1 /*
2  * The copyright in this software is being made available under the 2-clauses
3  * BSD License, included below. This software may be subject to other third
4  * party and contributor rights, including patent rights, and no such rights
5  * are granted under this license.
6  *
7  * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
8  * Copyright (c) 2002-2014, Professor Benoit Macq
9  * Copyright (c) 2001-2003, David Janssens
10  * Copyright (c) 2002-2003, Yannick Verschueren
11  * Copyright (c) 2003-2007, Francois-Olivier Devaux
12  * Copyright (c) 2003-2014, Antonin Descampe
13  * Copyright (c) 2005, Herve Drolon, FreeImage Team
14  * Copyright (c) 2007, Jonathan Ballard <dzonatas@dzonux.net>
15  * Copyright (c) 2007, Callum Lerwick <seg@haxxed.com>
16  * Copyright (c) 2017, IntoPIX SA <support@intopix.com>
17  * All rights reserved.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
29  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
32  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38  * POSSIBILITY OF SUCH DAMAGE.
39  */
40 
41 #include <assert.h>
42 
43 #define OPJ_SKIP_POISON
44 #include "opj_includes.h"
45 
46 #ifdef __SSE__
47 #include <xmmintrin.h>
48 #endif
49 #ifdef __SSE2__
50 #include <emmintrin.h>
51 #endif
52 #ifdef __SSSE3__
53 #include <tmmintrin.h>
54 #endif
55 #ifdef __AVX2__
56 #include <immintrin.h>
57 #endif
58 
59 #if defined(__GNUC__)
60 #pragma GCC poison malloc calloc realloc free
61 #endif
62 
63 /** @defgroup DWT DWT - Implementation of a discrete wavelet transform */
64 /*@{*/
65 
66 #ifdef __AVX2__
67 /** Number of int32 values in a AVX2 register */
68 #define VREG_INT_COUNT       8
69 #else
70 /** Number of int32 values in a SSE2 register */
71 #define VREG_INT_COUNT       4
72 #endif
73 
74 /** Number of columns that we can process in parallel in the vertical pass */
75 #define PARALLEL_COLS_53     (2*VREG_INT_COUNT)
76 
77 /** @name Local data structures */
78 /*@{*/
79 
80 typedef struct dwt_local {
81     OPJ_INT32* mem;
82     OPJ_SIZE_T mem_count;
83     OPJ_INT32 dn;   /* number of elements in high pass band */
84     OPJ_INT32 sn;   /* number of elements in low pass band */
85     OPJ_INT32 cas;  /* 0 = start on even coord, 1 = start on odd coord */
86 } opj_dwt_t;
87 
88 typedef union {
89     OPJ_FLOAT32 f[4];
90 } opj_v4_t;
91 
92 typedef struct v4dwt_local {
93     opj_v4_t*   wavelet ;
94     OPJ_INT32       dn ;  /* number of elements in high pass band */
95     OPJ_INT32       sn ;  /* number of elements in low pass band */
96     OPJ_INT32       cas ; /* 0 = start on even coord, 1 = start on odd coord */
97     OPJ_UINT32      win_l_x0; /* start coord in low pass band */
98     OPJ_UINT32      win_l_x1; /* end coord in low pass band */
99     OPJ_UINT32      win_h_x0; /* start coord in high pass band */
100     OPJ_UINT32      win_h_x1; /* end coord in high pass band */
101 } opj_v4dwt_t ;
102 
103 static const OPJ_FLOAT32 opj_dwt_alpha =  1.586134342f; /*  12994 */
104 static const OPJ_FLOAT32 opj_dwt_beta  =  0.052980118f; /*    434 */
105 static const OPJ_FLOAT32 opj_dwt_gamma = -0.882911075f; /*  -7233 */
106 static const OPJ_FLOAT32 opj_dwt_delta = -0.443506852f; /*  -3633 */
107 
108 static const OPJ_FLOAT32 opj_K      = 1.230174105f; /*  10078 */
109 static const OPJ_FLOAT32 opj_c13318 = 1.625732422f;
110 
111 /*@}*/
112 
113 /**
114 Virtual function type for wavelet transform in 1-D
115 */
116 typedef void (*DWT1DFN)(const opj_dwt_t* v);
117 
118 /** @name Local static functions */
119 /*@{*/
120 
121 /**
122 Forward lazy transform (horizontal)
123 */
124 static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn,
125                                    OPJ_INT32 sn, OPJ_INT32 cas);
126 /**
127 Forward lazy transform (vertical)
128 */
129 static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn,
130                                    OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas);
131 /**
132 Forward 5-3 wavelet transform in 1-D
133 */
134 static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn,
135     OPJ_INT32 sn, OPJ_INT32 cas);
136 /**
137 Forward 9-7 wavelet transform in 1-D
138 */
139 static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_SIZE_T a_count,
140     OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
141 
142 
143 /**
144 Explicit calculation of the Quantization Stepsizes
145 */
146 static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps,
147                                     opj_stepsize_t *bandno_stepsize);
148 /**
149 Inverse wavelet transform in 2-D.
150 */
151 static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp,
152                                     const opj_tcd_tilecomp_t* tilec, OPJ_UINT32 i);
153 
154 static OPJ_BOOL opj_dwt_decode_partial_tile(
155     opj_tcd_tilecomp_t* tilec,
156     OPJ_UINT32 numres);
157 
158 static OPJ_BOOL opj_dwt_encode_procedure(const opj_tcd_tilecomp_t * tilec,
159         void(*p_function)(OPJ_INT32 *, OPJ_SIZE_T, OPJ_INT32, OPJ_INT32, OPJ_INT32));
160 
161 static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* OPJ_RESTRICT r,
162         OPJ_UINT32 i);
163 
164 /* <summary>                             */
165 /* Inverse 9-7 wavelet transform in 1-D. */
166 /* </summary>                            */
167 static void opj_v4dwt_decode(opj_v4dwt_t* OPJ_RESTRICT dwt);
168 
169 static void opj_v4dwt_interleave_h(opj_v4dwt_t* OPJ_RESTRICT dwt,
170                                    OPJ_FLOAT32* OPJ_RESTRICT a,
171                                    OPJ_UINT32 width,
172                                    OPJ_UINT32 remaining_height);
173 
174 static void opj_v4dwt_interleave_v(opj_v4dwt_t* OPJ_RESTRICT dwt,
175                                    OPJ_FLOAT32* OPJ_RESTRICT a,
176                                    OPJ_UINT32 width,
177                                    OPJ_UINT32 nb_elts_read);
178 
179 #ifdef __SSE__
180 static void opj_v4dwt_decode_step1_sse(opj_v4_t* w,
181                                        OPJ_UINT32 start,
182                                        OPJ_UINT32 end,
183                                        const __m128 c);
184 
185 static void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w,
186                                        OPJ_UINT32 start,
187                                        OPJ_UINT32 end,
188                                        OPJ_UINT32 m, __m128 c);
189 
190 #else
191 static void opj_v4dwt_decode_step1(opj_v4_t* w,
192                                    OPJ_UINT32 start,
193                                    OPJ_UINT32 end,
194                                    const OPJ_FLOAT32 c);
195 
196 static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w,
197                                    OPJ_UINT32 start,
198                                    OPJ_UINT32 end,
199                                    OPJ_UINT32 m,
200                                    OPJ_FLOAT32 c);
201 
202 #endif
203 
204 /*@}*/
205 
206 /*@}*/
207 
208 #define IDX_S(i) (i)*2
209 #define IDX_D(i) 1 + (i)* 2
210 #define UNDERFLOW_SN(i) ((i) >= sn&&sn>0)
211 #define UNDERFLOW_DN(i) ((i) >= dn&&dn>0)
212 #define OVERFLOW_S(i) (IDX_S(i) >= a_count)
213 #define OVERFLOW_D(i) (IDX_D(i) >= a_count)
214 
215 #define OPJ_S(i) a[IDX_S(i)]
216 #define OPJ_D(i) a[IDX_D(i)]
217 #define OPJ_S_(i) ((i)<0 ? OPJ_S(0) : (UNDERFLOW_SN(i) ? OPJ_S(sn - 1) : OVERFLOW_S(i) ? OPJ_S(i - 1) : OPJ_S(i)))
218 #define OPJ_D_(i) ((i)<0 ? OPJ_D(0) : (UNDERFLOW_DN(i) ? OPJ_D(dn - 1) : OVERFLOW_D(i) ? OPJ_D(i - 1) : OPJ_D(i)))
219 /* new */
220 #define OPJ_SS_(i) ((i)<0 ? OPJ_S(0) : (UNDERFLOW_DN(i) ? OPJ_S(dn - 1) : OVERFLOW_S(i) ? OPJ_S(i - 1) : OPJ_S(i)))
221 #define OPJ_DD_(i) ((i)<0 ? OPJ_D(0) : (UNDERFLOW_SN(i) ? OPJ_D(sn - 1) : OVERFLOW_D(i) ? OPJ_D(i - 1) : OPJ_D(i)))
222 
223 /* <summary>                                                              */
224 /* This table contains the norms of the 5-3 wavelets for different bands. */
225 /* </summary>                                                             */
226 /* FIXME! the array should really be extended up to 33 resolution levels */
227 /* See https://github.com/uclouvain/openjpeg/issues/493 */
228 static const OPJ_FLOAT64 opj_dwt_norms[4][10] = {
229     {1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3},
230     {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
231     {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
232     {.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93}
233 };
234 
235 /* <summary>                                                              */
236 /* This table contains the norms of the 9-7 wavelets for different bands. */
237 /* </summary>                                                             */
238 /* FIXME! the array should really be extended up to 33 resolution levels */
239 /* See https://github.com/uclouvain/openjpeg/issues/493 */
240 static const OPJ_FLOAT64 opj_dwt_norms_real[4][10] = {
241     {1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9},
242     {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
243     {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
244     {2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2}
245 };
246 
247 /*
248 ==========================================================
249    local functions
250 ==========================================================
251 */
252 
253 /* <summary>                             */
254 /* Forward lazy transform (horizontal).  */
255 /* </summary>                            */
opj_dwt_deinterleave_h(OPJ_INT32 * a,OPJ_INT32 * b,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 cas)256 static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn,
257                                    OPJ_INT32 sn, OPJ_INT32 cas)
258 {
259     OPJ_INT32 i;
260     OPJ_INT32 * l_dest = b;
261     OPJ_INT32 * l_src = a + cas;
262 
263     for (i = 0; i < sn; ++i) {
264         *l_dest++ = *l_src;
265         l_src += 2;
266     }
267 
268     l_dest = b + sn;
269     l_src = a + 1 - cas;
270 
271     for (i = 0; i < dn; ++i)  {
272         *l_dest++ = *l_src;
273         l_src += 2;
274     }
275 }
276 
277 /* <summary>                             */
278 /* Forward lazy transform (vertical).    */
279 /* </summary>                            */
opj_dwt_deinterleave_v(OPJ_INT32 * a,OPJ_INT32 * b,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 x,OPJ_INT32 cas)280 static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn,
281                                    OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas)
282 {
283     OPJ_INT32 i = sn;
284     OPJ_INT32 * l_dest = b;
285     OPJ_INT32 * l_src = a + cas;
286 
287     while (i--) {
288         *l_dest = *l_src;
289         l_dest += x;
290         l_src += 2;
291     } /* b[i*x]=a[2*i+cas]; */
292 
293     l_dest = b + (OPJ_SIZE_T)sn * (OPJ_SIZE_T)x;
294     l_src = a + 1 - cas;
295 
296     i = dn;
297     while (i--) {
298         *l_dest = *l_src;
299         l_dest += x;
300         l_src += 2;
301     } /*b[(sn+i)*x]=a[(2*i+1-cas)];*/
302 }
303 
304 #ifdef STANDARD_SLOW_VERSION
305 /* <summary>                             */
306 /* Inverse lazy transform (horizontal).  */
307 /* </summary>                            */
opj_dwt_interleave_h(const opj_dwt_t * h,OPJ_INT32 * a)308 static void opj_dwt_interleave_h(const opj_dwt_t* h, OPJ_INT32 *a)
309 {
310     OPJ_INT32 *ai = a;
311     OPJ_INT32 *bi = h->mem + h->cas;
312     OPJ_INT32  i    = h->sn;
313     while (i--) {
314         *bi = *(ai++);
315         bi += 2;
316     }
317     ai  = a + h->sn;
318     bi  = h->mem + 1 - h->cas;
319     i   = h->dn ;
320     while (i--) {
321         *bi = *(ai++);
322         bi += 2;
323     }
324 }
325 
326 /* <summary>                             */
327 /* Inverse lazy transform (vertical).    */
328 /* </summary>                            */
opj_dwt_interleave_v(const opj_dwt_t * v,OPJ_INT32 * a,OPJ_INT32 x)329 static void opj_dwt_interleave_v(const opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x)
330 {
331     OPJ_INT32 *ai = a;
332     OPJ_INT32 *bi = v->mem + v->cas;
333     OPJ_INT32  i = v->sn;
334     while (i--) {
335         *bi = *ai;
336         bi += 2;
337         ai += x;
338     }
339     ai = a + (v->sn * (OPJ_SIZE_T)x);
340     bi = v->mem + 1 - v->cas;
341     i = v->dn ;
342     while (i--) {
343         *bi = *ai;
344         bi += 2;
345         ai += x;
346     }
347 }
348 
349 #endif /* STANDARD_SLOW_VERSION */
350 
351 /* <summary>                            */
352 /* Forward 5-3 wavelet transform in 1-D. */
353 /* </summary>                           */
opj_dwt_encode_1(OPJ_INT32 * a,OPJ_SIZE_T a_count,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 cas)354 static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn,
355                              OPJ_INT32 sn, OPJ_INT32 cas)
356 {
357     OPJ_INT32 i;
358 
359     if (!cas) {
360         if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */
361             for (i = 0; i < dn; i++) {
362                 OPJ_D(i) -= (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
363             }
364             for (i = 0; i < sn; i++) {
365                 OPJ_S(i) += (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
366             }
367         }
368     } else {
369         if (!sn && dn == 1) {       /* NEW :  CASE ONE ELEMENT */
370             OPJ_S(0) *= 2;
371         } else {
372             for (i = 0; i < dn; i++) {
373                 OPJ_S(i) -= (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
374             }
375             for (i = 0; i < sn; i++) {
376                 OPJ_D(i) += (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
377             }
378         }
379     }
380 }
381 
382 #ifdef STANDARD_SLOW_VERSION
383 /* <summary>                            */
384 /* Inverse 5-3 wavelet transform in 1-D. */
385 /* </summary>                           */
opj_dwt_decode_1_(OPJ_INT32 * a,OPJ_SIZE_T a_count,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 cas)386 static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn,
387                               OPJ_INT32 sn, OPJ_INT32 cas)
388 {
389     OPJ_INT32 i;
390 
391     if (!cas) {
392         if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */
393             for (i = 0; i < sn; i++) {
394                 OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
395             }
396             for (i = 0; i < dn; i++) {
397                 OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
398             }
399         }
400     } else {
401         if (!sn  && dn == 1) {        /* NEW :  CASE ONE ELEMENT */
402             OPJ_S(0) /= 2;
403         } else {
404             for (i = 0; i < sn; i++) {
405                 OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
406             }
407             for (i = 0; i < dn; i++) {
408                 OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
409             }
410         }
411     }
412 }
413 
opj_dwt_decode_1(const opj_dwt_t * v)414 static void opj_dwt_decode_1(const opj_dwt_t *v)
415 {
416     opj_dwt_decode_1_(v->mem, v->mem_count, v->dn, v->sn, v->cas);
417 }
418 
419 #endif /* STANDARD_SLOW_VERSION */
420 
421 #if !defined(STANDARD_SLOW_VERSION)
opj_idwt53_h_cas0(OPJ_INT32 * tmp,const OPJ_INT32 sn,const OPJ_INT32 len,OPJ_INT32 * tiledp)422 static void  opj_idwt53_h_cas0(OPJ_INT32* tmp,
423                                const OPJ_INT32 sn,
424                                const OPJ_INT32 len,
425                                OPJ_INT32* tiledp)
426 {
427     OPJ_INT32 i, j;
428     const OPJ_INT32* in_even = &tiledp[0];
429     const OPJ_INT32* in_odd = &tiledp[sn];
430 
431 #ifdef TWO_PASS_VERSION
432     /* For documentation purpose: performs lifting in two iterations, */
433     /* but without explicit interleaving */
434 
435     assert(len > 1);
436 
437     /* Even */
438     tmp[0] = in_even[0] - ((in_odd[0] + 1) >> 1);
439     for (i = 2, j = 0; i <= len - 2; i += 2, j++) {
440         tmp[i] = in_even[j + 1] - ((in_odd[j] + in_odd[j + 1] + 2) >> 2);
441     }
442     if (len & 1) { /* if len is odd */
443         tmp[len - 1] = in_even[(len - 1) / 2] - ((in_odd[(len - 2) / 2] + 1) >> 1);
444     }
445 
446     /* Odd */
447     for (i = 1, j = 0; i < len - 1; i += 2, j++) {
448         tmp[i] = in_odd[j] + ((tmp[i - 1] + tmp[i + 1]) >> 1);
449     }
450     if (!(len & 1)) { /* if len is even */
451         tmp[len - 1] = in_odd[(len - 1) / 2] + tmp[len - 2];
452     }
453 #else
454     OPJ_INT32 d1c, d1n, s1n, s0c, s0n;
455 
456     assert(len > 1);
457 
458     /* Improved version of the TWO_PASS_VERSION: */
459     /* Performs lifting in one single iteration. Saves memory */
460     /* accesses and explicit interleaving. */
461     s1n = in_even[0];
462     d1n = in_odd[0];
463     s0n = s1n - ((d1n + 1) >> 1);
464 
465     for (i = 0, j = 1; i < (len - 3); i += 2, j++) {
466         d1c = d1n;
467         s0c = s0n;
468 
469         s1n = in_even[j];
470         d1n = in_odd[j];
471 
472         s0n = s1n - ((d1c + d1n + 2) >> 2);
473 
474         tmp[i  ] = s0c;
475         tmp[i + 1] = d1c + ((s0c + s0n) >> 1);
476     }
477 
478     tmp[i] = s0n;
479 
480     if (len & 1) {
481         tmp[len - 1] = in_even[(len - 1) / 2] - ((d1n + 1) >> 1);
482         tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1);
483     } else {
484         tmp[len - 1] = d1n + s0n;
485     }
486 #endif
487     memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32));
488 }
489 
opj_idwt53_h_cas1(OPJ_INT32 * tmp,const OPJ_INT32 sn,const OPJ_INT32 len,OPJ_INT32 * tiledp)490 static void  opj_idwt53_h_cas1(OPJ_INT32* tmp,
491                                const OPJ_INT32 sn,
492                                const OPJ_INT32 len,
493                                OPJ_INT32* tiledp)
494 {
495     OPJ_INT32 i, j;
496     const OPJ_INT32* in_even = &tiledp[sn];
497     const OPJ_INT32* in_odd = &tiledp[0];
498 
499 #ifdef TWO_PASS_VERSION
500     /* For documentation purpose: performs lifting in two iterations, */
501     /* but without explicit interleaving */
502 
503     assert(len > 2);
504 
505     /* Odd */
506     for (i = 1, j = 0; i < len - 1; i += 2, j++) {
507         tmp[i] = in_odd[j] - ((in_even[j] + in_even[j + 1] + 2) >> 2);
508     }
509     if (!(len & 1)) {
510         tmp[len - 1] = in_odd[len / 2 - 1] - ((in_even[len / 2 - 1] + 1) >> 1);
511     }
512 
513     /* Even */
514     tmp[0] = in_even[0] + tmp[1];
515     for (i = 2, j = 1; i < len - 1; i += 2, j++) {
516         tmp[i] = in_even[j] + ((tmp[i + 1] + tmp[i - 1]) >> 1);
517     }
518     if (len & 1) {
519         tmp[len - 1] = in_even[len / 2] + tmp[len - 2];
520     }
521 #else
522     OPJ_INT32 s1, s2, dc, dn;
523 
524     assert(len > 2);
525 
526     /* Improved version of the TWO_PASS_VERSION: */
527     /* Performs lifting in one single iteration. Saves memory */
528     /* accesses and explicit interleaving. */
529 
530     s1 = in_even[1];
531     dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2);
532     tmp[0] = in_even[0] + dc;
533 
534     for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) {
535 
536         s2 = in_even[j + 1];
537 
538         dn = in_odd[j] - ((s1 + s2 + 2) >> 2);
539         tmp[i  ] = dc;
540         tmp[i + 1] = s1 + ((dn + dc) >> 1);
541 
542         dc = dn;
543         s1 = s2;
544     }
545 
546     tmp[i] = dc;
547 
548     if (!(len & 1)) {
549         dn = in_odd[len / 2 - 1] - ((s1 + 1) >> 1);
550         tmp[len - 2] = s1 + ((dn + dc) >> 1);
551         tmp[len - 1] = dn;
552     } else {
553         tmp[len - 1] = s1 + dc;
554     }
555 #endif
556     memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32));
557 }
558 
559 
560 #endif /* !defined(STANDARD_SLOW_VERSION) */
561 
562 /* <summary>                            */
563 /* Inverse 5-3 wavelet transform in 1-D for one row. */
564 /* </summary>                           */
565 /* Performs interleave, inverse wavelet transform and copy back to buffer */
opj_idwt53_h(const opj_dwt_t * dwt,OPJ_INT32 * tiledp)566 static void opj_idwt53_h(const opj_dwt_t *dwt,
567                          OPJ_INT32* tiledp)
568 {
569 #ifdef STANDARD_SLOW_VERSION
570     /* For documentation purpose */
571     opj_dwt_interleave_h(dwt, tiledp);
572     opj_dwt_decode_1(dwt);
573     memcpy(tiledp, dwt->mem, (OPJ_UINT32)(dwt->sn + dwt->dn) * sizeof(OPJ_INT32));
574 #else
575     const OPJ_INT32 sn = dwt->sn;
576     const OPJ_INT32 len = sn + dwt->dn;
577     if (dwt->cas == 0) { /* Left-most sample is on even coordinate */
578         if (len > 1) {
579             opj_idwt53_h_cas0(dwt->mem, sn, len, tiledp);
580         } else {
581             /* Unmodified value */
582         }
583     } else { /* Left-most sample is on odd coordinate */
584         if (len == 1) {
585             tiledp[0] /= 2;
586         } else if (len == 2) {
587             OPJ_INT32* out = dwt->mem;
588             const OPJ_INT32* in_even = &tiledp[sn];
589             const OPJ_INT32* in_odd = &tiledp[0];
590             out[1] = in_odd[0] - ((in_even[0] + 1) >> 1);
591             out[0] = in_even[0] + out[1];
592             memcpy(tiledp, dwt->mem, (OPJ_UINT32)len * sizeof(OPJ_INT32));
593         } else if (len > 2) {
594             opj_idwt53_h_cas1(dwt->mem, sn, len, tiledp);
595         }
596     }
597 #endif
598 }
599 
600 #if (defined(__SSE2__) || defined(__AVX2__)) && !defined(STANDARD_SLOW_VERSION)
601 
602 /* Conveniency macros to improve the readabilty of the formulas */
603 #if __AVX2__
604 #define VREG        __m256i
605 #define LOAD_CST(x) _mm256_set1_epi32(x)
606 #define LOAD(x)     _mm256_load_si256((const VREG*)(x))
607 #define LOADU(x)    _mm256_loadu_si256((const VREG*)(x))
608 #define STORE(x,y)  _mm256_store_si256((VREG*)(x),(y))
609 #define STOREU(x,y) _mm256_storeu_si256((VREG*)(x),(y))
610 #define ADD(x,y)    _mm256_add_epi32((x),(y))
611 #define SUB(x,y)    _mm256_sub_epi32((x),(y))
612 #define SAR(x,y)    _mm256_srai_epi32((x),(y))
613 #else
614 #define VREG        __m128i
615 #define LOAD_CST(x) _mm_set1_epi32(x)
616 #define LOAD(x)     _mm_load_si128((const VREG*)(x))
617 #define LOADU(x)    _mm_loadu_si128((const VREG*)(x))
618 #define STORE(x,y)  _mm_store_si128((VREG*)(x),(y))
619 #define STOREU(x,y) _mm_storeu_si128((VREG*)(x),(y))
620 #define ADD(x,y)    _mm_add_epi32((x),(y))
621 #define SUB(x,y)    _mm_sub_epi32((x),(y))
622 #define SAR(x,y)    _mm_srai_epi32((x),(y))
623 #endif
624 #define ADD3(x,y,z) ADD(ADD(x,y),z)
625 
626 static
opj_idwt53_v_final_memcpy(OPJ_INT32 * tiledp_col,const OPJ_INT32 * tmp,OPJ_INT32 len,OPJ_SIZE_T stride)627 void opj_idwt53_v_final_memcpy(OPJ_INT32* tiledp_col,
628                                const OPJ_INT32* tmp,
629                                OPJ_INT32 len,
630                                OPJ_SIZE_T stride)
631 {
632     OPJ_INT32 i;
633     for (i = 0; i < len; ++i) {
634         /* A memcpy(&tiledp_col[i * stride + 0],
635                     &tmp[PARALLEL_COLS_53 * i + 0],
636                     PARALLEL_COLS_53 * sizeof(OPJ_INT32))
637            would do but would be a tiny bit slower.
638            We can take here advantage of our knowledge of alignment */
639         STOREU(&tiledp_col[(OPJ_SIZE_T)i * stride + 0],
640                LOAD(&tmp[PARALLEL_COLS_53 * i + 0]));
641         STOREU(&tiledp_col[(OPJ_SIZE_T)i * stride + VREG_INT_COUNT],
642                LOAD(&tmp[PARALLEL_COLS_53 * i + VREG_INT_COUNT]));
643     }
644 }
645 
646 /** Vertical inverse 5x3 wavelet transform for 8 columns in SSE2, or
647  * 16 in AVX2, when top-most pixel is on even coordinate */
opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2(OPJ_INT32 * tmp,const OPJ_INT32 sn,const OPJ_INT32 len,OPJ_INT32 * tiledp_col,const OPJ_SIZE_T stride)648 static void opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2(
649     OPJ_INT32* tmp,
650     const OPJ_INT32 sn,
651     const OPJ_INT32 len,
652     OPJ_INT32* tiledp_col,
653     const OPJ_SIZE_T stride)
654 {
655     const OPJ_INT32* in_even = &tiledp_col[0];
656     const OPJ_INT32* in_odd = &tiledp_col[(OPJ_SIZE_T)sn * stride];
657 
658     OPJ_INT32 i;
659     OPJ_SIZE_T j;
660     VREG d1c_0, d1n_0, s1n_0, s0c_0, s0n_0;
661     VREG d1c_1, d1n_1, s1n_1, s0c_1, s0n_1;
662     const VREG two = LOAD_CST(2);
663 
664     assert(len > 1);
665 #if __AVX2__
666     assert(PARALLEL_COLS_53 == 16);
667     assert(VREG_INT_COUNT == 8);
668 #else
669     assert(PARALLEL_COLS_53 == 8);
670     assert(VREG_INT_COUNT == 4);
671 #endif
672 
673     /* Note: loads of input even/odd values must be done in a unaligned */
674     /* fashion. But stores in tmp can be done with aligned store, since */
675     /* the temporary buffer is properly aligned */
676     assert((OPJ_SIZE_T)tmp % (sizeof(OPJ_INT32) * VREG_INT_COUNT) == 0);
677 
678     s1n_0 = LOADU(in_even + 0);
679     s1n_1 = LOADU(in_even + VREG_INT_COUNT);
680     d1n_0 = LOADU(in_odd);
681     d1n_1 = LOADU(in_odd + VREG_INT_COUNT);
682 
683     /* s0n = s1n - ((d1n + 1) >> 1); <==> */
684     /* s0n = s1n - ((d1n + d1n + 2) >> 2); */
685     s0n_0 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2));
686     s0n_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2));
687 
688     for (i = 0, j = 1; i < (len - 3); i += 2, j++) {
689         d1c_0 = d1n_0;
690         s0c_0 = s0n_0;
691         d1c_1 = d1n_1;
692         s0c_1 = s0n_1;
693 
694         s1n_0 = LOADU(in_even + j * stride);
695         s1n_1 = LOADU(in_even + j * stride + VREG_INT_COUNT);
696         d1n_0 = LOADU(in_odd + j * stride);
697         d1n_1 = LOADU(in_odd + j * stride + VREG_INT_COUNT);
698 
699         /*s0n = s1n - ((d1c + d1n + 2) >> 2);*/
700         s0n_0 = SUB(s1n_0, SAR(ADD3(d1c_0, d1n_0, two), 2));
701         s0n_1 = SUB(s1n_1, SAR(ADD3(d1c_1, d1n_1, two), 2));
702 
703         STORE(tmp + PARALLEL_COLS_53 * (i + 0), s0c_0);
704         STORE(tmp + PARALLEL_COLS_53 * (i + 0) + VREG_INT_COUNT, s0c_1);
705 
706         /* d1c + ((s0c + s0n) >> 1) */
707         STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0,
708               ADD(d1c_0, SAR(ADD(s0c_0, s0n_0), 1)));
709         STORE(tmp + PARALLEL_COLS_53 * (i + 1) + VREG_INT_COUNT,
710               ADD(d1c_1, SAR(ADD(s0c_1, s0n_1), 1)));
711     }
712 
713     STORE(tmp + PARALLEL_COLS_53 * (i + 0) + 0, s0n_0);
714     STORE(tmp + PARALLEL_COLS_53 * (i + 0) + VREG_INT_COUNT, s0n_1);
715 
716     if (len & 1) {
717         VREG tmp_len_minus_1;
718         s1n_0 = LOADU(in_even + (OPJ_SIZE_T)((len - 1) / 2) * stride);
719         /* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */
720         tmp_len_minus_1 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2));
721         STORE(tmp + PARALLEL_COLS_53 * (len - 1), tmp_len_minus_1);
722         /* d1n + ((s0n + tmp_len_minus_1) >> 1) */
723         STORE(tmp + PARALLEL_COLS_53 * (len - 2),
724               ADD(d1n_0, SAR(ADD(s0n_0, tmp_len_minus_1), 1)));
725 
726         s1n_1 = LOADU(in_even + (OPJ_SIZE_T)((len - 1) / 2) * stride + VREG_INT_COUNT);
727         /* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */
728         tmp_len_minus_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2));
729         STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT,
730               tmp_len_minus_1);
731         /* d1n + ((s0n + tmp_len_minus_1) >> 1) */
732         STORE(tmp + PARALLEL_COLS_53 * (len - 2) + VREG_INT_COUNT,
733               ADD(d1n_1, SAR(ADD(s0n_1, tmp_len_minus_1), 1)));
734 
735 
736     } else {
737         STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0,
738               ADD(d1n_0, s0n_0));
739         STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT,
740               ADD(d1n_1, s0n_1));
741     }
742 
743     opj_idwt53_v_final_memcpy(tiledp_col, tmp, len, stride);
744 }
745 
746 
747 /** Vertical inverse 5x3 wavelet transform for 8 columns in SSE2, or
748  * 16 in AVX2, when top-most pixel is on odd coordinate */
opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2(OPJ_INT32 * tmp,const OPJ_INT32 sn,const OPJ_INT32 len,OPJ_INT32 * tiledp_col,const OPJ_SIZE_T stride)749 static void opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2(
750     OPJ_INT32* tmp,
751     const OPJ_INT32 sn,
752     const OPJ_INT32 len,
753     OPJ_INT32* tiledp_col,
754     const OPJ_SIZE_T stride)
755 {
756     OPJ_INT32 i;
757     OPJ_SIZE_T j;
758 
759     VREG s1_0, s2_0, dc_0, dn_0;
760     VREG s1_1, s2_1, dc_1, dn_1;
761     const VREG two = LOAD_CST(2);
762 
763     const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride];
764     const OPJ_INT32* in_odd = &tiledp_col[0];
765 
766     assert(len > 2);
767 #if __AVX2__
768     assert(PARALLEL_COLS_53 == 16);
769     assert(VREG_INT_COUNT == 8);
770 #else
771     assert(PARALLEL_COLS_53 == 8);
772     assert(VREG_INT_COUNT == 4);
773 #endif
774 
775     /* Note: loads of input even/odd values must be done in a unaligned */
776     /* fashion. But stores in tmp can be done with aligned store, since */
777     /* the temporary buffer is properly aligned */
778     assert((OPJ_SIZE_T)tmp % (sizeof(OPJ_INT32) * VREG_INT_COUNT) == 0);
779 
780     s1_0 = LOADU(in_even + stride);
781     /* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */
782     dc_0 = SUB(LOADU(in_odd + 0),
783                SAR(ADD3(LOADU(in_even + 0), s1_0, two), 2));
784     STORE(tmp + PARALLEL_COLS_53 * 0, ADD(LOADU(in_even + 0), dc_0));
785 
786     s1_1 = LOADU(in_even + stride + VREG_INT_COUNT);
787     /* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */
788     dc_1 = SUB(LOADU(in_odd + VREG_INT_COUNT),
789                SAR(ADD3(LOADU(in_even + VREG_INT_COUNT), s1_1, two), 2));
790     STORE(tmp + PARALLEL_COLS_53 * 0 + VREG_INT_COUNT,
791           ADD(LOADU(in_even + VREG_INT_COUNT), dc_1));
792 
793     for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) {
794 
795         s2_0 = LOADU(in_even + (j + 1) * stride);
796         s2_1 = LOADU(in_even + (j + 1) * stride + VREG_INT_COUNT);
797 
798         /* dn = in_odd[j * stride] - ((s1 + s2 + 2) >> 2); */
799         dn_0 = SUB(LOADU(in_odd + j * stride),
800                    SAR(ADD3(s1_0, s2_0, two), 2));
801         dn_1 = SUB(LOADU(in_odd + j * stride + VREG_INT_COUNT),
802                    SAR(ADD3(s1_1, s2_1, two), 2));
803 
804         STORE(tmp + PARALLEL_COLS_53 * i, dc_0);
805         STORE(tmp + PARALLEL_COLS_53 * i + VREG_INT_COUNT, dc_1);
806 
807         /* tmp[i + 1] = s1 + ((dn + dc) >> 1); */
808         STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0,
809               ADD(s1_0, SAR(ADD(dn_0, dc_0), 1)));
810         STORE(tmp + PARALLEL_COLS_53 * (i + 1) + VREG_INT_COUNT,
811               ADD(s1_1, SAR(ADD(dn_1, dc_1), 1)));
812 
813         dc_0 = dn_0;
814         s1_0 = s2_0;
815         dc_1 = dn_1;
816         s1_1 = s2_1;
817     }
818     STORE(tmp + PARALLEL_COLS_53 * i, dc_0);
819     STORE(tmp + PARALLEL_COLS_53 * i + VREG_INT_COUNT, dc_1);
820 
821     if (!(len & 1)) {
822         /*dn = in_odd[(len / 2 - 1) * stride] - ((s1 + 1) >> 1); */
823         dn_0 = SUB(LOADU(in_odd + (OPJ_SIZE_T)(len / 2 - 1) * stride),
824                    SAR(ADD3(s1_0, s1_0, two), 2));
825         dn_1 = SUB(LOADU(in_odd + (OPJ_SIZE_T)(len / 2 - 1) * stride + VREG_INT_COUNT),
826                    SAR(ADD3(s1_1, s1_1, two), 2));
827 
828         /* tmp[len - 2] = s1 + ((dn + dc) >> 1); */
829         STORE(tmp + PARALLEL_COLS_53 * (len - 2) + 0,
830               ADD(s1_0, SAR(ADD(dn_0, dc_0), 1)));
831         STORE(tmp + PARALLEL_COLS_53 * (len - 2) + VREG_INT_COUNT,
832               ADD(s1_1, SAR(ADD(dn_1, dc_1), 1)));
833 
834         STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, dn_0);
835         STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, dn_1);
836     } else {
837         STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, ADD(s1_0, dc_0));
838         STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT,
839               ADD(s1_1, dc_1));
840     }
841 
842     opj_idwt53_v_final_memcpy(tiledp_col, tmp, len, stride);
843 }
844 
845 #undef VREG
846 #undef LOAD_CST
847 #undef LOADU
848 #undef LOAD
849 #undef STORE
850 #undef STOREU
851 #undef ADD
852 #undef ADD3
853 #undef SUB
854 #undef SAR
855 
856 #endif /* (defined(__SSE2__) || defined(__AVX2__)) && !defined(STANDARD_SLOW_VERSION) */
857 
858 #if !defined(STANDARD_SLOW_VERSION)
859 /** Vertical inverse 5x3 wavelet transform for one column, when top-most
860  * pixel is on even coordinate */
opj_idwt3_v_cas0(OPJ_INT32 * tmp,const OPJ_INT32 sn,const OPJ_INT32 len,OPJ_INT32 * tiledp_col,const OPJ_SIZE_T stride)861 static void opj_idwt3_v_cas0(OPJ_INT32* tmp,
862                              const OPJ_INT32 sn,
863                              const OPJ_INT32 len,
864                              OPJ_INT32* tiledp_col,
865                              const OPJ_SIZE_T stride)
866 {
867     OPJ_INT32 i, j;
868     OPJ_INT32 d1c, d1n, s1n, s0c, s0n;
869 
870     assert(len > 1);
871 
872     /* Performs lifting in one single iteration. Saves memory */
873     /* accesses and explicit interleaving. */
874 
875     s1n = tiledp_col[0];
876     d1n = tiledp_col[(OPJ_SIZE_T)sn * stride];
877     s0n = s1n - ((d1n + 1) >> 1);
878 
879     for (i = 0, j = 0; i < (len - 3); i += 2, j++) {
880         d1c = d1n;
881         s0c = s0n;
882 
883         s1n = tiledp_col[(OPJ_SIZE_T)(j + 1) * stride];
884         d1n = tiledp_col[(OPJ_SIZE_T)(sn + j + 1) * stride];
885 
886         s0n = s1n - ((d1c + d1n + 2) >> 2);
887 
888         tmp[i  ] = s0c;
889         tmp[i + 1] = d1c + ((s0c + s0n) >> 1);
890     }
891 
892     tmp[i] = s0n;
893 
894     if (len & 1) {
895         tmp[len - 1] =
896             tiledp_col[(OPJ_SIZE_T)((len - 1) / 2) * stride] -
897             ((d1n + 1) >> 1);
898         tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1);
899     } else {
900         tmp[len - 1] = d1n + s0n;
901     }
902 
903     for (i = 0; i < len; ++i) {
904         tiledp_col[(OPJ_SIZE_T)i * stride] = tmp[i];
905     }
906 }
907 
908 
909 /** Vertical inverse 5x3 wavelet transform for one column, when top-most
910  * pixel is on odd coordinate */
opj_idwt3_v_cas1(OPJ_INT32 * tmp,const OPJ_INT32 sn,const OPJ_INT32 len,OPJ_INT32 * tiledp_col,const OPJ_SIZE_T stride)911 static void opj_idwt3_v_cas1(OPJ_INT32* tmp,
912                              const OPJ_INT32 sn,
913                              const OPJ_INT32 len,
914                              OPJ_INT32* tiledp_col,
915                              const OPJ_SIZE_T stride)
916 {
917     OPJ_INT32 i, j;
918     OPJ_INT32 s1, s2, dc, dn;
919     const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride];
920     const OPJ_INT32* in_odd = &tiledp_col[0];
921 
922     assert(len > 2);
923 
924     /* Performs lifting in one single iteration. Saves memory */
925     /* accesses and explicit interleaving. */
926 
927     s1 = in_even[stride];
928     dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2);
929     tmp[0] = in_even[0] + dc;
930     for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) {
931 
932         s2 = in_even[(OPJ_SIZE_T)(j + 1) * stride];
933 
934         dn = in_odd[(OPJ_SIZE_T)j * stride] - ((s1 + s2 + 2) >> 2);
935         tmp[i  ] = dc;
936         tmp[i + 1] = s1 + ((dn + dc) >> 1);
937 
938         dc = dn;
939         s1 = s2;
940     }
941     tmp[i] = dc;
942     if (!(len & 1)) {
943         dn = in_odd[(OPJ_SIZE_T)(len / 2 - 1) * stride] - ((s1 + 1) >> 1);
944         tmp[len - 2] = s1 + ((dn + dc) >> 1);
945         tmp[len - 1] = dn;
946     } else {
947         tmp[len - 1] = s1 + dc;
948     }
949 
950     for (i = 0; i < len; ++i) {
951         tiledp_col[(OPJ_SIZE_T)i * stride] = tmp[i];
952     }
953 }
954 #endif /* !defined(STANDARD_SLOW_VERSION) */
955 
956 /* <summary>                            */
957 /* Inverse vertical 5-3 wavelet transform in 1-D for several columns. */
958 /* </summary>                           */
959 /* Performs interleave, inverse wavelet transform and copy back to buffer */
opj_idwt53_v(const opj_dwt_t * dwt,OPJ_INT32 * tiledp_col,OPJ_SIZE_T stride,OPJ_INT32 nb_cols)960 static void opj_idwt53_v(const opj_dwt_t *dwt,
961                          OPJ_INT32* tiledp_col,
962                          OPJ_SIZE_T stride,
963                          OPJ_INT32 nb_cols)
964 {
965 #ifdef STANDARD_SLOW_VERSION
966     /* For documentation purpose */
967     OPJ_INT32 k, c;
968     for (c = 0; c < nb_cols; c ++) {
969         opj_dwt_interleave_v(dwt, tiledp_col + c, stride);
970         opj_dwt_decode_1(dwt);
971         for (k = 0; k < dwt->sn + dwt->dn; ++k) {
972             tiledp_col[c + k * stride] = dwt->mem[k];
973         }
974     }
975 #else
976     const OPJ_INT32 sn = dwt->sn;
977     const OPJ_INT32 len = sn + dwt->dn;
978     if (dwt->cas == 0) {
979         /* If len == 1, unmodified value */
980 
981 #if (defined(__SSE2__) || defined(__AVX2__))
982         if (len > 1 && nb_cols == PARALLEL_COLS_53) {
983             /* Same as below general case, except that thanks to SSE2/AVX2 */
984             /* we can efficently process 8/16 columns in parallel */
985             opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2(dwt->mem, sn, len, tiledp_col, stride);
986             return;
987         }
988 #endif
989         if (len > 1) {
990             OPJ_INT32 c;
991             for (c = 0; c < nb_cols; c++, tiledp_col++) {
992                 opj_idwt3_v_cas0(dwt->mem, sn, len, tiledp_col, stride);
993             }
994             return;
995         }
996     } else {
997         if (len == 1) {
998             OPJ_INT32 c;
999             for (c = 0; c < nb_cols; c++, tiledp_col++) {
1000                 tiledp_col[0] /= 2;
1001             }
1002             return;
1003         }
1004 
1005         if (len == 2) {
1006             OPJ_INT32 c;
1007             OPJ_INT32* out = dwt->mem;
1008             for (c = 0; c < nb_cols; c++, tiledp_col++) {
1009                 OPJ_INT32 i;
1010                 const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride];
1011                 const OPJ_INT32* in_odd = &tiledp_col[0];
1012 
1013                 out[1] = in_odd[0] - ((in_even[0] + 1) >> 1);
1014                 out[0] = in_even[0] + out[1];
1015 
1016                 for (i = 0; i < len; ++i) {
1017                     tiledp_col[(OPJ_SIZE_T)i * stride] = out[i];
1018                 }
1019             }
1020 
1021             return;
1022         }
1023 
1024 #if (defined(__SSE2__) || defined(__AVX2__))
1025         if (len > 2 && nb_cols == PARALLEL_COLS_53) {
1026             /* Same as below general case, except that thanks to SSE2/AVX2 */
1027             /* we can efficently process 8/16 columns in parallel */
1028             opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2(dwt->mem, sn, len, tiledp_col, stride);
1029             return;
1030         }
1031 #endif
1032         if (len > 2) {
1033             OPJ_INT32 c;
1034             for (c = 0; c < nb_cols; c++, tiledp_col++) {
1035                 opj_idwt3_v_cas1(dwt->mem, sn, len, tiledp_col, stride);
1036             }
1037             return;
1038         }
1039     }
1040 #endif
1041 }
1042 
1043 
1044 /* <summary>                             */
1045 /* Forward 9-7 wavelet transform in 1-D. */
1046 /* </summary>                            */
opj_dwt_encode_1_real(OPJ_INT32 * a,OPJ_SIZE_T a_count,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 cas)1047 static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_SIZE_T a_count,
1048                                   OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas)
1049 {
1050     OPJ_INT32 i;
1051     if (!cas) {
1052         if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */
1053             for (i = 0; i < dn; i++) {
1054                 OPJ_D(i) -= opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 12993);
1055             }
1056             for (i = 0; i < sn; i++) {
1057                 OPJ_S(i) -= opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 434);
1058             }
1059             for (i = 0; i < dn; i++) {
1060                 OPJ_D(i) += opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 7233);
1061             }
1062             for (i = 0; i < sn; i++) {
1063                 OPJ_S(i) += opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 3633);
1064             }
1065             for (i = 0; i < dn; i++) {
1066                 OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 5038);    /*5038 */
1067             }
1068             for (i = 0; i < sn; i++) {
1069                 OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 6659);    /*6660 */
1070             }
1071         }
1072     } else {
1073         if ((sn > 0) || (dn > 1)) { /* NEW :  CASE ONE ELEMENT */
1074             for (i = 0; i < dn; i++) {
1075                 OPJ_S(i) -= opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 12993);
1076             }
1077             for (i = 0; i < sn; i++) {
1078                 OPJ_D(i) -= opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 434);
1079             }
1080             for (i = 0; i < dn; i++) {
1081                 OPJ_S(i) += opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 7233);
1082             }
1083             for (i = 0; i < sn; i++) {
1084                 OPJ_D(i) += opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 3633);
1085             }
1086             for (i = 0; i < dn; i++) {
1087                 OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 5038);    /*5038 */
1088             }
1089             for (i = 0; i < sn; i++) {
1090                 OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 6659);    /*6660 */
1091             }
1092         }
1093     }
1094 }
1095 
opj_dwt_encode_stepsize(OPJ_INT32 stepsize,OPJ_INT32 numbps,opj_stepsize_t * bandno_stepsize)1096 static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps,
1097                                     opj_stepsize_t *bandno_stepsize)
1098 {
1099     OPJ_INT32 p, n;
1100     p = opj_int_floorlog2(stepsize) - 13;
1101     n = 11 - opj_int_floorlog2(stepsize);
1102     bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff;
1103     bandno_stepsize->expn = numbps - p;
1104 }
1105 
1106 /*
1107 ==========================================================
1108    DWT interface
1109 ==========================================================
1110 */
1111 
1112 
1113 /* <summary>                            */
1114 /* Forward 5-3 wavelet transform in 2-D. */
1115 /* </summary>                           */
opj_dwt_encode_procedure(const opj_tcd_tilecomp_t * tilec,void (* p_function)(OPJ_INT32 *,OPJ_SIZE_T,OPJ_INT32,OPJ_INT32,OPJ_INT32))1116 static INLINE OPJ_BOOL opj_dwt_encode_procedure(const opj_tcd_tilecomp_t * tilec,
1117         void(*p_function)(OPJ_INT32 *, OPJ_SIZE_T, OPJ_INT32, OPJ_INT32, OPJ_INT32))
1118 {
1119     OPJ_INT32 i, j, k;
1120     OPJ_INT32 *a = 00;
1121     OPJ_INT32 *aj = 00;
1122     OPJ_INT32 *bj = 00;
1123     OPJ_INT32 w, l;
1124 
1125     OPJ_INT32 rw;           /* width of the resolution level computed   */
1126     OPJ_INT32 rh;           /* height of the resolution level computed  */
1127     OPJ_SIZE_T l_data_count;
1128     OPJ_SIZE_T l_data_size;
1129 
1130     opj_tcd_resolution_t * l_cur_res = 0;
1131     opj_tcd_resolution_t * l_last_res = 0;
1132 
1133     w = tilec->x1 - tilec->x0;
1134     l = (OPJ_INT32)tilec->numresolutions - 1;
1135     a = tilec->data;
1136 
1137     l_cur_res = tilec->resolutions + l;
1138     l_last_res = l_cur_res - 1;
1139 
1140     l_data_count = opj_dwt_max_resolution(tilec->resolutions, tilec->numresolutions);
1141     /* overflow check */
1142     if (l_data_count > (SIZE_MAX / sizeof(OPJ_INT32))) {
1143         /* FIXME event manager error callback */
1144         return OPJ_FALSE;
1145     }
1146     l_data_size = l_data_count * sizeof(OPJ_INT32);
1147     bj = (OPJ_INT32*)opj_malloc(l_data_size);
1148     /* l_data_size is equal to 0 when numresolutions == 1 but bj is not used */
1149     /* in that case, so do not error out */
1150     if (l_data_size != 0 && ! bj) {
1151         return OPJ_FALSE;
1152     }
1153     i = l;
1154 
1155     while (i--) {
1156         OPJ_INT32 rw1;      /* width of the resolution level once lower than computed one                                       */
1157         OPJ_INT32 rh1;      /* height of the resolution level once lower than computed one                                      */
1158         OPJ_INT32 cas_col;  /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */
1159         OPJ_INT32 cas_row;  /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering   */
1160         OPJ_INT32 dn, sn;
1161 
1162         rw  = l_cur_res->x1 - l_cur_res->x0;
1163         rh  = l_cur_res->y1 - l_cur_res->y0;
1164         rw1 = l_last_res->x1 - l_last_res->x0;
1165         rh1 = l_last_res->y1 - l_last_res->y0;
1166 
1167         cas_row = l_cur_res->x0 & 1;
1168         cas_col = l_cur_res->y0 & 1;
1169 
1170         sn = rh1;
1171         dn = rh - rh1;
1172         for (j = 0; j < rw; ++j) {
1173             aj = a + j;
1174             for (k = 0; k < rh; ++k) {
1175                 bj[k] = aj[k * w];
1176             }
1177 
1178             (*p_function) (bj, l_data_count, dn, sn, cas_col);
1179 
1180             opj_dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col);
1181         }
1182 
1183         sn = rw1;
1184         dn = rw - rw1;
1185 
1186         for (j = 0; j < rh; j++) {
1187             aj = a + j * w;
1188             for (k = 0; k < rw; k++) {
1189                 bj[k] = aj[k];
1190             }
1191             (*p_function) (bj, l_data_count, dn, sn, cas_row);
1192             opj_dwt_deinterleave_h(bj, aj, dn, sn, cas_row);
1193         }
1194 
1195         l_cur_res = l_last_res;
1196 
1197         --l_last_res;
1198     }
1199 
1200     opj_free(bj);
1201     return OPJ_TRUE;
1202 }
1203 
1204 /* Forward 5-3 wavelet transform in 2-D. */
1205 /* </summary>                           */
opj_dwt_encode(opj_tcd_tilecomp_t * tilec)1206 OPJ_BOOL opj_dwt_encode(opj_tcd_tilecomp_t * tilec)
1207 {
1208     return opj_dwt_encode_procedure(tilec, opj_dwt_encode_1);
1209 }
1210 
1211 /* <summary>                            */
1212 /* Inverse 5-3 wavelet transform in 2-D. */
1213 /* </summary>                           */
opj_dwt_decode(opj_tcd_t * p_tcd,opj_tcd_tilecomp_t * tilec,OPJ_UINT32 numres)1214 OPJ_BOOL opj_dwt_decode(opj_tcd_t *p_tcd, opj_tcd_tilecomp_t* tilec,
1215                         OPJ_UINT32 numres)
1216 {
1217     if (p_tcd->whole_tile_decoding) {
1218         return opj_dwt_decode_tile(p_tcd->thread_pool, tilec, numres);
1219     } else {
1220         return opj_dwt_decode_partial_tile(tilec, numres);
1221     }
1222 }
1223 
1224 
1225 /* <summary>                          */
1226 /* Get gain of 5-3 wavelet transform. */
1227 /* </summary>                         */
opj_dwt_getgain(OPJ_UINT32 orient)1228 OPJ_UINT32 opj_dwt_getgain(OPJ_UINT32 orient)
1229 {
1230     if (orient == 0) {
1231         return 0;
1232     }
1233     if (orient == 1 || orient == 2) {
1234         return 1;
1235     }
1236     return 2;
1237 }
1238 
1239 /* <summary>                */
1240 /* Get norm of 5-3 wavelet. */
1241 /* </summary>               */
opj_dwt_getnorm(OPJ_UINT32 level,OPJ_UINT32 orient)1242 OPJ_FLOAT64 opj_dwt_getnorm(OPJ_UINT32 level, OPJ_UINT32 orient)
1243 {
1244     /* FIXME ! This is just a band-aid to avoid a buffer overflow */
1245     /* but the array should really be extended up to 33 resolution levels */
1246     /* See https://github.com/uclouvain/openjpeg/issues/493 */
1247     if (orient == 0 && level >= 10) {
1248         level = 9;
1249     } else if (orient > 0 && level >= 9) {
1250         level = 8;
1251     }
1252     return opj_dwt_norms[orient][level];
1253 }
1254 
1255 /* <summary>                             */
1256 /* Forward 9-7 wavelet transform in 2-D. */
1257 /* </summary>                            */
opj_dwt_encode_real(opj_tcd_tilecomp_t * tilec)1258 OPJ_BOOL opj_dwt_encode_real(opj_tcd_tilecomp_t * tilec)
1259 {
1260     return opj_dwt_encode_procedure(tilec, opj_dwt_encode_1_real);
1261 }
1262 
1263 /* <summary>                          */
1264 /* Get gain of 9-7 wavelet transform. */
1265 /* </summary>                         */
opj_dwt_getgain_real(OPJ_UINT32 orient)1266 OPJ_UINT32 opj_dwt_getgain_real(OPJ_UINT32 orient)
1267 {
1268     (void)orient;
1269     return 0;
1270 }
1271 
1272 /* <summary>                */
1273 /* Get norm of 9-7 wavelet. */
1274 /* </summary>               */
opj_dwt_getnorm_real(OPJ_UINT32 level,OPJ_UINT32 orient)1275 OPJ_FLOAT64 opj_dwt_getnorm_real(OPJ_UINT32 level, OPJ_UINT32 orient)
1276 {
1277     /* FIXME ! This is just a band-aid to avoid a buffer overflow */
1278     /* but the array should really be extended up to 33 resolution levels */
1279     /* See https://github.com/uclouvain/openjpeg/issues/493 */
1280     if (orient == 0 && level >= 10) {
1281         level = 9;
1282     } else if (orient > 0 && level >= 9) {
1283         level = 8;
1284     }
1285     return opj_dwt_norms_real[orient][level];
1286 }
1287 
opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp,OPJ_UINT32 prec)1288 void opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, OPJ_UINT32 prec)
1289 {
1290     OPJ_UINT32 numbands, bandno;
1291     numbands = 3 * tccp->numresolutions - 2;
1292     for (bandno = 0; bandno < numbands; bandno++) {
1293         OPJ_FLOAT64 stepsize;
1294         OPJ_UINT32 resno, level, orient, gain;
1295 
1296         resno = (bandno == 0) ? 0 : ((bandno - 1) / 3 + 1);
1297         orient = (bandno == 0) ? 0 : ((bandno - 1) % 3 + 1);
1298         level = tccp->numresolutions - 1 - resno;
1299         gain = (tccp->qmfbid == 0) ? 0 : ((orient == 0) ? 0 : (((orient == 1) ||
1300                                           (orient == 2)) ? 1 : 2));
1301         if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) {
1302             stepsize = 1.0;
1303         } else {
1304             OPJ_FLOAT64 norm = opj_dwt_norms_real[orient][level];
1305             stepsize = (1 << (gain)) / norm;
1306         }
1307         opj_dwt_encode_stepsize((OPJ_INT32) floor(stepsize * 8192.0),
1308                                 (OPJ_INT32)(prec + gain), &tccp->stepsizes[bandno]);
1309     }
1310 }
1311 
1312 /* <summary>                             */
1313 /* Determine maximum computed resolution level for inverse wavelet transform */
1314 /* </summary>                            */
opj_dwt_max_resolution(opj_tcd_resolution_t * OPJ_RESTRICT r,OPJ_UINT32 i)1315 static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* OPJ_RESTRICT r,
1316         OPJ_UINT32 i)
1317 {
1318     OPJ_UINT32 mr   = 0;
1319     OPJ_UINT32 w;
1320     while (--i) {
1321         ++r;
1322         if (mr < (w = (OPJ_UINT32)(r->x1 - r->x0))) {
1323             mr = w ;
1324         }
1325         if (mr < (w = (OPJ_UINT32)(r->y1 - r->y0))) {
1326             mr = w ;
1327         }
1328     }
1329     return mr ;
1330 }
1331 
1332 typedef struct {
1333     opj_dwt_t h;
1334     OPJ_UINT32 rw;
1335     OPJ_UINT32 w;
1336     OPJ_INT32 * OPJ_RESTRICT tiledp;
1337     OPJ_UINT32 min_j;
1338     OPJ_UINT32 max_j;
1339 } opj_dwd_decode_h_job_t;
1340 
opj_dwt_decode_h_func(void * user_data,opj_tls_t * tls)1341 static void opj_dwt_decode_h_func(void* user_data, opj_tls_t* tls)
1342 {
1343     OPJ_UINT32 j;
1344     opj_dwd_decode_h_job_t* job;
1345     (void)tls;
1346 
1347     job = (opj_dwd_decode_h_job_t*)user_data;
1348     for (j = job->min_j; j < job->max_j; j++) {
1349         opj_idwt53_h(&job->h, &job->tiledp[j * job->w]);
1350     }
1351 
1352     opj_aligned_free(job->h.mem);
1353     opj_free(job);
1354 }
1355 
1356 typedef struct {
1357     opj_dwt_t v;
1358     OPJ_UINT32 rh;
1359     OPJ_UINT32 w;
1360     OPJ_INT32 * OPJ_RESTRICT tiledp;
1361     OPJ_UINT32 min_j;
1362     OPJ_UINT32 max_j;
1363 } opj_dwd_decode_v_job_t;
1364 
opj_dwt_decode_v_func(void * user_data,opj_tls_t * tls)1365 static void opj_dwt_decode_v_func(void* user_data, opj_tls_t* tls)
1366 {
1367     OPJ_UINT32 j;
1368     opj_dwd_decode_v_job_t* job;
1369     (void)tls;
1370 
1371     job = (opj_dwd_decode_v_job_t*)user_data;
1372     for (j = job->min_j; j + PARALLEL_COLS_53 <= job->max_j;
1373             j += PARALLEL_COLS_53) {
1374         opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_SIZE_T)job->w,
1375                      PARALLEL_COLS_53);
1376     }
1377     if (j < job->max_j)
1378         opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_SIZE_T)job->w,
1379                      (OPJ_INT32)(job->max_j - j));
1380 
1381     opj_aligned_free(job->v.mem);
1382     opj_free(job);
1383 }
1384 
1385 
1386 /* <summary>                            */
1387 /* Inverse wavelet transform in 2-D.    */
1388 /* </summary>                           */
opj_dwt_decode_tile(opj_thread_pool_t * tp,const opj_tcd_tilecomp_t * tilec,OPJ_UINT32 numres)1389 static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp,
1390         const opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres)
1391 {
1392     opj_dwt_t h;
1393     opj_dwt_t v;
1394 
1395     opj_tcd_resolution_t* tr = tilec->resolutions;
1396 
1397     OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 -
1398                                  tr->x0);  /* width of the resolution level computed */
1399     OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 -
1400                                  tr->y0);  /* height of the resolution level computed */
1401 
1402     OPJ_UINT32 w = (OPJ_UINT32)(tilec->resolutions[tilec->minimum_num_resolutions -
1403                                                                1].x1 -
1404                                 tilec->resolutions[tilec->minimum_num_resolutions - 1].x0);
1405     OPJ_SIZE_T h_mem_size;
1406     int num_threads;
1407 
1408     if (numres == 1U) {
1409         return OPJ_TRUE;
1410     }
1411     num_threads = opj_thread_pool_get_thread_count(tp);
1412     h.mem_count = opj_dwt_max_resolution(tr, numres);
1413     /* overflow check */
1414     if (h.mem_count > (SIZE_MAX / PARALLEL_COLS_53 / sizeof(OPJ_INT32))) {
1415         /* FIXME event manager error callback */
1416         return OPJ_FALSE;
1417     }
1418     /* We need PARALLEL_COLS_53 times the height of the array, */
1419     /* since for the vertical pass */
1420     /* we process PARALLEL_COLS_53 columns at a time */
1421     h_mem_size = h.mem_count * PARALLEL_COLS_53 * sizeof(OPJ_INT32);
1422     h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
1423     if (! h.mem) {
1424         /* FIXME event manager error callback */
1425         return OPJ_FALSE;
1426     }
1427 
1428     v.mem_count = h.mem_count;
1429     v.mem = h.mem;
1430 
1431     while (--numres) {
1432         OPJ_INT32 * OPJ_RESTRICT tiledp = tilec->data;
1433         OPJ_UINT32 j;
1434 
1435         ++tr;
1436         h.sn = (OPJ_INT32)rw;
1437         v.sn = (OPJ_INT32)rh;
1438 
1439         rw = (OPJ_UINT32)(tr->x1 - tr->x0);
1440         rh = (OPJ_UINT32)(tr->y1 - tr->y0);
1441 
1442         h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
1443         h.cas = tr->x0 % 2;
1444 
1445         if (num_threads <= 1 || rh <= 1) {
1446             for (j = 0; j < rh; ++j) {
1447                 opj_idwt53_h(&h, &tiledp[(OPJ_SIZE_T)j * w]);
1448             }
1449         } else {
1450             OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads;
1451             OPJ_UINT32 step_j;
1452 
1453             if (rh < num_jobs) {
1454                 num_jobs = rh;
1455             }
1456             step_j = (rh / num_jobs);
1457 
1458             for (j = 0; j < num_jobs; j++) {
1459                 opj_dwd_decode_h_job_t* job;
1460 
1461                 job = (opj_dwd_decode_h_job_t*) opj_malloc(sizeof(opj_dwd_decode_h_job_t));
1462                 if (!job) {
1463                     /* It would be nice to fallback to single thread case, but */
1464                     /* unfortunately some jobs may be launched and have modified */
1465                     /* tiledp, so it is not practical to recover from that error */
1466                     /* FIXME event manager error callback */
1467                     opj_thread_pool_wait_completion(tp, 0);
1468                     opj_aligned_free(h.mem);
1469                     return OPJ_FALSE;
1470                 }
1471                 job->h = h;
1472                 job->rw = rw;
1473                 job->w = w;
1474                 job->tiledp = tiledp;
1475                 job->min_j = j * step_j;
1476                 job->max_j = (j + 1U) * step_j; /* this can overflow */
1477                 if (j == (num_jobs - 1U)) {  /* this will take care of the overflow */
1478                     job->max_j = rh;
1479                 }
1480                 job->h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
1481                 if (!job->h.mem) {
1482                     /* FIXME event manager error callback */
1483                     opj_thread_pool_wait_completion(tp, 0);
1484                     opj_free(job);
1485                     opj_aligned_free(h.mem);
1486                     return OPJ_FALSE;
1487                 }
1488                 opj_thread_pool_submit_job(tp, opj_dwt_decode_h_func, job);
1489             }
1490             opj_thread_pool_wait_completion(tp, 0);
1491         }
1492 
1493         v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
1494         v.cas = tr->y0 % 2;
1495 
1496         if (num_threads <= 1 || rw <= 1) {
1497             for (j = 0; j + PARALLEL_COLS_53 <= rw;
1498                     j += PARALLEL_COLS_53) {
1499                 opj_idwt53_v(&v, &tiledp[j], (OPJ_SIZE_T)w, PARALLEL_COLS_53);
1500             }
1501             if (j < rw) {
1502                 opj_idwt53_v(&v, &tiledp[j], (OPJ_SIZE_T)w, (OPJ_INT32)(rw - j));
1503             }
1504         } else {
1505             OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads;
1506             OPJ_UINT32 step_j;
1507 
1508             if (rw < num_jobs) {
1509                 num_jobs = rw;
1510             }
1511             step_j = (rw / num_jobs);
1512 
1513             for (j = 0; j < num_jobs; j++) {
1514                 opj_dwd_decode_v_job_t* job;
1515 
1516                 job = (opj_dwd_decode_v_job_t*) opj_malloc(sizeof(opj_dwd_decode_v_job_t));
1517                 if (!job) {
1518                     /* It would be nice to fallback to single thread case, but */
1519                     /* unfortunately some jobs may be launched and have modified */
1520                     /* tiledp, so it is not practical to recover from that error */
1521                     /* FIXME event manager error callback */
1522                     opj_thread_pool_wait_completion(tp, 0);
1523                     opj_aligned_free(v.mem);
1524                     return OPJ_FALSE;
1525                 }
1526                 job->v = v;
1527                 job->rh = rh;
1528                 job->w = w;
1529                 job->tiledp = tiledp;
1530                 job->min_j = j * step_j;
1531                 job->max_j = (j + 1U) * step_j; /* this can overflow */
1532                 if (j == (num_jobs - 1U)) {  /* this will take care of the overflow */
1533                     job->max_j = rw;
1534                 }
1535                 job->v.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
1536                 if (!job->v.mem) {
1537                     /* FIXME event manager error callback */
1538                     opj_thread_pool_wait_completion(tp, 0);
1539                     opj_free(job);
1540                     opj_aligned_free(v.mem);
1541                     return OPJ_FALSE;
1542                 }
1543                 opj_thread_pool_submit_job(tp, opj_dwt_decode_v_func, job);
1544             }
1545             opj_thread_pool_wait_completion(tp, 0);
1546         }
1547     }
1548     opj_aligned_free(h.mem);
1549     return OPJ_TRUE;
1550 }
1551 
opj_dwt_interleave_partial_h(OPJ_INT32 * dest,OPJ_INT32 cas,opj_sparse_array_int32_t * sa,OPJ_UINT32 sa_line,OPJ_UINT32 sn,OPJ_UINT32 win_l_x0,OPJ_UINT32 win_l_x1,OPJ_UINT32 win_h_x0,OPJ_UINT32 win_h_x1)1552 static void opj_dwt_interleave_partial_h(OPJ_INT32 *dest,
1553         OPJ_INT32 cas,
1554         opj_sparse_array_int32_t* sa,
1555         OPJ_UINT32 sa_line,
1556         OPJ_UINT32 sn,
1557         OPJ_UINT32 win_l_x0,
1558         OPJ_UINT32 win_l_x1,
1559         OPJ_UINT32 win_h_x0,
1560         OPJ_UINT32 win_h_x1)
1561 {
1562     OPJ_BOOL ret;
1563     ret = opj_sparse_array_int32_read(sa,
1564                                       win_l_x0, sa_line,
1565                                       win_l_x1, sa_line + 1,
1566                                       dest + cas + 2 * win_l_x0,
1567                                       2, 0, OPJ_TRUE);
1568     assert(ret);
1569     ret = opj_sparse_array_int32_read(sa,
1570                                       sn + win_h_x0, sa_line,
1571                                       sn + win_h_x1, sa_line + 1,
1572                                       dest + 1 - cas + 2 * win_h_x0,
1573                                       2, 0, OPJ_TRUE);
1574     assert(ret);
1575     OPJ_UNUSED(ret);
1576 }
1577 
1578 
opj_dwt_interleave_partial_v(OPJ_INT32 * dest,OPJ_INT32 cas,opj_sparse_array_int32_t * sa,OPJ_UINT32 sa_col,OPJ_UINT32 nb_cols,OPJ_UINT32 sn,OPJ_UINT32 win_l_y0,OPJ_UINT32 win_l_y1,OPJ_UINT32 win_h_y0,OPJ_UINT32 win_h_y1)1579 static void opj_dwt_interleave_partial_v(OPJ_INT32 *dest,
1580         OPJ_INT32 cas,
1581         opj_sparse_array_int32_t* sa,
1582         OPJ_UINT32 sa_col,
1583         OPJ_UINT32 nb_cols,
1584         OPJ_UINT32 sn,
1585         OPJ_UINT32 win_l_y0,
1586         OPJ_UINT32 win_l_y1,
1587         OPJ_UINT32 win_h_y0,
1588         OPJ_UINT32 win_h_y1)
1589 {
1590     OPJ_BOOL ret;
1591     ret  = opj_sparse_array_int32_read(sa,
1592                                        sa_col, win_l_y0,
1593                                        sa_col + nb_cols, win_l_y1,
1594                                        dest + cas * 4 + 2 * 4 * win_l_y0,
1595                                        1, 2 * 4, OPJ_TRUE);
1596     assert(ret);
1597     ret = opj_sparse_array_int32_read(sa,
1598                                       sa_col, sn + win_h_y0,
1599                                       sa_col + nb_cols, sn + win_h_y1,
1600                                       dest + (1 - cas) * 4 + 2 * 4 * win_h_y0,
1601                                       1, 2 * 4, OPJ_TRUE);
1602     assert(ret);
1603     OPJ_UNUSED(ret);
1604 }
1605 
opj_dwt_decode_partial_1(OPJ_INT32 * a,OPJ_SIZE_T a_count,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 cas,OPJ_INT32 win_l_x0,OPJ_INT32 win_l_x1,OPJ_INT32 win_h_x0,OPJ_INT32 win_h_x1)1606 static void opj_dwt_decode_partial_1(OPJ_INT32 *a, OPJ_SIZE_T a_count,
1607                                      OPJ_INT32 dn, OPJ_INT32 sn,
1608                                      OPJ_INT32 cas,
1609                                      OPJ_INT32 win_l_x0,
1610                                      OPJ_INT32 win_l_x1,
1611                                      OPJ_INT32 win_h_x0,
1612                                      OPJ_INT32 win_h_x1)
1613 {
1614     OPJ_INT32 i;
1615 
1616     if (!cas) {
1617         if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */
1618 
1619             /* Naive version is :
1620             for (i = win_l_x0; i < i_max; i++) {
1621                 OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
1622             }
1623             for (i = win_h_x0; i < win_h_x1; i++) {
1624                 OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
1625             }
1626             but the compiler doesn't manage to unroll it to avoid bound
1627             checking in OPJ_S_ and OPJ_D_ macros
1628             */
1629 
1630             i = win_l_x0;
1631             if (i < win_l_x1) {
1632                 OPJ_INT32 i_max;
1633 
1634                 /* Left-most case */
1635                 OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
1636                 i ++;
1637 
1638                 i_max = win_l_x1;
1639                 if (i_max > dn) {
1640                     i_max = dn;
1641                 }
1642                 for (; i < i_max; i++) {
1643                     /* No bound checking */
1644                     OPJ_S(i) -= (OPJ_D(i - 1) + OPJ_D(i) + 2) >> 2;
1645                 }
1646                 for (; i < win_l_x1; i++) {
1647                     /* Right-most case */
1648                     OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
1649                 }
1650             }
1651 
1652             i = win_h_x0;
1653             if (i < win_h_x1) {
1654                 OPJ_INT32 i_max = win_h_x1;
1655                 if (i_max >= sn) {
1656                     i_max = sn - 1;
1657                 }
1658                 for (; i < i_max; i++) {
1659                     /* No bound checking */
1660                     OPJ_D(i) += (OPJ_S(i) + OPJ_S(i + 1)) >> 1;
1661                 }
1662                 for (; i < win_h_x1; i++) {
1663                     /* Right-most case */
1664                     OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
1665                 }
1666             }
1667         }
1668     } else {
1669         if (!sn  && dn == 1) {        /* NEW :  CASE ONE ELEMENT */
1670             OPJ_S(0) /= 2;
1671         } else {
1672             for (i = win_l_x0; i < win_l_x1; i++) {
1673                 OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
1674             }
1675             for (i = win_h_x0; i < win_h_x1; i++) {
1676                 OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
1677             }
1678         }
1679     }
1680 }
1681 
1682 #define OPJ_S_off(i,off) a[(OPJ_UINT32)(i)*2*4+off]
1683 #define OPJ_D_off(i,off) a[(1+(OPJ_UINT32)(i)*2)*4+off]
1684 #define OPJ_S__off(i,off) ((i)<0?OPJ_S_off(0,off):((i)>=sn?OPJ_S_off(sn-1,off):OPJ_S_off(i,off)))
1685 #define OPJ_D__off(i,off) ((i)<0?OPJ_D_off(0,off):((i)>=dn?OPJ_D_off(dn-1,off):OPJ_D_off(i,off)))
1686 #define OPJ_SS__off(i,off) ((i)<0?OPJ_S_off(0,off):((i)>=dn?OPJ_S_off(dn-1,off):OPJ_S_off(i,off)))
1687 #define OPJ_DD__off(i,off) ((i)<0?OPJ_D_off(0,off):((i)>=sn?OPJ_D_off(sn-1,off):OPJ_D_off(i,off)))
1688 
opj_dwt_decode_partial_1_parallel(OPJ_INT32 * a,OPJ_UINT32 nb_cols,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 cas,OPJ_INT32 win_l_x0,OPJ_INT32 win_l_x1,OPJ_INT32 win_h_x0,OPJ_INT32 win_h_x1)1689 static void opj_dwt_decode_partial_1_parallel(OPJ_INT32 *a,
1690         OPJ_UINT32 nb_cols,
1691         OPJ_INT32 dn, OPJ_INT32 sn,
1692         OPJ_INT32 cas,
1693         OPJ_INT32 win_l_x0,
1694         OPJ_INT32 win_l_x1,
1695         OPJ_INT32 win_h_x0,
1696         OPJ_INT32 win_h_x1)
1697 {
1698     OPJ_INT32 i;
1699     OPJ_UINT32 off;
1700 
1701     (void)nb_cols;
1702 
1703     if (!cas) {
1704         if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */
1705 
1706             /* Naive version is :
1707             for (i = win_l_x0; i < i_max; i++) {
1708                 OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
1709             }
1710             for (i = win_h_x0; i < win_h_x1; i++) {
1711                 OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
1712             }
1713             but the compiler doesn't manage to unroll it to avoid bound
1714             checking in OPJ_S_ and OPJ_D_ macros
1715             */
1716 
1717             i = win_l_x0;
1718             if (i < win_l_x1) {
1719                 OPJ_INT32 i_max;
1720 
1721                 /* Left-most case */
1722                 for (off = 0; off < 4; off++) {
1723                     OPJ_S_off(i, off) -= (OPJ_D__off(i - 1, off) + OPJ_D__off(i, off) + 2) >> 2;
1724                 }
1725                 i ++;
1726 
1727                 i_max = win_l_x1;
1728                 if (i_max > dn) {
1729                     i_max = dn;
1730                 }
1731 
1732 #ifdef __SSE2__
1733                 if (i + 1 < i_max) {
1734                     const __m128i two = _mm_set1_epi32(2);
1735                     __m128i Dm1 = _mm_load_si128((__m128i * const)(a + 4 + (i - 1) * 8));
1736                     for (; i + 1 < i_max; i += 2) {
1737                         /* No bound checking */
1738                         __m128i S = _mm_load_si128((__m128i * const)(a + i * 8));
1739                         __m128i D = _mm_load_si128((__m128i * const)(a + 4 + i * 8));
1740                         __m128i S1 = _mm_load_si128((__m128i * const)(a + (i + 1) * 8));
1741                         __m128i D1 = _mm_load_si128((__m128i * const)(a + 4 + (i + 1) * 8));
1742                         S = _mm_sub_epi32(S,
1743                                           _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(Dm1, D), two), 2));
1744                         S1 = _mm_sub_epi32(S1,
1745                                            _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(D, D1), two), 2));
1746                         _mm_store_si128((__m128i*)(a + i * 8), S);
1747                         _mm_store_si128((__m128i*)(a + (i + 1) * 8), S1);
1748                         Dm1 = D1;
1749                     }
1750                 }
1751 #endif
1752 
1753                 for (; i < i_max; i++) {
1754                     /* No bound checking */
1755                     for (off = 0; off < 4; off++) {
1756                         OPJ_S_off(i, off) -= (OPJ_D_off(i - 1, off) + OPJ_D_off(i, off) + 2) >> 2;
1757                     }
1758                 }
1759                 for (; i < win_l_x1; i++) {
1760                     /* Right-most case */
1761                     for (off = 0; off < 4; off++) {
1762                         OPJ_S_off(i, off) -= (OPJ_D__off(i - 1, off) + OPJ_D__off(i, off) + 2) >> 2;
1763                     }
1764                 }
1765             }
1766 
1767             i = win_h_x0;
1768             if (i < win_h_x1) {
1769                 OPJ_INT32 i_max = win_h_x1;
1770                 if (i_max >= sn) {
1771                     i_max = sn - 1;
1772                 }
1773 
1774 #ifdef __SSE2__
1775                 if (i + 1 < i_max) {
1776                     __m128i S =  _mm_load_si128((__m128i * const)(a + i * 8));
1777                     for (; i + 1 < i_max; i += 2) {
1778                         /* No bound checking */
1779                         __m128i D = _mm_load_si128((__m128i * const)(a + 4 + i * 8));
1780                         __m128i S1 = _mm_load_si128((__m128i * const)(a + (i + 1) * 8));
1781                         __m128i D1 = _mm_load_si128((__m128i * const)(a + 4 + (i + 1) * 8));
1782                         __m128i S2 = _mm_load_si128((__m128i * const)(a + (i + 2) * 8));
1783                         D = _mm_add_epi32(D, _mm_srai_epi32(_mm_add_epi32(S, S1), 1));
1784                         D1 = _mm_add_epi32(D1, _mm_srai_epi32(_mm_add_epi32(S1, S2), 1));
1785                         _mm_store_si128((__m128i*)(a + 4 + i * 8), D);
1786                         _mm_store_si128((__m128i*)(a + 4 + (i + 1) * 8), D1);
1787                         S = S2;
1788                     }
1789                 }
1790 #endif
1791 
1792                 for (; i < i_max; i++) {
1793                     /* No bound checking */
1794                     for (off = 0; off < 4; off++) {
1795                         OPJ_D_off(i, off) += (OPJ_S_off(i, off) + OPJ_S_off(i + 1, off)) >> 1;
1796                     }
1797                 }
1798                 for (; i < win_h_x1; i++) {
1799                     /* Right-most case */
1800                     for (off = 0; off < 4; off++) {
1801                         OPJ_D_off(i, off) += (OPJ_S__off(i, off) + OPJ_S__off(i + 1, off)) >> 1;
1802                     }
1803                 }
1804             }
1805         }
1806     } else {
1807         if (!sn  && dn == 1) {        /* NEW :  CASE ONE ELEMENT */
1808             for (off = 0; off < 4; off++) {
1809                 OPJ_S_off(0, off) /= 2;
1810             }
1811         } else {
1812             for (i = win_l_x0; i < win_l_x1; i++) {
1813                 for (off = 0; off < 4; off++) {
1814                     OPJ_D_off(i, off) -= (OPJ_SS__off(i, off) + OPJ_SS__off(i + 1, off) + 2) >> 2;
1815                 }
1816             }
1817             for (i = win_h_x0; i < win_h_x1; i++) {
1818                 for (off = 0; off < 4; off++) {
1819                     OPJ_S_off(i, off) += (OPJ_DD__off(i, off) + OPJ_DD__off(i - 1, off)) >> 1;
1820                 }
1821             }
1822         }
1823     }
1824 }
1825 
opj_dwt_get_band_coordinates(opj_tcd_tilecomp_t * tilec,OPJ_UINT32 resno,OPJ_UINT32 bandno,OPJ_UINT32 tcx0,OPJ_UINT32 tcy0,OPJ_UINT32 tcx1,OPJ_UINT32 tcy1,OPJ_UINT32 * tbx0,OPJ_UINT32 * tby0,OPJ_UINT32 * tbx1,OPJ_UINT32 * tby1)1826 static void opj_dwt_get_band_coordinates(opj_tcd_tilecomp_t* tilec,
1827         OPJ_UINT32 resno,
1828         OPJ_UINT32 bandno,
1829         OPJ_UINT32 tcx0,
1830         OPJ_UINT32 tcy0,
1831         OPJ_UINT32 tcx1,
1832         OPJ_UINT32 tcy1,
1833         OPJ_UINT32* tbx0,
1834         OPJ_UINT32* tby0,
1835         OPJ_UINT32* tbx1,
1836         OPJ_UINT32* tby1)
1837 {
1838     /* Compute number of decomposition for this band. See table F-1 */
1839     OPJ_UINT32 nb = (resno == 0) ?
1840                     tilec->numresolutions - 1 :
1841                     tilec->numresolutions - resno;
1842     /* Map above tile-based coordinates to sub-band-based coordinates per */
1843     /* equation B-15 of the standard */
1844     OPJ_UINT32 x0b = bandno & 1;
1845     OPJ_UINT32 y0b = bandno >> 1;
1846     if (tbx0) {
1847         *tbx0 = (nb == 0) ? tcx0 :
1848                 (tcx0 <= (1U << (nb - 1)) * x0b) ? 0 :
1849                 opj_uint_ceildivpow2(tcx0 - (1U << (nb - 1)) * x0b, nb);
1850     }
1851     if (tby0) {
1852         *tby0 = (nb == 0) ? tcy0 :
1853                 (tcy0 <= (1U << (nb - 1)) * y0b) ? 0 :
1854                 opj_uint_ceildivpow2(tcy0 - (1U << (nb - 1)) * y0b, nb);
1855     }
1856     if (tbx1) {
1857         *tbx1 = (nb == 0) ? tcx1 :
1858                 (tcx1 <= (1U << (nb - 1)) * x0b) ? 0 :
1859                 opj_uint_ceildivpow2(tcx1 - (1U << (nb - 1)) * x0b, nb);
1860     }
1861     if (tby1) {
1862         *tby1 = (nb == 0) ? tcy1 :
1863                 (tcy1 <= (1U << (nb - 1)) * y0b) ? 0 :
1864                 opj_uint_ceildivpow2(tcy1 - (1U << (nb - 1)) * y0b, nb);
1865     }
1866 }
1867 
opj_dwt_segment_grow(OPJ_UINT32 filter_width,OPJ_UINT32 max_size,OPJ_UINT32 * start,OPJ_UINT32 * end)1868 static void opj_dwt_segment_grow(OPJ_UINT32 filter_width,
1869                                  OPJ_UINT32 max_size,
1870                                  OPJ_UINT32* start,
1871                                  OPJ_UINT32* end)
1872 {
1873     *start = opj_uint_subs(*start, filter_width);
1874     *end = opj_uint_adds(*end, filter_width);
1875     *end = opj_uint_min(*end, max_size);
1876 }
1877 
1878 
opj_dwt_init_sparse_array(opj_tcd_tilecomp_t * tilec,OPJ_UINT32 numres)1879 static opj_sparse_array_int32_t* opj_dwt_init_sparse_array(
1880     opj_tcd_tilecomp_t* tilec,
1881     OPJ_UINT32 numres)
1882 {
1883     opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]);
1884     OPJ_UINT32 w = (OPJ_UINT32)(tr_max->x1 - tr_max->x0);
1885     OPJ_UINT32 h = (OPJ_UINT32)(tr_max->y1 - tr_max->y0);
1886     OPJ_UINT32 resno, bandno, precno, cblkno;
1887     opj_sparse_array_int32_t* sa = opj_sparse_array_int32_create(
1888                                        w, h, opj_uint_min(w, 64), opj_uint_min(h, 64));
1889     if (sa == NULL) {
1890         return NULL;
1891     }
1892 
1893     for (resno = 0; resno < numres; ++resno) {
1894         opj_tcd_resolution_t* res = &tilec->resolutions[resno];
1895 
1896         for (bandno = 0; bandno < res->numbands; ++bandno) {
1897             opj_tcd_band_t* band = &res->bands[bandno];
1898 
1899             for (precno = 0; precno < res->pw * res->ph; ++precno) {
1900                 opj_tcd_precinct_t* precinct = &band->precincts[precno];
1901                 for (cblkno = 0; cblkno < precinct->cw * precinct->ch; ++cblkno) {
1902                     opj_tcd_cblk_dec_t* cblk = &precinct->cblks.dec[cblkno];
1903                     if (cblk->decoded_data != NULL) {
1904                         OPJ_UINT32 x = (OPJ_UINT32)(cblk->x0 - band->x0);
1905                         OPJ_UINT32 y = (OPJ_UINT32)(cblk->y0 - band->y0);
1906                         OPJ_UINT32 cblk_w = (OPJ_UINT32)(cblk->x1 - cblk->x0);
1907                         OPJ_UINT32 cblk_h = (OPJ_UINT32)(cblk->y1 - cblk->y0);
1908 
1909                         if (band->bandno & 1) {
1910                             opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1];
1911                             x += (OPJ_UINT32)(pres->x1 - pres->x0);
1912                         }
1913                         if (band->bandno & 2) {
1914                             opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1];
1915                             y += (OPJ_UINT32)(pres->y1 - pres->y0);
1916                         }
1917 
1918                         if (!opj_sparse_array_int32_write(sa, x, y,
1919                                                           x + cblk_w, y + cblk_h,
1920                                                           cblk->decoded_data,
1921                                                           1, cblk_w, OPJ_TRUE)) {
1922                             opj_sparse_array_int32_free(sa);
1923                             return NULL;
1924                         }
1925                     }
1926                 }
1927             }
1928         }
1929     }
1930 
1931     return sa;
1932 }
1933 
1934 
opj_dwt_decode_partial_tile(opj_tcd_tilecomp_t * tilec,OPJ_UINT32 numres)1935 static OPJ_BOOL opj_dwt_decode_partial_tile(
1936     opj_tcd_tilecomp_t* tilec,
1937     OPJ_UINT32 numres)
1938 {
1939     opj_sparse_array_int32_t* sa;
1940     opj_dwt_t h;
1941     opj_dwt_t v;
1942     OPJ_UINT32 resno;
1943     /* This value matches the maximum left/right extension given in tables */
1944     /* F.2 and F.3 of the standard. */
1945     const OPJ_UINT32 filter_width = 2U;
1946 
1947     opj_tcd_resolution_t* tr = tilec->resolutions;
1948     opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]);
1949 
1950     OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 -
1951                                  tr->x0);  /* width of the resolution level computed */
1952     OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 -
1953                                  tr->y0);  /* height of the resolution level computed */
1954 
1955     OPJ_SIZE_T h_mem_size;
1956 
1957     /* Compute the intersection of the area of interest, expressed in tile coordinates */
1958     /* with the tile coordinates */
1959     OPJ_UINT32 win_tcx0 = tilec->win_x0;
1960     OPJ_UINT32 win_tcy0 = tilec->win_y0;
1961     OPJ_UINT32 win_tcx1 = tilec->win_x1;
1962     OPJ_UINT32 win_tcy1 = tilec->win_y1;
1963 
1964     if (tr_max->x0 == tr_max->x1 || tr_max->y0 == tr_max->y1) {
1965         return OPJ_TRUE;
1966     }
1967 
1968     sa = opj_dwt_init_sparse_array(tilec, numres);
1969     if (sa == NULL) {
1970         return OPJ_FALSE;
1971     }
1972 
1973     if (numres == 1U) {
1974         OPJ_BOOL ret = opj_sparse_array_int32_read(sa,
1975                        tr_max->win_x0 - (OPJ_UINT32)tr_max->x0,
1976                        tr_max->win_y0 - (OPJ_UINT32)tr_max->y0,
1977                        tr_max->win_x1 - (OPJ_UINT32)tr_max->x0,
1978                        tr_max->win_y1 - (OPJ_UINT32)tr_max->y0,
1979                        tilec->data_win,
1980                        1, tr_max->win_x1 - tr_max->win_x0,
1981                        OPJ_TRUE);
1982         assert(ret);
1983         OPJ_UNUSED(ret);
1984         opj_sparse_array_int32_free(sa);
1985         return OPJ_TRUE;
1986     }
1987     h.mem_count = opj_dwt_max_resolution(tr, numres);
1988     /* overflow check */
1989     /* in vertical pass, we process 4 columns at a time */
1990     if (h.mem_count > (SIZE_MAX / (4 * sizeof(OPJ_INT32)))) {
1991         /* FIXME event manager error callback */
1992         opj_sparse_array_int32_free(sa);
1993         return OPJ_FALSE;
1994     }
1995 
1996     h_mem_size = h.mem_count * 4 * sizeof(OPJ_INT32);
1997     h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
1998     if (! h.mem) {
1999         /* FIXME event manager error callback */
2000         opj_sparse_array_int32_free(sa);
2001         return OPJ_FALSE;
2002     }
2003 
2004     v.mem_count = h.mem_count;
2005     v.mem = h.mem;
2006 
2007     for (resno = 1; resno < numres; resno ++) {
2008         OPJ_UINT32 i, j;
2009         /* Window of interest subband-based coordinates */
2010         OPJ_UINT32 win_ll_x0, win_ll_y0, win_ll_x1, win_ll_y1;
2011         OPJ_UINT32 win_hl_x0, win_hl_x1;
2012         OPJ_UINT32 win_lh_y0, win_lh_y1;
2013         /* Window of interest tile-resolution-based coordinates */
2014         OPJ_UINT32 win_tr_x0, win_tr_x1, win_tr_y0, win_tr_y1;
2015         /* Tile-resolution subband-based coordinates */
2016         OPJ_UINT32 tr_ll_x0, tr_ll_y0, tr_hl_x0, tr_lh_y0;
2017 
2018         ++tr;
2019 
2020         h.sn = (OPJ_INT32)rw;
2021         v.sn = (OPJ_INT32)rh;
2022 
2023         rw = (OPJ_UINT32)(tr->x1 - tr->x0);
2024         rh = (OPJ_UINT32)(tr->y1 - tr->y0);
2025 
2026         h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
2027         h.cas = tr->x0 % 2;
2028 
2029         v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
2030         v.cas = tr->y0 % 2;
2031 
2032         /* Get the subband coordinates for the window of interest */
2033         /* LL band */
2034         opj_dwt_get_band_coordinates(tilec, resno, 0,
2035                                      win_tcx0, win_tcy0, win_tcx1, win_tcy1,
2036                                      &win_ll_x0, &win_ll_y0,
2037                                      &win_ll_x1, &win_ll_y1);
2038 
2039         /* HL band */
2040         opj_dwt_get_band_coordinates(tilec, resno, 1,
2041                                      win_tcx0, win_tcy0, win_tcx1, win_tcy1,
2042                                      &win_hl_x0, NULL, &win_hl_x1, NULL);
2043 
2044         /* LH band */
2045         opj_dwt_get_band_coordinates(tilec, resno, 2,
2046                                      win_tcx0, win_tcy0, win_tcx1, win_tcy1,
2047                                      NULL, &win_lh_y0, NULL, &win_lh_y1);
2048 
2049         /* Beware: band index for non-LL0 resolution are 0=HL, 1=LH and 2=HH */
2050         tr_ll_x0 = (OPJ_UINT32)tr->bands[1].x0;
2051         tr_ll_y0 = (OPJ_UINT32)tr->bands[0].y0;
2052         tr_hl_x0 = (OPJ_UINT32)tr->bands[0].x0;
2053         tr_lh_y0 = (OPJ_UINT32)tr->bands[1].y0;
2054 
2055         /* Substract the origin of the bands for this tile, to the subwindow */
2056         /* of interest band coordinates, so as to get them relative to the */
2057         /* tile */
2058         win_ll_x0 = opj_uint_subs(win_ll_x0, tr_ll_x0);
2059         win_ll_y0 = opj_uint_subs(win_ll_y0, tr_ll_y0);
2060         win_ll_x1 = opj_uint_subs(win_ll_x1, tr_ll_x0);
2061         win_ll_y1 = opj_uint_subs(win_ll_y1, tr_ll_y0);
2062         win_hl_x0 = opj_uint_subs(win_hl_x0, tr_hl_x0);
2063         win_hl_x1 = opj_uint_subs(win_hl_x1, tr_hl_x0);
2064         win_lh_y0 = opj_uint_subs(win_lh_y0, tr_lh_y0);
2065         win_lh_y1 = opj_uint_subs(win_lh_y1, tr_lh_y0);
2066 
2067         opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.sn, &win_ll_x0, &win_ll_x1);
2068         opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.dn, &win_hl_x0, &win_hl_x1);
2069 
2070         opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.sn, &win_ll_y0, &win_ll_y1);
2071         opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.dn, &win_lh_y0, &win_lh_y1);
2072 
2073         /* Compute the tile-resolution-based coordinates for the window of interest */
2074         if (h.cas == 0) {
2075             win_tr_x0 = opj_uint_min(2 * win_ll_x0, 2 * win_hl_x0 + 1);
2076             win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_ll_x1, 2 * win_hl_x1 + 1), rw);
2077         } else {
2078             win_tr_x0 = opj_uint_min(2 * win_hl_x0, 2 * win_ll_x0 + 1);
2079             win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_hl_x1, 2 * win_ll_x1 + 1), rw);
2080         }
2081 
2082         if (v.cas == 0) {
2083             win_tr_y0 = opj_uint_min(2 * win_ll_y0, 2 * win_lh_y0 + 1);
2084             win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_ll_y1, 2 * win_lh_y1 + 1), rh);
2085         } else {
2086             win_tr_y0 = opj_uint_min(2 * win_lh_y0, 2 * win_ll_y0 + 1);
2087             win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_lh_y1, 2 * win_ll_y1 + 1), rh);
2088         }
2089 
2090         for (j = 0; j < rh; ++j) {
2091             if ((j >= win_ll_y0 && j < win_ll_y1) ||
2092                     (j >= win_lh_y0 + (OPJ_UINT32)v.sn && j < win_lh_y1 + (OPJ_UINT32)v.sn)) {
2093 
2094                 /* Avoids dwt.c:1584:44 (in opj_dwt_decode_partial_1): runtime error: */
2095                 /* signed integer overflow: -1094795586 + -1094795586 cannot be represented in type 'int' */
2096                 /* on opj_decompress -i  ../../openjpeg/MAPA.jp2 -o out.tif -d 0,0,256,256 */
2097                 /* This is less extreme than memsetting the whole buffer to 0 */
2098                 /* although we could potentially do better with better handling of edge conditions */
2099                 if (win_tr_x1 >= 1 && win_tr_x1 < rw) {
2100                     h.mem[win_tr_x1 - 1] = 0;
2101                 }
2102                 if (win_tr_x1 < rw) {
2103                     h.mem[win_tr_x1] = 0;
2104                 }
2105 
2106                 opj_dwt_interleave_partial_h(h.mem,
2107                                              h.cas,
2108                                              sa,
2109                                              j,
2110                                              (OPJ_UINT32)h.sn,
2111                                              win_ll_x0,
2112                                              win_ll_x1,
2113                                              win_hl_x0,
2114                                              win_hl_x1);
2115                 opj_dwt_decode_partial_1(h.mem, h.mem_count, h.dn, h.sn, h.cas,
2116                                          (OPJ_INT32)win_ll_x0,
2117                                          (OPJ_INT32)win_ll_x1,
2118                                          (OPJ_INT32)win_hl_x0,
2119                                          (OPJ_INT32)win_hl_x1);
2120                 if (!opj_sparse_array_int32_write(sa,
2121                                                   win_tr_x0, j,
2122                                                   win_tr_x1, j + 1,
2123                                                   h.mem + win_tr_x0,
2124                                                   1, 0, OPJ_TRUE)) {
2125                     /* FIXME event manager error callback */
2126                     opj_sparse_array_int32_free(sa);
2127                     opj_aligned_free(h.mem);
2128                     return OPJ_FALSE;
2129                 }
2130             }
2131         }
2132 
2133         for (i = win_tr_x0; i < win_tr_x1;) {
2134             OPJ_UINT32 nb_cols = opj_uint_min(4U, win_tr_x1 - i);
2135             opj_dwt_interleave_partial_v(v.mem,
2136                                          v.cas,
2137                                          sa,
2138                                          i,
2139                                          nb_cols,
2140                                          (OPJ_UINT32)v.sn,
2141                                          win_ll_y0,
2142                                          win_ll_y1,
2143                                          win_lh_y0,
2144                                          win_lh_y1);
2145             opj_dwt_decode_partial_1_parallel(v.mem, nb_cols, v.dn, v.sn, v.cas,
2146                                               (OPJ_INT32)win_ll_y0,
2147                                               (OPJ_INT32)win_ll_y1,
2148                                               (OPJ_INT32)win_lh_y0,
2149                                               (OPJ_INT32)win_lh_y1);
2150             if (!opj_sparse_array_int32_write(sa,
2151                                               i, win_tr_y0,
2152                                               i + nb_cols, win_tr_y1,
2153                                               v.mem + 4 * win_tr_y0,
2154                                               1, 4, OPJ_TRUE)) {
2155                 /* FIXME event manager error callback */
2156                 opj_sparse_array_int32_free(sa);
2157                 opj_aligned_free(h.mem);
2158                 return OPJ_FALSE;
2159             }
2160 
2161             i += nb_cols;
2162         }
2163     }
2164     opj_aligned_free(h.mem);
2165 
2166     {
2167         OPJ_BOOL ret = opj_sparse_array_int32_read(sa,
2168                        tr_max->win_x0 - (OPJ_UINT32)tr_max->x0,
2169                        tr_max->win_y0 - (OPJ_UINT32)tr_max->y0,
2170                        tr_max->win_x1 - (OPJ_UINT32)tr_max->x0,
2171                        tr_max->win_y1 - (OPJ_UINT32)tr_max->y0,
2172                        tilec->data_win,
2173                        1, tr_max->win_x1 - tr_max->win_x0,
2174                        OPJ_TRUE);
2175         assert(ret);
2176         OPJ_UNUSED(ret);
2177     }
2178     opj_sparse_array_int32_free(sa);
2179     return OPJ_TRUE;
2180 }
2181 
opj_v4dwt_interleave_h(opj_v4dwt_t * OPJ_RESTRICT dwt,OPJ_FLOAT32 * OPJ_RESTRICT a,OPJ_UINT32 width,OPJ_UINT32 remaining_height)2182 static void opj_v4dwt_interleave_h(opj_v4dwt_t* OPJ_RESTRICT dwt,
2183                                    OPJ_FLOAT32* OPJ_RESTRICT a,
2184                                    OPJ_UINT32 width,
2185                                    OPJ_UINT32 remaining_height)
2186 {
2187     OPJ_FLOAT32* OPJ_RESTRICT bi = (OPJ_FLOAT32*)(dwt->wavelet + dwt->cas);
2188     OPJ_UINT32 i, k;
2189     OPJ_UINT32 x0 = dwt->win_l_x0;
2190     OPJ_UINT32 x1 = dwt->win_l_x1;
2191 
2192     for (k = 0; k < 2; ++k) {
2193         if (remaining_height >= 4 && ((OPJ_SIZE_T) a & 0x0f) == 0 &&
2194                 ((OPJ_SIZE_T) bi & 0x0f) == 0 && (width & 0x0f) == 0) {
2195             /* Fast code path */
2196             for (i = x0; i < x1; ++i) {
2197                 OPJ_UINT32 j = i;
2198                 bi[i * 8    ] = a[j];
2199                 j += width;
2200                 bi[i * 8 + 1] = a[j];
2201                 j += width;
2202                 bi[i * 8 + 2] = a[j];
2203                 j += width;
2204                 bi[i * 8 + 3] = a[j];
2205             }
2206         } else {
2207             /* Slow code path */
2208             for (i = x0; i < x1; ++i) {
2209                 OPJ_UINT32 j = i;
2210                 bi[i * 8    ] = a[j];
2211                 j += width;
2212                 if (remaining_height == 1) {
2213                     continue;
2214                 }
2215                 bi[i * 8 + 1] = a[j];
2216                 j += width;
2217                 if (remaining_height == 2) {
2218                     continue;
2219                 }
2220                 bi[i * 8 + 2] = a[j];
2221                 j += width;
2222                 if (remaining_height == 3) {
2223                     continue;
2224                 }
2225                 bi[i * 8 + 3] = a[j]; /* This one*/
2226             }
2227         }
2228 
2229         bi = (OPJ_FLOAT32*)(dwt->wavelet + 1 - dwt->cas);
2230         a += dwt->sn;
2231         x0 = dwt->win_h_x0;
2232         x1 = dwt->win_h_x1;
2233     }
2234 }
2235 
opj_v4dwt_interleave_partial_h(opj_v4dwt_t * dwt,opj_sparse_array_int32_t * sa,OPJ_UINT32 sa_line,OPJ_UINT32 remaining_height)2236 static void opj_v4dwt_interleave_partial_h(opj_v4dwt_t* dwt,
2237         opj_sparse_array_int32_t* sa,
2238         OPJ_UINT32 sa_line,
2239         OPJ_UINT32 remaining_height)
2240 {
2241     OPJ_UINT32 i;
2242     for (i = 0; i < remaining_height; i++) {
2243         OPJ_BOOL ret;
2244         ret = opj_sparse_array_int32_read(sa,
2245                                           dwt->win_l_x0, sa_line + i,
2246                                           dwt->win_l_x1, sa_line + i + 1,
2247                                           /* Nasty cast from float* to int32* */
2248                                           (OPJ_INT32*)(dwt->wavelet + dwt->cas + 2 * dwt->win_l_x0) + i,
2249                                           8, 0, OPJ_TRUE);
2250         assert(ret);
2251         ret = opj_sparse_array_int32_read(sa,
2252                                           (OPJ_UINT32)dwt->sn + dwt->win_h_x0, sa_line + i,
2253                                           (OPJ_UINT32)dwt->sn + dwt->win_h_x1, sa_line + i + 1,
2254                                           /* Nasty cast from float* to int32* */
2255                                           (OPJ_INT32*)(dwt->wavelet + 1 - dwt->cas + 2 * dwt->win_h_x0) + i,
2256                                           8, 0, OPJ_TRUE);
2257         assert(ret);
2258         OPJ_UNUSED(ret);
2259     }
2260 }
2261 
opj_v4dwt_interleave_v(opj_v4dwt_t * OPJ_RESTRICT dwt,OPJ_FLOAT32 * OPJ_RESTRICT a,OPJ_UINT32 width,OPJ_UINT32 nb_elts_read)2262 static void opj_v4dwt_interleave_v(opj_v4dwt_t* OPJ_RESTRICT dwt,
2263                                    OPJ_FLOAT32* OPJ_RESTRICT a,
2264                                    OPJ_UINT32 width,
2265                                    OPJ_UINT32 nb_elts_read)
2266 {
2267     opj_v4_t* OPJ_RESTRICT bi = dwt->wavelet + dwt->cas;
2268     OPJ_UINT32 i;
2269 
2270     for (i = dwt->win_l_x0; i < dwt->win_l_x1; ++i) {
2271         memcpy(&bi[i * 2], &a[i * (OPJ_SIZE_T)width],
2272                (OPJ_SIZE_T)nb_elts_read * sizeof(OPJ_FLOAT32));
2273     }
2274 
2275     a += (OPJ_UINT32)dwt->sn * (OPJ_SIZE_T)width;
2276     bi = dwt->wavelet + 1 - dwt->cas;
2277 
2278     for (i = dwt->win_h_x0; i < dwt->win_h_x1; ++i) {
2279         memcpy(&bi[i * 2], &a[i * (OPJ_SIZE_T)width],
2280                (OPJ_SIZE_T)nb_elts_read * sizeof(OPJ_FLOAT32));
2281     }
2282 }
2283 
opj_v4dwt_interleave_partial_v(opj_v4dwt_t * OPJ_RESTRICT dwt,opj_sparse_array_int32_t * sa,OPJ_UINT32 sa_col,OPJ_UINT32 nb_elts_read)2284 static void opj_v4dwt_interleave_partial_v(opj_v4dwt_t* OPJ_RESTRICT dwt,
2285         opj_sparse_array_int32_t* sa,
2286         OPJ_UINT32 sa_col,
2287         OPJ_UINT32 nb_elts_read)
2288 {
2289     OPJ_BOOL ret;
2290     ret = opj_sparse_array_int32_read(sa,
2291                                       sa_col, dwt->win_l_x0,
2292                                       sa_col + nb_elts_read, dwt->win_l_x1,
2293                                       (OPJ_INT32*)(dwt->wavelet + dwt->cas + 2 * dwt->win_l_x0),
2294                                       1, 8, OPJ_TRUE);
2295     assert(ret);
2296     ret = opj_sparse_array_int32_read(sa,
2297                                       sa_col, (OPJ_UINT32)dwt->sn + dwt->win_h_x0,
2298                                       sa_col + nb_elts_read, (OPJ_UINT32)dwt->sn + dwt->win_h_x1,
2299                                       (OPJ_INT32*)(dwt->wavelet + 1 - dwt->cas + 2 * dwt->win_h_x0),
2300                                       1, 8, OPJ_TRUE);
2301     assert(ret);
2302     OPJ_UNUSED(ret);
2303 }
2304 
2305 #ifdef __SSE__
2306 
opj_v4dwt_decode_step1_sse(opj_v4_t * w,OPJ_UINT32 start,OPJ_UINT32 end,const __m128 c)2307 static void opj_v4dwt_decode_step1_sse(opj_v4_t* w,
2308                                        OPJ_UINT32 start,
2309                                        OPJ_UINT32 end,
2310                                        const __m128 c)
2311 {
2312     __m128* OPJ_RESTRICT vw = (__m128*) w;
2313     OPJ_UINT32 i;
2314     /* 4x unrolled loop */
2315     vw += 2 * start;
2316     for (i = start; i + 3 < end; i += 4, vw += 8) {
2317         __m128 xmm0 = _mm_mul_ps(vw[0], c);
2318         __m128 xmm2 = _mm_mul_ps(vw[2], c);
2319         __m128 xmm4 = _mm_mul_ps(vw[4], c);
2320         __m128 xmm6 = _mm_mul_ps(vw[6], c);
2321         vw[0] = xmm0;
2322         vw[2] = xmm2;
2323         vw[4] = xmm4;
2324         vw[6] = xmm6;
2325     }
2326     for (; i < end; ++i, vw += 2) {
2327         vw[0] = _mm_mul_ps(vw[0], c);
2328     }
2329 }
2330 
opj_v4dwt_decode_step2_sse(opj_v4_t * l,opj_v4_t * w,OPJ_UINT32 start,OPJ_UINT32 end,OPJ_UINT32 m,__m128 c)2331 static void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w,
2332                                        OPJ_UINT32 start,
2333                                        OPJ_UINT32 end,
2334                                        OPJ_UINT32 m,
2335                                        __m128 c)
2336 {
2337     __m128* OPJ_RESTRICT vl = (__m128*) l;
2338     __m128* OPJ_RESTRICT vw = (__m128*) w;
2339     OPJ_UINT32 i;
2340     OPJ_UINT32 imax = opj_uint_min(end, m);
2341     __m128 tmp1, tmp2, tmp3;
2342     if (start == 0) {
2343         tmp1 = vl[0];
2344     } else {
2345         vw += start * 2;
2346         tmp1 = vw[-3];
2347     }
2348 
2349     i = start;
2350 
2351     /* 4x loop unrolling */
2352     for (; i + 3 < imax; i += 4) {
2353         __m128 tmp4, tmp5, tmp6, tmp7, tmp8, tmp9;
2354         tmp2 = vw[-1];
2355         tmp3 = vw[ 0];
2356         tmp4 = vw[ 1];
2357         tmp5 = vw[ 2];
2358         tmp6 = vw[ 3];
2359         tmp7 = vw[ 4];
2360         tmp8 = vw[ 5];
2361         tmp9 = vw[ 6];
2362         vw[-1] = _mm_add_ps(tmp2, _mm_mul_ps(_mm_add_ps(tmp1, tmp3), c));
2363         vw[ 1] = _mm_add_ps(tmp4, _mm_mul_ps(_mm_add_ps(tmp3, tmp5), c));
2364         vw[ 3] = _mm_add_ps(tmp6, _mm_mul_ps(_mm_add_ps(tmp5, tmp7), c));
2365         vw[ 5] = _mm_add_ps(tmp8, _mm_mul_ps(_mm_add_ps(tmp7, tmp9), c));
2366         tmp1 = tmp9;
2367         vw += 8;
2368     }
2369 
2370     for (; i < imax; ++i) {
2371         tmp2 = vw[-1];
2372         tmp3 = vw[ 0];
2373         vw[-1] = _mm_add_ps(tmp2, _mm_mul_ps(_mm_add_ps(tmp1, tmp3), c));
2374         tmp1 = tmp3;
2375         vw += 2;
2376     }
2377     if (m < end) {
2378         assert(m + 1 == end);
2379         c = _mm_add_ps(c, c);
2380         c = _mm_mul_ps(c, vw[-2]);
2381         vw[-1] = _mm_add_ps(vw[-1], c);
2382     }
2383 }
2384 
2385 #else
2386 
opj_v4dwt_decode_step1(opj_v4_t * w,OPJ_UINT32 start,OPJ_UINT32 end,const OPJ_FLOAT32 c)2387 static void opj_v4dwt_decode_step1(opj_v4_t* w,
2388                                    OPJ_UINT32 start,
2389                                    OPJ_UINT32 end,
2390                                    const OPJ_FLOAT32 c)
2391 {
2392     OPJ_FLOAT32* OPJ_RESTRICT fw = (OPJ_FLOAT32*) w;
2393     OPJ_UINT32 i;
2394     for (i = start; i < end; ++i) {
2395         OPJ_FLOAT32 tmp1 = fw[i * 8    ];
2396         OPJ_FLOAT32 tmp2 = fw[i * 8 + 1];
2397         OPJ_FLOAT32 tmp3 = fw[i * 8 + 2];
2398         OPJ_FLOAT32 tmp4 = fw[i * 8 + 3];
2399         fw[i * 8    ] = tmp1 * c;
2400         fw[i * 8 + 1] = tmp2 * c;
2401         fw[i * 8 + 2] = tmp3 * c;
2402         fw[i * 8 + 3] = tmp4 * c;
2403     }
2404 }
2405 
opj_v4dwt_decode_step2(opj_v4_t * l,opj_v4_t * w,OPJ_UINT32 start,OPJ_UINT32 end,OPJ_UINT32 m,OPJ_FLOAT32 c)2406 static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w,
2407                                    OPJ_UINT32 start,
2408                                    OPJ_UINT32 end,
2409                                    OPJ_UINT32 m,
2410                                    OPJ_FLOAT32 c)
2411 {
2412     OPJ_FLOAT32* fl = (OPJ_FLOAT32*) l;
2413     OPJ_FLOAT32* fw = (OPJ_FLOAT32*) w;
2414     OPJ_UINT32 i;
2415     OPJ_UINT32 imax = opj_uint_min(end, m);
2416     if (start > 0) {
2417         fw += 8 * start;
2418         fl = fw - 8;
2419     }
2420     for (i = start; i < imax; ++i) {
2421         OPJ_FLOAT32 tmp1_1 = fl[0];
2422         OPJ_FLOAT32 tmp1_2 = fl[1];
2423         OPJ_FLOAT32 tmp1_3 = fl[2];
2424         OPJ_FLOAT32 tmp1_4 = fl[3];
2425         OPJ_FLOAT32 tmp2_1 = fw[-4];
2426         OPJ_FLOAT32 tmp2_2 = fw[-3];
2427         OPJ_FLOAT32 tmp2_3 = fw[-2];
2428         OPJ_FLOAT32 tmp2_4 = fw[-1];
2429         OPJ_FLOAT32 tmp3_1 = fw[0];
2430         OPJ_FLOAT32 tmp3_2 = fw[1];
2431         OPJ_FLOAT32 tmp3_3 = fw[2];
2432         OPJ_FLOAT32 tmp3_4 = fw[3];
2433         fw[-4] = tmp2_1 + ((tmp1_1 + tmp3_1) * c);
2434         fw[-3] = tmp2_2 + ((tmp1_2 + tmp3_2) * c);
2435         fw[-2] = tmp2_3 + ((tmp1_3 + tmp3_3) * c);
2436         fw[-1] = tmp2_4 + ((tmp1_4 + tmp3_4) * c);
2437         fl = fw;
2438         fw += 8;
2439     }
2440     if (m < end) {
2441         assert(m + 1 == end);
2442         c += c;
2443         fw[-4] = fw[-4] + fl[0] * c;
2444         fw[-3] = fw[-3] + fl[1] * c;
2445         fw[-2] = fw[-2] + fl[2] * c;
2446         fw[-1] = fw[-1] + fl[3] * c;
2447     }
2448 }
2449 
2450 #endif
2451 
2452 /* <summary>                             */
2453 /* Inverse 9-7 wavelet transform in 1-D. */
2454 /* </summary>                            */
opj_v4dwt_decode(opj_v4dwt_t * OPJ_RESTRICT dwt)2455 static void opj_v4dwt_decode(opj_v4dwt_t* OPJ_RESTRICT dwt)
2456 {
2457     OPJ_INT32 a, b;
2458     if (dwt->cas == 0) {
2459         if (!((dwt->dn > 0) || (dwt->sn > 1))) {
2460             return;
2461         }
2462         a = 0;
2463         b = 1;
2464     } else {
2465         if (!((dwt->sn > 0) || (dwt->dn > 1))) {
2466             return;
2467         }
2468         a = 1;
2469         b = 0;
2470     }
2471 #ifdef __SSE__
2472     opj_v4dwt_decode_step1_sse(dwt->wavelet + a, dwt->win_l_x0, dwt->win_l_x1,
2473                                _mm_set1_ps(opj_K));
2474     opj_v4dwt_decode_step1_sse(dwt->wavelet + b, dwt->win_h_x0, dwt->win_h_x1,
2475                                _mm_set1_ps(opj_c13318));
2476     opj_v4dwt_decode_step2_sse(dwt->wavelet + b, dwt->wavelet + a + 1,
2477                                dwt->win_l_x0, dwt->win_l_x1,
2478                                (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a),
2479                                _mm_set1_ps(opj_dwt_delta));
2480     opj_v4dwt_decode_step2_sse(dwt->wavelet + a, dwt->wavelet + b + 1,
2481                                dwt->win_h_x0, dwt->win_h_x1,
2482                                (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b),
2483                                _mm_set1_ps(opj_dwt_gamma));
2484     opj_v4dwt_decode_step2_sse(dwt->wavelet + b, dwt->wavelet + a + 1,
2485                                dwt->win_l_x0, dwt->win_l_x1,
2486                                (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a),
2487                                _mm_set1_ps(opj_dwt_beta));
2488     opj_v4dwt_decode_step2_sse(dwt->wavelet + a, dwt->wavelet + b + 1,
2489                                dwt->win_h_x0, dwt->win_h_x1,
2490                                (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b),
2491                                _mm_set1_ps(opj_dwt_alpha));
2492 #else
2493     opj_v4dwt_decode_step1(dwt->wavelet + a, dwt->win_l_x0, dwt->win_l_x1,
2494                            opj_K);
2495     opj_v4dwt_decode_step1(dwt->wavelet + b, dwt->win_h_x0, dwt->win_h_x1,
2496                            opj_c13318);
2497     opj_v4dwt_decode_step2(dwt->wavelet + b, dwt->wavelet + a + 1,
2498                            dwt->win_l_x0, dwt->win_l_x1,
2499                            (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a),
2500                            opj_dwt_delta);
2501     opj_v4dwt_decode_step2(dwt->wavelet + a, dwt->wavelet + b + 1,
2502                            dwt->win_h_x0, dwt->win_h_x1,
2503                            (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b),
2504                            opj_dwt_gamma);
2505     opj_v4dwt_decode_step2(dwt->wavelet + b, dwt->wavelet + a + 1,
2506                            dwt->win_l_x0, dwt->win_l_x1,
2507                            (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a),
2508                            opj_dwt_beta);
2509     opj_v4dwt_decode_step2(dwt->wavelet + a, dwt->wavelet + b + 1,
2510                            dwt->win_h_x0, dwt->win_h_x1,
2511                            (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b),
2512                            opj_dwt_alpha);
2513 #endif
2514 }
2515 
2516 
2517 /* <summary>                             */
2518 /* Inverse 9-7 wavelet transform in 2-D. */
2519 /* </summary>                            */
2520 static
opj_dwt_decode_tile_97(opj_tcd_tilecomp_t * OPJ_RESTRICT tilec,OPJ_UINT32 numres)2521 OPJ_BOOL opj_dwt_decode_tile_97(opj_tcd_tilecomp_t* OPJ_RESTRICT tilec,
2522                                 OPJ_UINT32 numres)
2523 {
2524     opj_v4dwt_t h;
2525     opj_v4dwt_t v;
2526 
2527     opj_tcd_resolution_t* res = tilec->resolutions;
2528 
2529     OPJ_UINT32 rw = (OPJ_UINT32)(res->x1 -
2530                                  res->x0);    /* width of the resolution level computed */
2531     OPJ_UINT32 rh = (OPJ_UINT32)(res->y1 -
2532                                  res->y0);    /* height of the resolution level computed */
2533 
2534     OPJ_UINT32 w = (OPJ_UINT32)(tilec->resolutions[tilec->minimum_num_resolutions -
2535                                                                1].x1 -
2536                                 tilec->resolutions[tilec->minimum_num_resolutions - 1].x0);
2537 
2538     OPJ_SIZE_T l_data_size;
2539 
2540     l_data_size = opj_dwt_max_resolution(res, numres);
2541     /* overflow check */
2542     if (l_data_size > (SIZE_MAX - 5U)) {
2543         /* FIXME event manager error callback */
2544         return OPJ_FALSE;
2545     }
2546     l_data_size += 5U;
2547     /* overflow check */
2548     if (l_data_size > (SIZE_MAX / sizeof(opj_v4_t))) {
2549         /* FIXME event manager error callback */
2550         return OPJ_FALSE;
2551     }
2552     h.wavelet = (opj_v4_t*) opj_aligned_malloc(l_data_size * sizeof(opj_v4_t));
2553     if (!h.wavelet) {
2554         /* FIXME event manager error callback */
2555         return OPJ_FALSE;
2556     }
2557     v.wavelet = h.wavelet;
2558 
2559     while (--numres) {
2560         OPJ_FLOAT32 * OPJ_RESTRICT aj = (OPJ_FLOAT32*) tilec->data;
2561         OPJ_UINT32 j;
2562 
2563         h.sn = (OPJ_INT32)rw;
2564         v.sn = (OPJ_INT32)rh;
2565 
2566         ++res;
2567 
2568         rw = (OPJ_UINT32)(res->x1 -
2569                           res->x0);   /* width of the resolution level computed */
2570         rh = (OPJ_UINT32)(res->y1 -
2571                           res->y0);   /* height of the resolution level computed */
2572 
2573         h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
2574         h.cas = res->x0 % 2;
2575 
2576         h.win_l_x0 = 0;
2577         h.win_l_x1 = (OPJ_UINT32)h.sn;
2578         h.win_h_x0 = 0;
2579         h.win_h_x1 = (OPJ_UINT32)h.dn;
2580         for (j = 0; j + 3 < rh; j += 4) {
2581             OPJ_UINT32 k;
2582             opj_v4dwt_interleave_h(&h, aj, w, rh - j);
2583             opj_v4dwt_decode(&h);
2584 
2585             for (k = 0; k < rw; k++) {
2586                 aj[k      ] = h.wavelet[k].f[0];
2587                 aj[k + (OPJ_SIZE_T)w  ] = h.wavelet[k].f[1];
2588                 aj[k + (OPJ_SIZE_T)w * 2] = h.wavelet[k].f[2];
2589                 aj[k + (OPJ_SIZE_T)w * 3] = h.wavelet[k].f[3];
2590             }
2591 
2592             aj += w * 4;
2593         }
2594 
2595         if (j < rh) {
2596             OPJ_UINT32 k;
2597             opj_v4dwt_interleave_h(&h, aj, w, rh - j);
2598             opj_v4dwt_decode(&h);
2599             for (k = 0; k < rw; k++) {
2600                 switch (rh - j) {
2601                 case 3:
2602                     aj[k + (OPJ_SIZE_T)w * 2] = h.wavelet[k].f[2];
2603                 /* FALLTHRU */
2604                 case 2:
2605                     aj[k + (OPJ_SIZE_T)w  ] = h.wavelet[k].f[1];
2606                 /* FALLTHRU */
2607                 case 1:
2608                     aj[k] = h.wavelet[k].f[0];
2609                 }
2610             }
2611         }
2612 
2613         v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
2614         v.cas = res->y0 % 2;
2615         v.win_l_x0 = 0;
2616         v.win_l_x1 = (OPJ_UINT32)v.sn;
2617         v.win_h_x0 = 0;
2618         v.win_h_x1 = (OPJ_UINT32)v.dn;
2619 
2620         aj = (OPJ_FLOAT32*) tilec->data;
2621         for (j = rw; j > 3; j -= 4) {
2622             OPJ_UINT32 k;
2623 
2624             opj_v4dwt_interleave_v(&v, aj, w, 4);
2625             opj_v4dwt_decode(&v);
2626 
2627             for (k = 0; k < rh; ++k) {
2628                 memcpy(&aj[k * (OPJ_SIZE_T)w], &v.wavelet[k], 4 * sizeof(OPJ_FLOAT32));
2629             }
2630             aj += 4;
2631         }
2632 
2633         if (rw & 0x03) {
2634             OPJ_UINT32 k;
2635 
2636             j = rw & 0x03;
2637 
2638             opj_v4dwt_interleave_v(&v, aj, w, j);
2639             opj_v4dwt_decode(&v);
2640 
2641             for (k = 0; k < rh; ++k) {
2642                 memcpy(&aj[k * (OPJ_SIZE_T)w], &v.wavelet[k],
2643                        (OPJ_SIZE_T)j * sizeof(OPJ_FLOAT32));
2644             }
2645         }
2646     }
2647 
2648     opj_aligned_free(h.wavelet);
2649     return OPJ_TRUE;
2650 }
2651 
2652 static
opj_dwt_decode_partial_97(opj_tcd_tilecomp_t * OPJ_RESTRICT tilec,OPJ_UINT32 numres)2653 OPJ_BOOL opj_dwt_decode_partial_97(opj_tcd_tilecomp_t* OPJ_RESTRICT tilec,
2654                                    OPJ_UINT32 numres)
2655 {
2656     opj_sparse_array_int32_t* sa;
2657     opj_v4dwt_t h;
2658     opj_v4dwt_t v;
2659     OPJ_UINT32 resno;
2660     /* This value matches the maximum left/right extension given in tables */
2661     /* F.2 and F.3 of the standard. Note: in opj_tcd_is_subband_area_of_interest() */
2662     /* we currently use 3. */
2663     const OPJ_UINT32 filter_width = 4U;
2664 
2665     opj_tcd_resolution_t* tr = tilec->resolutions;
2666     opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]);
2667 
2668     OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 -
2669                                  tr->x0);    /* width of the resolution level computed */
2670     OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 -
2671                                  tr->y0);    /* height of the resolution level computed */
2672 
2673     OPJ_SIZE_T l_data_size;
2674 
2675     /* Compute the intersection of the area of interest, expressed in tile coordinates */
2676     /* with the tile coordinates */
2677     OPJ_UINT32 win_tcx0 = tilec->win_x0;
2678     OPJ_UINT32 win_tcy0 = tilec->win_y0;
2679     OPJ_UINT32 win_tcx1 = tilec->win_x1;
2680     OPJ_UINT32 win_tcy1 = tilec->win_y1;
2681 
2682     if (tr_max->x0 == tr_max->x1 || tr_max->y0 == tr_max->y1) {
2683         return OPJ_TRUE;
2684     }
2685 
2686     sa = opj_dwt_init_sparse_array(tilec, numres);
2687     if (sa == NULL) {
2688         return OPJ_FALSE;
2689     }
2690 
2691     if (numres == 1U) {
2692         OPJ_BOOL ret = opj_sparse_array_int32_read(sa,
2693                        tr_max->win_x0 - (OPJ_UINT32)tr_max->x0,
2694                        tr_max->win_y0 - (OPJ_UINT32)tr_max->y0,
2695                        tr_max->win_x1 - (OPJ_UINT32)tr_max->x0,
2696                        tr_max->win_y1 - (OPJ_UINT32)tr_max->y0,
2697                        tilec->data_win,
2698                        1, tr_max->win_x1 - tr_max->win_x0,
2699                        OPJ_TRUE);
2700         assert(ret);
2701         OPJ_UNUSED(ret);
2702         opj_sparse_array_int32_free(sa);
2703         return OPJ_TRUE;
2704     }
2705 
2706     l_data_size = opj_dwt_max_resolution(tr, numres);
2707     /* overflow check */
2708     if (l_data_size > (SIZE_MAX - 5U)) {
2709         /* FIXME event manager error callback */
2710         return OPJ_FALSE;
2711     }
2712     l_data_size += 5U;
2713     /* overflow check */
2714     if (l_data_size > (SIZE_MAX / sizeof(opj_v4_t))) {
2715         /* FIXME event manager error callback */
2716         return OPJ_FALSE;
2717     }
2718     h.wavelet = (opj_v4_t*) opj_aligned_malloc(l_data_size * sizeof(opj_v4_t));
2719     if (!h.wavelet) {
2720         /* FIXME event manager error callback */
2721         return OPJ_FALSE;
2722     }
2723     v.wavelet = h.wavelet;
2724 
2725     for (resno = 1; resno < numres; resno ++) {
2726         OPJ_UINT32 j;
2727         /* Window of interest subband-based coordinates */
2728         OPJ_UINT32 win_ll_x0, win_ll_y0, win_ll_x1, win_ll_y1;
2729         OPJ_UINT32 win_hl_x0, win_hl_x1;
2730         OPJ_UINT32 win_lh_y0, win_lh_y1;
2731         /* Window of interest tile-resolution-based coordinates */
2732         OPJ_UINT32 win_tr_x0, win_tr_x1, win_tr_y0, win_tr_y1;
2733         /* Tile-resolution subband-based coordinates */
2734         OPJ_UINT32 tr_ll_x0, tr_ll_y0, tr_hl_x0, tr_lh_y0;
2735 
2736         ++tr;
2737 
2738         h.sn = (OPJ_INT32)rw;
2739         v.sn = (OPJ_INT32)rh;
2740 
2741         rw = (OPJ_UINT32)(tr->x1 - tr->x0);
2742         rh = (OPJ_UINT32)(tr->y1 - tr->y0);
2743 
2744         h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
2745         h.cas = tr->x0 % 2;
2746 
2747         v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
2748         v.cas = tr->y0 % 2;
2749 
2750         /* Get the subband coordinates for the window of interest */
2751         /* LL band */
2752         opj_dwt_get_band_coordinates(tilec, resno, 0,
2753                                      win_tcx0, win_tcy0, win_tcx1, win_tcy1,
2754                                      &win_ll_x0, &win_ll_y0,
2755                                      &win_ll_x1, &win_ll_y1);
2756 
2757         /* HL band */
2758         opj_dwt_get_band_coordinates(tilec, resno, 1,
2759                                      win_tcx0, win_tcy0, win_tcx1, win_tcy1,
2760                                      &win_hl_x0, NULL, &win_hl_x1, NULL);
2761 
2762         /* LH band */
2763         opj_dwt_get_band_coordinates(tilec, resno, 2,
2764                                      win_tcx0, win_tcy0, win_tcx1, win_tcy1,
2765                                      NULL, &win_lh_y0, NULL, &win_lh_y1);
2766 
2767         /* Beware: band index for non-LL0 resolution are 0=HL, 1=LH and 2=HH */
2768         tr_ll_x0 = (OPJ_UINT32)tr->bands[1].x0;
2769         tr_ll_y0 = (OPJ_UINT32)tr->bands[0].y0;
2770         tr_hl_x0 = (OPJ_UINT32)tr->bands[0].x0;
2771         tr_lh_y0 = (OPJ_UINT32)tr->bands[1].y0;
2772 
2773         /* Substract the origin of the bands for this tile, to the subwindow */
2774         /* of interest band coordinates, so as to get them relative to the */
2775         /* tile */
2776         win_ll_x0 = opj_uint_subs(win_ll_x0, tr_ll_x0);
2777         win_ll_y0 = opj_uint_subs(win_ll_y0, tr_ll_y0);
2778         win_ll_x1 = opj_uint_subs(win_ll_x1, tr_ll_x0);
2779         win_ll_y1 = opj_uint_subs(win_ll_y1, tr_ll_y0);
2780         win_hl_x0 = opj_uint_subs(win_hl_x0, tr_hl_x0);
2781         win_hl_x1 = opj_uint_subs(win_hl_x1, tr_hl_x0);
2782         win_lh_y0 = opj_uint_subs(win_lh_y0, tr_lh_y0);
2783         win_lh_y1 = opj_uint_subs(win_lh_y1, tr_lh_y0);
2784 
2785         opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.sn, &win_ll_x0, &win_ll_x1);
2786         opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.dn, &win_hl_x0, &win_hl_x1);
2787 
2788         opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.sn, &win_ll_y0, &win_ll_y1);
2789         opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.dn, &win_lh_y0, &win_lh_y1);
2790 
2791         /* Compute the tile-resolution-based coordinates for the window of interest */
2792         if (h.cas == 0) {
2793             win_tr_x0 = opj_uint_min(2 * win_ll_x0, 2 * win_hl_x0 + 1);
2794             win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_ll_x1, 2 * win_hl_x1 + 1), rw);
2795         } else {
2796             win_tr_x0 = opj_uint_min(2 * win_hl_x0, 2 * win_ll_x0 + 1);
2797             win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_hl_x1, 2 * win_ll_x1 + 1), rw);
2798         }
2799 
2800         if (v.cas == 0) {
2801             win_tr_y0 = opj_uint_min(2 * win_ll_y0, 2 * win_lh_y0 + 1);
2802             win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_ll_y1, 2 * win_lh_y1 + 1), rh);
2803         } else {
2804             win_tr_y0 = opj_uint_min(2 * win_lh_y0, 2 * win_ll_y0 + 1);
2805             win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_lh_y1, 2 * win_ll_y1 + 1), rh);
2806         }
2807 
2808         h.win_l_x0 = win_ll_x0;
2809         h.win_l_x1 = win_ll_x1;
2810         h.win_h_x0 = win_hl_x0;
2811         h.win_h_x1 = win_hl_x1;
2812         for (j = 0; j + 3 < rh; j += 4) {
2813             if ((j + 3 >= win_ll_y0 && j < win_ll_y1) ||
2814                     (j + 3 >= win_lh_y0 + (OPJ_UINT32)v.sn &&
2815                      j < win_lh_y1 + (OPJ_UINT32)v.sn)) {
2816                 opj_v4dwt_interleave_partial_h(&h, sa, j, opj_uint_min(4U, rh - j));
2817                 opj_v4dwt_decode(&h);
2818                 if (!opj_sparse_array_int32_write(sa,
2819                                                   win_tr_x0, j,
2820                                                   win_tr_x1, j + 4,
2821                                                   (OPJ_INT32*)&h.wavelet[win_tr_x0].f[0],
2822                                                   4, 1, OPJ_TRUE)) {
2823                     /* FIXME event manager error callback */
2824                     opj_sparse_array_int32_free(sa);
2825                     opj_aligned_free(h.wavelet);
2826                     return OPJ_FALSE;
2827                 }
2828             }
2829         }
2830 
2831         if (j < rh &&
2832                 ((j + 3 >= win_ll_y0 && j < win_ll_y1) ||
2833                  (j + 3 >= win_lh_y0 + (OPJ_UINT32)v.sn &&
2834                   j < win_lh_y1 + (OPJ_UINT32)v.sn))) {
2835             opj_v4dwt_interleave_partial_h(&h, sa, j, rh - j);
2836             opj_v4dwt_decode(&h);
2837             if (!opj_sparse_array_int32_write(sa,
2838                                               win_tr_x0, j,
2839                                               win_tr_x1, rh,
2840                                               (OPJ_INT32*)&h.wavelet[win_tr_x0].f[0],
2841                                               4, 1, OPJ_TRUE)) {
2842                 /* FIXME event manager error callback */
2843                 opj_sparse_array_int32_free(sa);
2844                 opj_aligned_free(h.wavelet);
2845                 return OPJ_FALSE;
2846             }
2847         }
2848 
2849         v.win_l_x0 = win_ll_y0;
2850         v.win_l_x1 = win_ll_y1;
2851         v.win_h_x0 = win_lh_y0;
2852         v.win_h_x1 = win_lh_y1;
2853         for (j = win_tr_x0; j < win_tr_x1; j += 4) {
2854             OPJ_UINT32 nb_elts = opj_uint_min(4U, win_tr_x1 - j);
2855 
2856             opj_v4dwt_interleave_partial_v(&v, sa, j, nb_elts);
2857             opj_v4dwt_decode(&v);
2858 
2859             if (!opj_sparse_array_int32_write(sa,
2860                                               j, win_tr_y0,
2861                                               j + nb_elts, win_tr_y1,
2862                                               (OPJ_INT32*)&h.wavelet[win_tr_y0].f[0],
2863                                               1, 4, OPJ_TRUE)) {
2864                 /* FIXME event manager error callback */
2865                 opj_sparse_array_int32_free(sa);
2866                 opj_aligned_free(h.wavelet);
2867                 return OPJ_FALSE;
2868             }
2869         }
2870     }
2871 
2872     {
2873         OPJ_BOOL ret = opj_sparse_array_int32_read(sa,
2874                        tr_max->win_x0 - (OPJ_UINT32)tr_max->x0,
2875                        tr_max->win_y0 - (OPJ_UINT32)tr_max->y0,
2876                        tr_max->win_x1 - (OPJ_UINT32)tr_max->x0,
2877                        tr_max->win_y1 - (OPJ_UINT32)tr_max->y0,
2878                        tilec->data_win,
2879                        1, tr_max->win_x1 - tr_max->win_x0,
2880                        OPJ_TRUE);
2881         assert(ret);
2882         OPJ_UNUSED(ret);
2883     }
2884     opj_sparse_array_int32_free(sa);
2885 
2886     opj_aligned_free(h.wavelet);
2887     return OPJ_TRUE;
2888 }
2889 
2890 
opj_dwt_decode_real(opj_tcd_t * p_tcd,opj_tcd_tilecomp_t * OPJ_RESTRICT tilec,OPJ_UINT32 numres)2891 OPJ_BOOL opj_dwt_decode_real(opj_tcd_t *p_tcd,
2892                              opj_tcd_tilecomp_t* OPJ_RESTRICT tilec,
2893                              OPJ_UINT32 numres)
2894 {
2895     if (p_tcd->whole_tile_decoding) {
2896         return opj_dwt_decode_tile_97(tilec, numres);
2897     } else {
2898         return opj_dwt_decode_partial_97(tilec, numres);
2899     }
2900 }
2901