1 //
2 // Copyright 2012 Francisco Jerez
3 //
4 // Permission is hereby granted, free of charge, to any person obtaining a
5 // copy of this software and associated documentation files (the "Software"),
6 // to deal in the Software without restriction, including without limitation
7 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 // and/or sell copies of the Software, and to permit persons to whom the
9 // Software is furnished to do so, subject to the following conditions:
10 //
11 // The above copyright notice and this permission notice shall be included in
12 // all copies or substantial portions of the Software.
13 //
14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 // OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 // OTHER DEALINGS IN THE SOFTWARE.
21 //
22 
23 #include "core/kernel.hpp"
24 #include "core/resource.hpp"
25 #include "util/factor.hpp"
26 #include "util/u_math.h"
27 #include "pipe/p_context.h"
28 
29 using namespace clover;
30 
kernel(clover::program & prog,const std::string & name,const std::vector<module::argument> & margs)31 kernel::kernel(clover::program &prog, const std::string &name,
32                const std::vector<module::argument> &margs) :
33    program(prog), _name(name), exec(*this),
34    program_ref(prog._kernel_ref_counter) {
35    for (auto &marg : margs) {
36       if (marg.semantic == module::argument::general)
37          _args.emplace_back(argument::create(marg));
38    }
39 }
40 
41 template<typename V>
42 static inline std::vector<uint>
pad_vector(command_queue & q,const V & v,uint x)43 pad_vector(command_queue &q, const V &v, uint x) {
44    std::vector<uint> w { v.begin(), v.end() };
45    w.resize(q.device().max_block_size().size(), x);
46    return w;
47 }
48 
49 void
launch(command_queue & q,const std::vector<size_t> & grid_offset,const std::vector<size_t> & grid_size,const std::vector<size_t> & block_size)50 kernel::launch(command_queue &q,
51                const std::vector<size_t> &grid_offset,
52                const std::vector<size_t> &grid_size,
53                const std::vector<size_t> &block_size) {
54    const auto m = program().build(q.device()).binary;
55    const auto reduced_grid_size =
56       map(divides(), grid_size, block_size);
57    void *st = exec.bind(&q, grid_offset);
58    struct pipe_grid_info info = {};
59 
60    // The handles are created during exec_context::bind(), so we need make
61    // sure to call exec_context::bind() before retrieving them.
62    std::vector<uint32_t *> g_handles = map([&](size_t h) {
63          return (uint32_t *)&exec.input[h];
64       }, exec.g_handles);
65 
66    q.pipe->bind_compute_state(q.pipe, st);
67    q.pipe->bind_sampler_states(q.pipe, PIPE_SHADER_COMPUTE,
68                                0, exec.samplers.size(),
69                                exec.samplers.data());
70 
71    q.pipe->set_sampler_views(q.pipe, PIPE_SHADER_COMPUTE, 0,
72                              exec.sviews.size(), exec.sviews.data());
73    q.pipe->set_compute_resources(q.pipe, 0, exec.resources.size(),
74                                  exec.resources.data());
75    q.pipe->set_global_binding(q.pipe, 0, exec.g_buffers.size(),
76                               exec.g_buffers.data(), g_handles.data());
77 
78    // Fill information for the launch_grid() call.
79    info.work_dim = grid_size.size();
80    copy(pad_vector(q, block_size, 1), info.block);
81    copy(pad_vector(q, reduced_grid_size, 1), info.grid);
82    info.pc = find(name_equals(_name), m.syms).offset;
83    info.input = exec.input.data();
84 
85    q.pipe->launch_grid(q.pipe, &info);
86 
87    q.pipe->set_global_binding(q.pipe, 0, exec.g_buffers.size(), NULL, NULL);
88    q.pipe->set_compute_resources(q.pipe, 0, exec.resources.size(), NULL);
89    q.pipe->set_sampler_views(q.pipe, PIPE_SHADER_COMPUTE, 0,
90                              exec.sviews.size(), NULL);
91    q.pipe->bind_sampler_states(q.pipe, PIPE_SHADER_COMPUTE, 0,
92                                exec.samplers.size(), NULL);
93 
94    q.pipe->memory_barrier(q.pipe, PIPE_BARRIER_GLOBAL_BUFFER);
95    exec.unbind();
96 }
97 
98 size_t
mem_local() const99 kernel::mem_local() const {
100    size_t sz = 0;
101 
102    for (auto &arg : args()) {
103       if (dynamic_cast<local_argument *>(&arg))
104          sz += arg.storage();
105    }
106 
107    return sz;
108 }
109 
110 size_t
mem_private() const111 kernel::mem_private() const {
112    return 0;
113 }
114 
115 const std::string &
name() const116 kernel::name() const {
117    return _name;
118 }
119 
120 std::vector<size_t>
optimal_block_size(const command_queue & q,const std::vector<size_t> & grid_size) const121 kernel::optimal_block_size(const command_queue &q,
122                            const std::vector<size_t> &grid_size) const {
123    return factor::find_grid_optimal_factor<size_t>(
124       q.device().max_threads_per_block(), q.device().max_block_size(),
125       grid_size);
126 }
127 
128 std::vector<size_t>
required_block_size() const129 kernel::required_block_size() const {
130    return { 0, 0, 0 };
131 }
132 
133 kernel::argument_range
args()134 kernel::args() {
135    return map(derefs(), _args);
136 }
137 
138 kernel::const_argument_range
args() const139 kernel::args() const {
140    return map(derefs(), _args);
141 }
142 
143 const module &
module(const command_queue & q) const144 kernel::module(const command_queue &q) const {
145    return program().build(q.device()).binary;
146 }
147 
exec_context(kernel & kern)148 kernel::exec_context::exec_context(kernel &kern) :
149    kern(kern), q(NULL), mem_local(0), st(NULL), cs() {
150 }
151 
~exec_context()152 kernel::exec_context::~exec_context() {
153    if (st)
154       q->pipe->delete_compute_state(q->pipe, st);
155 }
156 
157 void *
bind(intrusive_ptr<command_queue> _q,const std::vector<size_t> & grid_offset)158 kernel::exec_context::bind(intrusive_ptr<command_queue> _q,
159                            const std::vector<size_t> &grid_offset) {
160    std::swap(q, _q);
161 
162    // Bind kernel arguments.
163    auto &m = kern.program().build(q->device()).binary;
164    auto margs = find(name_equals(kern.name()), m.syms).args;
165    auto msec = find(type_equals(module::section::text_executable), m.secs);
166    auto explicit_arg = kern._args.begin();
167 
168    for (auto &marg : margs) {
169       switch (marg.semantic) {
170       case module::argument::general:
171          (*(explicit_arg++))->bind(*this, marg);
172          break;
173 
174       case module::argument::grid_dimension: {
175          const cl_uint dimension = grid_offset.size();
176          auto arg = argument::create(marg);
177 
178          arg->set(sizeof(dimension), &dimension);
179          arg->bind(*this, marg);
180          break;
181       }
182       case module::argument::grid_offset: {
183          for (cl_uint x : pad_vector(*q, grid_offset, 0)) {
184             auto arg = argument::create(marg);
185 
186             arg->set(sizeof(x), &x);
187             arg->bind(*this, marg);
188          }
189          break;
190       }
191       case module::argument::image_size: {
192          auto img = dynamic_cast<image_argument &>(**(explicit_arg - 1)).get();
193          std::vector<cl_uint> image_size{
194                static_cast<cl_uint>(img->width()),
195                static_cast<cl_uint>(img->height()),
196                static_cast<cl_uint>(img->depth())};
197          for (auto x : image_size) {
198             auto arg = argument::create(marg);
199 
200             arg->set(sizeof(x), &x);
201             arg->bind(*this, marg);
202          }
203          break;
204       }
205       case module::argument::image_format: {
206          auto img = dynamic_cast<image_argument &>(**(explicit_arg - 1)).get();
207          cl_image_format fmt = img->format();
208          std::vector<cl_uint> image_format{
209                static_cast<cl_uint>(fmt.image_channel_data_type),
210                static_cast<cl_uint>(fmt.image_channel_order)};
211          for (auto x : image_format) {
212             auto arg = argument::create(marg);
213 
214             arg->set(sizeof(x), &x);
215             arg->bind(*this, marg);
216          }
217          break;
218       }
219       }
220    }
221 
222    // Create a new compute state if anything changed.
223    if (!st || q != _q ||
224        cs.req_local_mem != mem_local ||
225        cs.req_input_mem != input.size()) {
226       if (st)
227          _q->pipe->delete_compute_state(_q->pipe, st);
228 
229       cs.ir_type = q->device().ir_format();
230       cs.prog = &(msec.data[0]);
231       cs.req_local_mem = mem_local;
232       cs.req_input_mem = input.size();
233       st = q->pipe->create_compute_state(q->pipe, &cs);
234    }
235 
236    return st;
237 }
238 
239 void
unbind()240 kernel::exec_context::unbind() {
241    for (auto &arg : kern.args())
242       arg.unbind(*this);
243 
244    input.clear();
245    samplers.clear();
246    sviews.clear();
247    resources.clear();
248    g_buffers.clear();
249    g_handles.clear();
250    mem_local = 0;
251 }
252 
253 namespace {
254    template<typename T>
255    std::vector<uint8_t>
bytes(const T & x)256    bytes(const T& x) {
257       return { (uint8_t *)&x, (uint8_t *)&x + sizeof(x) };
258    }
259 
260    ///
261    /// Transform buffer \a v from the native byte order into the byte
262    /// order specified by \a e.
263    ///
264    template<typename T>
265    void
byteswap(T & v,pipe_endian e)266    byteswap(T &v, pipe_endian e) {
267       if (PIPE_ENDIAN_NATIVE != e)
268          std::reverse(v.begin(), v.end());
269    }
270 
271    ///
272    /// Pad buffer \a v to the next multiple of \a n.
273    ///
274    template<typename T>
275    void
align(T & v,size_t n)276    align(T &v, size_t n) {
277       v.resize(util_align_npot(v.size(), n));
278    }
279 
280    bool
msb(const std::vector<uint8_t> & s)281    msb(const std::vector<uint8_t> &s) {
282       if (PIPE_ENDIAN_NATIVE == PIPE_ENDIAN_LITTLE)
283          return s.back() & 0x80;
284       else
285          return s.front() & 0x80;
286    }
287 
288    ///
289    /// Resize buffer \a v to size \a n using sign or zero extension
290    /// according to \a ext.
291    ///
292    template<typename T>
293    void
extend(T & v,enum module::argument::ext_type ext,size_t n)294    extend(T &v, enum module::argument::ext_type ext, size_t n) {
295       const size_t m = std::min(v.size(), n);
296       const bool sign_ext = (ext == module::argument::sign_ext);
297       const uint8_t fill = (sign_ext && msb(v) ? ~0 : 0);
298       T w(n, fill);
299 
300       if (PIPE_ENDIAN_NATIVE == PIPE_ENDIAN_LITTLE)
301          std::copy_n(v.begin(), m, w.begin());
302       else
303          std::copy_n(v.end() - m, m, w.end() - m);
304 
305       std::swap(v, w);
306    }
307 
308    ///
309    /// Append buffer \a w to \a v.
310    ///
311    template<typename T>
312    void
insert(T & v,const T & w)313    insert(T &v, const T &w) {
314       v.insert(v.end(), w.begin(), w.end());
315    }
316 
317    ///
318    /// Append \a n elements to the end of buffer \a v.
319    ///
320    template<typename T>
321    size_t
allocate(T & v,size_t n)322    allocate(T &v, size_t n) {
323       size_t pos = v.size();
324       v.resize(pos + n);
325       return pos;
326    }
327 }
328 
329 std::unique_ptr<kernel::argument>
create(const module::argument & marg)330 kernel::argument::create(const module::argument &marg) {
331    switch (marg.type) {
332    case module::argument::scalar:
333       return std::unique_ptr<kernel::argument>(new scalar_argument(marg.size));
334 
335    case module::argument::global:
336       return std::unique_ptr<kernel::argument>(new global_argument);
337 
338    case module::argument::local:
339       return std::unique_ptr<kernel::argument>(new local_argument);
340 
341    case module::argument::constant:
342       return std::unique_ptr<kernel::argument>(new constant_argument);
343 
344    case module::argument::image2d_rd:
345    case module::argument::image3d_rd:
346       return std::unique_ptr<kernel::argument>(new image_rd_argument);
347 
348    case module::argument::image2d_wr:
349    case module::argument::image3d_wr:
350       return std::unique_ptr<kernel::argument>(new image_wr_argument);
351 
352    case module::argument::sampler:
353       return std::unique_ptr<kernel::argument>(new sampler_argument);
354 
355    }
356    throw error(CL_INVALID_KERNEL_DEFINITION);
357 }
358 
argument()359 kernel::argument::argument() : _set(false) {
360 }
361 
362 bool
set() const363 kernel::argument::set() const {
364    return _set;
365 }
366 
367 size_t
storage() const368 kernel::argument::storage() const {
369    return 0;
370 }
371 
scalar_argument(size_t size)372 kernel::scalar_argument::scalar_argument(size_t size) : size(size) {
373 }
374 
375 void
set(size_t size,const void * value)376 kernel::scalar_argument::set(size_t size, const void *value) {
377    if (!value)
378       throw error(CL_INVALID_ARG_VALUE);
379 
380    if (size != this->size)
381       throw error(CL_INVALID_ARG_SIZE);
382 
383    v = { (uint8_t *)value, (uint8_t *)value + size };
384    _set = true;
385 }
386 
387 void
bind(exec_context & ctx,const module::argument & marg)388 kernel::scalar_argument::bind(exec_context &ctx,
389                               const module::argument &marg) {
390    auto w = v;
391 
392    extend(w, marg.ext_type, marg.target_size);
393    byteswap(w, ctx.q->device().endianness());
394    align(ctx.input, marg.target_align);
395    insert(ctx.input, w);
396 }
397 
398 void
unbind(exec_context & ctx)399 kernel::scalar_argument::unbind(exec_context &ctx) {
400 }
401 
402 void
set(size_t size,const void * value)403 kernel::global_argument::set(size_t size, const void *value) {
404    if (size != sizeof(cl_mem))
405       throw error(CL_INVALID_ARG_SIZE);
406 
407    buf = pobj<buffer>(value ? *(cl_mem *)value : NULL);
408    _set = true;
409 }
410 
411 void
bind(exec_context & ctx,const module::argument & marg)412 kernel::global_argument::bind(exec_context &ctx,
413                               const module::argument &marg) {
414    align(ctx.input, marg.target_align);
415 
416    if (buf) {
417       const resource &r = buf->resource(*ctx.q);
418       ctx.g_handles.push_back(ctx.input.size());
419       ctx.g_buffers.push_back(r.pipe);
420 
421       // How to handle multi-demensional offsets?
422       // We don't need to.  Buffer offsets are always
423       // one-dimensional.
424       auto v = bytes(r.offset[0]);
425       extend(v, marg.ext_type, marg.target_size);
426       byteswap(v, ctx.q->device().endianness());
427       insert(ctx.input, v);
428    } else {
429       // Null pointer.
430       allocate(ctx.input, marg.target_size);
431    }
432 }
433 
434 void
unbind(exec_context & ctx)435 kernel::global_argument::unbind(exec_context &ctx) {
436 }
437 
438 size_t
storage() const439 kernel::local_argument::storage() const {
440    return _storage;
441 }
442 
443 void
set(size_t size,const void * value)444 kernel::local_argument::set(size_t size, const void *value) {
445    if (value)
446       throw error(CL_INVALID_ARG_VALUE);
447 
448    if (!size)
449       throw error(CL_INVALID_ARG_SIZE);
450 
451    _storage = size;
452    _set = true;
453 }
454 
455 void
bind(exec_context & ctx,const module::argument & marg)456 kernel::local_argument::bind(exec_context &ctx,
457                              const module::argument &marg) {
458    auto v = bytes(ctx.mem_local);
459 
460    extend(v, module::argument::zero_ext, marg.target_size);
461    byteswap(v, ctx.q->device().endianness());
462    align(ctx.input, marg.target_align);
463    insert(ctx.input, v);
464 
465    ctx.mem_local += _storage;
466 }
467 
468 void
unbind(exec_context & ctx)469 kernel::local_argument::unbind(exec_context &ctx) {
470 }
471 
472 void
set(size_t size,const void * value)473 kernel::constant_argument::set(size_t size, const void *value) {
474    if (size != sizeof(cl_mem))
475       throw error(CL_INVALID_ARG_SIZE);
476 
477    buf = pobj<buffer>(value ? *(cl_mem *)value : NULL);
478    _set = true;
479 }
480 
481 void
bind(exec_context & ctx,const module::argument & marg)482 kernel::constant_argument::bind(exec_context &ctx,
483                                 const module::argument &marg) {
484    align(ctx.input, marg.target_align);
485 
486    if (buf) {
487       resource &r = buf->resource(*ctx.q);
488       auto v = bytes(ctx.resources.size() << 24 | r.offset[0]);
489 
490       extend(v, module::argument::zero_ext, marg.target_size);
491       byteswap(v, ctx.q->device().endianness());
492       insert(ctx.input, v);
493 
494       st = r.bind_surface(*ctx.q, false);
495       ctx.resources.push_back(st);
496    } else {
497       // Null pointer.
498       allocate(ctx.input, marg.target_size);
499    }
500 }
501 
502 void
unbind(exec_context & ctx)503 kernel::constant_argument::unbind(exec_context &ctx) {
504    if (buf)
505       buf->resource(*ctx.q).unbind_surface(*ctx.q, st);
506 }
507 
508 void
set(size_t size,const void * value)509 kernel::image_rd_argument::set(size_t size, const void *value) {
510    if (!value)
511       throw error(CL_INVALID_ARG_VALUE);
512 
513    if (size != sizeof(cl_mem))
514       throw error(CL_INVALID_ARG_SIZE);
515 
516    img = &obj<image>(*(cl_mem *)value);
517    _set = true;
518 }
519 
520 void
bind(exec_context & ctx,const module::argument & marg)521 kernel::image_rd_argument::bind(exec_context &ctx,
522                                 const module::argument &marg) {
523    auto v = bytes(ctx.sviews.size());
524 
525    extend(v, module::argument::zero_ext, marg.target_size);
526    byteswap(v, ctx.q->device().endianness());
527    align(ctx.input, marg.target_align);
528    insert(ctx.input, v);
529 
530    st = img->resource(*ctx.q).bind_sampler_view(*ctx.q);
531    ctx.sviews.push_back(st);
532 }
533 
534 void
unbind(exec_context & ctx)535 kernel::image_rd_argument::unbind(exec_context &ctx) {
536    img->resource(*ctx.q).unbind_sampler_view(*ctx.q, st);
537 }
538 
539 void
set(size_t size,const void * value)540 kernel::image_wr_argument::set(size_t size, const void *value) {
541    if (!value)
542       throw error(CL_INVALID_ARG_VALUE);
543 
544    if (size != sizeof(cl_mem))
545       throw error(CL_INVALID_ARG_SIZE);
546 
547    img = &obj<image>(*(cl_mem *)value);
548    _set = true;
549 }
550 
551 void
bind(exec_context & ctx,const module::argument & marg)552 kernel::image_wr_argument::bind(exec_context &ctx,
553                                 const module::argument &marg) {
554    auto v = bytes(ctx.resources.size());
555 
556    extend(v, module::argument::zero_ext, marg.target_size);
557    byteswap(v, ctx.q->device().endianness());
558    align(ctx.input, marg.target_align);
559    insert(ctx.input, v);
560 
561    st = img->resource(*ctx.q).bind_surface(*ctx.q, true);
562    ctx.resources.push_back(st);
563 }
564 
565 void
unbind(exec_context & ctx)566 kernel::image_wr_argument::unbind(exec_context &ctx) {
567    img->resource(*ctx.q).unbind_surface(*ctx.q, st);
568 }
569 
570 void
set(size_t size,const void * value)571 kernel::sampler_argument::set(size_t size, const void *value) {
572    if (!value)
573       throw error(CL_INVALID_SAMPLER);
574 
575    if (size != sizeof(cl_sampler))
576       throw error(CL_INVALID_ARG_SIZE);
577 
578    s = &obj(*(cl_sampler *)value);
579    _set = true;
580 }
581 
582 void
bind(exec_context & ctx,const module::argument & marg)583 kernel::sampler_argument::bind(exec_context &ctx,
584                                const module::argument &marg) {
585    st = s->bind(*ctx.q);
586    ctx.samplers.push_back(st);
587 }
588 
589 void
unbind(exec_context & ctx)590 kernel::sampler_argument::unbind(exec_context &ctx) {
591    s->unbind(*ctx.q, st);
592 }
593