1 /*******************************************************************************
2 * Copyright 2010-2018 Intel Corporation
3 * All Rights Reserved.
4 *
5 * If this software was obtained under the Intel Simplified Software License,
6 * the following terms apply:
7 *
8 * The source code, information and material ("Material") contained herein is
9 * owned by Intel Corporation or its suppliers or licensors, and title to such
10 * Material remains with Intel Corporation or its suppliers or licensors. The
11 * Material contains proprietary information of Intel or its suppliers and
12 * licensors. The Material is protected by worldwide copyright laws and treaty
13 * provisions. No part of the Material may be used, copied, reproduced,
14 * modified, published, uploaded, posted, transmitted, distributed or disclosed
15 * in any way without Intel's prior express written permission. No license under
16 * any patent, copyright or other intellectual property rights in the Material
17 * is granted to or conferred upon you, either expressly, by implication,
18 * inducement, estoppel or otherwise. Any license under such intellectual
19 * property rights must be express and approved by Intel in writing.
20 *
21 * Unless otherwise agreed by Intel in writing, you may not remove or alter this
22 * notice or any other notice embedded in Materials by Intel or Intel's
23 * suppliers or licensors in any way.
24 *
25 *
26 * If this software was obtained under the Apache License, Version 2.0 (the
27 * "License"), the following terms apply:
28 *
29 * You may not use this file except in compliance with the License. You may
30 * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
31 *
32 *
33 * Unless required by applicable law or agreed to in writing, software
34 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
35 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
36 *
37 * See the License for the specific language governing permissions and
38 * limitations under the License.
39 *******************************************************************************/
40
41 /*
42 //
43 // Purpose:
44 // Intel(R) Integrated Performance Primitives. Cryptography Primitives.
45 // Internal EC over GF(p^m) basic Definitions & Function Prototypes
46 //
47 // Context:
48 // gfec_affine_point_add()
49 //
50 */
51
52 #include "owndefs.h"
53 #include "owncp.h"
54 #include "pcpgfpecstuff.h"
55 #include "pcpmask_ct.h"
56
57
58 #if ( ECP_PROJECTIVE_COORD == JACOBIAN )
59 /*
60 // complexity = 3s+8m
61 */
gfec_affine_point_add(BNU_CHUNK_T * pRdata,const BNU_CHUNK_T * pPdata,const BNU_CHUNK_T * pAdata,IppsGFpECState * pEC)62 void gfec_affine_point_add(BNU_CHUNK_T* pRdata, const BNU_CHUNK_T* pPdata, const BNU_CHUNK_T* pAdata, IppsGFpECState* pEC)
63 {
64 IppsGFpState* pGF = ECP_GFP(pEC);
65 gsModEngine* pGFE = GFP_PMA(pGF);
66 int elemLen = GFP_FELEN(pGFE);
67
68 mod_sub sub = GFP_METHOD(pGFE)->sub; /* gf sub */
69 mod_mul2 mul2= GFP_METHOD(pGFE)->mul2; /* gf mul2 */
70 mod_mul mul = GFP_METHOD(pGFE)->mul; /* gf mul */
71 mod_sqr sqr = GFP_METHOD(pGFE)->sqr; /* gf sqr */
72
73 BNU_CHUNK_T* mont1 = GFP_MNT_R(pGFE);
74
75 /* coordinates of projective P point */
76 const BNU_CHUNK_T* px = pPdata; /* x1 */
77 const BNU_CHUNK_T* py = pPdata+elemLen; /* y1 */
78 const BNU_CHUNK_T* pz = pPdata+2*elemLen; /* z1 */
79
80 /* coordinates of affine A point, az==mont(1) */
81 const BNU_CHUNK_T* ax = pAdata; /* x2 */
82 const BNU_CHUNK_T* ay = pAdata+elemLen; /* y2 */
83
84 BNU_CHUNK_T inftyP = GFPE_IS_ZERO_CT(px, elemLen) & GFPE_IS_ZERO_CT(py, elemLen);
85 BNU_CHUNK_T inftyA = GFPE_IS_ZERO_CT(ax, elemLen) & GFPE_IS_ZERO_CT(ay, elemLen);
86
87 /* get temporary from top of EC point pool */
88 BNU_CHUNK_T* U2 = pEC->pPool;
89 BNU_CHUNK_T* S2 = U2 + elemLen;
90 BNU_CHUNK_T* H = S2 + elemLen;
91 BNU_CHUNK_T* R = H + elemLen;
92
93 BNU_CHUNK_T* pRx = R + elemLen; /* temporary result */
94 BNU_CHUNK_T* pRy = pRx+ elemLen;
95 BNU_CHUNK_T* pRz = pRy+ elemLen;
96
97 sqr(R, pz, pGFE); // R = Z1^2
98 mul(S2, ay, pz, pGFE); // S2 = Y2*Z1
99 mul(U2, ax, R, pGFE); // U2 = X2*Z1^2
100 mul(S2, S2, R, pGFE); // S2 = Y2*Z1^3
101
102 sub(H, U2, px, pGFE); // H = U2-X1
103 sub(R, S2, py, pGFE); // R = S2-Y1
104
105 mul(pRz, H, pz, pGFE); // Z3 = H*Z1
106
107 sqr(U2, H, pGFE); // U2 = H^2
108 sqr(S2, R, pGFE); // S2 = R^2
109 mul(H, H, U2, pGFE); // H = H^3
110
111 mul(U2, U2, px, pGFE); // U2 = X1*H^2
112
113 mul(pRy, H, py, pGFE); // T = Y1*H^3
114
115 mul2(pRx, U2, pGFE); // X3 = 2*X1*H^2
116 sub(pRx, S2, pRx, pGFE); // X3 = R^2 - 2*X1*H^2
117 sub(pRx, pRx, H, pGFE); // X3 = R^2 - 2*X1*H^2 -H^3
118
119 sub(U2, U2, pRx, pGFE); // U2 = X1*H^2 - X3
120 mul(U2, U2, R, pGFE); // U2 = R*(X1*H^2 - X3)
121 sub(pRy, U2, pRy, pGFE); // Y3 = -Y1*H^3 + R*(X1*H^2 - X3)
122
123 cpMaskedReplace_ct(pRx, ax, elemLen, inftyP);
124 cpMaskedReplace_ct(pRy, ay, elemLen, inftyP);
125 cpMaskedReplace_ct(pRz, mont1, elemLen, inftyP);
126 cpMaskedReplace_ct(pRz, ax, elemLen, inftyP&inftyA);
127
128 cpMaskedReplace_ct(pRx, px, elemLen*3, inftyA);
129
130 cpGFpElementCopy(pRdata, pRx, 3*elemLen);
131 }
132 #endif
133
134