_index).intern_table_->InternStrongImageString(obj->AsString()).Ptr();
1986         DCHECK_EQ(interned, obj);
1987       }
1988     } else if (obj->IsDexCache()) {
1989       oat_index = GetOatIndexForDexCache(obj->AsDexCache());
1990     } else if (obj->IsClass()) {
1991       // Visit and assign offsets for fields and field arrays.
1992       ObjPtr<mirror::Class> as_klass = obj->AsClass();
1993       ObjPtr<mirror::DexCache> dex_cache = as_klass->GetDexCache();
1994       DCHECK(!as_klass->IsErroneous()) << as_klass->GetStatus();
1995       if (compiler_options_.IsAppImage()) {
1996         // Extra sanity, no boot loader classes should be left!
1997         CHECK(!IsBootClassLoaderClass(as_klass)) << as_klass->PrettyClass();
1998       }
1999       LengthPrefixedArray<ArtField>* fields[] = {
2000           as_klass->GetSFieldsPtr(), as_klass->GetIFieldsPtr(),
2001       };
2002       // Overwrite the oat index value since the class' dex cache is more accurate of where it
2003       // belongs.
2004       oat_index = GetOatIndexForDexCache(dex_cache);
2005       ImageInfo& image_info = GetImageInfo(oat_index);
2006       if (!compiler_options_.IsAppImage()) {
2007         // Note: Avoid locking to prevent lock order violations from root visiting;
2008         // image_info.class_table_ is only accessed from the image writer.
2009         image_info.class_table_->InsertWithoutLocks(as_klass);
2010       }
2011       for (LengthPrefixedArray<ArtField>* cur_fields : fields) {
2012         // Total array length including header.
2013         if (cur_fields != nullptr) {
2014           const size_t header_size = LengthPrefixedArray<ArtField>::ComputeSize(0);
2015           // Forward the entire array at once.
2016           auto it = native_object_relocations_.find(cur_fields);
2017           CHECK(it == native_object_relocations_.end()) << "Field array " << cur_fields
2018                                                   << " already forwarded";
2019           size_t offset = image_info.GetBinSlotSize(Bin::kArtField);
2020           DCHECK(!IsInBootImage(cur_fields));
2021           native_object_relocations_.emplace(
2022               cur_fields,
2023               NativeObjectRelocation {
2024                   oat_index, offset, NativeObjectRelocationType::kArtFieldArray
2025               });
2026           offset += header_size;
2027           // Forward individual fields so that we can quickly find where they belong.
2028           for (size_t i = 0, count = cur_fields->size(); i < count; ++i) {
2029             // Need to forward arrays separate of fields.
2030             ArtField* field = &cur_fields->At(i);
2031             auto it2 = native_object_relocations_.find(field);
2032             CHECK(it2 == native_object_relocations_.end()) << "Field at index=" << i
2033                 << " already assigned " << field->PrettyField() << " static=" << field->IsStatic();
2034             DCHECK(!IsInBootImage(field));
2035             native_object_relocations_.emplace(
2036                 field,
2037                 NativeObjectRelocation { oat_index,
2038                                          offset,
2039                                          NativeObjectRelocationType::kArtField });
2040             offset += sizeof(ArtField);
2041           }
2042           image_info.IncrementBinSlotSize(
2043               Bin::kArtField, header_size + cur_fields->size() * sizeof(ArtField));
2044           DCHECK_EQ(offset, image_info.GetBinSlotSize(Bin::kArtField));
2045         }
2046       }
2047       // Visit and assign offsets for methods.
2048       size_t num_methods = as_klass->NumMethods();
2049       if (num_methods != 0) {
2050         bool any_dirty = false;
2051         for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
2052           if (WillMethodBeDirty(&m)) {
2053             any_dirty = true;
2054             break;
2055           }
2056         }
2057         NativeObjectRelocationType type = any_dirty
2058             ? NativeObjectRelocationType::kArtMethodDirty
2059             : NativeObjectRelocationType::kArtMethodClean;
2060         Bin bin_type = BinTypeForNativeRelocationType(type);
2061         // Forward the entire array at once, but header first.
2062         const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
2063         const size_t method_size = ArtMethod::Size(target_ptr_size_);
2064         const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0,
2065                                                                                method_size,
2066                                                                                method_alignment);
2067         LengthPrefixedArray<ArtMethod>* array = as_klass->GetMethodsPtr();
2068         auto it = native_object_relocations_.find(array);
2069         CHECK(it == native_object_relocations_.end())
2070             << "Method array " << array << " already forwarded";
2071         size_t offset = image_info.GetBinSlotSize(bin_type);
2072         DCHECK(!IsInBootImage(array));
2073         native_object_relocations_.emplace(array,
2074             NativeObjectRelocation {
2075                 oat_index,
2076                 offset,
2077                 any_dirty ? NativeObjectRelocationType::kArtMethodArrayDirty
2078                           : NativeObjectRelocationType::kArtMethodArrayClean });
2079         image_info.IncrementBinSlotSize(bin_type, header_size);
2080         for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
2081           AssignMethodOffset(&m, type, oat_index);
2082         }
2083         (any_dirty ? dirty_methods_ : clean_methods_) += num_methods;
2084       }
2085       // Assign offsets for all runtime methods in the IMT since these may hold conflict tables
2086       // live.
2087       if (as_klass->ShouldHaveImt()) {
2088         ImTable* imt = as_klass->GetImt(target_ptr_size_);
2089         if (TryAssignImTableOffset(imt, oat_index)) {
2090           // Since imt's can be shared only do this the first time to not double count imt method
2091           // fixups.
2092           for (size_t i = 0; i < ImTable::kSize; ++i) {
2093             ArtMethod* imt_method = imt->Get(i, target_ptr_size_);
2094             DCHECK(imt_method != nullptr);
2095             if (imt_method->IsRuntimeMethod() &&
2096                 !IsInBootImage(imt_method) &&
2097                 !NativeRelocationAssigned(imt_method)) {
2098               AssignMethodOffset(imt_method, NativeObjectRelocationType::kRuntimeMethod, oat_index);
2099             }
2100           }
2101         }
2102       }
2103     } else if (obj->IsClassLoader()) {
2104       // Register the class loader if it has a class table.
2105       // The fake boot class loader should not get registered.
2106       ObjPtr<mirror::ClassLoader> class_loader = obj->AsClassLoader();
2107       if (class_loader->GetClassTable() != nullptr) {
2108         DCHECK(compiler_options_.IsAppImage());
2109         if (class_loader == GetAppClassLoader()) {
2110           ImageInfo& image_info = GetImageInfo(oat_index);
2111           // Note: Avoid locking to prevent lock order violations from root visiting;
2112           // image_info.class_table_ table is only accessed from the image writer
2113           // and class_loader->GetClassTable() is iterated but not modified.
2114           image_info.class_table_->CopyWithoutLocks(*class_loader->GetClassTable());
2115         }
2116       }
2117     }
2118     AssignImageBinSlot(obj, oat_index);
2119     work_stack.emplace(obj, oat_index);
2120   }
2121   if (obj->IsString()) {
2122     // Always return the interned string if there exists one.
2123     mirror::String* interned = FindInternedString(obj->AsString().Ptr());
2124     if (interned != nullptr) {
2125       return interned;
2126     }
2127   }
2128   return obj;
2129 }
2130 
NativeRelocationAssigned(void * ptr) const2131 bool ImageWriter::NativeRelocationAssigned(void* ptr) const {
2132   return native_object_relocations_.find(ptr) != native_object_relocations_.end();
2133 }
2134 
TryAssignImTableOffset(ImTable * imt,size_t oat_index)2135 bool ImageWriter::TryAssignImTableOffset(ImTable* imt, size_t oat_index) {
2136   // No offset, or already assigned.
2137   if (imt == nullptr || IsInBootImage(imt) || NativeRelocationAssigned(imt)) {
2138     return false;
2139   }
2140   // If the method is a conflict method we also want to assign the conflict table offset.
2141   ImageInfo& image_info = GetImageInfo(oat_index);
2142   const size_t size = ImTable::SizeInBytes(target_ptr_size_);
2143   native_object_relocations_.emplace(
2144       imt,
2145       NativeObjectRelocation {
2146           oat_index,
2147           image_info.GetBinSlotSize(Bin::kImTable),
2148           NativeObjectRelocationType::kIMTable});
2149   image_info.IncrementBinSlotSize(Bin::kImTable, size);
2150   return true;
2151 }
2152 
TryAssignConflictTableOffset(ImtConflictTable * table,size_t oat_index)2153 void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) {
2154   // No offset, or already assigned.
2155   if (table == nullptr || NativeRelocationAssigned(table)) {
2156     return;
2157   }
2158   CHECK(!IsInBootImage(table));
2159   // If the method is a conflict method we also want to assign the conflict table offset.
2160   ImageInfo& image_info = GetImageInfo(oat_index);
2161   const size_t size = table->ComputeSize(target_ptr_size_);
2162   native_object_relocations_.emplace(
2163       table,
2164       NativeObjectRelocation {
2165           oat_index,
2166           image_info.GetBinSlotSize(Bin::kIMTConflictTable),
2167           NativeObjectRelocationType::kIMTConflictTable});
2168   image_info.IncrementBinSlotSize(Bin::kIMTConflictTable, size);
2169 }
2170 
AssignMethodOffset(ArtMethod * method,NativeObjectRelocationType type,size_t oat_index)2171 void ImageWriter::AssignMethodOffset(ArtMethod* method,
2172                                      NativeObjectRelocationType type,
2173                                      size_t oat_index) {
2174   DCHECK(!IsInBootImage(method));
2175   CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned "
2176       << ArtMethod::PrettyMethod(method);
2177   if (method->IsRuntimeMethod()) {
2178     TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index);
2179   }
2180   ImageInfo& image_info = GetImageInfo(oat_index);
2181   Bin bin_type = BinTypeForNativeRelocationType(type);
2182   size_t offset = image_info.GetBinSlotSize(bin_type);
2183   native_object_relocations_.emplace(method, NativeObjectRelocation { oat_index, offset, type });
2184   image_info.IncrementBinSlotSize(bin_type, ArtMethod::Size(target_ptr_size_));
2185 }
2186 
UnbinObjectsIntoOffset(mirror::Object * obj)2187 void ImageWriter::UnbinObjectsIntoOffset(mirror::Object* obj) {
2188   DCHECK(!IsInBootImage(obj));
2189   CHECK(obj != nullptr);
2190 
2191   // We know the bin slot, and the total bin sizes for all objects by now,
2192   // so calculate the object's final image offset.
2193 
2194   DCHECK(IsImageBinSlotAssigned(obj));
2195   BinSlot bin_slot = GetImageBinSlot(obj);
2196   // Change the lockword from a bin slot into an offset
2197   AssignImageOffset(obj, bin_slot);
2198 }
2199 
2200 class ImageWriter::VisitReferencesVisitor {
2201  public:
VisitReferencesVisitor(ImageWriter * image_writer,WorkStack * work_stack,size_t oat_index)2202   VisitReferencesVisitor(ImageWriter* image_writer, WorkStack* work_stack, size_t oat_index)
2203       : image_writer_(image_writer), work_stack_(work_stack), oat_index_(oat_index) {}
2204 
2205   // Fix up separately since we also need to fix up method entrypoints.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const2206   ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
2207       REQUIRES_SHARED(Locks::mutator_lock_) {
2208     if (!root->IsNull()) {
2209       VisitRoot(root);
2210     }
2211   }
2212 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const2213   ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
2214       REQUIRES_SHARED(Locks::mutator_lock_) {
2215     root->Assign(VisitReference(root->AsMirrorPtr()));
2216   }
2217 
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const2218   ALWAYS_INLINE void operator() (ObjPtr<mirror::Object> obj,
2219                                  MemberOffset offset,
2220                                  bool is_static ATTRIBUTE_UNUSED) const
2221       REQUIRES_SHARED(Locks::mutator_lock_) {
2222     mirror::Object* ref =
2223         obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
2224     obj->SetFieldObject</*kTransactionActive*/false>(offset, VisitReference(ref));
2225   }
2226 
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const2227   ALWAYS_INLINE void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
2228                                  ObjPtr<mirror::Reference> ref) const
2229       REQUIRES_SHARED(Locks::mutator_lock_) {
2230     operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
2231   }
2232 
2233  private:
VisitReference(mirror::Object * ref) const2234   mirror::Object* VisitReference(mirror::Object* ref) const REQUIRES_SHARED(Locks::mutator_lock_) {
2235     return image_writer_->TryAssignBinSlot(*work_stack_, ref, oat_index_);
2236   }
2237 
2238   ImageWriter* const image_writer_;
2239   WorkStack* const work_stack_;
2240   const size_t oat_index_;
2241 };
2242 
2243 class ImageWriter::GetRootsVisitor : public RootVisitor  {
2244  public:
GetRootsVisitor(std::vector<mirror::Object * > * roots)2245   explicit GetRootsVisitor(std::vector<mirror::Object*>* roots) : roots_(roots) {}
2246 
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)2247   void VisitRoots(mirror::Object*** roots,
2248                   size_t count,
2249                   const RootInfo& info ATTRIBUTE_UNUSED) override
2250       REQUIRES_SHARED(Locks::mutator_lock_) {
2251     for (size_t i = 0; i < count; ++i) {
2252       roots_->push_back(*roots[i]);
2253     }
2254   }
2255 
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)2256   void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
2257                   size_t count,
2258                   const RootInfo& info ATTRIBUTE_UNUSED) override
2259       REQUIRES_SHARED(Locks::mutator_lock_) {
2260     for (size_t i = 0; i < count; ++i) {
2261       roots_->push_back(roots[i]->AsMirrorPtr());
2262     }
2263   }
2264 
2265  private:
2266   std::vector<mirror::Object*>* const roots_;
2267 };
2268 
ProcessWorkStack(WorkStack * work_stack)2269 void ImageWriter::ProcessWorkStack(WorkStack* work_stack) {
2270   while (!work_stack->empty()) {
2271     std::pair<mirror::Object*, size_t> pair(work_stack->top());
2272     work_stack->pop();
2273     VisitReferencesVisitor visitor(this, work_stack, /*oat_index*/ pair.second);
2274     // Walk references and assign bin slots for them.
2275     pair.first->VisitReferences</*kVisitNativeRoots*/true, kVerifyNone, kWithoutReadBarrier>(
2276         visitor,
2277         visitor);
2278   }
2279 }
2280 
CalculateNewObjectOffsets()2281 void ImageWriter::CalculateNewObjectOffsets() {
2282   Thread* const self = Thread::Current();
2283   Runtime* const runtime = Runtime::Current();
2284   VariableSizedHandleScope handles(self);
2285   MutableHandle<ObjectArray<Object>> boot_image_live_objects = handles.NewHandle(
2286       compiler_options_.IsAppImage()
2287           ? nullptr
2288           : IntrinsicObjects::AllocateBootImageLiveObjects(self, runtime->GetClassLinker()));
2289   std::vector<Handle<ObjectArray<Object>>> image_roots;
2290   for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) {
2291     image_roots.push_back(handles.NewHandle(CreateImageRoots(i, boot_image_live_objects)));
2292   }
2293 
2294   gc::Heap* const heap = runtime->GetHeap();
2295 
2296   // Leave space for the header, but do not write it yet, we need to
2297   // know where image_roots is going to end up
2298   image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment);  // 64-bit-alignment
2299 
2300   const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
2301   // Write the image runtime methods.
2302   image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod();
2303   image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod();
2304   image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod();
2305   image_methods_[ImageHeader::kSaveAllCalleeSavesMethod] =
2306       runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves);
2307   image_methods_[ImageHeader::kSaveRefsOnlyMethod] =
2308       runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly);
2309   image_methods_[ImageHeader::kSaveRefsAndArgsMethod] =
2310       runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs);
2311   image_methods_[ImageHeader::kSaveEverythingMethod] =
2312       runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything);
2313   image_methods_[ImageHeader::kSaveEverythingMethodForClinit] =
2314       runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit);
2315   image_methods_[ImageHeader::kSaveEverythingMethodForSuspendCheck] =
2316       runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck);
2317   // Visit image methods first to have the main runtime methods in the first image.
2318   for (auto* m : image_methods_) {
2319     CHECK(m != nullptr);
2320     CHECK(m->IsRuntimeMethod());
2321     DCHECK_EQ(!compiler_options_.IsBootImage(), IsInBootImage(m))
2322         << "Trampolines should be in boot image";
2323     if (!IsInBootImage(m)) {
2324       AssignMethodOffset(m, NativeObjectRelocationType::kRuntimeMethod, GetDefaultOatIndex());
2325     }
2326   }
2327 
2328   // Deflate monitors before we visit roots since deflating acquires the monitor lock. Acquiring
2329   // this lock while holding other locks may cause lock order violations.
2330   {
2331     auto deflate_monitor = [](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2332       Monitor::Deflate(Thread::Current(), obj);
2333     };
2334     heap->VisitObjects(deflate_monitor);
2335   }
2336 
2337   // From this point on, there shall be no GC anymore and no objects shall be allocated.
2338   // We can now assign a BitSlot to each object and store it in its lockword.
2339 
2340   // Work list of <object, oat_index> for objects. Everything on the stack must already be
2341   // assigned a bin slot.
2342   WorkStack work_stack;
2343 
2344   // Special case interned strings to put them in the image they are likely to be resolved from.
2345   for (const DexFile* dex_file : compiler_options_.GetDexFilesForOatFile()) {
2346     auto it = dex_file_oat_index_map_.find(dex_file);
2347     DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
2348     const size_t oat_index = it->second;
2349     InternTable* const intern_table = runtime->GetInternTable();
2350     for (size_t i = 0, count = dex_file->NumStringIds(); i < count; ++i) {
2351       uint32_t utf16_length;
2352       const char* utf8_data = dex_file->StringDataAndUtf16LengthByIdx(dex::StringIndex(i),
2353                                                                       &utf16_length);
2354       mirror::String* string = intern_table->LookupStrong(self, utf16_length, utf8_data).Ptr();
2355       TryAssignBinSlot(work_stack, string, oat_index);
2356     }
2357   }
2358 
2359   // Get the GC roots and then visit them separately to avoid lock violations since the root visitor
2360   // visits roots while holding various locks.
2361   {
2362     std::vector<mirror::Object*> roots;
2363     GetRootsVisitor root_visitor(&roots);
2364     runtime->VisitRoots(&root_visitor);
2365     for (mirror::Object* obj : roots) {
2366       TryAssignBinSlot(work_stack, obj, GetDefaultOatIndex());
2367     }
2368   }
2369   ProcessWorkStack(&work_stack);
2370 
2371   // For app images, there may be objects that are only held live by the boot image. One
2372   // example is finalizer references. Forward these objects so that EnsureBinSlotAssignedCallback
2373   // does not fail any checks.
2374   if (compiler_options_.IsAppImage()) {
2375     for (gc::space::ImageSpace* space : heap->GetBootImageSpaces()) {
2376       DCHECK(space->IsImageSpace());
2377       gc::accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
2378       live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
2379                                     reinterpret_cast<uintptr_t>(space->Limit()),
2380                                     [this, &work_stack](mirror::Object* obj)
2381           REQUIRES_SHARED(Locks::mutator_lock_) {
2382         VisitReferencesVisitor visitor(this, &work_stack, GetDefaultOatIndex());
2383         // Visit all references and try to assign bin slots for them (calls TryAssignBinSlot).
2384         obj->VisitReferences</*kVisitNativeRoots*/true, kVerifyNone, kWithoutReadBarrier>(
2385             visitor,
2386             visitor);
2387       });
2388     }
2389     // Process the work stack in case anything was added by TryAssignBinSlot.
2390     ProcessWorkStack(&work_stack);
2391 
2392     // Store the class loader in the class roots.
2393     CHECK_EQ(image_roots.size(), 1u);
2394     image_roots[0]->Set<false>(ImageHeader::kAppImageClassLoader, GetAppClassLoader());
2395   }
2396 
2397   // Verify that all objects have assigned image bin slots.
2398   {
2399     auto ensure_bin_slots_assigned = [&](mirror::Object* obj)
2400         REQUIRES_SHARED(Locks::mutator_lock_) {
2401       if (IsImageObject(obj)) {
2402         CHECK(IsImageBinSlotAssigned(obj)) << mirror::Object::PrettyTypeOf(obj) << " " << obj;
2403       }
2404     };
2405     heap->VisitObjects(ensure_bin_slots_assigned);
2406   }
2407 
2408   // Calculate size of the dex cache arrays slot and prepare offsets.
2409   PrepareDexCacheArraySlots();
2410 
2411   // Calculate the sizes of the intern tables, class tables, and fixup tables.
2412   for (ImageInfo& image_info : image_infos_) {
2413     // Calculate how big the intern table will be after being serialized.
2414     InternTable* const intern_table = image_info.intern_table_.get();
2415     CHECK_EQ(intern_table->WeakSize(), 0u) << " should have strong interned all the strings";
2416     if (intern_table->StrongSize() != 0u) {
2417       image_info.intern_table_bytes_ = intern_table->WriteToMemory(nullptr);
2418     }
2419 
2420     // Calculate the size of the class table.
2421     ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
2422     DCHECK_EQ(image_info.class_table_->NumReferencedZygoteClasses(), 0u);
2423     if (image_info.class_table_->NumReferencedNonZygoteClasses() != 0u) {
2424       image_info.class_table_bytes_ += image_info.class_table_->WriteToMemory(nullptr);
2425     }
2426   }
2427 
2428   // Calculate bin slot offsets.
2429   for (size_t oat_index = 0; oat_index < image_infos_.size(); ++oat_index) {
2430     ImageInfo& image_info = image_infos_[oat_index];
2431     size_t bin_offset = image_objects_offset_begin_;
2432     // Need to visit the objects in bin order since alignment requirements might change the
2433     // section sizes.
2434     // Avoid using ObjPtr since VisitObjects invalidates. This is safe since concurrent GC can not
2435     // occur during image writing.
2436     using BinPair = std::pair<BinSlot, mirror::Object*>;
2437     std::vector<BinPair> objects;
2438     heap->VisitObjects([&](mirror::Object* obj)
2439         REQUIRES_SHARED(Locks::mutator_lock_) {
2440       // Only visit the oat index for the current image.
2441       if (IsImageObject(obj) && GetOatIndex(obj) == oat_index) {
2442         objects.emplace_back(GetImageBinSlot(obj), obj);
2443       }
2444     });
2445     std::sort(objects.begin(), objects.end(), [](const BinPair& a, const BinPair& b) -> bool {
2446       if (a.first.GetBin() != b.first.GetBin()) {
2447         return a.first.GetBin() < b.first.GetBin();
2448       }
2449       // Note that the index is really the relative offset in this case.
2450       return a.first.GetIndex() < b.first.GetIndex();
2451     });
2452     auto it = objects.begin();
2453     for (size_t i = 0; i != kNumberOfBins; ++i) {
2454       Bin bin = enum_cast<Bin>(i);
2455       switch (bin) {
2456         case Bin::kArtMethodClean:
2457         case Bin::kArtMethodDirty: {
2458           bin_offset = RoundUp(bin_offset, method_alignment);
2459           break;
2460         }
2461         case Bin::kDexCacheArray:
2462           bin_offset = RoundUp(bin_offset, DexCacheArraysLayout::Alignment(target_ptr_size_));
2463           break;
2464         case Bin::kImTable:
2465         case Bin::kIMTConflictTable: {
2466           bin_offset = RoundUp(bin_offset, static_cast<size_t>(target_ptr_size_));
2467           break;
2468         }
2469         default: {
2470           // Normal alignment.
2471         }
2472       }
2473       image_info.bin_slot_offsets_[i] = bin_offset;
2474 
2475       // If the bin is for mirror objects, assign the offsets since we may need to change sizes
2476       // from alignment requirements.
2477       if (i < static_cast<size_t>(Bin::kMirrorCount)) {
2478         const size_t start_offset = bin_offset;
2479         // Visit and assign offsets for all objects of the bin type.
2480         while (it != objects.end() && it->first.GetBin() == bin) {
2481           ObjPtr<mirror::Object> obj(it->second);
2482           const size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment);
2483           // If the object spans region bondaries, add padding objects between.
2484           // TODO: Instead of adding padding, we should consider reordering the bins to reduce
2485           // wasted space.
2486           if (region_size_ != 0u) {
2487             const size_t offset_after_header = bin_offset - sizeof(ImageHeader);
2488             const size_t next_region = RoundUp(offset_after_header, region_size_);
2489             if (offset_after_header != next_region &&
2490                 offset_after_header + object_size > next_region) {
2491               // Add padding objects until aligned.
2492               while (bin_offset - sizeof(ImageHeader) < next_region) {
2493                 image_info.padding_object_offsets_.push_back(bin_offset);
2494                 bin_offset += kObjectAlignment;
2495                 region_alignment_wasted_ += kObjectAlignment;
2496                 image_info.image_end_ += kObjectAlignment;
2497               }
2498               CHECK_EQ(bin_offset - sizeof(ImageHeader), next_region);
2499             }
2500           }
2501           SetImageOffset(obj.Ptr(), bin_offset);
2502           bin_offset = bin_offset + object_size;
2503           ++it;
2504         }
2505         image_info.bin_slot_sizes_[i] = bin_offset - start_offset;
2506       } else {
2507         bin_offset += image_info.bin_slot_sizes_[i];
2508       }
2509     }
2510     // NOTE: There may be additional padding between the bin slots and the intern table.
2511     DCHECK_EQ(image_info.image_end_,
2512               image_info.GetBinSizeSum(Bin::kMirrorCount) + image_objects_offset_begin_);
2513   }
2514 
2515   VLOG(image) << "Space wasted for region alignment " << region_alignment_wasted_;
2516 
2517   // Calculate image offsets.
2518   size_t image_offset = 0;
2519   for (ImageInfo& image_info : image_infos_) {
2520     image_info.image_begin_ = global_image_begin_ + image_offset;
2521     image_info.image_offset_ = image_offset;
2522     image_info.image_size_ = RoundUp(image_info.CreateImageSections().first, kPageSize);
2523     // There should be no gaps until the next image.
2524     image_offset += image_info.image_size_;
2525   }
2526 
2527   size_t i = 0;
2528   for (ImageInfo& image_info : image_infos_) {
2529     image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots[i].Get()));
2530     i++;
2531   }
2532 
2533   // Update the native relocations by adding their bin sums.
2534   for (auto& pair : native_object_relocations_) {
2535     NativeObjectRelocation& relocation = pair.second;
2536     Bin bin_type = BinTypeForNativeRelocationType(relocation.type);
2537     ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2538     relocation.offset += image_info.GetBinSlotOffset(bin_type);
2539   }
2540 
2541   // Remember the boot image live objects as raw pointer. No GC can happen anymore.
2542   boot_image_live_objects_ = boot_image_live_objects.Get();
2543 }
2544 
CreateImageSections() const2545 std::pair<size_t, std::vector<ImageSection>> ImageWriter::ImageInfo::CreateImageSections() const {
2546   std::vector<ImageSection> sections(ImageHeader::kSectionCount);
2547 
2548   // Do not round up any sections here that are represented by the bins since it
2549   // will break offsets.
2550 
2551   /*
2552    * Objects section
2553    */
2554   sections[ImageHeader::kSectionObjects] =
2555       ImageSection(0u, image_end_);
2556 
2557   /*
2558    * Field section
2559    */
2560   sections[ImageHeader::kSectionArtFields] =
2561       ImageSection(GetBinSlotOffset(Bin::kArtField), GetBinSlotSize(Bin::kArtField));
2562 
2563   /*
2564    * Method section
2565    */
2566   sections[ImageHeader::kSectionArtMethods] =
2567       ImageSection(GetBinSlotOffset(Bin::kArtMethodClean),
2568                    GetBinSlotSize(Bin::kArtMethodClean) +
2569                    GetBinSlotSize(Bin::kArtMethodDirty));
2570 
2571   /*
2572    * IMT section
2573    */
2574   sections[ImageHeader::kSectionImTables] =
2575       ImageSection(GetBinSlotOffset(Bin::kImTable), GetBinSlotSize(Bin::kImTable));
2576 
2577   /*
2578    * Conflict Tables section
2579    */
2580   sections[ImageHeader::kSectionIMTConflictTables] =
2581       ImageSection(GetBinSlotOffset(Bin::kIMTConflictTable), GetBinSlotSize(Bin::kIMTConflictTable));
2582 
2583   /*
2584    * Runtime Methods section
2585    */
2586   sections[ImageHeader::kSectionRuntimeMethods] =
2587       ImageSection(GetBinSlotOffset(Bin::kRuntimeMethod), GetBinSlotSize(Bin::kRuntimeMethod));
2588 
2589   /*
2590    * DexCache Arrays section.
2591    */
2592   const ImageSection& dex_cache_arrays_section =
2593       sections[ImageHeader::kSectionDexCacheArrays] =
2594           ImageSection(GetBinSlotOffset(Bin::kDexCacheArray),
2595                        GetBinSlotSize(Bin::kDexCacheArray));
2596 
2597   /*
2598    * Interned Strings section
2599    */
2600 
2601   // Round up to the alignment the string table expects. See HashSet::WriteToMemory.
2602   size_t cur_pos = RoundUp(dex_cache_arrays_section.End(), sizeof(uint64_t));
2603 
2604   const ImageSection& interned_strings_section =
2605       sections[ImageHeader::kSectionInternedStrings] =
2606           ImageSection(cur_pos, intern_table_bytes_);
2607 
2608   /*
2609    * Class Table section
2610    */
2611 
2612   // Obtain the new position and round it up to the appropriate alignment.
2613   cur_pos = RoundUp(interned_strings_section.End(), sizeof(uint64_t));
2614 
2615   const ImageSection& class_table_section =
2616       sections[ImageHeader::kSectionClassTable] =
2617           ImageSection(cur_pos, class_table_bytes_);
2618 
2619   /*
2620    * String Field Offsets section
2621    */
2622 
2623   // Round up to the alignment of the offsets we are going to store.
2624   cur_pos = RoundUp(class_table_section.End(), sizeof(uint32_t));
2625 
2626   // The size of string_reference_offsets_ can't be used here because it hasn't
2627   // been filled with AppImageReferenceOffsetInfo objects yet.  The
2628   // num_string_references_ value is calculated separately, before we can
2629   // compute the actual offsets.
2630   const ImageSection& string_reference_offsets =
2631       sections[ImageHeader::kSectionStringReferenceOffsets] =
2632           ImageSection(cur_pos,
2633                        sizeof(typename decltype(string_reference_offsets_)::value_type) *
2634                            num_string_references_);
2635 
2636   /*
2637    * Metadata section.
2638    */
2639 
2640   // Round up to the alignment of the offsets we are going to store.
2641   cur_pos = RoundUp(string_reference_offsets.End(),
2642                     mirror::DexCache::PreResolvedStringsAlignment());
2643 
2644   const ImageSection& metadata_section =
2645       sections[ImageHeader::kSectionMetadata] =
2646           ImageSection(cur_pos, GetBinSlotSize(Bin::kMetadata));
2647 
2648   // Return the number of bytes described by these sections, and the sections
2649   // themselves.
2650   return make_pair(metadata_section.End(), std::move(sections));
2651 }
2652 
CreateHeader(size_t oat_index)2653 void ImageWriter::CreateHeader(size_t oat_index) {
2654   ImageInfo& image_info = GetImageInfo(oat_index);
2655   const uint8_t* oat_file_begin = image_info.oat_file_begin_;
2656   const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_;
2657   const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_;
2658 
2659   uint32_t image_reservation_size = image_info.image_size_;
2660   DCHECK_ALIGNED(image_reservation_size, kPageSize);
2661   uint32_t component_count = 1u;
2662   if (!compiler_options_.IsAppImage()) {
2663     if (oat_index == 0u) {
2664       const ImageInfo& last_info = image_infos_.back();
2665       const uint8_t* end = last_info.oat_file_begin_ + last_info.oat_loaded_size_;
2666       DCHECK_ALIGNED(image_info.image_begin_, kPageSize);
2667       image_reservation_size =
2668           dchecked_integral_cast<uint32_t>(RoundUp(end - image_info.image_begin_, kPageSize));
2669       component_count = image_infos_.size();
2670     } else {
2671       image_reservation_size = 0u;
2672       component_count = 0u;
2673     }
2674   }
2675 
2676   // Create the image sections.
2677   auto section_info_pair = image_info.CreateImageSections();
2678   const size_t image_end = section_info_pair.first;
2679   std::vector<ImageSection>& sections = section_info_pair.second;
2680 
2681   // Finally bitmap section.
2682   const size_t bitmap_bytes = image_info.image_bitmap_->Size();
2683   auto* bitmap_section = &sections[ImageHeader::kSectionImageBitmap];
2684   *bitmap_section = ImageSection(RoundUp(image_end, kPageSize), RoundUp(bitmap_bytes, kPageSize));
2685   if (VLOG_IS_ON(compiler)) {
2686     LOG(INFO) << "Creating header for " << oat_filenames_[oat_index];
2687     size_t idx = 0;
2688     for (const ImageSection& section : sections) {
2689       LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section;
2690       ++idx;
2691     }
2692     LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_;
2693     LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec;
2694     LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_)
2695               << " Image offset=" << image_info.image_offset_ << std::dec;
2696     LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin)
2697               << " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_)
2698               << " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end)
2699               << " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end);
2700   }
2701   // Store boot image info for app image so that we can relocate.
2702   uint32_t boot_image_begin = 0;
2703   uint32_t boot_image_end = 0;
2704   uint32_t boot_oat_begin = 0;
2705   uint32_t boot_oat_end = 0;
2706   gc::Heap* const heap = Runtime::Current()->GetHeap();
2707   heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
2708 
2709   // Create the header, leave 0 for data size since we will fill this in as we are writing the
2710   // image.
2711   new (image_info.image_.Begin()) ImageHeader(
2712       image_reservation_size,
2713       component_count,
2714       PointerToLowMemUInt32(image_info.image_begin_),
2715       image_end,
2716       sections.data(),
2717       image_info.image_roots_address_,
2718       image_info.oat_checksum_,
2719       PointerToLowMemUInt32(oat_file_begin),
2720       PointerToLowMemUInt32(image_info.oat_data_begin_),
2721       PointerToLowMemUInt32(oat_data_end),
2722       PointerToLowMemUInt32(oat_file_end),
2723       boot_image_begin,
2724       boot_oat_end - boot_image_begin,
2725       static_cast<uint32_t>(target_ptr_size_));
2726 }
2727 
GetImageMethodAddress(ArtMethod * method)2728 ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) {
2729   NativeObjectRelocation relocation = GetNativeRelocation(method);
2730   const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2731   CHECK_GE(relocation.offset, image_info.image_end_) << "ArtMethods should be after Objects";
2732   return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + relocation.offset);
2733 }
2734 
GetIntrinsicReferenceAddress(uint32_t intrinsic_data)2735 const void* ImageWriter::GetIntrinsicReferenceAddress(uint32_t intrinsic_data) {
2736   DCHECK(compiler_options_.IsBootImage());
2737   switch (IntrinsicObjects::DecodePatchType(intrinsic_data)) {
2738     case IntrinsicObjects::PatchType::kIntegerValueOfArray: {
2739       const uint8_t* base_address =
2740           reinterpret_cast<const uint8_t*>(GetImageAddress(boot_image_live_objects_));
2741       MemberOffset data_offset =
2742           IntrinsicObjects::GetIntegerValueOfArrayDataOffset(boot_image_live_objects_);
2743       return base_address + data_offset.Uint32Value();
2744     }
2745     case IntrinsicObjects::PatchType::kIntegerValueOfObject: {
2746       uint32_t index = IntrinsicObjects::DecodePatchIndex(intrinsic_data);
2747       ObjPtr<mirror::Object> value =
2748           IntrinsicObjects::GetIntegerValueOfObject(boot_image_live_objects_, index);
2749       return GetImageAddress(value.Ptr());
2750     }
2751   }
2752   LOG(FATAL) << "UNREACHABLE";
2753   UNREACHABLE();
2754 }
2755 
2756 
2757 class ImageWriter::FixupRootVisitor : public RootVisitor {
2758  public:
FixupRootVisitor(ImageWriter * image_writer)2759   explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {
2760   }
2761 
VisitRoots(mirror::Object *** roots ATTRIBUTE_UNUSED,size_t count ATTRIBUTE_UNUSED,const RootInfo & info ATTRIBUTE_UNUSED)2762   void VisitRoots(mirror::Object*** roots ATTRIBUTE_UNUSED,
2763                   size_t count ATTRIBUTE_UNUSED,
2764                   const RootInfo& info ATTRIBUTE_UNUSED)
2765       override REQUIRES_SHARED(Locks::mutator_lock_) {
2766     LOG(FATAL) << "Unsupported";
2767   }
2768 
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)2769   void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
2770                   size_t count,
2771                   const RootInfo& info ATTRIBUTE_UNUSED)
2772       override REQUIRES_SHARED(Locks::mutator_lock_) {
2773     for (size_t i = 0; i < count; ++i) {
2774       // Copy the reference. Since we do not have the address for recording the relocation,
2775       // it needs to be recorded explicitly by the user of FixupRootVisitor.
2776       ObjPtr<mirror::Object> old_ptr = roots[i]->AsMirrorPtr();
2777       roots[i]->Assign(image_writer_->GetImageAddress(old_ptr.Ptr()));
2778     }
2779   }
2780 
2781  private:
2782   ImageWriter* const image_writer_;
2783 };
2784 
CopyAndFixupImTable(ImTable * orig,ImTable * copy)2785 void ImageWriter::CopyAndFixupImTable(ImTable* orig, ImTable* copy) {
2786   for (size_t i = 0; i < ImTable::kSize; ++i) {
2787     ArtMethod* method = orig->Get(i, target_ptr_size_);
2788     void** address = reinterpret_cast<void**>(copy->AddressOfElement(i, target_ptr_size_));
2789     CopyAndFixupPointer(address, method);
2790     DCHECK_EQ(copy->Get(i, target_ptr_size_), NativeLocationInImage(method));
2791   }
2792 }
2793 
CopyAndFixupImtConflictTable(ImtConflictTable * orig,ImtConflictTable * copy)2794 void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) {
2795   const size_t count = orig->NumEntries(target_ptr_size_);
2796   for (size_t i = 0; i < count; ++i) {
2797     ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_);
2798     ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_);
2799     CopyAndFixupPointer(copy->AddressOfInterfaceMethod(i, target_ptr_size_), interface_method);
2800     CopyAndFixupPointer(
2801         copy->AddressOfImplementationMethod(i, target_ptr_size_), implementation_method);
2802     DCHECK_EQ(copy->GetInterfaceMethod(i, target_ptr_size_),
2803               NativeLocationInImage(interface_method));
2804     DCHECK_EQ(copy->GetImplementationMethod(i, target_ptr_size_),
2805               NativeLocationInImage(implementation_method));
2806   }
2807 }
2808 
CopyAndFixupNativeData(size_t oat_index)2809 void ImageWriter::CopyAndFixupNativeData(size_t oat_index) {
2810   const ImageInfo& image_info = GetImageInfo(oat_index);
2811   // Copy ArtFields and methods to their locations and update the array for convenience.
2812   for (auto& pair : native_object_relocations_) {
2813     NativeObjectRelocation& relocation = pair.second;
2814     // Only work with fields and methods that are in the current oat file.
2815     if (relocation.oat_index != oat_index) {
2816       continue;
2817     }
2818     auto* dest = image_info.image_.Begin() + relocation.offset;
2819     DCHECK_GE(dest, image_info.image_.Begin() + image_info.image_end_);
2820     DCHECK(!IsInBootImage(pair.first));
2821     switch (relocation.type) {
2822       case NativeObjectRelocationType::kArtField: {
2823         memcpy(dest, pair.first, sizeof(ArtField));
2824         CopyAndFixupReference(
2825             reinterpret_cast<ArtField*>(dest)->GetDeclaringClassAddressWithoutBarrier(),
2826             reinterpret_cast<ArtField*>(pair.first)->GetDeclaringClass());
2827         break;
2828       }
2829       case NativeObjectRelocationType::kRuntimeMethod:
2830       case NativeObjectRelocationType::kArtMethodClean:
2831       case NativeObjectRelocationType::kArtMethodDirty: {
2832         CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first),
2833                            reinterpret_cast<ArtMethod*>(dest),
2834                            oat_index);
2835         break;
2836       }
2837       // For arrays, copy just the header since the elements will get copied by their corresponding
2838       // relocations.
2839       case NativeObjectRelocationType::kArtFieldArray: {
2840         memcpy(dest, pair.first, LengthPrefixedArray<ArtField>::ComputeSize(0));
2841         break;
2842       }
2843       case NativeObjectRelocationType::kArtMethodArrayClean:
2844       case NativeObjectRelocationType::kArtMethodArrayDirty: {
2845         size_t size = ArtMethod::Size(target_ptr_size_);
2846         size_t alignment = ArtMethod::Alignment(target_ptr_size_);
2847         memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment));
2848         // Clear padding to avoid non-deterministic data in the image.
2849         // Historical note: We also did that to placate Valgrind.
2850         reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment);
2851         break;
2852       }
2853       case NativeObjectRelocationType::kDexCacheArray:
2854         // Nothing to copy here, everything is done in FixupDexCache().
2855         break;
2856       case NativeObjectRelocationType::kIMTable: {
2857         ImTable* orig_imt = reinterpret_cast<ImTable*>(pair.first);
2858         ImTable* dest_imt = reinterpret_cast<ImTable*>(dest);
2859         CopyAndFixupImTable(orig_imt, dest_imt);
2860         break;
2861       }
2862       case NativeObjectRelocationType::kIMTConflictTable: {
2863         auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first);
2864         CopyAndFixupImtConflictTable(
2865             orig_table,
2866             new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_));
2867         break;
2868       }
2869       case NativeObjectRelocationType::kGcRootPointer: {
2870         auto* orig_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(pair.first);
2871         auto* dest_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(dest);
2872         CopyAndFixupReference(dest_pointer->AddressWithoutBarrier(), orig_pointer->Read());
2873         break;
2874       }
2875     }
2876   }
2877   // Fixup the image method roots.
2878   auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin());
2879   for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) {
2880     ArtMethod* method = image_methods_[i];
2881     CHECK(method != nullptr);
2882     CopyAndFixupPointer(
2883         reinterpret_cast<void**>(&image_header->image_methods_[i]), method, PointerSize::k32);
2884   }
2885   FixupRootVisitor root_visitor(this);
2886 
2887   // Write the intern table into the image.
2888   if (image_info.intern_table_bytes_ > 0) {
2889     const ImageSection& intern_table_section = image_header->GetInternedStringsSection();
2890     InternTable* const intern_table = image_info.intern_table_.get();
2891     uint8_t* const intern_table_memory_ptr =
2892         image_info.image_.Begin() + intern_table_section.Offset();
2893     const size_t intern_table_bytes = intern_table->WriteToMemory(intern_table_memory_ptr);
2894     CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_);
2895     // Fixup the pointers in the newly written intern table to contain image addresses.
2896     InternTable temp_intern_table;
2897     // Note that we require that ReadFromMemory does not make an internal copy of the elements so
2898     // that the VisitRoots() will update the memory directly rather than the copies.
2899     // This also relies on visit roots not doing any verification which could fail after we update
2900     // the roots to be the image addresses.
2901     temp_intern_table.AddTableFromMemory(intern_table_memory_ptr,
2902                                          VoidFunctor(),
2903                                          /*is_boot_image=*/ false);
2904     CHECK_EQ(temp_intern_table.Size(), intern_table->Size());
2905     temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots);
2906     // Record relocations. (The root visitor does not get to see the slot addresses.)
2907     MutexLock lock(Thread::Current(), *Locks::intern_table_lock_);
2908     DCHECK(!temp_intern_table.strong_interns_.tables_.empty());
2909     DCHECK(!temp_intern_table.strong_interns_.tables_[0].Empty());  // Inserted at the beginning.
2910   }
2911   // Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple
2912   // class loaders. Writing multiple class tables into the image is currently unsupported.
2913   if (image_info.class_table_bytes_ > 0u) {
2914     const ImageSection& class_table_section = image_header->GetClassTableSection();
2915     uint8_t* const class_table_memory_ptr =
2916         image_info.image_.Begin() + class_table_section.Offset();
2917     Thread* self = Thread::Current();
2918     ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
2919 
2920     ClassTable* table = image_info.class_table_.get();
2921     CHECK(table != nullptr);
2922     const size_t class_table_bytes = table->WriteToMemory(class_table_memory_ptr);
2923     CHECK_EQ(class_table_bytes, image_info.class_table_bytes_);
2924     // Fixup the pointers in the newly written class table to contain image addresses. See
2925     // above comment for intern tables.
2926     ClassTable temp_class_table;
2927     temp_class_table.ReadFromMemory(class_table_memory_ptr);
2928     CHECK_EQ(temp_class_table.NumReferencedZygoteClasses(),
2929              table->NumReferencedNonZygoteClasses() + table->NumReferencedZygoteClasses());
2930     UnbufferedRootVisitor visitor(&root_visitor, RootInfo(kRootUnknown));
2931     temp_class_table.VisitRoots(visitor);
2932     // Record relocations. (The root visitor does not get to see the slot addresses.)
2933     // Note that the low bits in the slots contain bits of the descriptors' hash codes
2934     // but the relocation works fine for these "adjusted" references.
2935     ReaderMutexLock lock(self, temp_class_table.lock_);
2936     DCHECK(!temp_class_table.classes_.empty());
2937     DCHECK(!temp_class_table.classes_[0].empty());  // The ClassSet was inserted at the beginning.
2938   }
2939 }
2940 
FixupPointerArray(mirror::Object * dst,mirror::PointerArray * arr,Bin array_type)2941 void ImageWriter::FixupPointerArray(mirror::Object* dst,
2942                                     mirror::PointerArray* arr,
2943                                     Bin array_type) {
2944   CHECK(arr->IsIntArray() || arr->IsLongArray()) << arr->GetClass()->PrettyClass() << " " << arr;
2945   // Fixup int and long pointers for the ArtMethod or ArtField arrays.
2946   const size_t num_elements = arr->GetLength();
2947   CopyAndFixupReference(
2948       dst->GetFieldObjectReferenceAddr<kVerifyNone>(Class::ClassOffset()), arr->GetClass());
2949   auto* dest_array = down_cast<mirror::PointerArray*>(dst);
2950   for (size_t i = 0, count = num_elements; i < count; ++i) {
2951     void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_);
2952     if (kIsDebugBuild && elem != nullptr && !IsInBootImage(elem)) {
2953       auto it = native_object_relocations_.find(elem);
2954       if (UNLIKELY(it == native_object_relocations_.end())) {
2955         if (it->second.IsArtMethodRelocation()) {
2956           auto* method = reinterpret_cast<ArtMethod*>(elem);
2957           LOG(FATAL) << "No relocation entry for ArtMethod " << method->PrettyMethod() << " @ "
2958                      << method << " idx=" << i << "/" << num_elements << " with declaring class "
2959                      << Class::PrettyClass(method->GetDeclaringClass());
2960         } else {
2961           CHECK_EQ(array_type, Bin::kArtField);
2962           auto* field = reinterpret_cast<ArtField*>(elem);
2963           LOG(FATAL) << "No relocation entry for ArtField " << field->PrettyField() << " @ "
2964               << field << " idx=" << i << "/" << num_elements << " with declaring class "
2965               << Class::PrettyClass(field->GetDeclaringClass());
2966         }
2967         UNREACHABLE();
2968       }
2969     }
2970     CopyAndFixupPointer(dest_array->ElementAddress(i, target_ptr_size_), elem);
2971   }
2972 }
2973 
CopyAndFixupObject(Object * obj)2974 void ImageWriter::CopyAndFixupObject(Object* obj) {
2975   if (!IsImageObject(obj)) {
2976     return;
2977   }
2978   size_t offset = GetImageOffset(obj);
2979   size_t oat_index = GetOatIndex(obj);
2980   ImageInfo& image_info = GetImageInfo(oat_index);
2981   auto* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + offset);
2982   DCHECK_LT(offset, image_info.image_end_);
2983   const auto* src = reinterpret_cast<const uint8_t*>(obj);
2984 
2985   image_info.image_bitmap_->Set(dst);  // Mark the obj as live.
2986 
2987   const size_t n = obj->SizeOf();
2988 
2989   if (kIsDebugBuild && region_size_ != 0u) {
2990     const size_t offset_after_header = offset - sizeof(ImageHeader);
2991     const size_t next_region = RoundUp(offset_after_header, region_size_);
2992     if (offset_after_header != next_region) {
2993       // If the object is not on a region bondary, it must not be cross region.
2994       CHECK_LT(offset_after_header, next_region)
2995           << "offset_after_header=" << offset_after_header << " size=" << n;
2996       CHECK_LE(offset_after_header + n, next_region)
2997           << "offset_after_header=" << offset_after_header << " size=" << n;
2998     }
2999   }
3000   DCHECK_LE(offset + n, image_info.image_.Size());
3001   memcpy(dst, src, n);
3002 
3003   // Write in a hash code of objects which have inflated monitors or a hash code in their monitor
3004   // word.
3005   const auto it = saved_hashcode_map_.find(obj);
3006   dst->SetLockWord(it != saved_hashcode_map_.end() ?
3007       LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false);
3008   if (kUseBakerReadBarrier && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects) {
3009     // Treat all of the objects in the image as marked to avoid unnecessary dirty pages. This is
3010     // safe since we mark all of the objects that may reference non immune objects as gray.
3011     CHECK(dst->AtomicSetMarkBit(0, 1));
3012   }
3013   FixupObject(obj, dst);
3014 }
3015 
3016 // Rewrite all the references in the copied object to point to their image address equivalent
3017 class ImageWriter::FixupVisitor {
3018  public:
FixupVisitor(ImageWriter * image_writer,Object * copy)3019   FixupVisitor(ImageWriter* image_writer, Object* copy)
3020       : image_writer_(image_writer), copy_(copy) {
3021   }
3022 
3023   // Ignore class roots since we don't have a way to map them to the destination. These are handled
3024   // with other logic.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const3025   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
3026       const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const3027   void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
3028 
operator ()(ObjPtr<Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const3029   void operator()(ObjPtr<Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
3030       REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
3031     ObjPtr<Object> ref = obj->GetFieldObject<Object, kVerifyNone>(offset);
3032     // Copy the reference and record the fixup if necessary.
3033     image_writer_->CopyAndFixupReference(
3034         copy_->GetFieldObjectReferenceAddr<kVerifyNone>(offset), ref);
3035   }
3036 
3037   // java.lang.ref.Reference visitor.
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const3038   void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
3039                   ObjPtr<mirror::Reference> ref) const
3040       REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
3041     operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
3042   }
3043 
3044  protected:
3045   ImageWriter* const image_writer_;
3046   mirror::Object* const copy_;
3047 };
3048 
CopyAndFixupObjects()3049 void ImageWriter::CopyAndFixupObjects() {
3050   auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
3051     DCHECK(obj != nullptr);
3052     CopyAndFixupObject(obj);
3053   };
3054   Runtime::Current()->GetHeap()->VisitObjects(visitor);
3055   // Copy the padding objects since they are required for in order traversal of the image space.
3056   for (const ImageInfo& image_info : image_infos_) {
3057     for (const size_t offset : image_info.padding_object_offsets_) {
3058       auto* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + offset);
3059       dst->SetClass<kVerifyNone>(GetImageAddress(GetClassRoot<mirror::Object>().Ptr()));
3060       dst->SetLockWord<kVerifyNone>(LockWord::Default(), /*as_volatile=*/ false);
3061       image_info.image_bitmap_->Set(dst);  // Mark the obj as live.
3062     }
3063   }
3064   // We no longer need the hashcode map, values have already been copied to target objects.
3065   saved_hashcode_map_.clear();
3066 }
3067 
3068 class ImageWriter::FixupClassVisitor final : public FixupVisitor {
3069  public:
FixupClassVisitor(ImageWriter * image_writer,Object * copy)3070   FixupClassVisitor(ImageWriter* image_writer, Object* copy)
3071       : FixupVisitor(image_writer, copy) {}
3072 
operator ()(ObjPtr<Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const3073   void operator()(ObjPtr<Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
3074       REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
3075     DCHECK(obj->IsClass());
3076     FixupVisitor::operator()(obj, offset, /*is_static*/false);
3077   }
3078 
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const3079   void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
3080                   ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const
3081       REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
3082     LOG(FATAL) << "Reference not expected here.";
3083   }
3084 };
3085 
GetNativeRelocation(void * obj)3086 ImageWriter::NativeObjectRelocation ImageWriter::GetNativeRelocation(void* obj) {
3087   DCHECK(obj != nullptr);
3088   DCHECK(!IsInBootImage(obj));
3089   auto it = native_object_relocations_.find(obj);
3090   CHECK(it != native_object_relocations_.end()) << obj << " spaces "
3091       << Runtime::Current()->GetHeap()->DumpSpaces();
3092   return it->second;
3093 }
3094 
3095 template <typename T>
PrettyPrint(T * ptr)3096 std::string PrettyPrint(T* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
3097   std::ostringstream oss;
3098   oss << ptr;
3099   return oss.str();
3100 }
3101 
3102 template <>
PrettyPrint(ArtMethod * method)3103 std::string PrettyPrint(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) {
3104   return ArtMethod::PrettyMethod(method);
3105 }
3106 
3107 template <typename T>
NativeLocationInImage(T * obj)3108 T* ImageWriter::NativeLocationInImage(T* obj) {
3109   if (obj == nullptr || IsInBootImage(obj)) {
3110     return obj;
3111   } else {
3112     NativeObjectRelocation relocation = GetNativeRelocation(obj);
3113     const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
3114     return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset);
3115   }
3116 }
3117 
3118 template <typename T>
NativeCopyLocation(T * obj)3119 T* ImageWriter::NativeCopyLocation(T* obj) {
3120   const NativeObjectRelocation relocation = GetNativeRelocation(obj);
3121   const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
3122   return reinterpret_cast<T*>(image_info.image_.Begin() + relocation.offset);
3123 }
3124 
3125 class ImageWriter::NativeLocationVisitor {
3126  public:
NativeLocationVisitor(ImageWriter * image_writer)3127   explicit NativeLocationVisitor(ImageWriter* image_writer)
3128       : image_writer_(image_writer) {}
3129 
3130   template <typename T>
operator ()(T * ptr,void ** dest_addr) const3131   T* operator()(T* ptr, void** dest_addr) const REQUIRES_SHARED(Locks::mutator_lock_) {
3132     if (ptr != nullptr) {
3133       image_writer_->CopyAndFixupPointer(dest_addr, ptr);
3134     }
3135     // TODO: The caller shall overwrite the value stored by CopyAndFixupPointer()
3136     // with the value we return here. We should try to avoid the duplicate work.
3137     return image_writer_->NativeLocationInImage(ptr);
3138   }
3139 
3140  private:
3141   ImageWriter* const image_writer_;
3142 };
3143 
FixupClass(mirror::Class * orig,mirror::Class * copy)3144 void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) {
3145   orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this));
3146   FixupClassVisitor visitor(this, copy);
3147   ObjPtr<mirror::Object>(orig)->VisitReferences(visitor, visitor);
3148 
3149   if (kBitstringSubtypeCheckEnabled && compiler_options_.IsAppImage()) {
3150     // When we call SubtypeCheck::EnsureInitialize, it Assigns new bitstring
3151     // values to the parent of that class.
3152     //
3153     // Every time this happens, the parent class has to mutate to increment
3154     // the "Next" value.
3155     //
3156     // If any of these parents are in the boot image, the changes [in the parents]
3157     // would be lost when the app image is reloaded.
3158     //
3159     // To prevent newly loaded classes (not in the app image) from being reassigned
3160     // the same bitstring value as an existing app image class, uninitialize
3161     // all the classes in the app image.
3162     //
3163     // On startup, the class linker will then re-initialize all the app
3164     // image bitstrings. See also ClassLinker::AddImageSpace.
3165     MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_);
3166     // Lock every time to prevent a dcheck failure when we suspend with the lock held.
3167     SubtypeCheck<mirror::Class*>::ForceUninitialize(copy);
3168   }
3169 
3170   // Remove the clinitThreadId. This is required for image determinism.
3171   copy->SetClinitThreadId(static_cast<pid_t>(0));
3172 }
3173 
FixupObject(Object * orig,Object * copy)3174 void ImageWriter::FixupObject(Object* orig, Object* copy) {
3175   DCHECK(orig != nullptr);
3176   DCHECK(copy != nullptr);
3177   if (kUseBakerReadBarrier) {
3178     orig->AssertReadBarrierState();
3179   }
3180   if (orig->IsIntArray() || orig->IsLongArray()) {
3181     // Is this a native pointer array?
3182     auto it = pointer_arrays_.find(down_cast<mirror::PointerArray*>(orig));
3183     if (it != pointer_arrays_.end()) {
3184       // Should only need to fixup every pointer array exactly once.
3185       FixupPointerArray(copy, down_cast<mirror::PointerArray*>(orig), it->second);
3186       pointer_arrays_.erase(it);
3187       return;
3188     }
3189   }
3190   if (orig->IsClass()) {
3191     FixupClass(orig->AsClass<kVerifyNone>().Ptr(), down_cast<mirror::Class*>(copy));
3192   } else {
3193     ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
3194         Runtime::Current()->GetClassLinker()->GetClassRoots();
3195     ObjPtr<mirror::Class> klass = orig->GetClass();
3196     if (klass == GetClassRoot<mirror::Method>(class_roots) ||
3197         klass == GetClassRoot<mirror::Constructor>(class_roots)) {
3198       // Need to go update the ArtMethod.
3199       auto* dest = down_cast<mirror::Executable*>(copy);
3200       auto* src = down_cast<mirror::Executable*>(orig);
3201       ArtMethod* src_method = src->GetArtMethod();
3202       CopyAndFixupPointer(dest, mirror::Executable::ArtMethodOffset(), src_method);
3203     } else if (klass == GetClassRoot<mirror::DexCache>(class_roots)) {
3204       FixupDexCache(down_cast<mirror::DexCache*>(orig), down_cast<mirror::DexCache*>(copy));
3205     } else if (klass->IsClassLoaderClass()) {
3206       mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy);
3207       // If src is a ClassLoader, set the class table to null so that it gets recreated by the
3208       // ClassLoader.
3209       copy_loader->SetClassTable(nullptr);
3210       // Also set allocator to null to be safe. The allocator is created when we create the class
3211       // table. We also never expect to unload things in the image since they are held live as
3212       // roots.
3213       copy_loader->SetAllocator(nullptr);
3214     }
3215     FixupVisitor visitor(this, copy);
3216     orig->VisitReferences(visitor, visitor);
3217   }
3218 }
3219 
3220 template <typename T>
FixupDexCacheArrayEntry(std::atomic<mirror::DexCachePair<T>> * orig_array,std::atomic<mirror::DexCachePair<T>> * new_array,uint32_t array_index)3221 void ImageWriter::FixupDexCacheArrayEntry(std::atomic<mirror::DexCachePair<T>>* orig_array,
3222                                           std::atomic<mirror::DexCachePair<T>>* new_array,
3223                                           uint32_t array_index) {
3224   static_assert(sizeof(std::atomic<mirror::DexCachePair<T>>) == sizeof(mirror::DexCachePair<T>),
3225                 "Size check for removing std::atomic<>.");
3226   mirror::DexCachePair<T>* orig_pair =
3227       reinterpret_cast<mirror::DexCachePair<T>*>(&orig_array[array_index]);
3228   mirror::DexCachePair<T>* new_pair =
3229       reinterpret_cast<mirror::DexCachePair<T>*>(&new_array[array_index]);
3230   CopyAndFixupReference(
3231       new_pair->object.AddressWithoutBarrier(), orig_pair->object.Read());
3232   new_pair->index = orig_pair->index;
3233 }
3234 
3235 template <typename T>
FixupDexCacheArrayEntry(std::atomic<mirror::NativeDexCachePair<T>> * orig_array,std::atomic<mirror::NativeDexCachePair<T>> * new_array,uint32_t array_index)3236 void ImageWriter::FixupDexCacheArrayEntry(std::atomic<mirror::NativeDexCachePair<T>>* orig_array,
3237                                           std::atomic<mirror::NativeDexCachePair<T>>* new_array,
3238                                           uint32_t array_index) {
3239   static_assert(
3240       sizeof(std::atomic<mirror::NativeDexCachePair<T>>) == sizeof(mirror::NativeDexCachePair<T>),
3241       "Size check for removing std::atomic<>.");
3242   if (target_ptr_size_ == PointerSize::k64) {
3243     DexCache::ConversionPair64* orig_pair =
3244         reinterpret_cast<DexCache::ConversionPair64*>(orig_array) + array_index;
3245     DexCache::ConversionPair64* new_pair =
3246         reinterpret_cast<DexCache::ConversionPair64*>(new_array) + array_index;
3247     *new_pair = *orig_pair;  // Copy original value and index.
3248     if (orig_pair->first != 0u) {
3249       CopyAndFixupPointer(
3250           reinterpret_cast<void**>(&new_pair->first), reinterpret_cast64<void*>(orig_pair->first));
3251     }
3252   } else {
3253     DexCache::ConversionPair32* orig_pair =
3254         reinterpret_cast<DexCache::ConversionPair32*>(orig_array) + array_index;
3255     DexCache::ConversionPair32* new_pair =
3256         reinterpret_cast<DexCache::ConversionPair32*>(new_array) + array_index;
3257     *new_pair = *orig_pair;  // Copy original value and index.
3258     if (orig_pair->first != 0u) {
3259       CopyAndFixupPointer(
3260           reinterpret_cast<void**>(&new_pair->first), reinterpret_cast32<void*>(orig_pair->first));
3261     }
3262   }
3263 }
3264 
FixupDexCacheArrayEntry(GcRoot<mirror::CallSite> * orig_array,GcRoot<mirror::CallSite> * new_array,uint32_t array_index)3265 void ImageWriter::FixupDexCacheArrayEntry(GcRoot<mirror::CallSite>* orig_array,
3266                                           GcRoot<mirror::CallSite>* new_array,
3267                                           uint32_t array_index) {
3268   CopyAndFixupReference(
3269       new_array[array_index].AddressWithoutBarrier(), orig_array[array_index].Read());
3270 }
3271 
3272 template <typename EntryType>
FixupDexCacheArray(DexCache * orig_dex_cache,DexCache * copy_dex_cache,MemberOffset array_offset,uint32_t size)3273 void ImageWriter::FixupDexCacheArray(DexCache* orig_dex_cache,
3274                                      DexCache* copy_dex_cache,
3275                                      MemberOffset array_offset,
3276                                      uint32_t size) {
3277   EntryType* orig_array = orig_dex_cache->GetFieldPtr64<EntryType*>(array_offset);
3278   DCHECK_EQ(orig_array != nullptr, size != 0u);
3279   if (orig_array != nullptr) {
3280     // Though the DexCache array fields are usually treated as native pointers, we clear
3281     // the top 32 bits for 32-bit targets.
3282     CopyAndFixupPointer(copy_dex_cache, array_offset, orig_array, PointerSize::k64);
3283     EntryType* new_array = NativeCopyLocation(orig_array);
3284     for (uint32_t i = 0; i != size; ++i) {
3285       FixupDexCacheArrayEntry(orig_array, new_array, i);
3286     }
3287   }
3288 }
3289 
FixupDexCache(DexCache * orig_dex_cache,DexCache * copy_dex_cache)3290 void ImageWriter::FixupDexCache(DexCache* orig_dex_cache, DexCache* copy_dex_cache) {
3291   FixupDexCacheArray<mirror::StringDexCacheType>(orig_dex_cache,
3292                                                  copy_dex_cache,
3293                                                  DexCache::StringsOffset(),
3294                                                  orig_dex_cache->NumStrings());
3295   FixupDexCacheArray<mirror::TypeDexCacheType>(orig_dex_cache,
3296                                                copy_dex_cache,
3297                                                DexCache::ResolvedTypesOffset(),
3298                                                orig_dex_cache->NumResolvedTypes());
3299   FixupDexCacheArray<mirror::MethodDexCacheType>(orig_dex_cache,
3300                                                  copy_dex_cache,
3301                                                  DexCache::ResolvedMethodsOffset(),
3302                                                  orig_dex_cache->NumResolvedMethods());
3303   FixupDexCacheArray<mirror::FieldDexCacheType>(orig_dex_cache,
3304                                                 copy_dex_cache,
3305                                                 DexCache::ResolvedFieldsOffset(),
3306                                                 orig_dex_cache->NumResolvedFields());
3307   FixupDexCacheArray<mirror::MethodTypeDexCacheType>(orig_dex_cache,
3308                                                      copy_dex_cache,
3309                                                      DexCache::ResolvedMethodTypesOffset(),
3310                                                      orig_dex_cache->NumResolvedMethodTypes());
3311   FixupDexCacheArray<GcRoot<mirror::CallSite>>(orig_dex_cache,
3312                                                copy_dex_cache,
3313                                                DexCache::ResolvedCallSitesOffset(),
3314                                                orig_dex_cache->NumResolvedCallSites());
3315   if (orig_dex_cache->GetPreResolvedStrings() != nullptr) {
3316     CopyAndFixupPointer(copy_dex_cache,
3317                         DexCache::PreResolvedStringsOffset(),
3318                         orig_dex_cache->GetPreResolvedStrings(),
3319                         PointerSize::k64);
3320   }
3321 
3322   // Remove the DexFile pointers. They will be fixed up when the runtime loads the oat file. Leaving
3323   // compiler pointers in here will make the output non-deterministic.
3324   copy_dex_cache->SetDexFile(nullptr);
3325 }
3326 
GetOatAddress(StubType type) const3327 const uint8_t* ImageWriter::GetOatAddress(StubType type) const {
3328   DCHECK_LE(type, StubType::kLast);
3329   // If we are compiling an app image, we need to use the stubs of the boot image.
3330   if (!compiler_options_.IsBootImage()) {
3331     // Use the current image pointers.
3332     const std::vector<gc::space::ImageSpace*>& image_spaces =
3333         Runtime::Current()->GetHeap()->GetBootImageSpaces();
3334     DCHECK(!image_spaces.empty());
3335     const OatFile* oat_file = image_spaces[0]->GetOatFile();
3336     CHECK(oat_file != nullptr);
3337     const OatHeader& header = oat_file->GetOatHeader();
3338     switch (type) {
3339       // TODO: We could maybe clean this up if we stored them in an array in the oat header.
3340       case StubType::kQuickGenericJNITrampoline:
3341         return static_cast<const uint8_t*>(header.GetQuickGenericJniTrampoline());
3342       case StubType::kJNIDlsymLookup:
3343         return static_cast<const uint8_t*>(header.GetJniDlsymLookup());
3344       case StubType::kQuickIMTConflictTrampoline:
3345         return static_cast<const uint8_t*>(header.GetQuickImtConflictTrampoline());
3346       case StubType::kQuickResolutionTrampoline:
3347         return static_cast<const uint8_t*>(header.GetQuickResolutionTrampoline());
3348       case StubType::kQuickToInterpreterBridge:
3349         return static_cast<const uint8_t*>(header.GetQuickToInterpreterBridge());
3350       default:
3351         UNREACHABLE();
3352     }
3353   }
3354   const ImageInfo& primary_image_info = GetImageInfo(0);
3355   return GetOatAddressForOffset(primary_image_info.GetStubOffset(type), primary_image_info);
3356 }
3357 
GetQuickCode(ArtMethod * method,const ImageInfo & image_info,bool * quick_is_interpreted)3358 const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method,
3359                                          const ImageInfo& image_info,
3360                                          bool* quick_is_interpreted) {
3361   DCHECK(!method->IsResolutionMethod()) << method->PrettyMethod();
3362   DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << method->PrettyMethod();
3363   DCHECK(!method->IsImtUnimplementedMethod()) << method->PrettyMethod();
3364   DCHECK(method->IsInvokable()) << method->PrettyMethod();
3365   DCHECK(!IsInBootImage(method)) << method->PrettyMethod();
3366 
3367   // Use original code if it exists. Otherwise, set the code pointer to the resolution
3368   // trampoline.
3369 
3370   // Quick entrypoint:
3371   const void* quick_oat_entry_point =
3372       method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_);
3373   const uint8_t* quick_code;
3374 
3375   if (UNLIKELY(IsInBootImage(method->GetDeclaringClass().Ptr()))) {
3376     DCHECK(method->IsCopied());
3377     // If the code is not in the oat file corresponding to this image (e.g. default methods)
3378     quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point);
3379   } else {
3380     uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point);
3381     quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info);
3382   }
3383 
3384   *quick_is_interpreted = false;
3385   if (quick_code != nullptr && (!method->IsStatic() || method->IsConstructor() ||
3386       method->GetDeclaringClass()->IsInitialized())) {
3387     // We have code for a non-static or initialized method, just use the code.
3388   } else if (quick_code == nullptr && method->IsNative() &&
3389       (!method->IsStatic() || method->GetDeclaringClass()->IsInitialized())) {
3390     // Non-static or initialized native method missing compiled code, use generic JNI version.
3391     quick_code = GetOatAddress(StubType::kQuickGenericJNITrampoline);
3392   } else if (quick_code == nullptr && !method->IsNative()) {
3393     // We don't have code at all for a non-native method, use the interpreter.
3394     quick_code = GetOatAddress(StubType::kQuickToInterpreterBridge);
3395     *quick_is_interpreted = true;
3396   } else {
3397     CHECK(!method->GetDeclaringClass()->IsInitialized());
3398     // We have code for a static method, but need to go through the resolution stub for class
3399     // initialization.
3400     quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
3401   }
3402   if (!IsInBootOatFile(quick_code)) {
3403     // DCHECK_GE(quick_code, oat_data_begin_);
3404   }
3405   return quick_code;
3406 }
3407 
CopyAndFixupMethod(ArtMethod * orig,ArtMethod * copy,size_t oat_index)3408 void ImageWriter::CopyAndFixupMethod(ArtMethod* orig,
3409                                      ArtMethod* copy,
3410                                      size_t oat_index) {
3411   if (orig->IsAbstract()) {
3412     // Ignore the single-implementation info for abstract method.
3413     // Do this on orig instead of copy, otherwise there is a crash due to methods
3414     // are copied before classes.
3415     // TODO: handle fixup of single-implementation method for abstract method.
3416     orig->SetHasSingleImplementation(false);
3417     orig->SetSingleImplementation(
3418         nullptr, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
3419   }
3420 
3421   memcpy(copy, orig, ArtMethod::Size(target_ptr_size_));
3422 
3423   CopyAndFixupReference(
3424       copy->GetDeclaringClassAddressWithoutBarrier(), orig->GetDeclaringClassUnchecked());
3425 
3426   // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
3427   // oat_begin_
3428 
3429   // The resolution method has a special trampoline to call.
3430   Runtime* runtime = Runtime::Current();
3431   const void* quick_code;
3432   if (orig->IsRuntimeMethod()) {
3433     ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_);
3434     if (orig_table != nullptr) {
3435       // Special IMT conflict method, normal IMT conflict method or unimplemented IMT method.
3436       quick_code = GetOatAddress(StubType::kQuickIMTConflictTrampoline);
3437       CopyAndFixupPointer(copy, ArtMethod::DataOffset(target_ptr_size_), orig_table);
3438     } else if (UNLIKELY(orig == runtime->GetResolutionMethod())) {
3439       quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
3440     } else {
3441       bool found_one = false;
3442       for (size_t i = 0; i < static_cast<size_t>(CalleeSaveType::kLastCalleeSaveType); ++i) {
3443         auto idx = static_cast<CalleeSaveType>(i);
3444         if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) {
3445           found_one = true;
3446           break;
3447         }
3448       }
3449       CHECK(found_one) << "Expected to find callee save method but got " << orig->PrettyMethod();
3450       CHECK(copy->IsRuntimeMethod());
3451       CHECK(copy->GetEntryPointFromQuickCompiledCode() == nullptr);
3452       quick_code = nullptr;
3453     }
3454   } else {
3455     // We assume all methods have code. If they don't currently then we set them to the use the
3456     // resolution trampoline. Abstract methods never have code and so we need to make sure their
3457     // use results in an AbstractMethodError. We use the interpreter to achieve this.
3458     if (UNLIKELY(!orig->IsInvokable())) {
3459       quick_code = GetOatAddress(StubType::kQuickToInterpreterBridge);
3460     } else {
3461       bool quick_is_interpreted;
3462       const ImageInfo& image_info = image_infos_[oat_index];
3463       quick_code = GetQuickCode(orig, image_info, &quick_is_interpreted);
3464 
3465       // JNI entrypoint:
3466       if (orig->IsNative()) {
3467         // The native method's pointer is set to a stub to lookup via dlsym.
3468         // Note this is not the code_ pointer, that is handled above.
3469         copy->SetEntryPointFromJniPtrSize(
3470             GetOatAddress(StubType::kJNIDlsymLookup), target_ptr_size_);
3471       } else {
3472         CHECK(copy->GetDataPtrSize(target_ptr_size_) == nullptr);
3473       }
3474     }
3475   }
3476   if (quick_code != nullptr) {
3477     copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_);
3478   }
3479 }
3480 
GetBinSizeSum(Bin up_to) const3481 size_t ImageWriter::ImageInfo::GetBinSizeSum(Bin up_to) const {
3482   DCHECK_LE(static_cast<size_t>(up_to), kNumberOfBins);
3483   return std::accumulate(&bin_slot_sizes_[0],
3484                          &bin_slot_sizes_[0] + static_cast<size_t>(up_to),
3485                          /*init*/ static_cast<size_t>(0));
3486 }
3487 
BinSlot(uint32_t lockword)3488 ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) {
3489   // These values may need to get updated if more bins are added to the enum Bin
3490   static_assert(kBinBits == 3, "wrong number of bin bits");
3491   static_assert(kBinShift == 27, "wrong number of shift");
3492   static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes");
3493 
3494   DCHECK_LT(GetBin(), Bin::kMirrorCount);
3495   DCHECK_ALIGNED(GetIndex(), kObjectAlignment);
3496 }
3497 
BinSlot(Bin bin,uint32_t index)3498 ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index)
3499     : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) {
3500   DCHECK_EQ(index, GetIndex());
3501 }
3502 
GetBin() const3503 ImageWriter::Bin ImageWriter::BinSlot::GetBin() const {
3504   return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift);
3505 }
3506 
GetIndex() const3507 uint32_t ImageWriter::BinSlot::GetIndex() const {
3508   return lockword_ & ~kBinMask;
3509 }
3510 
BinTypeForNativeRelocationType(NativeObjectRelocationType type)3511 ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) {
3512   switch (type) {
3513     case NativeObjectRelocationType::kArtField:
3514     case NativeObjectRelocationType::kArtFieldArray:
3515       return Bin::kArtField;
3516     case NativeObjectRelocationType::kArtMethodClean:
3517     case NativeObjectRelocationType::kArtMethodArrayClean:
3518       return Bin::kArtMethodClean;
3519     case NativeObjectRelocationType::kArtMethodDirty:
3520     case NativeObjectRelocationType::kArtMethodArrayDirty:
3521       return Bin::kArtMethodDirty;
3522     case NativeObjectRelocationType::kDexCacheArray:
3523       return Bin::kDexCacheArray;
3524     case NativeObjectRelocationType::kRuntimeMethod:
3525       return Bin::kRuntimeMethod;
3526     case NativeObjectRelocationType::kIMTable:
3527       return Bin::kImTable;
3528     case NativeObjectRelocationType::kIMTConflictTable:
3529       return Bin::kIMTConflictTable;
3530     case NativeObjectRelocationType::kGcRootPointer:
3531       return Bin::kMetadata;
3532   }
3533   UNREACHABLE();
3534 }
3535 
GetOatIndex(mirror::Object * obj) const3536 size_t ImageWriter::GetOatIndex(mirror::Object* obj) const {
3537   if (!IsMultiImage()) {
3538     return GetDefaultOatIndex();
3539   }
3540   auto it = oat_index_map_.find(obj);
3541   DCHECK(it != oat_index_map_.end()) << obj;
3542   return it->second;
3543 }
3544 
GetOatIndexForDexFile(const DexFile * dex_file) const3545 size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const {
3546   if (!IsMultiImage()) {
3547     return GetDefaultOatIndex();
3548   }
3549   auto it = dex_file_oat_index_map_.find(dex_file);
3550   DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
3551   return it->second;
3552 }
3553 
GetOatIndexForDexCache(ObjPtr<mirror::DexCache> dex_cache) const3554 size_t ImageWriter::GetOatIndexForDexCache(ObjPtr<mirror::DexCache> dex_cache) const {
3555   return (dex_cache == nullptr)
3556       ? GetDefaultOatIndex()
3557       : GetOatIndexForDexFile(dex_cache->GetDexFile());
3558 }
3559 
UpdateOatFileLayout(size_t oat_index,size_t oat_loaded_size,size_t oat_data_offset,size_t oat_data_size)3560 void ImageWriter::UpdateOatFileLayout(size_t oat_index,
3561                                       size_t oat_loaded_size,
3562                                       size_t oat_data_offset,
3563                                       size_t oat_data_size) {
3564   DCHECK_GE(oat_loaded_size, oat_data_offset);
3565   DCHECK_GE(oat_loaded_size - oat_data_offset, oat_data_size);
3566 
3567   const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_;
3568   DCHECK(images_end != nullptr);  // Image space must be ready.
3569   for (const ImageInfo& info : image_infos_) {
3570     DCHECK_LE(info.image_begin_ + info.image_size_, images_end);
3571   }
3572 
3573   ImageInfo& cur_image_info = GetImageInfo(oat_index);
3574   cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_;
3575   cur_image_info.oat_loaded_size_ = oat_loaded_size;
3576   cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset;
3577   cur_image_info.oat_size_ = oat_data_size;
3578 
3579   if (compiler_options_.IsAppImage()) {
3580     CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image.";
3581     return;
3582   }
3583 
3584   // Update the oat_offset of the next image info.
3585   if (oat_index + 1u != oat_filenames_.size()) {
3586     // There is a following one.
3587     ImageInfo& next_image_info = GetImageInfo(oat_index + 1u);
3588     next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size;
3589   }
3590 }
3591 
UpdateOatFileHeader(size_t oat_index,const OatHeader & oat_header)3592 void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) {
3593   ImageInfo& cur_image_info = GetImageInfo(oat_index);
3594   cur_image_info.oat_checksum_ = oat_header.GetChecksum();
3595 
3596   if (oat_index == GetDefaultOatIndex()) {
3597     // Primary oat file, read the trampolines.
3598     cur_image_info.SetStubOffset(StubType::kJNIDlsymLookup,
3599                                  oat_header.GetJniDlsymLookupOffset());
3600     cur_image_info.SetStubOffset(StubType::kQuickGenericJNITrampoline,
3601                                  oat_header.GetQuickGenericJniTrampolineOffset());
3602     cur_image_info.SetStubOffset(StubType::kQuickIMTConflictTrampoline,
3603                                  oat_header.GetQuickImtConflictTrampolineOffset());
3604     cur_image_info.SetStubOffset(StubType::kQuickResolutionTrampoline,
3605                                  oat_header.GetQuickResolutionTrampolineOffset());
3606     cur_image_info.SetStubOffset(StubType::kQuickToInterpreterBridge,
3607                                  oat_header.GetQuickToInterpreterBridgeOffset());
3608   }
3609 }
3610 
ImageWriter(const CompilerOptions & compiler_options,uintptr_t image_begin,ImageHeader::StorageMode image_storage_mode,const std::vector<std::string> & oat_filenames,const std::unordered_map<const DexFile *,size_t> & dex_file_oat_index_map,jobject class_loader,const HashSet<std::string> * dirty_image_objects)3611 ImageWriter::ImageWriter(
3612     const CompilerOptions& compiler_options,
3613     uintptr_t image_begin,
3614     ImageHeader::StorageMode image_storage_mode,
3615     const std::vector<std::string>& oat_filenames,
3616     const std::unordered_map<const DexFile*, size_t>& dex_file_oat_index_map,
3617     jobject class_loader,
3618     const HashSet<std::string>* dirty_image_objects)
3619     : compiler_options_(compiler_options),
3620       global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)),
3621       image_objects_offset_begin_(0),
3622       target_ptr_size_(InstructionSetPointerSize(compiler_options.GetInstructionSet())),
3623       image_infos_(oat_filenames.size()),
3624       dirty_methods_(0u),
3625       clean_methods_(0u),
3626       app_class_loader_(class_loader),
3627       boot_image_live_objects_(nullptr),
3628       image_storage_mode_(image_storage_mode),
3629       oat_filenames_(oat_filenames),
3630       dex_file_oat_index_map_(dex_file_oat_index_map),
3631       dirty_image_objects_(dirty_image_objects) {
3632   DCHECK(compiler_options.IsBootImage() || compiler_options.IsAppImage());
3633   CHECK_NE(image_begin, 0U);
3634   std::fill_n(image_methods_, arraysize(image_methods_), nullptr);
3635   CHECK_EQ(compiler_options.IsBootImage(),
3636            Runtime::Current()->GetHeap()->GetBootImageSpaces().empty())
3637       << "Compiling a boot image should occur iff there are no boot image spaces loaded";
3638   if (compiler_options_.IsAppImage()) {
3639     // Make sure objects are not crossing region boundaries for app images.
3640     region_size_ = gc::space::RegionSpace::kRegionSize;
3641   }
3642 }
3643 
ImageInfo()3644 ImageWriter::ImageInfo::ImageInfo()
3645     : intern_table_(new InternTable),
3646       class_table_(new ClassTable) {}
3647 
3648 template <typename DestType>
CopyAndFixupReference(DestType * dest,ObjPtr<mirror::Object> src)3649 void ImageWriter::CopyAndFixupReference(DestType* dest, ObjPtr<mirror::Object> src) {
3650   static_assert(std::is_same<DestType, mirror::CompressedReference<mirror::Object>>::value ||
3651                     std::is_same<DestType, mirror::HeapReference<mirror::Object>>::value,
3652                 "DestType must be a Compressed-/HeapReference<Object>.");
3653   dest->Assign(GetImageAddress(src.Ptr()));
3654 }
3655 
CopyAndFixupPointer(void ** target,void * value,PointerSize pointer_size)3656 void ImageWriter::CopyAndFixupPointer(void** target, void* value, PointerSize pointer_size) {
3657   void* new_value = NativeLocationInImage(value);
3658   if (pointer_size == PointerSize::k32) {
3659     *reinterpret_cast<uint32_t*>(target) = reinterpret_cast32<uint32_t>(new_value);
3660   } else {
3661     *reinterpret_cast<uint64_t*>(target) = reinterpret_cast64<uint64_t>(new_value);
3662   }
3663   DCHECK(value != nullptr);
3664 }
3665 
CopyAndFixupPointer(void ** target,void * value)3666 void ImageWriter::CopyAndFixupPointer(void** target, void* value)
3667     REQUIRES_SHARED(Locks::mutator_lock_) {
3668   CopyAndFixupPointer(target, value, target_ptr_size_);
3669 }
3670 
CopyAndFixupPointer(void * object,MemberOffset offset,void * value,PointerSize pointer_size)3671 void ImageWriter::CopyAndFixupPointer(
3672     void* object, MemberOffset offset, void* value, PointerSize pointer_size) {
3673   void** target =
3674       reinterpret_cast<void**>(reinterpret_cast<uint8_t*>(object) + offset.Uint32Value());
3675   return CopyAndFixupPointer(target, value, pointer_size);
3676 }
3677 
CopyAndFixupPointer(void * object,MemberOffset offset,void * value)3678 void ImageWriter::CopyAndFixupPointer(void* object, MemberOffset offset, void* value) {
3679   return CopyAndFixupPointer(object, offset, value, target_ptr_size_);
3680 }
3681 
3682 }  // namespace linker
3683 }  // namespace art
3684