1 // Copyright 2015, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 //   * Redistributions of source code must retain the above copyright notice,
8 //     this list of conditions and the following disclaimer.
9 //   * Redistributions in binary form must reproduce the above copyright notice,
10 //     this list of conditions and the following disclaimer in the documentation
11 //     and/or other materials provided with the distribution.
12 //   * Neither the name of ARM Limited nor the names of its contributors may be
13 //     used to endorse or promote products derived from this software without
14 //     specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27 
28 #include <cmath>
29 
30 #include "assembler-aarch64.h"
31 #include "macro-assembler-aarch64.h"
32 
33 namespace vixl {
34 namespace aarch64 {
35 
RawLiteral(size_t size,LiteralPool * literal_pool,DeletionPolicy deletion_policy)36 RawLiteral::RawLiteral(size_t size,
37                        LiteralPool* literal_pool,
38                        DeletionPolicy deletion_policy)
39     : size_(size),
40       offset_(0),
41       low64_(0),
42       high64_(0),
43       literal_pool_(literal_pool),
44       deletion_policy_(deletion_policy) {
45   VIXL_ASSERT((deletion_policy == kManuallyDeleted) || (literal_pool_ != NULL));
46   if (deletion_policy == kDeletedOnPoolDestruction) {
47     literal_pool_->DeleteOnDestruction(this);
48   }
49 }
50 
51 
Reset()52 void Assembler::Reset() { GetBuffer()->Reset(); }
53 
54 
bind(Label * label)55 void Assembler::bind(Label* label) {
56   BindToOffset(label, GetBuffer()->GetCursorOffset());
57 }
58 
59 
BindToOffset(Label * label,ptrdiff_t offset)60 void Assembler::BindToOffset(Label* label, ptrdiff_t offset) {
61   VIXL_ASSERT((offset >= 0) && (offset <= GetBuffer()->GetCursorOffset()));
62   VIXL_ASSERT(offset % kInstructionSize == 0);
63 
64   label->Bind(offset);
65 
66   for (Label::LabelLinksIterator it(label); !it.Done(); it.Advance()) {
67     Instruction* link =
68         GetBuffer()->GetOffsetAddress<Instruction*>(*it.Current());
69     link->SetImmPCOffsetTarget(GetLabelAddress<Instruction*>(label));
70   }
71   label->ClearAllLinks();
72 }
73 
74 
75 // A common implementation for the LinkAndGet<Type>OffsetTo helpers.
76 //
77 // The offset is calculated by aligning the PC and label addresses down to a
78 // multiple of 1 << element_shift, then calculating the (scaled) offset between
79 // them. This matches the semantics of adrp, for example.
80 template <int element_shift>
LinkAndGetOffsetTo(Label * label)81 ptrdiff_t Assembler::LinkAndGetOffsetTo(Label* label) {
82   VIXL_STATIC_ASSERT(element_shift < (sizeof(ptrdiff_t) * 8));
83 
84   if (label->IsBound()) {
85     uintptr_t pc_offset = GetCursorAddress<uintptr_t>() >> element_shift;
86     uintptr_t label_offset = GetLabelAddress<uintptr_t>(label) >> element_shift;
87     return label_offset - pc_offset;
88   } else {
89     label->AddLink(GetBuffer()->GetCursorOffset());
90     return 0;
91   }
92 }
93 
94 
LinkAndGetByteOffsetTo(Label * label)95 ptrdiff_t Assembler::LinkAndGetByteOffsetTo(Label* label) {
96   return LinkAndGetOffsetTo<0>(label);
97 }
98 
99 
LinkAndGetInstructionOffsetTo(Label * label)100 ptrdiff_t Assembler::LinkAndGetInstructionOffsetTo(Label* label) {
101   return LinkAndGetOffsetTo<kInstructionSizeLog2>(label);
102 }
103 
104 
LinkAndGetPageOffsetTo(Label * label)105 ptrdiff_t Assembler::LinkAndGetPageOffsetTo(Label* label) {
106   return LinkAndGetOffsetTo<kPageSizeLog2>(label);
107 }
108 
109 
place(RawLiteral * literal)110 void Assembler::place(RawLiteral* literal) {
111   VIXL_ASSERT(!literal->IsPlaced());
112 
113   // Patch instructions using this literal.
114   if (literal->IsUsed()) {
115     Instruction* target = GetCursorAddress<Instruction*>();
116     ptrdiff_t offset = literal->GetLastUse();
117     bool done;
118     do {
119       Instruction* ldr = GetBuffer()->GetOffsetAddress<Instruction*>(offset);
120       VIXL_ASSERT(ldr->IsLoadLiteral());
121 
122       ptrdiff_t imm19 = ldr->GetImmLLiteral();
123       VIXL_ASSERT(imm19 <= 0);
124       done = (imm19 == 0);
125       offset += imm19 * kLiteralEntrySize;
126 
127       ldr->SetImmLLiteral(target);
128     } while (!done);
129   }
130 
131   // "bind" the literal.
132   literal->SetOffset(GetCursorOffset());
133   // Copy the data into the pool.
134   switch (literal->GetSize()) {
135     case kSRegSizeInBytes:
136       dc32(literal->GetRawValue32());
137       break;
138     case kDRegSizeInBytes:
139       dc64(literal->GetRawValue64());
140       break;
141     default:
142       VIXL_ASSERT(literal->GetSize() == kQRegSizeInBytes);
143       dc64(literal->GetRawValue128Low64());
144       dc64(literal->GetRawValue128High64());
145   }
146 
147   literal->literal_pool_ = NULL;
148 }
149 
150 
LinkAndGetWordOffsetTo(RawLiteral * literal)151 ptrdiff_t Assembler::LinkAndGetWordOffsetTo(RawLiteral* literal) {
152   VIXL_ASSERT(IsWordAligned(GetCursorOffset()));
153 
154   bool register_first_use =
155       (literal->GetLiteralPool() != NULL) && !literal->IsUsed();
156 
157   if (literal->IsPlaced()) {
158     // The literal is "behind", the offset will be negative.
159     VIXL_ASSERT((literal->GetOffset() - GetCursorOffset()) <= 0);
160     return (literal->GetOffset() - GetCursorOffset()) >> kLiteralEntrySizeLog2;
161   }
162 
163   ptrdiff_t offset = 0;
164   // Link all uses together.
165   if (literal->IsUsed()) {
166     offset =
167         (literal->GetLastUse() - GetCursorOffset()) >> kLiteralEntrySizeLog2;
168   }
169   literal->SetLastUse(GetCursorOffset());
170 
171   if (register_first_use) {
172     literal->GetLiteralPool()->AddEntry(literal);
173   }
174 
175   return offset;
176 }
177 
178 
179 // Code generation.
br(const Register & xn)180 void Assembler::br(const Register& xn) {
181   VIXL_ASSERT(xn.Is64Bits());
182   Emit(BR | Rn(xn));
183 }
184 
185 
blr(const Register & xn)186 void Assembler::blr(const Register& xn) {
187   VIXL_ASSERT(xn.Is64Bits());
188   Emit(BLR | Rn(xn));
189 }
190 
191 
ret(const Register & xn)192 void Assembler::ret(const Register& xn) {
193   VIXL_ASSERT(xn.Is64Bits());
194   Emit(RET | Rn(xn));
195 }
196 
197 
braaz(const Register & xn)198 void Assembler::braaz(const Register& xn) {
199   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
200   VIXL_ASSERT(xn.Is64Bits());
201   Emit(BRAAZ | Rn(xn) | Rd_mask);
202 }
203 
brabz(const Register & xn)204 void Assembler::brabz(const Register& xn) {
205   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
206   VIXL_ASSERT(xn.Is64Bits());
207   Emit(BRABZ | Rn(xn) | Rd_mask);
208 }
209 
blraaz(const Register & xn)210 void Assembler::blraaz(const Register& xn) {
211   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
212   VIXL_ASSERT(xn.Is64Bits());
213   Emit(BLRAAZ | Rn(xn) | Rd_mask);
214 }
215 
blrabz(const Register & xn)216 void Assembler::blrabz(const Register& xn) {
217   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
218   VIXL_ASSERT(xn.Is64Bits());
219   Emit(BLRABZ | Rn(xn) | Rd_mask);
220 }
221 
retaa()222 void Assembler::retaa() {
223   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
224   Emit(RETAA | Rn_mask | Rd_mask);
225 }
226 
retab()227 void Assembler::retab() {
228   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
229   Emit(RETAB | Rn_mask | Rd_mask);
230 }
231 
232 // The Arm ARM names the register Xm but encodes it in the Xd bitfield.
braa(const Register & xn,const Register & xm)233 void Assembler::braa(const Register& xn, const Register& xm) {
234   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
235   VIXL_ASSERT(xn.Is64Bits() && xm.Is64Bits());
236   Emit(BRAA | Rn(xn) | RdSP(xm));
237 }
238 
brab(const Register & xn,const Register & xm)239 void Assembler::brab(const Register& xn, const Register& xm) {
240   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
241   VIXL_ASSERT(xn.Is64Bits() && xm.Is64Bits());
242   Emit(BRAB | Rn(xn) | RdSP(xm));
243 }
244 
blraa(const Register & xn,const Register & xm)245 void Assembler::blraa(const Register& xn, const Register& xm) {
246   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
247   VIXL_ASSERT(xn.Is64Bits() && xm.Is64Bits());
248   Emit(BLRAA | Rn(xn) | RdSP(xm));
249 }
250 
blrab(const Register & xn,const Register & xm)251 void Assembler::blrab(const Register& xn, const Register& xm) {
252   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
253   VIXL_ASSERT(xn.Is64Bits() && xm.Is64Bits());
254   Emit(BLRAB | Rn(xn) | RdSP(xm));
255 }
256 
257 
b(int64_t imm26)258 void Assembler::b(int64_t imm26) { Emit(B | ImmUncondBranch(imm26)); }
259 
260 
b(int64_t imm19,Condition cond)261 void Assembler::b(int64_t imm19, Condition cond) {
262   Emit(B_cond | ImmCondBranch(imm19) | cond);
263 }
264 
265 
b(Label * label)266 void Assembler::b(Label* label) {
267   int64_t offset = LinkAndGetInstructionOffsetTo(label);
268   VIXL_ASSERT(Instruction::IsValidImmPCOffset(UncondBranchType, offset));
269   b(static_cast<int>(offset));
270 }
271 
272 
b(Label * label,Condition cond)273 void Assembler::b(Label* label, Condition cond) {
274   int64_t offset = LinkAndGetInstructionOffsetTo(label);
275   VIXL_ASSERT(Instruction::IsValidImmPCOffset(CondBranchType, offset));
276   b(static_cast<int>(offset), cond);
277 }
278 
279 
bl(int64_t imm26)280 void Assembler::bl(int64_t imm26) { Emit(BL | ImmUncondBranch(imm26)); }
281 
282 
bl(Label * label)283 void Assembler::bl(Label* label) {
284   int64_t offset = LinkAndGetInstructionOffsetTo(label);
285   VIXL_ASSERT(Instruction::IsValidImmPCOffset(UncondBranchType, offset));
286   bl(static_cast<int>(offset));
287 }
288 
289 
cbz(const Register & rt,int64_t imm19)290 void Assembler::cbz(const Register& rt, int64_t imm19) {
291   Emit(SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt));
292 }
293 
294 
cbz(const Register & rt,Label * label)295 void Assembler::cbz(const Register& rt, Label* label) {
296   int64_t offset = LinkAndGetInstructionOffsetTo(label);
297   VIXL_ASSERT(Instruction::IsValidImmPCOffset(CompareBranchType, offset));
298   cbz(rt, static_cast<int>(offset));
299 }
300 
301 
cbnz(const Register & rt,int64_t imm19)302 void Assembler::cbnz(const Register& rt, int64_t imm19) {
303   Emit(SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt));
304 }
305 
306 
cbnz(const Register & rt,Label * label)307 void Assembler::cbnz(const Register& rt, Label* label) {
308   int64_t offset = LinkAndGetInstructionOffsetTo(label);
309   VIXL_ASSERT(Instruction::IsValidImmPCOffset(CompareBranchType, offset));
310   cbnz(rt, static_cast<int>(offset));
311 }
312 
313 
NEONTable(const VRegister & vd,const VRegister & vn,const VRegister & vm,NEONTableOp op)314 void Assembler::NEONTable(const VRegister& vd,
315                           const VRegister& vn,
316                           const VRegister& vm,
317                           NEONTableOp op) {
318   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
319   VIXL_ASSERT(vd.Is16B() || vd.Is8B());
320   VIXL_ASSERT(vn.Is16B());
321   VIXL_ASSERT(AreSameFormat(vd, vm));
322   Emit(op | (vd.IsQ() ? NEON_Q : 0) | Rm(vm) | Rn(vn) | Rd(vd));
323 }
324 
325 
tbl(const VRegister & vd,const VRegister & vn,const VRegister & vm)326 void Assembler::tbl(const VRegister& vd,
327                     const VRegister& vn,
328                     const VRegister& vm) {
329   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
330   NEONTable(vd, vn, vm, NEON_TBL_1v);
331 }
332 
333 
tbl(const VRegister & vd,const VRegister & vn,const VRegister & vn2,const VRegister & vm)334 void Assembler::tbl(const VRegister& vd,
335                     const VRegister& vn,
336                     const VRegister& vn2,
337                     const VRegister& vm) {
338   USE(vn2);
339   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
340   VIXL_ASSERT(AreSameFormat(vn, vn2));
341   VIXL_ASSERT(AreConsecutive(vn, vn2));
342   NEONTable(vd, vn, vm, NEON_TBL_2v);
343 }
344 
345 
tbl(const VRegister & vd,const VRegister & vn,const VRegister & vn2,const VRegister & vn3,const VRegister & vm)346 void Assembler::tbl(const VRegister& vd,
347                     const VRegister& vn,
348                     const VRegister& vn2,
349                     const VRegister& vn3,
350                     const VRegister& vm) {
351   USE(vn2, vn3);
352   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
353   VIXL_ASSERT(AreSameFormat(vn, vn2, vn3));
354   VIXL_ASSERT(AreConsecutive(vn, vn2, vn3));
355   NEONTable(vd, vn, vm, NEON_TBL_3v);
356 }
357 
358 
tbl(const VRegister & vd,const VRegister & vn,const VRegister & vn2,const VRegister & vn3,const VRegister & vn4,const VRegister & vm)359 void Assembler::tbl(const VRegister& vd,
360                     const VRegister& vn,
361                     const VRegister& vn2,
362                     const VRegister& vn3,
363                     const VRegister& vn4,
364                     const VRegister& vm) {
365   USE(vn2, vn3, vn4);
366   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
367   VIXL_ASSERT(AreSameFormat(vn, vn2, vn3, vn4));
368   VIXL_ASSERT(AreConsecutive(vn, vn2, vn3, vn4));
369   NEONTable(vd, vn, vm, NEON_TBL_4v);
370 }
371 
372 
tbx(const VRegister & vd,const VRegister & vn,const VRegister & vm)373 void Assembler::tbx(const VRegister& vd,
374                     const VRegister& vn,
375                     const VRegister& vm) {
376   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
377   NEONTable(vd, vn, vm, NEON_TBX_1v);
378 }
379 
380 
tbx(const VRegister & vd,const VRegister & vn,const VRegister & vn2,const VRegister & vm)381 void Assembler::tbx(const VRegister& vd,
382                     const VRegister& vn,
383                     const VRegister& vn2,
384                     const VRegister& vm) {
385   USE(vn2);
386   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
387   VIXL_ASSERT(AreSameFormat(vn, vn2));
388   VIXL_ASSERT(AreConsecutive(vn, vn2));
389   NEONTable(vd, vn, vm, NEON_TBX_2v);
390 }
391 
392 
tbx(const VRegister & vd,const VRegister & vn,const VRegister & vn2,const VRegister & vn3,const VRegister & vm)393 void Assembler::tbx(const VRegister& vd,
394                     const VRegister& vn,
395                     const VRegister& vn2,
396                     const VRegister& vn3,
397                     const VRegister& vm) {
398   USE(vn2, vn3);
399   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
400   VIXL_ASSERT(AreSameFormat(vn, vn2, vn3));
401   VIXL_ASSERT(AreConsecutive(vn, vn2, vn3));
402   NEONTable(vd, vn, vm, NEON_TBX_3v);
403 }
404 
405 
tbx(const VRegister & vd,const VRegister & vn,const VRegister & vn2,const VRegister & vn3,const VRegister & vn4,const VRegister & vm)406 void Assembler::tbx(const VRegister& vd,
407                     const VRegister& vn,
408                     const VRegister& vn2,
409                     const VRegister& vn3,
410                     const VRegister& vn4,
411                     const VRegister& vm) {
412   USE(vn2, vn3, vn4);
413   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
414   VIXL_ASSERT(AreSameFormat(vn, vn2, vn3, vn4));
415   VIXL_ASSERT(AreConsecutive(vn, vn2, vn3, vn4));
416   NEONTable(vd, vn, vm, NEON_TBX_4v);
417 }
418 
419 
tbz(const Register & rt,unsigned bit_pos,int64_t imm14)420 void Assembler::tbz(const Register& rt, unsigned bit_pos, int64_t imm14) {
421   VIXL_ASSERT(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSize)));
422   Emit(TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
423 }
424 
425 
tbz(const Register & rt,unsigned bit_pos,Label * label)426 void Assembler::tbz(const Register& rt, unsigned bit_pos, Label* label) {
427   ptrdiff_t offset = LinkAndGetInstructionOffsetTo(label);
428   VIXL_ASSERT(Instruction::IsValidImmPCOffset(TestBranchType, offset));
429   tbz(rt, bit_pos, static_cast<int>(offset));
430 }
431 
432 
tbnz(const Register & rt,unsigned bit_pos,int64_t imm14)433 void Assembler::tbnz(const Register& rt, unsigned bit_pos, int64_t imm14) {
434   VIXL_ASSERT(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSize)));
435   Emit(TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
436 }
437 
438 
tbnz(const Register & rt,unsigned bit_pos,Label * label)439 void Assembler::tbnz(const Register& rt, unsigned bit_pos, Label* label) {
440   ptrdiff_t offset = LinkAndGetInstructionOffsetTo(label);
441   VIXL_ASSERT(Instruction::IsValidImmPCOffset(TestBranchType, offset));
442   tbnz(rt, bit_pos, static_cast<int>(offset));
443 }
444 
445 
adr(const Register & xd,int64_t imm21)446 void Assembler::adr(const Register& xd, int64_t imm21) {
447   VIXL_ASSERT(xd.Is64Bits());
448   Emit(ADR | ImmPCRelAddress(imm21) | Rd(xd));
449 }
450 
451 
adr(const Register & xd,Label * label)452 void Assembler::adr(const Register& xd, Label* label) {
453   adr(xd, static_cast<int>(LinkAndGetByteOffsetTo(label)));
454 }
455 
456 
adrp(const Register & xd,int64_t imm21)457 void Assembler::adrp(const Register& xd, int64_t imm21) {
458   VIXL_ASSERT(xd.Is64Bits());
459   Emit(ADRP | ImmPCRelAddress(imm21) | Rd(xd));
460 }
461 
462 
adrp(const Register & xd,Label * label)463 void Assembler::adrp(const Register& xd, Label* label) {
464   VIXL_ASSERT(AllowPageOffsetDependentCode());
465   adrp(xd, static_cast<int>(LinkAndGetPageOffsetTo(label)));
466 }
467 
468 
add(const Register & rd,const Register & rn,const Operand & operand)469 void Assembler::add(const Register& rd,
470                     const Register& rn,
471                     const Operand& operand) {
472   AddSub(rd, rn, operand, LeaveFlags, ADD);
473 }
474 
475 
adds(const Register & rd,const Register & rn,const Operand & operand)476 void Assembler::adds(const Register& rd,
477                      const Register& rn,
478                      const Operand& operand) {
479   AddSub(rd, rn, operand, SetFlags, ADD);
480 }
481 
482 
cmn(const Register & rn,const Operand & operand)483 void Assembler::cmn(const Register& rn, const Operand& operand) {
484   Register zr = AppropriateZeroRegFor(rn);
485   adds(zr, rn, operand);
486 }
487 
488 
sub(const Register & rd,const Register & rn,const Operand & operand)489 void Assembler::sub(const Register& rd,
490                     const Register& rn,
491                     const Operand& operand) {
492   AddSub(rd, rn, operand, LeaveFlags, SUB);
493 }
494 
495 
subs(const Register & rd,const Register & rn,const Operand & operand)496 void Assembler::subs(const Register& rd,
497                      const Register& rn,
498                      const Operand& operand) {
499   AddSub(rd, rn, operand, SetFlags, SUB);
500 }
501 
502 
cmp(const Register & rn,const Operand & operand)503 void Assembler::cmp(const Register& rn, const Operand& operand) {
504   Register zr = AppropriateZeroRegFor(rn);
505   subs(zr, rn, operand);
506 }
507 
508 
neg(const Register & rd,const Operand & operand)509 void Assembler::neg(const Register& rd, const Operand& operand) {
510   Register zr = AppropriateZeroRegFor(rd);
511   sub(rd, zr, operand);
512 }
513 
514 
negs(const Register & rd,const Operand & operand)515 void Assembler::negs(const Register& rd, const Operand& operand) {
516   Register zr = AppropriateZeroRegFor(rd);
517   subs(rd, zr, operand);
518 }
519 
520 
adc(const Register & rd,const Register & rn,const Operand & operand)521 void Assembler::adc(const Register& rd,
522                     const Register& rn,
523                     const Operand& operand) {
524   AddSubWithCarry(rd, rn, operand, LeaveFlags, ADC);
525 }
526 
527 
adcs(const Register & rd,const Register & rn,const Operand & operand)528 void Assembler::adcs(const Register& rd,
529                      const Register& rn,
530                      const Operand& operand) {
531   AddSubWithCarry(rd, rn, operand, SetFlags, ADC);
532 }
533 
534 
sbc(const Register & rd,const Register & rn,const Operand & operand)535 void Assembler::sbc(const Register& rd,
536                     const Register& rn,
537                     const Operand& operand) {
538   AddSubWithCarry(rd, rn, operand, LeaveFlags, SBC);
539 }
540 
541 
sbcs(const Register & rd,const Register & rn,const Operand & operand)542 void Assembler::sbcs(const Register& rd,
543                      const Register& rn,
544                      const Operand& operand) {
545   AddSubWithCarry(rd, rn, operand, SetFlags, SBC);
546 }
547 
548 
ngc(const Register & rd,const Operand & operand)549 void Assembler::ngc(const Register& rd, const Operand& operand) {
550   Register zr = AppropriateZeroRegFor(rd);
551   sbc(rd, zr, operand);
552 }
553 
554 
ngcs(const Register & rd,const Operand & operand)555 void Assembler::ngcs(const Register& rd, const Operand& operand) {
556   Register zr = AppropriateZeroRegFor(rd);
557   sbcs(rd, zr, operand);
558 }
559 
560 
561 // Logical instructions.
and_(const Register & rd,const Register & rn,const Operand & operand)562 void Assembler::and_(const Register& rd,
563                      const Register& rn,
564                      const Operand& operand) {
565   Logical(rd, rn, operand, AND);
566 }
567 
568 
ands(const Register & rd,const Register & rn,const Operand & operand)569 void Assembler::ands(const Register& rd,
570                      const Register& rn,
571                      const Operand& operand) {
572   Logical(rd, rn, operand, ANDS);
573 }
574 
575 
tst(const Register & rn,const Operand & operand)576 void Assembler::tst(const Register& rn, const Operand& operand) {
577   ands(AppropriateZeroRegFor(rn), rn, operand);
578 }
579 
580 
bic(const Register & rd,const Register & rn,const Operand & operand)581 void Assembler::bic(const Register& rd,
582                     const Register& rn,
583                     const Operand& operand) {
584   Logical(rd, rn, operand, BIC);
585 }
586 
587 
bics(const Register & rd,const Register & rn,const Operand & operand)588 void Assembler::bics(const Register& rd,
589                      const Register& rn,
590                      const Operand& operand) {
591   Logical(rd, rn, operand, BICS);
592 }
593 
594 
orr(const Register & rd,const Register & rn,const Operand & operand)595 void Assembler::orr(const Register& rd,
596                     const Register& rn,
597                     const Operand& operand) {
598   Logical(rd, rn, operand, ORR);
599 }
600 
601 
orn(const Register & rd,const Register & rn,const Operand & operand)602 void Assembler::orn(const Register& rd,
603                     const Register& rn,
604                     const Operand& operand) {
605   Logical(rd, rn, operand, ORN);
606 }
607 
608 
eor(const Register & rd,const Register & rn,const Operand & operand)609 void Assembler::eor(const Register& rd,
610                     const Register& rn,
611                     const Operand& operand) {
612   Logical(rd, rn, operand, EOR);
613 }
614 
615 
eon(const Register & rd,const Register & rn,const Operand & operand)616 void Assembler::eon(const Register& rd,
617                     const Register& rn,
618                     const Operand& operand) {
619   Logical(rd, rn, operand, EON);
620 }
621 
622 
lslv(const Register & rd,const Register & rn,const Register & rm)623 void Assembler::lslv(const Register& rd,
624                      const Register& rn,
625                      const Register& rm) {
626   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
627   VIXL_ASSERT(rd.GetSizeInBits() == rm.GetSizeInBits());
628   Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd));
629 }
630 
631 
lsrv(const Register & rd,const Register & rn,const Register & rm)632 void Assembler::lsrv(const Register& rd,
633                      const Register& rn,
634                      const Register& rm) {
635   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
636   VIXL_ASSERT(rd.GetSizeInBits() == rm.GetSizeInBits());
637   Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd));
638 }
639 
640 
asrv(const Register & rd,const Register & rn,const Register & rm)641 void Assembler::asrv(const Register& rd,
642                      const Register& rn,
643                      const Register& rm) {
644   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
645   VIXL_ASSERT(rd.GetSizeInBits() == rm.GetSizeInBits());
646   Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd));
647 }
648 
649 
rorv(const Register & rd,const Register & rn,const Register & rm)650 void Assembler::rorv(const Register& rd,
651                      const Register& rn,
652                      const Register& rm) {
653   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
654   VIXL_ASSERT(rd.GetSizeInBits() == rm.GetSizeInBits());
655   Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd));
656 }
657 
658 
659 // Bitfield operations.
bfm(const Register & rd,const Register & rn,unsigned immr,unsigned imms)660 void Assembler::bfm(const Register& rd,
661                     const Register& rn,
662                     unsigned immr,
663                     unsigned imms) {
664   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
665   Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
666   Emit(SF(rd) | BFM | N | ImmR(immr, rd.GetSizeInBits()) |
667        ImmS(imms, rn.GetSizeInBits()) | Rn(rn) | Rd(rd));
668 }
669 
670 
sbfm(const Register & rd,const Register & rn,unsigned immr,unsigned imms)671 void Assembler::sbfm(const Register& rd,
672                      const Register& rn,
673                      unsigned immr,
674                      unsigned imms) {
675   VIXL_ASSERT(rd.Is64Bits() || rn.Is32Bits());
676   Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
677   Emit(SF(rd) | SBFM | N | ImmR(immr, rd.GetSizeInBits()) |
678        ImmS(imms, rn.GetSizeInBits()) | Rn(rn) | Rd(rd));
679 }
680 
681 
ubfm(const Register & rd,const Register & rn,unsigned immr,unsigned imms)682 void Assembler::ubfm(const Register& rd,
683                      const Register& rn,
684                      unsigned immr,
685                      unsigned imms) {
686   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
687   Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
688   Emit(SF(rd) | UBFM | N | ImmR(immr, rd.GetSizeInBits()) |
689        ImmS(imms, rn.GetSizeInBits()) | Rn(rn) | Rd(rd));
690 }
691 
692 
extr(const Register & rd,const Register & rn,const Register & rm,unsigned lsb)693 void Assembler::extr(const Register& rd,
694                      const Register& rn,
695                      const Register& rm,
696                      unsigned lsb) {
697   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
698   VIXL_ASSERT(rd.GetSizeInBits() == rm.GetSizeInBits());
699   Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
700   Emit(SF(rd) | EXTR | N | Rm(rm) | ImmS(lsb, rn.GetSizeInBits()) | Rn(rn) |
701        Rd(rd));
702 }
703 
704 
csel(const Register & rd,const Register & rn,const Register & rm,Condition cond)705 void Assembler::csel(const Register& rd,
706                      const Register& rn,
707                      const Register& rm,
708                      Condition cond) {
709   ConditionalSelect(rd, rn, rm, cond, CSEL);
710 }
711 
712 
csinc(const Register & rd,const Register & rn,const Register & rm,Condition cond)713 void Assembler::csinc(const Register& rd,
714                       const Register& rn,
715                       const Register& rm,
716                       Condition cond) {
717   ConditionalSelect(rd, rn, rm, cond, CSINC);
718 }
719 
720 
csinv(const Register & rd,const Register & rn,const Register & rm,Condition cond)721 void Assembler::csinv(const Register& rd,
722                       const Register& rn,
723                       const Register& rm,
724                       Condition cond) {
725   ConditionalSelect(rd, rn, rm, cond, CSINV);
726 }
727 
728 
csneg(const Register & rd,const Register & rn,const Register & rm,Condition cond)729 void Assembler::csneg(const Register& rd,
730                       const Register& rn,
731                       const Register& rm,
732                       Condition cond) {
733   ConditionalSelect(rd, rn, rm, cond, CSNEG);
734 }
735 
736 
cset(const Register & rd,Condition cond)737 void Assembler::cset(const Register& rd, Condition cond) {
738   VIXL_ASSERT((cond != al) && (cond != nv));
739   Register zr = AppropriateZeroRegFor(rd);
740   csinc(rd, zr, zr, InvertCondition(cond));
741 }
742 
743 
csetm(const Register & rd,Condition cond)744 void Assembler::csetm(const Register& rd, Condition cond) {
745   VIXL_ASSERT((cond != al) && (cond != nv));
746   Register zr = AppropriateZeroRegFor(rd);
747   csinv(rd, zr, zr, InvertCondition(cond));
748 }
749 
750 
cinc(const Register & rd,const Register & rn,Condition cond)751 void Assembler::cinc(const Register& rd, const Register& rn, Condition cond) {
752   VIXL_ASSERT((cond != al) && (cond != nv));
753   csinc(rd, rn, rn, InvertCondition(cond));
754 }
755 
756 
cinv(const Register & rd,const Register & rn,Condition cond)757 void Assembler::cinv(const Register& rd, const Register& rn, Condition cond) {
758   VIXL_ASSERT((cond != al) && (cond != nv));
759   csinv(rd, rn, rn, InvertCondition(cond));
760 }
761 
762 
cneg(const Register & rd,const Register & rn,Condition cond)763 void Assembler::cneg(const Register& rd, const Register& rn, Condition cond) {
764   VIXL_ASSERT((cond != al) && (cond != nv));
765   csneg(rd, rn, rn, InvertCondition(cond));
766 }
767 
768 
ConditionalSelect(const Register & rd,const Register & rn,const Register & rm,Condition cond,ConditionalSelectOp op)769 void Assembler::ConditionalSelect(const Register& rd,
770                                   const Register& rn,
771                                   const Register& rm,
772                                   Condition cond,
773                                   ConditionalSelectOp op) {
774   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
775   VIXL_ASSERT(rd.GetSizeInBits() == rm.GetSizeInBits());
776   Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd));
777 }
778 
779 
ccmn(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond)780 void Assembler::ccmn(const Register& rn,
781                      const Operand& operand,
782                      StatusFlags nzcv,
783                      Condition cond) {
784   ConditionalCompare(rn, operand, nzcv, cond, CCMN);
785 }
786 
787 
ccmp(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond)788 void Assembler::ccmp(const Register& rn,
789                      const Operand& operand,
790                      StatusFlags nzcv,
791                      Condition cond) {
792   ConditionalCompare(rn, operand, nzcv, cond, CCMP);
793 }
794 
795 
DataProcessing3Source(const Register & rd,const Register & rn,const Register & rm,const Register & ra,DataProcessing3SourceOp op)796 void Assembler::DataProcessing3Source(const Register& rd,
797                                       const Register& rn,
798                                       const Register& rm,
799                                       const Register& ra,
800                                       DataProcessing3SourceOp op) {
801   Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd));
802 }
803 
804 
crc32b(const Register & wd,const Register & wn,const Register & wm)805 void Assembler::crc32b(const Register& wd,
806                        const Register& wn,
807                        const Register& wm) {
808   VIXL_ASSERT(CPUHas(CPUFeatures::kCRC32));
809   VIXL_ASSERT(wd.Is32Bits() && wn.Is32Bits() && wm.Is32Bits());
810   Emit(SF(wm) | Rm(wm) | CRC32B | Rn(wn) | Rd(wd));
811 }
812 
813 
crc32h(const Register & wd,const Register & wn,const Register & wm)814 void Assembler::crc32h(const Register& wd,
815                        const Register& wn,
816                        const Register& wm) {
817   VIXL_ASSERT(CPUHas(CPUFeatures::kCRC32));
818   VIXL_ASSERT(wd.Is32Bits() && wn.Is32Bits() && wm.Is32Bits());
819   Emit(SF(wm) | Rm(wm) | CRC32H | Rn(wn) | Rd(wd));
820 }
821 
822 
crc32w(const Register & wd,const Register & wn,const Register & wm)823 void Assembler::crc32w(const Register& wd,
824                        const Register& wn,
825                        const Register& wm) {
826   VIXL_ASSERT(CPUHas(CPUFeatures::kCRC32));
827   VIXL_ASSERT(wd.Is32Bits() && wn.Is32Bits() && wm.Is32Bits());
828   Emit(SF(wm) | Rm(wm) | CRC32W | Rn(wn) | Rd(wd));
829 }
830 
831 
crc32x(const Register & wd,const Register & wn,const Register & xm)832 void Assembler::crc32x(const Register& wd,
833                        const Register& wn,
834                        const Register& xm) {
835   VIXL_ASSERT(CPUHas(CPUFeatures::kCRC32));
836   VIXL_ASSERT(wd.Is32Bits() && wn.Is32Bits() && xm.Is64Bits());
837   Emit(SF(xm) | Rm(xm) | CRC32X | Rn(wn) | Rd(wd));
838 }
839 
840 
crc32cb(const Register & wd,const Register & wn,const Register & wm)841 void Assembler::crc32cb(const Register& wd,
842                         const Register& wn,
843                         const Register& wm) {
844   VIXL_ASSERT(CPUHas(CPUFeatures::kCRC32));
845   VIXL_ASSERT(wd.Is32Bits() && wn.Is32Bits() && wm.Is32Bits());
846   Emit(SF(wm) | Rm(wm) | CRC32CB | Rn(wn) | Rd(wd));
847 }
848 
849 
crc32ch(const Register & wd,const Register & wn,const Register & wm)850 void Assembler::crc32ch(const Register& wd,
851                         const Register& wn,
852                         const Register& wm) {
853   VIXL_ASSERT(CPUHas(CPUFeatures::kCRC32));
854   VIXL_ASSERT(wd.Is32Bits() && wn.Is32Bits() && wm.Is32Bits());
855   Emit(SF(wm) | Rm(wm) | CRC32CH | Rn(wn) | Rd(wd));
856 }
857 
858 
crc32cw(const Register & wd,const Register & wn,const Register & wm)859 void Assembler::crc32cw(const Register& wd,
860                         const Register& wn,
861                         const Register& wm) {
862   VIXL_ASSERT(CPUHas(CPUFeatures::kCRC32));
863   VIXL_ASSERT(wd.Is32Bits() && wn.Is32Bits() && wm.Is32Bits());
864   Emit(SF(wm) | Rm(wm) | CRC32CW | Rn(wn) | Rd(wd));
865 }
866 
867 
crc32cx(const Register & wd,const Register & wn,const Register & xm)868 void Assembler::crc32cx(const Register& wd,
869                         const Register& wn,
870                         const Register& xm) {
871   VIXL_ASSERT(CPUHas(CPUFeatures::kCRC32));
872   VIXL_ASSERT(wd.Is32Bits() && wn.Is32Bits() && xm.Is64Bits());
873   Emit(SF(xm) | Rm(xm) | CRC32CX | Rn(wn) | Rd(wd));
874 }
875 
876 
mul(const Register & rd,const Register & rn,const Register & rm)877 void Assembler::mul(const Register& rd,
878                     const Register& rn,
879                     const Register& rm) {
880   VIXL_ASSERT(AreSameSizeAndType(rd, rn, rm));
881   DataProcessing3Source(rd, rn, rm, AppropriateZeroRegFor(rd), MADD);
882 }
883 
884 
madd(const Register & rd,const Register & rn,const Register & rm,const Register & ra)885 void Assembler::madd(const Register& rd,
886                      const Register& rn,
887                      const Register& rm,
888                      const Register& ra) {
889   DataProcessing3Source(rd, rn, rm, ra, MADD);
890 }
891 
892 
mneg(const Register & rd,const Register & rn,const Register & rm)893 void Assembler::mneg(const Register& rd,
894                      const Register& rn,
895                      const Register& rm) {
896   VIXL_ASSERT(AreSameSizeAndType(rd, rn, rm));
897   DataProcessing3Source(rd, rn, rm, AppropriateZeroRegFor(rd), MSUB);
898 }
899 
900 
msub(const Register & rd,const Register & rn,const Register & rm,const Register & ra)901 void Assembler::msub(const Register& rd,
902                      const Register& rn,
903                      const Register& rm,
904                      const Register& ra) {
905   DataProcessing3Source(rd, rn, rm, ra, MSUB);
906 }
907 
908 
umaddl(const Register & xd,const Register & wn,const Register & wm,const Register & xa)909 void Assembler::umaddl(const Register& xd,
910                        const Register& wn,
911                        const Register& wm,
912                        const Register& xa) {
913   VIXL_ASSERT(xd.Is64Bits() && xa.Is64Bits());
914   VIXL_ASSERT(wn.Is32Bits() && wm.Is32Bits());
915   DataProcessing3Source(xd, wn, wm, xa, UMADDL_x);
916 }
917 
918 
smaddl(const Register & xd,const Register & wn,const Register & wm,const Register & xa)919 void Assembler::smaddl(const Register& xd,
920                        const Register& wn,
921                        const Register& wm,
922                        const Register& xa) {
923   VIXL_ASSERT(xd.Is64Bits() && xa.Is64Bits());
924   VIXL_ASSERT(wn.Is32Bits() && wm.Is32Bits());
925   DataProcessing3Source(xd, wn, wm, xa, SMADDL_x);
926 }
927 
928 
umsubl(const Register & xd,const Register & wn,const Register & wm,const Register & xa)929 void Assembler::umsubl(const Register& xd,
930                        const Register& wn,
931                        const Register& wm,
932                        const Register& xa) {
933   VIXL_ASSERT(xd.Is64Bits() && xa.Is64Bits());
934   VIXL_ASSERT(wn.Is32Bits() && wm.Is32Bits());
935   DataProcessing3Source(xd, wn, wm, xa, UMSUBL_x);
936 }
937 
938 
smsubl(const Register & xd,const Register & wn,const Register & wm,const Register & xa)939 void Assembler::smsubl(const Register& xd,
940                        const Register& wn,
941                        const Register& wm,
942                        const Register& xa) {
943   VIXL_ASSERT(xd.Is64Bits() && xa.Is64Bits());
944   VIXL_ASSERT(wn.Is32Bits() && wm.Is32Bits());
945   DataProcessing3Source(xd, wn, wm, xa, SMSUBL_x);
946 }
947 
948 
smull(const Register & xd,const Register & wn,const Register & wm)949 void Assembler::smull(const Register& xd,
950                       const Register& wn,
951                       const Register& wm) {
952   VIXL_ASSERT(xd.Is64Bits());
953   VIXL_ASSERT(wn.Is32Bits() && wm.Is32Bits());
954   DataProcessing3Source(xd, wn, wm, xzr, SMADDL_x);
955 }
956 
957 
sdiv(const Register & rd,const Register & rn,const Register & rm)958 void Assembler::sdiv(const Register& rd,
959                      const Register& rn,
960                      const Register& rm) {
961   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
962   VIXL_ASSERT(rd.GetSizeInBits() == rm.GetSizeInBits());
963   Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd));
964 }
965 
966 
smulh(const Register & xd,const Register & xn,const Register & xm)967 void Assembler::smulh(const Register& xd,
968                       const Register& xn,
969                       const Register& xm) {
970   VIXL_ASSERT(xd.Is64Bits() && xn.Is64Bits() && xm.Is64Bits());
971   DataProcessing3Source(xd, xn, xm, xzr, SMULH_x);
972 }
973 
974 
umulh(const Register & xd,const Register & xn,const Register & xm)975 void Assembler::umulh(const Register& xd,
976                       const Register& xn,
977                       const Register& xm) {
978   VIXL_ASSERT(xd.Is64Bits() && xn.Is64Bits() && xm.Is64Bits());
979   DataProcessing3Source(xd, xn, xm, xzr, UMULH_x);
980 }
981 
982 
udiv(const Register & rd,const Register & rn,const Register & rm)983 void Assembler::udiv(const Register& rd,
984                      const Register& rn,
985                      const Register& rm) {
986   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
987   VIXL_ASSERT(rd.GetSizeInBits() == rm.GetSizeInBits());
988   Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd));
989 }
990 
991 
rbit(const Register & rd,const Register & rn)992 void Assembler::rbit(const Register& rd, const Register& rn) {
993   DataProcessing1Source(rd, rn, RBIT);
994 }
995 
996 
rev16(const Register & rd,const Register & rn)997 void Assembler::rev16(const Register& rd, const Register& rn) {
998   DataProcessing1Source(rd, rn, REV16);
999 }
1000 
1001 
rev32(const Register & xd,const Register & xn)1002 void Assembler::rev32(const Register& xd, const Register& xn) {
1003   VIXL_ASSERT(xd.Is64Bits());
1004   DataProcessing1Source(xd, xn, REV);
1005 }
1006 
1007 
rev(const Register & rd,const Register & rn)1008 void Assembler::rev(const Register& rd, const Register& rn) {
1009   DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w);
1010 }
1011 
1012 
clz(const Register & rd,const Register & rn)1013 void Assembler::clz(const Register& rd, const Register& rn) {
1014   DataProcessing1Source(rd, rn, CLZ);
1015 }
1016 
1017 
cls(const Register & rd,const Register & rn)1018 void Assembler::cls(const Register& rd, const Register& rn) {
1019   DataProcessing1Source(rd, rn, CLS);
1020 }
1021 
1022 #define PAUTH_VARIATIONS(V) \
1023   V(paci, PACI)             \
1024   V(pacd, PACD)             \
1025   V(auti, AUTI)             \
1026   V(autd, AUTD)
1027 
1028 #define DEFINE_ASM_FUNCS(PRE, OP)                                  \
1029   void Assembler::PRE##a(const Register& xd, const Register& xn) { \
1030     VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));                      \
1031     VIXL_ASSERT(xd.Is64Bits() && xn.Is64Bits());                   \
1032     Emit(SF(xd) | OP##A | Rd(xd) | RnSP(xn));                      \
1033   }                                                                \
1034                                                                    \
1035   void Assembler::PRE##za(const Register& xd) {                    \
1036     VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));                      \
1037     VIXL_ASSERT(xd.Is64Bits());                                    \
1038     Emit(SF(xd) | OP##ZA | Rd(xd));                                \
1039   }                                                                \
1040                                                                    \
1041   void Assembler::PRE##b(const Register& xd, const Register& xn) { \
1042     VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));                      \
1043     VIXL_ASSERT(xd.Is64Bits() && xn.Is64Bits());                   \
1044     Emit(SF(xd) | OP##B | Rd(xd) | RnSP(xn));                      \
1045   }                                                                \
1046                                                                    \
1047   void Assembler::PRE##zb(const Register& xd) {                    \
1048     VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));                      \
1049     VIXL_ASSERT(xd.Is64Bits());                                    \
1050     Emit(SF(xd) | OP##ZB | Rd(xd));                                \
1051   }
1052 
PAUTH_VARIATIONS(DEFINE_ASM_FUNCS)1053 PAUTH_VARIATIONS(DEFINE_ASM_FUNCS)
1054 #undef DEFINE_ASM_FUNCS
1055 
1056 void Assembler::pacga(const Register& xd,
1057                       const Register& xn,
1058                       const Register& xm) {
1059   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth, CPUFeatures::kPAuthGeneric));
1060   VIXL_ASSERT(xd.Is64Bits() && xn.Is64Bits() && xm.Is64Bits());
1061   Emit(SF(xd) | PACGA | Rd(xd) | Rn(xn) | RmSP(xm));
1062 }
1063 
xpaci(const Register & xd)1064 void Assembler::xpaci(const Register& xd) {
1065   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
1066   VIXL_ASSERT(xd.Is64Bits());
1067   Emit(SF(xd) | XPACI | Rd(xd));
1068 }
1069 
xpacd(const Register & xd)1070 void Assembler::xpacd(const Register& xd) {
1071   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
1072   VIXL_ASSERT(xd.Is64Bits());
1073   Emit(SF(xd) | XPACD | Rd(xd));
1074 }
1075 
1076 
ldp(const CPURegister & rt,const CPURegister & rt2,const MemOperand & src)1077 void Assembler::ldp(const CPURegister& rt,
1078                     const CPURegister& rt2,
1079                     const MemOperand& src) {
1080   LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2));
1081 }
1082 
1083 
stp(const CPURegister & rt,const CPURegister & rt2,const MemOperand & dst)1084 void Assembler::stp(const CPURegister& rt,
1085                     const CPURegister& rt2,
1086                     const MemOperand& dst) {
1087   LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2));
1088 }
1089 
1090 
ldpsw(const Register & xt,const Register & xt2,const MemOperand & src)1091 void Assembler::ldpsw(const Register& xt,
1092                       const Register& xt2,
1093                       const MemOperand& src) {
1094   VIXL_ASSERT(xt.Is64Bits() && xt2.Is64Bits());
1095   LoadStorePair(xt, xt2, src, LDPSW_x);
1096 }
1097 
1098 
LoadStorePair(const CPURegister & rt,const CPURegister & rt2,const MemOperand & addr,LoadStorePairOp op)1099 void Assembler::LoadStorePair(const CPURegister& rt,
1100                               const CPURegister& rt2,
1101                               const MemOperand& addr,
1102                               LoadStorePairOp op) {
1103   VIXL_ASSERT(CPUHas(rt, rt2));
1104 
1105   // 'rt' and 'rt2' can only be aliased for stores.
1106   VIXL_ASSERT(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2));
1107   VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
1108   VIXL_ASSERT(IsImmLSPair(addr.GetOffset(), CalcLSPairDataSize(op)));
1109 
1110   int offset = static_cast<int>(addr.GetOffset());
1111   Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.GetBaseRegister()) |
1112                 ImmLSPair(offset, CalcLSPairDataSize(op));
1113 
1114   Instr addrmodeop;
1115   if (addr.IsImmediateOffset()) {
1116     addrmodeop = LoadStorePairOffsetFixed;
1117   } else {
1118     if (addr.IsPreIndex()) {
1119       addrmodeop = LoadStorePairPreIndexFixed;
1120     } else {
1121       VIXL_ASSERT(addr.IsPostIndex());
1122       addrmodeop = LoadStorePairPostIndexFixed;
1123     }
1124   }
1125   Emit(addrmodeop | memop);
1126 }
1127 
1128 
ldnp(const CPURegister & rt,const CPURegister & rt2,const MemOperand & src)1129 void Assembler::ldnp(const CPURegister& rt,
1130                      const CPURegister& rt2,
1131                      const MemOperand& src) {
1132   LoadStorePairNonTemporal(rt, rt2, src, LoadPairNonTemporalOpFor(rt, rt2));
1133 }
1134 
1135 
stnp(const CPURegister & rt,const CPURegister & rt2,const MemOperand & dst)1136 void Assembler::stnp(const CPURegister& rt,
1137                      const CPURegister& rt2,
1138                      const MemOperand& dst) {
1139   LoadStorePairNonTemporal(rt, rt2, dst, StorePairNonTemporalOpFor(rt, rt2));
1140 }
1141 
1142 
LoadStorePairNonTemporal(const CPURegister & rt,const CPURegister & rt2,const MemOperand & addr,LoadStorePairNonTemporalOp op)1143 void Assembler::LoadStorePairNonTemporal(const CPURegister& rt,
1144                                          const CPURegister& rt2,
1145                                          const MemOperand& addr,
1146                                          LoadStorePairNonTemporalOp op) {
1147   VIXL_ASSERT(CPUHas(rt, rt2));
1148 
1149   VIXL_ASSERT(!rt.Is(rt2));
1150   VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
1151   VIXL_ASSERT(addr.IsImmediateOffset());
1152 
1153   unsigned size =
1154       CalcLSPairDataSize(static_cast<LoadStorePairOp>(op & LoadStorePairMask));
1155   VIXL_ASSERT(IsImmLSPair(addr.GetOffset(), size));
1156   int offset = static_cast<int>(addr.GetOffset());
1157   Emit(op | Rt(rt) | Rt2(rt2) | RnSP(addr.GetBaseRegister()) |
1158        ImmLSPair(offset, size));
1159 }
1160 
1161 
1162 // Memory instructions.
ldrb(const Register & rt,const MemOperand & src,LoadStoreScalingOption option)1163 void Assembler::ldrb(const Register& rt,
1164                      const MemOperand& src,
1165                      LoadStoreScalingOption option) {
1166   VIXL_ASSERT(option != RequireUnscaledOffset);
1167   VIXL_ASSERT(option != PreferUnscaledOffset);
1168   LoadStore(rt, src, LDRB_w, option);
1169 }
1170 
1171 
strb(const Register & rt,const MemOperand & dst,LoadStoreScalingOption option)1172 void Assembler::strb(const Register& rt,
1173                      const MemOperand& dst,
1174                      LoadStoreScalingOption option) {
1175   VIXL_ASSERT(option != RequireUnscaledOffset);
1176   VIXL_ASSERT(option != PreferUnscaledOffset);
1177   LoadStore(rt, dst, STRB_w, option);
1178 }
1179 
1180 
ldrsb(const Register & rt,const MemOperand & src,LoadStoreScalingOption option)1181 void Assembler::ldrsb(const Register& rt,
1182                       const MemOperand& src,
1183                       LoadStoreScalingOption option) {
1184   VIXL_ASSERT(option != RequireUnscaledOffset);
1185   VIXL_ASSERT(option != PreferUnscaledOffset);
1186   LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w, option);
1187 }
1188 
1189 
ldrh(const Register & rt,const MemOperand & src,LoadStoreScalingOption option)1190 void Assembler::ldrh(const Register& rt,
1191                      const MemOperand& src,
1192                      LoadStoreScalingOption option) {
1193   VIXL_ASSERT(option != RequireUnscaledOffset);
1194   VIXL_ASSERT(option != PreferUnscaledOffset);
1195   LoadStore(rt, src, LDRH_w, option);
1196 }
1197 
1198 
strh(const Register & rt,const MemOperand & dst,LoadStoreScalingOption option)1199 void Assembler::strh(const Register& rt,
1200                      const MemOperand& dst,
1201                      LoadStoreScalingOption option) {
1202   VIXL_ASSERT(option != RequireUnscaledOffset);
1203   VIXL_ASSERT(option != PreferUnscaledOffset);
1204   LoadStore(rt, dst, STRH_w, option);
1205 }
1206 
1207 
ldrsh(const Register & rt,const MemOperand & src,LoadStoreScalingOption option)1208 void Assembler::ldrsh(const Register& rt,
1209                       const MemOperand& src,
1210                       LoadStoreScalingOption option) {
1211   VIXL_ASSERT(option != RequireUnscaledOffset);
1212   VIXL_ASSERT(option != PreferUnscaledOffset);
1213   LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w, option);
1214 }
1215 
1216 
ldr(const CPURegister & rt,const MemOperand & src,LoadStoreScalingOption option)1217 void Assembler::ldr(const CPURegister& rt,
1218                     const MemOperand& src,
1219                     LoadStoreScalingOption option) {
1220   VIXL_ASSERT(option != RequireUnscaledOffset);
1221   VIXL_ASSERT(option != PreferUnscaledOffset);
1222   LoadStore(rt, src, LoadOpFor(rt), option);
1223 }
1224 
1225 
str(const CPURegister & rt,const MemOperand & dst,LoadStoreScalingOption option)1226 void Assembler::str(const CPURegister& rt,
1227                     const MemOperand& dst,
1228                     LoadStoreScalingOption option) {
1229   VIXL_ASSERT(option != RequireUnscaledOffset);
1230   VIXL_ASSERT(option != PreferUnscaledOffset);
1231   LoadStore(rt, dst, StoreOpFor(rt), option);
1232 }
1233 
1234 
ldrsw(const Register & xt,const MemOperand & src,LoadStoreScalingOption option)1235 void Assembler::ldrsw(const Register& xt,
1236                       const MemOperand& src,
1237                       LoadStoreScalingOption option) {
1238   VIXL_ASSERT(xt.Is64Bits());
1239   VIXL_ASSERT(option != RequireUnscaledOffset);
1240   VIXL_ASSERT(option != PreferUnscaledOffset);
1241   LoadStore(xt, src, LDRSW_x, option);
1242 }
1243 
1244 
ldurb(const Register & rt,const MemOperand & src,LoadStoreScalingOption option)1245 void Assembler::ldurb(const Register& rt,
1246                       const MemOperand& src,
1247                       LoadStoreScalingOption option) {
1248   VIXL_ASSERT(option != RequireScaledOffset);
1249   VIXL_ASSERT(option != PreferScaledOffset);
1250   LoadStore(rt, src, LDRB_w, option);
1251 }
1252 
1253 
sturb(const Register & rt,const MemOperand & dst,LoadStoreScalingOption option)1254 void Assembler::sturb(const Register& rt,
1255                       const MemOperand& dst,
1256                       LoadStoreScalingOption option) {
1257   VIXL_ASSERT(option != RequireScaledOffset);
1258   VIXL_ASSERT(option != PreferScaledOffset);
1259   LoadStore(rt, dst, STRB_w, option);
1260 }
1261 
1262 
ldursb(const Register & rt,const MemOperand & src,LoadStoreScalingOption option)1263 void Assembler::ldursb(const Register& rt,
1264                        const MemOperand& src,
1265                        LoadStoreScalingOption option) {
1266   VIXL_ASSERT(option != RequireScaledOffset);
1267   VIXL_ASSERT(option != PreferScaledOffset);
1268   LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w, option);
1269 }
1270 
1271 
ldurh(const Register & rt,const MemOperand & src,LoadStoreScalingOption option)1272 void Assembler::ldurh(const Register& rt,
1273                       const MemOperand& src,
1274                       LoadStoreScalingOption option) {
1275   VIXL_ASSERT(option != RequireScaledOffset);
1276   VIXL_ASSERT(option != PreferScaledOffset);
1277   LoadStore(rt, src, LDRH_w, option);
1278 }
1279 
1280 
sturh(const Register & rt,const MemOperand & dst,LoadStoreScalingOption option)1281 void Assembler::sturh(const Register& rt,
1282                       const MemOperand& dst,
1283                       LoadStoreScalingOption option) {
1284   VIXL_ASSERT(option != RequireScaledOffset);
1285   VIXL_ASSERT(option != PreferScaledOffset);
1286   LoadStore(rt, dst, STRH_w, option);
1287 }
1288 
1289 
ldursh(const Register & rt,const MemOperand & src,LoadStoreScalingOption option)1290 void Assembler::ldursh(const Register& rt,
1291                        const MemOperand& src,
1292                        LoadStoreScalingOption option) {
1293   VIXL_ASSERT(option != RequireScaledOffset);
1294   VIXL_ASSERT(option != PreferScaledOffset);
1295   LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w, option);
1296 }
1297 
1298 
ldur(const CPURegister & rt,const MemOperand & src,LoadStoreScalingOption option)1299 void Assembler::ldur(const CPURegister& rt,
1300                      const MemOperand& src,
1301                      LoadStoreScalingOption option) {
1302   VIXL_ASSERT(option != RequireScaledOffset);
1303   VIXL_ASSERT(option != PreferScaledOffset);
1304   LoadStore(rt, src, LoadOpFor(rt), option);
1305 }
1306 
1307 
stur(const CPURegister & rt,const MemOperand & dst,LoadStoreScalingOption option)1308 void Assembler::stur(const CPURegister& rt,
1309                      const MemOperand& dst,
1310                      LoadStoreScalingOption option) {
1311   VIXL_ASSERT(option != RequireScaledOffset);
1312   VIXL_ASSERT(option != PreferScaledOffset);
1313   LoadStore(rt, dst, StoreOpFor(rt), option);
1314 }
1315 
1316 
ldursw(const Register & xt,const MemOperand & src,LoadStoreScalingOption option)1317 void Assembler::ldursw(const Register& xt,
1318                        const MemOperand& src,
1319                        LoadStoreScalingOption option) {
1320   VIXL_ASSERT(xt.Is64Bits());
1321   VIXL_ASSERT(option != RequireScaledOffset);
1322   VIXL_ASSERT(option != PreferScaledOffset);
1323   LoadStore(xt, src, LDRSW_x, option);
1324 }
1325 
1326 
ldrsw(const Register & xt,RawLiteral * literal)1327 void Assembler::ldrsw(const Register& xt, RawLiteral* literal) {
1328   VIXL_ASSERT(xt.Is64Bits());
1329   VIXL_ASSERT(literal->GetSize() == kWRegSizeInBytes);
1330   ldrsw(xt, static_cast<int>(LinkAndGetWordOffsetTo(literal)));
1331 }
1332 
1333 
ldr(const CPURegister & rt,RawLiteral * literal)1334 void Assembler::ldr(const CPURegister& rt, RawLiteral* literal) {
1335   VIXL_ASSERT(CPUHas(rt));
1336   VIXL_ASSERT(literal->GetSize() == static_cast<size_t>(rt.GetSizeInBytes()));
1337   ldr(rt, static_cast<int>(LinkAndGetWordOffsetTo(literal)));
1338 }
1339 
1340 
ldrsw(const Register & rt,int64_t imm19)1341 void Assembler::ldrsw(const Register& rt, int64_t imm19) {
1342   Emit(LDRSW_x_lit | ImmLLiteral(imm19) | Rt(rt));
1343 }
1344 
1345 
ldr(const CPURegister & rt,int64_t imm19)1346 void Assembler::ldr(const CPURegister& rt, int64_t imm19) {
1347   VIXL_ASSERT(CPUHas(rt));
1348   LoadLiteralOp op = LoadLiteralOpFor(rt);
1349   Emit(op | ImmLLiteral(imm19) | Rt(rt));
1350 }
1351 
1352 
prfm(PrefetchOperation op,int64_t imm19)1353 void Assembler::prfm(PrefetchOperation op, int64_t imm19) {
1354   Emit(PRFM_lit | ImmPrefetchOperation(op) | ImmLLiteral(imm19));
1355 }
1356 
1357 
1358 // Exclusive-access instructions.
stxrb(const Register & rs,const Register & rt,const MemOperand & dst)1359 void Assembler::stxrb(const Register& rs,
1360                       const Register& rt,
1361                       const MemOperand& dst) {
1362   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1363   Emit(STXRB_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.GetBaseRegister()));
1364 }
1365 
1366 
stxrh(const Register & rs,const Register & rt,const MemOperand & dst)1367 void Assembler::stxrh(const Register& rs,
1368                       const Register& rt,
1369                       const MemOperand& dst) {
1370   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1371   Emit(STXRH_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.GetBaseRegister()));
1372 }
1373 
1374 
stxr(const Register & rs,const Register & rt,const MemOperand & dst)1375 void Assembler::stxr(const Register& rs,
1376                      const Register& rt,
1377                      const MemOperand& dst) {
1378   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1379   LoadStoreExclusive op = rt.Is64Bits() ? STXR_x : STXR_w;
1380   Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.GetBaseRegister()));
1381 }
1382 
1383 
ldxrb(const Register & rt,const MemOperand & src)1384 void Assembler::ldxrb(const Register& rt, const MemOperand& src) {
1385   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1386   Emit(LDXRB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister()));
1387 }
1388 
1389 
ldxrh(const Register & rt,const MemOperand & src)1390 void Assembler::ldxrh(const Register& rt, const MemOperand& src) {
1391   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1392   Emit(LDXRH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister()));
1393 }
1394 
1395 
ldxr(const Register & rt,const MemOperand & src)1396 void Assembler::ldxr(const Register& rt, const MemOperand& src) {
1397   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1398   LoadStoreExclusive op = rt.Is64Bits() ? LDXR_x : LDXR_w;
1399   Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister()));
1400 }
1401 
1402 
stxp(const Register & rs,const Register & rt,const Register & rt2,const MemOperand & dst)1403 void Assembler::stxp(const Register& rs,
1404                      const Register& rt,
1405                      const Register& rt2,
1406                      const MemOperand& dst) {
1407   VIXL_ASSERT(rt.GetSizeInBits() == rt2.GetSizeInBits());
1408   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1409   LoadStoreExclusive op = rt.Is64Bits() ? STXP_x : STXP_w;
1410   Emit(op | Rs(rs) | Rt(rt) | Rt2(rt2) | RnSP(dst.GetBaseRegister()));
1411 }
1412 
1413 
ldxp(const Register & rt,const Register & rt2,const MemOperand & src)1414 void Assembler::ldxp(const Register& rt,
1415                      const Register& rt2,
1416                      const MemOperand& src) {
1417   VIXL_ASSERT(rt.GetSizeInBits() == rt2.GetSizeInBits());
1418   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1419   LoadStoreExclusive op = rt.Is64Bits() ? LDXP_x : LDXP_w;
1420   Emit(op | Rs_mask | Rt(rt) | Rt2(rt2) | RnSP(src.GetBaseRegister()));
1421 }
1422 
1423 
stlxrb(const Register & rs,const Register & rt,const MemOperand & dst)1424 void Assembler::stlxrb(const Register& rs,
1425                        const Register& rt,
1426                        const MemOperand& dst) {
1427   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1428   Emit(STLXRB_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.GetBaseRegister()));
1429 }
1430 
1431 
stlxrh(const Register & rs,const Register & rt,const MemOperand & dst)1432 void Assembler::stlxrh(const Register& rs,
1433                        const Register& rt,
1434                        const MemOperand& dst) {
1435   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1436   Emit(STLXRH_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.GetBaseRegister()));
1437 }
1438 
1439 
stlxr(const Register & rs,const Register & rt,const MemOperand & dst)1440 void Assembler::stlxr(const Register& rs,
1441                       const Register& rt,
1442                       const MemOperand& dst) {
1443   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1444   LoadStoreExclusive op = rt.Is64Bits() ? STLXR_x : STLXR_w;
1445   Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.GetBaseRegister()));
1446 }
1447 
1448 
ldaxrb(const Register & rt,const MemOperand & src)1449 void Assembler::ldaxrb(const Register& rt, const MemOperand& src) {
1450   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1451   Emit(LDAXRB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister()));
1452 }
1453 
1454 
ldaxrh(const Register & rt,const MemOperand & src)1455 void Assembler::ldaxrh(const Register& rt, const MemOperand& src) {
1456   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1457   Emit(LDAXRH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister()));
1458 }
1459 
1460 
ldaxr(const Register & rt,const MemOperand & src)1461 void Assembler::ldaxr(const Register& rt, const MemOperand& src) {
1462   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1463   LoadStoreExclusive op = rt.Is64Bits() ? LDAXR_x : LDAXR_w;
1464   Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister()));
1465 }
1466 
1467 
stlxp(const Register & rs,const Register & rt,const Register & rt2,const MemOperand & dst)1468 void Assembler::stlxp(const Register& rs,
1469                       const Register& rt,
1470                       const Register& rt2,
1471                       const MemOperand& dst) {
1472   VIXL_ASSERT(rt.GetSizeInBits() == rt2.GetSizeInBits());
1473   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1474   LoadStoreExclusive op = rt.Is64Bits() ? STLXP_x : STLXP_w;
1475   Emit(op | Rs(rs) | Rt(rt) | Rt2(rt2) | RnSP(dst.GetBaseRegister()));
1476 }
1477 
1478 
ldaxp(const Register & rt,const Register & rt2,const MemOperand & src)1479 void Assembler::ldaxp(const Register& rt,
1480                       const Register& rt2,
1481                       const MemOperand& src) {
1482   VIXL_ASSERT(rt.GetSizeInBits() == rt2.GetSizeInBits());
1483   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1484   LoadStoreExclusive op = rt.Is64Bits() ? LDAXP_x : LDAXP_w;
1485   Emit(op | Rs_mask | Rt(rt) | Rt2(rt2) | RnSP(src.GetBaseRegister()));
1486 }
1487 
1488 
stlrb(const Register & rt,const MemOperand & dst)1489 void Assembler::stlrb(const Register& rt, const MemOperand& dst) {
1490   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1491   Emit(STLRB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.GetBaseRegister()));
1492 }
1493 
1494 
stlrh(const Register & rt,const MemOperand & dst)1495 void Assembler::stlrh(const Register& rt, const MemOperand& dst) {
1496   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1497   Emit(STLRH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.GetBaseRegister()));
1498 }
1499 
1500 
stlr(const Register & rt,const MemOperand & dst)1501 void Assembler::stlr(const Register& rt, const MemOperand& dst) {
1502   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1503   LoadStoreExclusive op = rt.Is64Bits() ? STLR_x : STLR_w;
1504   Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.GetBaseRegister()));
1505 }
1506 
1507 
ldarb(const Register & rt,const MemOperand & src)1508 void Assembler::ldarb(const Register& rt, const MemOperand& src) {
1509   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1510   Emit(LDARB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister()));
1511 }
1512 
1513 
ldarh(const Register & rt,const MemOperand & src)1514 void Assembler::ldarh(const Register& rt, const MemOperand& src) {
1515   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1516   Emit(LDARH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister()));
1517 }
1518 
1519 
ldar(const Register & rt,const MemOperand & src)1520 void Assembler::ldar(const Register& rt, const MemOperand& src) {
1521   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1522   LoadStoreExclusive op = rt.Is64Bits() ? LDAR_x : LDAR_w;
1523   Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister()));
1524 }
1525 
1526 
stllrb(const Register & rt,const MemOperand & dst)1527 void Assembler::stllrb(const Register& rt, const MemOperand& dst) {
1528   VIXL_ASSERT(CPUHas(CPUFeatures::kLORegions));
1529   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1530   Emit(STLLRB | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.GetBaseRegister()));
1531 }
1532 
1533 
stllrh(const Register & rt,const MemOperand & dst)1534 void Assembler::stllrh(const Register& rt, const MemOperand& dst) {
1535   VIXL_ASSERT(CPUHas(CPUFeatures::kLORegions));
1536   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1537   Emit(STLLRH | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.GetBaseRegister()));
1538 }
1539 
1540 
stllr(const Register & rt,const MemOperand & dst)1541 void Assembler::stllr(const Register& rt, const MemOperand& dst) {
1542   VIXL_ASSERT(CPUHas(CPUFeatures::kLORegions));
1543   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1544   LoadStoreExclusive op = rt.Is64Bits() ? STLLR_x : STLLR_w;
1545   Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.GetBaseRegister()));
1546 }
1547 
1548 
ldlarb(const Register & rt,const MemOperand & src)1549 void Assembler::ldlarb(const Register& rt, const MemOperand& src) {
1550   VIXL_ASSERT(CPUHas(CPUFeatures::kLORegions));
1551   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1552   Emit(LDLARB | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister()));
1553 }
1554 
1555 
ldlarh(const Register & rt,const MemOperand & src)1556 void Assembler::ldlarh(const Register& rt, const MemOperand& src) {
1557   VIXL_ASSERT(CPUHas(CPUFeatures::kLORegions));
1558   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1559   Emit(LDLARH | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister()));
1560 }
1561 
1562 
ldlar(const Register & rt,const MemOperand & src)1563 void Assembler::ldlar(const Register& rt, const MemOperand& src) {
1564   VIXL_ASSERT(CPUHas(CPUFeatures::kLORegions));
1565   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1566   LoadStoreExclusive op = rt.Is64Bits() ? LDLAR_x : LDLAR_w;
1567   Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister()));
1568 }
1569 
1570 
1571 // clang-format off
1572 #define COMPARE_AND_SWAP_W_X_LIST(V) \
1573   V(cas,   CAS)                      \
1574   V(casa,  CASA)                     \
1575   V(casl,  CASL)                     \
1576   V(casal, CASAL)
1577 // clang-format on
1578 
1579 #define DEFINE_ASM_FUNC(FN, OP)                                          \
1580   void Assembler::FN(const Register& rs,                                 \
1581                      const Register& rt,                                 \
1582                      const MemOperand& src) {                            \
1583     VIXL_ASSERT(CPUHas(CPUFeatures::kAtomics));                          \
1584     VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));      \
1585     LoadStoreExclusive op = rt.Is64Bits() ? OP##_x : OP##_w;             \
1586     Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister())); \
1587   }
1588 COMPARE_AND_SWAP_W_X_LIST(DEFINE_ASM_FUNC)
1589 #undef DEFINE_ASM_FUNC
1590 
1591 // clang-format off
1592 #define COMPARE_AND_SWAP_W_LIST(V) \
1593   V(casb,   CASB)                  \
1594   V(casab,  CASAB)                 \
1595   V(caslb,  CASLB)                 \
1596   V(casalb, CASALB)                \
1597   V(cash,   CASH)                  \
1598   V(casah,  CASAH)                 \
1599   V(caslh,  CASLH)                 \
1600   V(casalh, CASALH)
1601 // clang-format on
1602 
1603 #define DEFINE_ASM_FUNC(FN, OP)                                          \
1604   void Assembler::FN(const Register& rs,                                 \
1605                      const Register& rt,                                 \
1606                      const MemOperand& src) {                            \
1607     VIXL_ASSERT(CPUHas(CPUFeatures::kAtomics));                          \
1608     VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));      \
1609     Emit(OP | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister())); \
1610   }
COMPARE_AND_SWAP_W_LIST(DEFINE_ASM_FUNC)1611 COMPARE_AND_SWAP_W_LIST(DEFINE_ASM_FUNC)
1612 #undef DEFINE_ASM_FUNC
1613 
1614 
1615 // clang-format off
1616 #define COMPARE_AND_SWAP_PAIR_LIST(V) \
1617   V(casp,   CASP)                     \
1618   V(caspa,  CASPA)                    \
1619   V(caspl,  CASPL)                    \
1620   V(caspal, CASPAL)
1621 // clang-format on
1622 
1623 #define DEFINE_ASM_FUNC(FN, OP)                                          \
1624   void Assembler::FN(const Register& rs,                                 \
1625                      const Register& rs1,                                \
1626                      const Register& rt,                                 \
1627                      const Register& rt1,                                \
1628                      const MemOperand& src) {                            \
1629     VIXL_ASSERT(CPUHas(CPUFeatures::kAtomics));                          \
1630     USE(rs1, rt1);                                                       \
1631     VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));      \
1632     VIXL_ASSERT(AreEven(rs, rt));                                        \
1633     VIXL_ASSERT(AreConsecutive(rs, rs1));                                \
1634     VIXL_ASSERT(AreConsecutive(rt, rt1));                                \
1635     LoadStoreExclusive op = rt.Is64Bits() ? OP##_x : OP##_w;             \
1636     Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister())); \
1637   }
1638 COMPARE_AND_SWAP_PAIR_LIST(DEFINE_ASM_FUNC)
1639 #undef DEFINE_ASM_FUNC
1640 
1641 // These macros generate all the variations of the atomic memory operations,
1642 // e.g. ldadd, ldadda, ldaddb, staddl, etc.
1643 // For a full list of the methods with comments, see the assembler header file.
1644 
1645 // clang-format off
1646 #define ATOMIC_MEMORY_SIMPLE_OPERATION_LIST(V, DEF) \
1647   V(DEF, add,  LDADD)                               \
1648   V(DEF, clr,  LDCLR)                               \
1649   V(DEF, eor,  LDEOR)                               \
1650   V(DEF, set,  LDSET)                               \
1651   V(DEF, smax, LDSMAX)                              \
1652   V(DEF, smin, LDSMIN)                              \
1653   V(DEF, umax, LDUMAX)                              \
1654   V(DEF, umin, LDUMIN)
1655 
1656 #define ATOMIC_MEMORY_STORE_MODES(V, NAME, OP) \
1657   V(NAME,     OP##_x,   OP##_w)                \
1658   V(NAME##l,  OP##L_x,  OP##L_w)               \
1659   V(NAME##b,  OP##B,    OP##B)                 \
1660   V(NAME##lb, OP##LB,   OP##LB)                \
1661   V(NAME##h,  OP##H,    OP##H)                 \
1662   V(NAME##lh, OP##LH,   OP##LH)
1663 
1664 #define ATOMIC_MEMORY_LOAD_MODES(V, NAME, OP) \
1665   ATOMIC_MEMORY_STORE_MODES(V, NAME, OP)      \
1666   V(NAME##a,   OP##A_x,  OP##A_w)             \
1667   V(NAME##al,  OP##AL_x, OP##AL_w)            \
1668   V(NAME##ab,  OP##AB,   OP##AB)              \
1669   V(NAME##alb, OP##ALB,  OP##ALB)             \
1670   V(NAME##ah,  OP##AH,   OP##AH)              \
1671   V(NAME##alh, OP##ALH,  OP##ALH)
1672 // clang-format on
1673 
1674 #define DEFINE_ASM_LOAD_FUNC(FN, OP_X, OP_W)                        \
1675   void Assembler::ld##FN(const Register& rs,                        \
1676                          const Register& rt,                        \
1677                          const MemOperand& src) {                   \
1678     VIXL_ASSERT(CPUHas(CPUFeatures::kAtomics));                     \
1679     VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0)); \
1680     AtomicMemoryOp op = rt.Is64Bits() ? OP_X : OP_W;                \
1681     Emit(op | Rs(rs) | Rt(rt) | RnSP(src.GetBaseRegister()));       \
1682   }
1683 #define DEFINE_ASM_STORE_FUNC(FN, OP_X, OP_W)                         \
1684   void Assembler::st##FN(const Register& rs, const MemOperand& src) { \
1685     VIXL_ASSERT(CPUHas(CPUFeatures::kAtomics));                       \
1686     ld##FN(rs, AppropriateZeroRegFor(rs), src);                       \
1687   }
1688 
1689 ATOMIC_MEMORY_SIMPLE_OPERATION_LIST(ATOMIC_MEMORY_LOAD_MODES,
1690                                     DEFINE_ASM_LOAD_FUNC)
1691 ATOMIC_MEMORY_SIMPLE_OPERATION_LIST(ATOMIC_MEMORY_STORE_MODES,
1692                                     DEFINE_ASM_STORE_FUNC)
1693 
1694 #define DEFINE_ASM_SWP_FUNC(FN, OP_X, OP_W)                         \
1695   void Assembler::FN(const Register& rs,                            \
1696                      const Register& rt,                            \
1697                      const MemOperand& src) {                       \
1698     VIXL_ASSERT(CPUHas(CPUFeatures::kAtomics));                     \
1699     VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0)); \
1700     AtomicMemoryOp op = rt.Is64Bits() ? OP_X : OP_W;                \
1701     Emit(op | Rs(rs) | Rt(rt) | RnSP(src.GetBaseRegister()));       \
1702   }
1703 
1704 ATOMIC_MEMORY_LOAD_MODES(DEFINE_ASM_SWP_FUNC, swp, SWP)
1705 
1706 #undef DEFINE_ASM_LOAD_FUNC
1707 #undef DEFINE_ASM_STORE_FUNC
1708 #undef DEFINE_ASM_SWP_FUNC
1709 
1710 
1711 void Assembler::ldaprb(const Register& rt, const MemOperand& src) {
1712   VIXL_ASSERT(CPUHas(CPUFeatures::kRCpc));
1713   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1714   AtomicMemoryOp op = LDAPRB;
1715   Emit(op | Rs(xzr) | Rt(rt) | RnSP(src.GetBaseRegister()));
1716 }
1717 
ldaprh(const Register & rt,const MemOperand & src)1718 void Assembler::ldaprh(const Register& rt, const MemOperand& src) {
1719   VIXL_ASSERT(CPUHas(CPUFeatures::kRCpc));
1720   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1721   AtomicMemoryOp op = LDAPRH;
1722   Emit(op | Rs(xzr) | Rt(rt) | RnSP(src.GetBaseRegister()));
1723 }
1724 
ldapr(const Register & rt,const MemOperand & src)1725 void Assembler::ldapr(const Register& rt, const MemOperand& src) {
1726   VIXL_ASSERT(CPUHas(CPUFeatures::kRCpc));
1727   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1728   AtomicMemoryOp op = rt.Is64Bits() ? LDAPR_x : LDAPR_w;
1729   Emit(op | Rs(xzr) | Rt(rt) | RnSP(src.GetBaseRegister()));
1730 }
1731 
prfm(PrefetchOperation op,const MemOperand & address,LoadStoreScalingOption option)1732 void Assembler::prfm(PrefetchOperation op,
1733                      const MemOperand& address,
1734                      LoadStoreScalingOption option) {
1735   VIXL_ASSERT(option != RequireUnscaledOffset);
1736   VIXL_ASSERT(option != PreferUnscaledOffset);
1737   Prefetch(op, address, option);
1738 }
1739 
1740 
prfum(PrefetchOperation op,const MemOperand & address,LoadStoreScalingOption option)1741 void Assembler::prfum(PrefetchOperation op,
1742                       const MemOperand& address,
1743                       LoadStoreScalingOption option) {
1744   VIXL_ASSERT(option != RequireScaledOffset);
1745   VIXL_ASSERT(option != PreferScaledOffset);
1746   Prefetch(op, address, option);
1747 }
1748 
1749 
prfm(PrefetchOperation op,RawLiteral * literal)1750 void Assembler::prfm(PrefetchOperation op, RawLiteral* literal) {
1751   prfm(op, static_cast<int>(LinkAndGetWordOffsetTo(literal)));
1752 }
1753 
1754 
sys(int op1,int crn,int crm,int op2,const Register & xt)1755 void Assembler::sys(int op1, int crn, int crm, int op2, const Register& xt) {
1756   VIXL_ASSERT(xt.Is64Bits());
1757   Emit(SYS | ImmSysOp1(op1) | CRn(crn) | CRm(crm) | ImmSysOp2(op2) | Rt(xt));
1758 }
1759 
1760 
sys(int op,const Register & xt)1761 void Assembler::sys(int op, const Register& xt) {
1762   VIXL_ASSERT(xt.Is64Bits());
1763   Emit(SYS | SysOp(op) | Rt(xt));
1764 }
1765 
1766 
dc(DataCacheOp op,const Register & rt)1767 void Assembler::dc(DataCacheOp op, const Register& rt) {
1768   VIXL_ASSERT((op == CVAC) || (op == CVAU) || (op == CIVAC) || (op == ZVA));
1769   sys(op, rt);
1770 }
1771 
1772 
ic(InstructionCacheOp op,const Register & rt)1773 void Assembler::ic(InstructionCacheOp op, const Register& rt) {
1774   VIXL_ASSERT(op == IVAU);
1775   sys(op, rt);
1776 }
1777 
1778 
hint(SystemHint code)1779 void Assembler::hint(SystemHint code) { hint(static_cast<int>(code)); }
1780 
1781 
hint(int imm7)1782 void Assembler::hint(int imm7) {
1783   VIXL_ASSERT(IsUint7(imm7));
1784   Emit(HINT | ImmHint(imm7) | Rt(xzr));
1785 }
1786 
1787 
1788 // NEON structure loads and stores.
LoadStoreStructAddrModeField(const MemOperand & addr)1789 Instr Assembler::LoadStoreStructAddrModeField(const MemOperand& addr) {
1790   Instr addr_field = RnSP(addr.GetBaseRegister());
1791 
1792   if (addr.IsPostIndex()) {
1793     VIXL_STATIC_ASSERT(NEONLoadStoreMultiStructPostIndex ==
1794                        static_cast<NEONLoadStoreMultiStructPostIndexOp>(
1795                            NEONLoadStoreSingleStructPostIndex));
1796 
1797     addr_field |= NEONLoadStoreMultiStructPostIndex;
1798     if (addr.GetOffset() == 0) {
1799       addr_field |= RmNot31(addr.GetRegisterOffset());
1800     } else {
1801       // The immediate post index addressing mode is indicated by rm = 31.
1802       // The immediate is implied by the number of vector registers used.
1803       addr_field |= (0x1f << Rm_offset);
1804     }
1805   } else {
1806     VIXL_ASSERT(addr.IsImmediateOffset() && (addr.GetOffset() == 0));
1807   }
1808   return addr_field;
1809 }
1810 
LoadStoreStructVerify(const VRegister & vt,const MemOperand & addr,Instr op)1811 void Assembler::LoadStoreStructVerify(const VRegister& vt,
1812                                       const MemOperand& addr,
1813                                       Instr op) {
1814 #ifdef VIXL_DEBUG
1815   // Assert that addressing mode is either offset (with immediate 0), post
1816   // index by immediate of the size of the register list, or post index by a
1817   // value in a core register.
1818   if (addr.IsImmediateOffset()) {
1819     VIXL_ASSERT(addr.GetOffset() == 0);
1820   } else {
1821     int offset = vt.GetSizeInBytes();
1822     switch (op) {
1823       case NEON_LD1_1v:
1824       case NEON_ST1_1v:
1825         offset *= 1;
1826         break;
1827       case NEONLoadStoreSingleStructLoad1:
1828       case NEONLoadStoreSingleStructStore1:
1829       case NEON_LD1R:
1830         offset = (offset / vt.GetLanes()) * 1;
1831         break;
1832 
1833       case NEON_LD1_2v:
1834       case NEON_ST1_2v:
1835       case NEON_LD2:
1836       case NEON_ST2:
1837         offset *= 2;
1838         break;
1839       case NEONLoadStoreSingleStructLoad2:
1840       case NEONLoadStoreSingleStructStore2:
1841       case NEON_LD2R:
1842         offset = (offset / vt.GetLanes()) * 2;
1843         break;
1844 
1845       case NEON_LD1_3v:
1846       case NEON_ST1_3v:
1847       case NEON_LD3:
1848       case NEON_ST3:
1849         offset *= 3;
1850         break;
1851       case NEONLoadStoreSingleStructLoad3:
1852       case NEONLoadStoreSingleStructStore3:
1853       case NEON_LD3R:
1854         offset = (offset / vt.GetLanes()) * 3;
1855         break;
1856 
1857       case NEON_LD1_4v:
1858       case NEON_ST1_4v:
1859       case NEON_LD4:
1860       case NEON_ST4:
1861         offset *= 4;
1862         break;
1863       case NEONLoadStoreSingleStructLoad4:
1864       case NEONLoadStoreSingleStructStore4:
1865       case NEON_LD4R:
1866         offset = (offset / vt.GetLanes()) * 4;
1867         break;
1868       default:
1869         VIXL_UNREACHABLE();
1870     }
1871     VIXL_ASSERT(!addr.GetRegisterOffset().Is(NoReg) ||
1872                 addr.GetOffset() == offset);
1873   }
1874 #else
1875   USE(vt, addr, op);
1876 #endif
1877 }
1878 
LoadStoreStruct(const VRegister & vt,const MemOperand & addr,NEONLoadStoreMultiStructOp op)1879 void Assembler::LoadStoreStruct(const VRegister& vt,
1880                                 const MemOperand& addr,
1881                                 NEONLoadStoreMultiStructOp op) {
1882   LoadStoreStructVerify(vt, addr, op);
1883   VIXL_ASSERT(vt.IsVector() || vt.Is1D());
1884   Emit(op | LoadStoreStructAddrModeField(addr) | LSVFormat(vt) | Rt(vt));
1885 }
1886 
1887 
LoadStoreStructSingleAllLanes(const VRegister & vt,const MemOperand & addr,NEONLoadStoreSingleStructOp op)1888 void Assembler::LoadStoreStructSingleAllLanes(const VRegister& vt,
1889                                               const MemOperand& addr,
1890                                               NEONLoadStoreSingleStructOp op) {
1891   LoadStoreStructVerify(vt, addr, op);
1892   Emit(op | LoadStoreStructAddrModeField(addr) | LSVFormat(vt) | Rt(vt));
1893 }
1894 
1895 
ld1(const VRegister & vt,const MemOperand & src)1896 void Assembler::ld1(const VRegister& vt, const MemOperand& src) {
1897   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
1898   LoadStoreStruct(vt, src, NEON_LD1_1v);
1899 }
1900 
1901 
ld1(const VRegister & vt,const VRegister & vt2,const MemOperand & src)1902 void Assembler::ld1(const VRegister& vt,
1903                     const VRegister& vt2,
1904                     const MemOperand& src) {
1905   USE(vt2);
1906   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
1907   VIXL_ASSERT(AreSameFormat(vt, vt2));
1908   VIXL_ASSERT(AreConsecutive(vt, vt2));
1909   LoadStoreStruct(vt, src, NEON_LD1_2v);
1910 }
1911 
1912 
ld1(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,const MemOperand & src)1913 void Assembler::ld1(const VRegister& vt,
1914                     const VRegister& vt2,
1915                     const VRegister& vt3,
1916                     const MemOperand& src) {
1917   USE(vt2, vt3);
1918   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
1919   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
1920   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
1921   LoadStoreStruct(vt, src, NEON_LD1_3v);
1922 }
1923 
1924 
ld1(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,const VRegister & vt4,const MemOperand & src)1925 void Assembler::ld1(const VRegister& vt,
1926                     const VRegister& vt2,
1927                     const VRegister& vt3,
1928                     const VRegister& vt4,
1929                     const MemOperand& src) {
1930   USE(vt2, vt3, vt4);
1931   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
1932   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
1933   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
1934   LoadStoreStruct(vt, src, NEON_LD1_4v);
1935 }
1936 
1937 
ld2(const VRegister & vt,const VRegister & vt2,const MemOperand & src)1938 void Assembler::ld2(const VRegister& vt,
1939                     const VRegister& vt2,
1940                     const MemOperand& src) {
1941   USE(vt2);
1942   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
1943   VIXL_ASSERT(AreSameFormat(vt, vt2));
1944   VIXL_ASSERT(AreConsecutive(vt, vt2));
1945   LoadStoreStruct(vt, src, NEON_LD2);
1946 }
1947 
1948 
ld2(const VRegister & vt,const VRegister & vt2,int lane,const MemOperand & src)1949 void Assembler::ld2(const VRegister& vt,
1950                     const VRegister& vt2,
1951                     int lane,
1952                     const MemOperand& src) {
1953   USE(vt2);
1954   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
1955   VIXL_ASSERT(AreSameFormat(vt, vt2));
1956   VIXL_ASSERT(AreConsecutive(vt, vt2));
1957   LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad2);
1958 }
1959 
1960 
ld2r(const VRegister & vt,const VRegister & vt2,const MemOperand & src)1961 void Assembler::ld2r(const VRegister& vt,
1962                      const VRegister& vt2,
1963                      const MemOperand& src) {
1964   USE(vt2);
1965   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
1966   VIXL_ASSERT(AreSameFormat(vt, vt2));
1967   VIXL_ASSERT(AreConsecutive(vt, vt2));
1968   LoadStoreStructSingleAllLanes(vt, src, NEON_LD2R);
1969 }
1970 
1971 
ld3(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,const MemOperand & src)1972 void Assembler::ld3(const VRegister& vt,
1973                     const VRegister& vt2,
1974                     const VRegister& vt3,
1975                     const MemOperand& src) {
1976   USE(vt2, vt3);
1977   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
1978   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
1979   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
1980   LoadStoreStruct(vt, src, NEON_LD3);
1981 }
1982 
1983 
ld3(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,int lane,const MemOperand & src)1984 void Assembler::ld3(const VRegister& vt,
1985                     const VRegister& vt2,
1986                     const VRegister& vt3,
1987                     int lane,
1988                     const MemOperand& src) {
1989   USE(vt2, vt3);
1990   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
1991   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
1992   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
1993   LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad3);
1994 }
1995 
1996 
ld3r(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,const MemOperand & src)1997 void Assembler::ld3r(const VRegister& vt,
1998                      const VRegister& vt2,
1999                      const VRegister& vt3,
2000                      const MemOperand& src) {
2001   USE(vt2, vt3);
2002   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2003   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
2004   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
2005   LoadStoreStructSingleAllLanes(vt, src, NEON_LD3R);
2006 }
2007 
2008 
ld4(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,const VRegister & vt4,const MemOperand & src)2009 void Assembler::ld4(const VRegister& vt,
2010                     const VRegister& vt2,
2011                     const VRegister& vt3,
2012                     const VRegister& vt4,
2013                     const MemOperand& src) {
2014   USE(vt2, vt3, vt4);
2015   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2016   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
2017   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
2018   LoadStoreStruct(vt, src, NEON_LD4);
2019 }
2020 
2021 
ld4(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,const VRegister & vt4,int lane,const MemOperand & src)2022 void Assembler::ld4(const VRegister& vt,
2023                     const VRegister& vt2,
2024                     const VRegister& vt3,
2025                     const VRegister& vt4,
2026                     int lane,
2027                     const MemOperand& src) {
2028   USE(vt2, vt3, vt4);
2029   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2030   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
2031   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
2032   LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad4);
2033 }
2034 
2035 
ld4r(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,const VRegister & vt4,const MemOperand & src)2036 void Assembler::ld4r(const VRegister& vt,
2037                      const VRegister& vt2,
2038                      const VRegister& vt3,
2039                      const VRegister& vt4,
2040                      const MemOperand& src) {
2041   USE(vt2, vt3, vt4);
2042   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2043   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
2044   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
2045   LoadStoreStructSingleAllLanes(vt, src, NEON_LD4R);
2046 }
2047 
2048 
st1(const VRegister & vt,const MemOperand & src)2049 void Assembler::st1(const VRegister& vt, const MemOperand& src) {
2050   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2051   LoadStoreStruct(vt, src, NEON_ST1_1v);
2052 }
2053 
2054 
st1(const VRegister & vt,const VRegister & vt2,const MemOperand & src)2055 void Assembler::st1(const VRegister& vt,
2056                     const VRegister& vt2,
2057                     const MemOperand& src) {
2058   USE(vt2);
2059   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2060   VIXL_ASSERT(AreSameFormat(vt, vt2));
2061   VIXL_ASSERT(AreConsecutive(vt, vt2));
2062   LoadStoreStruct(vt, src, NEON_ST1_2v);
2063 }
2064 
2065 
st1(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,const MemOperand & src)2066 void Assembler::st1(const VRegister& vt,
2067                     const VRegister& vt2,
2068                     const VRegister& vt3,
2069                     const MemOperand& src) {
2070   USE(vt2, vt3);
2071   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2072   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
2073   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
2074   LoadStoreStruct(vt, src, NEON_ST1_3v);
2075 }
2076 
2077 
st1(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,const VRegister & vt4,const MemOperand & src)2078 void Assembler::st1(const VRegister& vt,
2079                     const VRegister& vt2,
2080                     const VRegister& vt3,
2081                     const VRegister& vt4,
2082                     const MemOperand& src) {
2083   USE(vt2, vt3, vt4);
2084   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2085   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
2086   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
2087   LoadStoreStruct(vt, src, NEON_ST1_4v);
2088 }
2089 
2090 
st2(const VRegister & vt,const VRegister & vt2,const MemOperand & dst)2091 void Assembler::st2(const VRegister& vt,
2092                     const VRegister& vt2,
2093                     const MemOperand& dst) {
2094   USE(vt2);
2095   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2096   VIXL_ASSERT(AreSameFormat(vt, vt2));
2097   VIXL_ASSERT(AreConsecutive(vt, vt2));
2098   LoadStoreStruct(vt, dst, NEON_ST2);
2099 }
2100 
2101 
st2(const VRegister & vt,const VRegister & vt2,int lane,const MemOperand & dst)2102 void Assembler::st2(const VRegister& vt,
2103                     const VRegister& vt2,
2104                     int lane,
2105                     const MemOperand& dst) {
2106   USE(vt2);
2107   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2108   VIXL_ASSERT(AreSameFormat(vt, vt2));
2109   VIXL_ASSERT(AreConsecutive(vt, vt2));
2110   LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore2);
2111 }
2112 
2113 
st3(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,const MemOperand & dst)2114 void Assembler::st3(const VRegister& vt,
2115                     const VRegister& vt2,
2116                     const VRegister& vt3,
2117                     const MemOperand& dst) {
2118   USE(vt2, vt3);
2119   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2120   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
2121   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
2122   LoadStoreStruct(vt, dst, NEON_ST3);
2123 }
2124 
2125 
st3(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,int lane,const MemOperand & dst)2126 void Assembler::st3(const VRegister& vt,
2127                     const VRegister& vt2,
2128                     const VRegister& vt3,
2129                     int lane,
2130                     const MemOperand& dst) {
2131   USE(vt2, vt3);
2132   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2133   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
2134   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
2135   LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore3);
2136 }
2137 
2138 
st4(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,const VRegister & vt4,const MemOperand & dst)2139 void Assembler::st4(const VRegister& vt,
2140                     const VRegister& vt2,
2141                     const VRegister& vt3,
2142                     const VRegister& vt4,
2143                     const MemOperand& dst) {
2144   USE(vt2, vt3, vt4);
2145   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2146   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
2147   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
2148   LoadStoreStruct(vt, dst, NEON_ST4);
2149 }
2150 
2151 
st4(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,const VRegister & vt4,int lane,const MemOperand & dst)2152 void Assembler::st4(const VRegister& vt,
2153                     const VRegister& vt2,
2154                     const VRegister& vt3,
2155                     const VRegister& vt4,
2156                     int lane,
2157                     const MemOperand& dst) {
2158   USE(vt2, vt3, vt4);
2159   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2160   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
2161   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
2162   LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore4);
2163 }
2164 
2165 
LoadStoreStructSingle(const VRegister & vt,uint32_t lane,const MemOperand & addr,NEONLoadStoreSingleStructOp op)2166 void Assembler::LoadStoreStructSingle(const VRegister& vt,
2167                                       uint32_t lane,
2168                                       const MemOperand& addr,
2169                                       NEONLoadStoreSingleStructOp op) {
2170   LoadStoreStructVerify(vt, addr, op);
2171 
2172   // We support vt arguments of the form vt.VxT() or vt.T(), where x is the
2173   // number of lanes, and T is b, h, s or d.
2174   unsigned lane_size = vt.GetLaneSizeInBytes();
2175   VIXL_ASSERT(lane < (kQRegSizeInBytes / lane_size));
2176 
2177   // Lane size is encoded in the opcode field. Lane index is encoded in the Q,
2178   // S and size fields.
2179   lane *= lane_size;
2180   if (lane_size == 8) lane++;
2181 
2182   Instr size = (lane << NEONLSSize_offset) & NEONLSSize_mask;
2183   Instr s = (lane << (NEONS_offset - 2)) & NEONS_mask;
2184   Instr q = (lane << (NEONQ_offset - 3)) & NEONQ_mask;
2185 
2186   Instr instr = op;
2187   switch (lane_size) {
2188     case 1:
2189       instr |= NEONLoadStoreSingle_b;
2190       break;
2191     case 2:
2192       instr |= NEONLoadStoreSingle_h;
2193       break;
2194     case 4:
2195       instr |= NEONLoadStoreSingle_s;
2196       break;
2197     default:
2198       VIXL_ASSERT(lane_size == 8);
2199       instr |= NEONLoadStoreSingle_d;
2200   }
2201 
2202   Emit(instr | LoadStoreStructAddrModeField(addr) | q | size | s | Rt(vt));
2203 }
2204 
2205 
ld1(const VRegister & vt,int lane,const MemOperand & src)2206 void Assembler::ld1(const VRegister& vt, int lane, const MemOperand& src) {
2207   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2208   LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad1);
2209 }
2210 
2211 
ld1r(const VRegister & vt,const MemOperand & src)2212 void Assembler::ld1r(const VRegister& vt, const MemOperand& src) {
2213   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2214   LoadStoreStructSingleAllLanes(vt, src, NEON_LD1R);
2215 }
2216 
2217 
st1(const VRegister & vt,int lane,const MemOperand & dst)2218 void Assembler::st1(const VRegister& vt, int lane, const MemOperand& dst) {
2219   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2220   LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore1);
2221 }
2222 
2223 
NEON3DifferentL(const VRegister & vd,const VRegister & vn,const VRegister & vm,NEON3DifferentOp vop)2224 void Assembler::NEON3DifferentL(const VRegister& vd,
2225                                 const VRegister& vn,
2226                                 const VRegister& vm,
2227                                 NEON3DifferentOp vop) {
2228   VIXL_ASSERT(AreSameFormat(vn, vm));
2229   VIXL_ASSERT((vn.Is1H() && vd.Is1S()) || (vn.Is1S() && vd.Is1D()) ||
2230               (vn.Is8B() && vd.Is8H()) || (vn.Is4H() && vd.Is4S()) ||
2231               (vn.Is2S() && vd.Is2D()) || (vn.Is16B() && vd.Is8H()) ||
2232               (vn.Is8H() && vd.Is4S()) || (vn.Is4S() && vd.Is2D()));
2233   Instr format, op = vop;
2234   if (vd.IsScalar()) {
2235     op |= NEON_Q | NEONScalar;
2236     format = SFormat(vn);
2237   } else {
2238     format = VFormat(vn);
2239   }
2240   Emit(format | op | Rm(vm) | Rn(vn) | Rd(vd));
2241 }
2242 
2243 
NEON3DifferentW(const VRegister & vd,const VRegister & vn,const VRegister & vm,NEON3DifferentOp vop)2244 void Assembler::NEON3DifferentW(const VRegister& vd,
2245                                 const VRegister& vn,
2246                                 const VRegister& vm,
2247                                 NEON3DifferentOp vop) {
2248   VIXL_ASSERT(AreSameFormat(vd, vn));
2249   VIXL_ASSERT((vm.Is8B() && vd.Is8H()) || (vm.Is4H() && vd.Is4S()) ||
2250               (vm.Is2S() && vd.Is2D()) || (vm.Is16B() && vd.Is8H()) ||
2251               (vm.Is8H() && vd.Is4S()) || (vm.Is4S() && vd.Is2D()));
2252   Emit(VFormat(vm) | vop | Rm(vm) | Rn(vn) | Rd(vd));
2253 }
2254 
2255 
NEON3DifferentHN(const VRegister & vd,const VRegister & vn,const VRegister & vm,NEON3DifferentOp vop)2256 void Assembler::NEON3DifferentHN(const VRegister& vd,
2257                                  const VRegister& vn,
2258                                  const VRegister& vm,
2259                                  NEON3DifferentOp vop) {
2260   VIXL_ASSERT(AreSameFormat(vm, vn));
2261   VIXL_ASSERT((vd.Is8B() && vn.Is8H()) || (vd.Is4H() && vn.Is4S()) ||
2262               (vd.Is2S() && vn.Is2D()) || (vd.Is16B() && vn.Is8H()) ||
2263               (vd.Is8H() && vn.Is4S()) || (vd.Is4S() && vn.Is2D()));
2264   Emit(VFormat(vd) | vop | Rm(vm) | Rn(vn) | Rd(vd));
2265 }
2266 
2267 
2268 // clang-format off
2269 #define NEON_3DIFF_LONG_LIST(V) \
2270   V(pmull,  NEON_PMULL,  vn.IsVector() && vn.Is8B())                           \
2271   V(pmull2, NEON_PMULL2, vn.IsVector() && vn.Is16B())                          \
2272   V(saddl,  NEON_SADDL,  vn.IsVector() && vn.IsD())                            \
2273   V(saddl2, NEON_SADDL2, vn.IsVector() && vn.IsQ())                            \
2274   V(sabal,  NEON_SABAL,  vn.IsVector() && vn.IsD())                            \
2275   V(sabal2, NEON_SABAL2, vn.IsVector() && vn.IsQ())                            \
2276   V(uabal,  NEON_UABAL,  vn.IsVector() && vn.IsD())                            \
2277   V(uabal2, NEON_UABAL2, vn.IsVector() && vn.IsQ())                            \
2278   V(sabdl,  NEON_SABDL,  vn.IsVector() && vn.IsD())                            \
2279   V(sabdl2, NEON_SABDL2, vn.IsVector() && vn.IsQ())                            \
2280   V(uabdl,  NEON_UABDL,  vn.IsVector() && vn.IsD())                            \
2281   V(uabdl2, NEON_UABDL2, vn.IsVector() && vn.IsQ())                            \
2282   V(smlal,  NEON_SMLAL,  vn.IsVector() && vn.IsD())                            \
2283   V(smlal2, NEON_SMLAL2, vn.IsVector() && vn.IsQ())                            \
2284   V(umlal,  NEON_UMLAL,  vn.IsVector() && vn.IsD())                            \
2285   V(umlal2, NEON_UMLAL2, vn.IsVector() && vn.IsQ())                            \
2286   V(smlsl,  NEON_SMLSL,  vn.IsVector() && vn.IsD())                            \
2287   V(smlsl2, NEON_SMLSL2, vn.IsVector() && vn.IsQ())                            \
2288   V(umlsl,  NEON_UMLSL,  vn.IsVector() && vn.IsD())                            \
2289   V(umlsl2, NEON_UMLSL2, vn.IsVector() && vn.IsQ())                            \
2290   V(smull,  NEON_SMULL,  vn.IsVector() && vn.IsD())                            \
2291   V(smull2, NEON_SMULL2, vn.IsVector() && vn.IsQ())                            \
2292   V(umull,  NEON_UMULL,  vn.IsVector() && vn.IsD())                            \
2293   V(umull2, NEON_UMULL2, vn.IsVector() && vn.IsQ())                            \
2294   V(ssubl,  NEON_SSUBL,  vn.IsVector() && vn.IsD())                            \
2295   V(ssubl2, NEON_SSUBL2, vn.IsVector() && vn.IsQ())                            \
2296   V(uaddl,  NEON_UADDL,  vn.IsVector() && vn.IsD())                            \
2297   V(uaddl2, NEON_UADDL2, vn.IsVector() && vn.IsQ())                            \
2298   V(usubl,  NEON_USUBL,  vn.IsVector() && vn.IsD())                            \
2299   V(usubl2, NEON_USUBL2, vn.IsVector() && vn.IsQ())                            \
2300   V(sqdmlal,  NEON_SQDMLAL,  vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \
2301   V(sqdmlal2, NEON_SQDMLAL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \
2302   V(sqdmlsl,  NEON_SQDMLSL,  vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \
2303   V(sqdmlsl2, NEON_SQDMLSL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \
2304   V(sqdmull,  NEON_SQDMULL,  vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \
2305   V(sqdmull2, NEON_SQDMULL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \
2306 // clang-format on
2307 
2308 
2309 #define DEFINE_ASM_FUNC(FN, OP, AS)                   \
2310 void Assembler::FN(const VRegister& vd,               \
2311                    const VRegister& vn,               \
2312                    const VRegister& vm) {             \
2313   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));            \
2314   VIXL_ASSERT(AS);                                    \
2315   NEON3DifferentL(vd, vn, vm, OP);                    \
2316 }
2317 NEON_3DIFF_LONG_LIST(DEFINE_ASM_FUNC)
2318 #undef DEFINE_ASM_FUNC
2319 
2320 // clang-format off
2321 #define NEON_3DIFF_HN_LIST(V)         \
2322   V(addhn,   NEON_ADDHN,   vd.IsD())  \
2323   V(addhn2,  NEON_ADDHN2,  vd.IsQ())  \
2324   V(raddhn,  NEON_RADDHN,  vd.IsD())  \
2325   V(raddhn2, NEON_RADDHN2, vd.IsQ())  \
2326   V(subhn,   NEON_SUBHN,   vd.IsD())  \
2327   V(subhn2,  NEON_SUBHN2,  vd.IsQ())  \
2328   V(rsubhn,  NEON_RSUBHN,  vd.IsD())  \
2329   V(rsubhn2, NEON_RSUBHN2, vd.IsQ())
2330 // clang-format on
2331 
2332 #define DEFINE_ASM_FUNC(FN, OP, AS)          \
2333   void Assembler::FN(const VRegister& vd,    \
2334                      const VRegister& vn,    \
2335                      const VRegister& vm) {  \
2336     VIXL_ASSERT(CPUHas(CPUFeatures::kNEON)); \
2337     VIXL_ASSERT(AS);                         \
2338     NEON3DifferentHN(vd, vn, vm, OP);        \
2339   }
NEON_3DIFF_HN_LIST(DEFINE_ASM_FUNC)2340 NEON_3DIFF_HN_LIST(DEFINE_ASM_FUNC)
2341 #undef DEFINE_ASM_FUNC
2342 
2343 void Assembler::uaddw(const VRegister& vd,
2344                       const VRegister& vn,
2345                       const VRegister& vm) {
2346   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2347   VIXL_ASSERT(vm.IsD());
2348   NEON3DifferentW(vd, vn, vm, NEON_UADDW);
2349 }
2350 
2351 
uaddw2(const VRegister & vd,const VRegister & vn,const VRegister & vm)2352 void Assembler::uaddw2(const VRegister& vd,
2353                        const VRegister& vn,
2354                        const VRegister& vm) {
2355   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2356   VIXL_ASSERT(vm.IsQ());
2357   NEON3DifferentW(vd, vn, vm, NEON_UADDW2);
2358 }
2359 
2360 
saddw(const VRegister & vd,const VRegister & vn,const VRegister & vm)2361 void Assembler::saddw(const VRegister& vd,
2362                       const VRegister& vn,
2363                       const VRegister& vm) {
2364   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2365   VIXL_ASSERT(vm.IsD());
2366   NEON3DifferentW(vd, vn, vm, NEON_SADDW);
2367 }
2368 
2369 
saddw2(const VRegister & vd,const VRegister & vn,const VRegister & vm)2370 void Assembler::saddw2(const VRegister& vd,
2371                        const VRegister& vn,
2372                        const VRegister& vm) {
2373   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2374   VIXL_ASSERT(vm.IsQ());
2375   NEON3DifferentW(vd, vn, vm, NEON_SADDW2);
2376 }
2377 
2378 
usubw(const VRegister & vd,const VRegister & vn,const VRegister & vm)2379 void Assembler::usubw(const VRegister& vd,
2380                       const VRegister& vn,
2381                       const VRegister& vm) {
2382   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2383   VIXL_ASSERT(vm.IsD());
2384   NEON3DifferentW(vd, vn, vm, NEON_USUBW);
2385 }
2386 
2387 
usubw2(const VRegister & vd,const VRegister & vn,const VRegister & vm)2388 void Assembler::usubw2(const VRegister& vd,
2389                        const VRegister& vn,
2390                        const VRegister& vm) {
2391   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2392   VIXL_ASSERT(vm.IsQ());
2393   NEON3DifferentW(vd, vn, vm, NEON_USUBW2);
2394 }
2395 
2396 
ssubw(const VRegister & vd,const VRegister & vn,const VRegister & vm)2397 void Assembler::ssubw(const VRegister& vd,
2398                       const VRegister& vn,
2399                       const VRegister& vm) {
2400   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2401   VIXL_ASSERT(vm.IsD());
2402   NEON3DifferentW(vd, vn, vm, NEON_SSUBW);
2403 }
2404 
2405 
ssubw2(const VRegister & vd,const VRegister & vn,const VRegister & vm)2406 void Assembler::ssubw2(const VRegister& vd,
2407                        const VRegister& vn,
2408                        const VRegister& vm) {
2409   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2410   VIXL_ASSERT(vm.IsQ());
2411   NEON3DifferentW(vd, vn, vm, NEON_SSUBW2);
2412 }
2413 
2414 
mov(const Register & rd,const Register & rm)2415 void Assembler::mov(const Register& rd, const Register& rm) {
2416   // Moves involving the stack pointer are encoded as add immediate with
2417   // second operand of zero. Otherwise, orr with first operand zr is
2418   // used.
2419   if (rd.IsSP() || rm.IsSP()) {
2420     add(rd, rm, 0);
2421   } else {
2422     orr(rd, AppropriateZeroRegFor(rd), rm);
2423   }
2424 }
2425 
xpaclri()2426 void Assembler::xpaclri() {
2427   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2428   Emit(XPACLRI);
2429 }
2430 
pacia1716()2431 void Assembler::pacia1716() {
2432   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2433   Emit(PACIA1716);
2434 }
2435 
pacib1716()2436 void Assembler::pacib1716() {
2437   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2438   Emit(PACIB1716);
2439 }
2440 
autia1716()2441 void Assembler::autia1716() {
2442   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2443   Emit(AUTIA1716);
2444 }
2445 
autib1716()2446 void Assembler::autib1716() {
2447   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2448   Emit(AUTIB1716);
2449 }
2450 
paciaz()2451 void Assembler::paciaz() {
2452   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2453   Emit(PACIAZ);
2454 }
2455 
pacibz()2456 void Assembler::pacibz() {
2457   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2458   Emit(PACIBZ);
2459 }
2460 
autiaz()2461 void Assembler::autiaz() {
2462   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2463   Emit(AUTIAZ);
2464 }
2465 
autibz()2466 void Assembler::autibz() {
2467   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2468   Emit(AUTIBZ);
2469 }
2470 
paciasp()2471 void Assembler::paciasp() {
2472   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2473   Emit(PACIASP);
2474 }
2475 
pacibsp()2476 void Assembler::pacibsp() {
2477   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2478   Emit(PACIBSP);
2479 }
2480 
autiasp()2481 void Assembler::autiasp() {
2482   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2483   Emit(AUTIASP);
2484 }
2485 
autibsp()2486 void Assembler::autibsp() {
2487   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2488   Emit(AUTIBSP);
2489 }
2490 
2491 
mvn(const Register & rd,const Operand & operand)2492 void Assembler::mvn(const Register& rd, const Operand& operand) {
2493   orn(rd, AppropriateZeroRegFor(rd), operand);
2494 }
2495 
2496 
mrs(const Register & xt,SystemRegister sysreg)2497 void Assembler::mrs(const Register& xt, SystemRegister sysreg) {
2498   VIXL_ASSERT(xt.Is64Bits());
2499   Emit(MRS | ImmSystemRegister(sysreg) | Rt(xt));
2500 }
2501 
2502 
msr(SystemRegister sysreg,const Register & xt)2503 void Assembler::msr(SystemRegister sysreg, const Register& xt) {
2504   VIXL_ASSERT(xt.Is64Bits());
2505   Emit(MSR | Rt(xt) | ImmSystemRegister(sysreg));
2506 }
2507 
2508 
clrex(int imm4)2509 void Assembler::clrex(int imm4) { Emit(CLREX | CRm(imm4)); }
2510 
2511 
dmb(BarrierDomain domain,BarrierType type)2512 void Assembler::dmb(BarrierDomain domain, BarrierType type) {
2513   Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type));
2514 }
2515 
2516 
dsb(BarrierDomain domain,BarrierType type)2517 void Assembler::dsb(BarrierDomain domain, BarrierType type) {
2518   Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type));
2519 }
2520 
2521 
isb()2522 void Assembler::isb() {
2523   Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll));
2524 }
2525 
esb()2526 void Assembler::esb() {
2527   VIXL_ASSERT(CPUHas(CPUFeatures::kRAS));
2528   hint(ESB);
2529 }
2530 
csdb()2531 void Assembler::csdb() { hint(CSDB); }
2532 
fmov(const VRegister & vd,double imm)2533 void Assembler::fmov(const VRegister& vd, double imm) {
2534   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2535   if (vd.IsScalar()) {
2536     VIXL_ASSERT(vd.Is1D());
2537     Emit(FMOV_d_imm | Rd(vd) | ImmFP64(imm));
2538   } else {
2539     VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2540     VIXL_ASSERT(vd.Is2D());
2541     Instr op = NEONModifiedImmediate_MOVI | NEONModifiedImmediateOpBit;
2542     Instr q = NEON_Q;
2543     uint32_t encoded_imm = FP64ToImm8(imm);
2544     Emit(q | op | ImmNEONabcdefgh(encoded_imm) | NEONCmode(0xf) | Rd(vd));
2545   }
2546 }
2547 
2548 
fmov(const VRegister & vd,float imm)2549 void Assembler::fmov(const VRegister& vd, float imm) {
2550   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2551   if (vd.IsScalar()) {
2552     VIXL_ASSERT(vd.Is1S());
2553     Emit(FMOV_s_imm | Rd(vd) | ImmFP32(imm));
2554   } else {
2555     VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2556     VIXL_ASSERT(vd.Is2S() | vd.Is4S());
2557     Instr op = NEONModifiedImmediate_MOVI;
2558     Instr q = vd.Is4S() ? NEON_Q : 0;
2559     uint32_t encoded_imm = FP32ToImm8(imm);
2560     Emit(q | op | ImmNEONabcdefgh(encoded_imm) | NEONCmode(0xf) | Rd(vd));
2561   }
2562 }
2563 
2564 
fmov(const VRegister & vd,Float16 imm)2565 void Assembler::fmov(const VRegister& vd, Float16 imm) {
2566   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2567   if (vd.IsScalar()) {
2568     VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2569     VIXL_ASSERT(vd.Is1H());
2570     Emit(FMOV_h_imm | Rd(vd) | ImmFP16(imm));
2571   } else {
2572     VIXL_ASSERT(CPUHas(CPUFeatures::kNEON, CPUFeatures::kNEONHalf));
2573     VIXL_ASSERT(vd.Is4H() | vd.Is8H());
2574     Instr q = vd.Is8H() ? NEON_Q : 0;
2575     uint32_t encoded_imm = FP16ToImm8(imm);
2576     Emit(q | NEONModifiedImmediate_FMOV | ImmNEONabcdefgh(encoded_imm) |
2577          NEONCmode(0xf) | Rd(vd));
2578   }
2579 }
2580 
2581 
fmov(const Register & rd,const VRegister & vn)2582 void Assembler::fmov(const Register& rd, const VRegister& vn) {
2583   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2584   VIXL_ASSERT(vn.Is1H() || vn.Is1S() || vn.Is1D());
2585   VIXL_ASSERT((rd.GetSizeInBits() == vn.GetSizeInBits()) || vn.Is1H());
2586   FPIntegerConvertOp op;
2587   switch (vn.GetSizeInBits()) {
2588     case 16:
2589       VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2590       op = rd.Is64Bits() ? FMOV_xh : FMOV_wh;
2591       break;
2592     case 32:
2593       op = FMOV_ws;
2594       break;
2595     default:
2596       op = FMOV_xd;
2597   }
2598   Emit(op | Rd(rd) | Rn(vn));
2599 }
2600 
2601 
fmov(const VRegister & vd,const Register & rn)2602 void Assembler::fmov(const VRegister& vd, const Register& rn) {
2603   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2604   VIXL_ASSERT(vd.Is1H() || vd.Is1S() || vd.Is1D());
2605   VIXL_ASSERT((vd.GetSizeInBits() == rn.GetSizeInBits()) || vd.Is1H());
2606   FPIntegerConvertOp op;
2607   switch (vd.GetSizeInBits()) {
2608     case 16:
2609       VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2610       op = rn.Is64Bits() ? FMOV_hx : FMOV_hw;
2611       break;
2612     case 32:
2613       op = FMOV_sw;
2614       break;
2615     default:
2616       op = FMOV_dx;
2617   }
2618   Emit(op | Rd(vd) | Rn(rn));
2619 }
2620 
2621 
fmov(const VRegister & vd,const VRegister & vn)2622 void Assembler::fmov(const VRegister& vd, const VRegister& vn) {
2623   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2624   if (vd.Is1H()) {
2625     VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2626   }
2627   VIXL_ASSERT(vd.Is1H() || vd.Is1S() || vd.Is1D());
2628   VIXL_ASSERT(vd.IsSameFormat(vn));
2629   Emit(FPType(vd) | FMOV | Rd(vd) | Rn(vn));
2630 }
2631 
2632 
fmov(const VRegister & vd,int index,const Register & rn)2633 void Assembler::fmov(const VRegister& vd, int index, const Register& rn) {
2634   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON, CPUFeatures::kFP));
2635   VIXL_ASSERT((index == 1) && vd.Is1D() && rn.IsX());
2636   USE(index);
2637   Emit(FMOV_d1_x | Rd(vd) | Rn(rn));
2638 }
2639 
2640 
fmov(const Register & rd,const VRegister & vn,int index)2641 void Assembler::fmov(const Register& rd, const VRegister& vn, int index) {
2642   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON, CPUFeatures::kFP));
2643   VIXL_ASSERT((index == 1) && vn.Is1D() && rd.IsX());
2644   USE(index);
2645   Emit(FMOV_x_d1 | Rd(rd) | Rn(vn));
2646 }
2647 
2648 
fmadd(const VRegister & vd,const VRegister & vn,const VRegister & vm,const VRegister & va)2649 void Assembler::fmadd(const VRegister& vd,
2650                       const VRegister& vn,
2651                       const VRegister& vm,
2652                       const VRegister& va) {
2653   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2654   FPDataProcessing3SourceOp op;
2655   if (vd.Is1H()) {
2656     VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2657     op = FMADD_h;
2658   } else if (vd.Is1S()) {
2659     op = FMADD_s;
2660   } else {
2661     VIXL_ASSERT(vd.Is1D());
2662     op = FMADD_d;
2663   }
2664   FPDataProcessing3Source(vd, vn, vm, va, op);
2665 }
2666 
2667 
fmsub(const VRegister & vd,const VRegister & vn,const VRegister & vm,const VRegister & va)2668 void Assembler::fmsub(const VRegister& vd,
2669                       const VRegister& vn,
2670                       const VRegister& vm,
2671                       const VRegister& va) {
2672   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2673   FPDataProcessing3SourceOp op;
2674   if (vd.Is1H()) {
2675     VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2676     op = FMSUB_h;
2677   } else if (vd.Is1S()) {
2678     op = FMSUB_s;
2679   } else {
2680     VIXL_ASSERT(vd.Is1D());
2681     op = FMSUB_d;
2682   }
2683   FPDataProcessing3Source(vd, vn, vm, va, op);
2684 }
2685 
2686 
fnmadd(const VRegister & vd,const VRegister & vn,const VRegister & vm,const VRegister & va)2687 void Assembler::fnmadd(const VRegister& vd,
2688                        const VRegister& vn,
2689                        const VRegister& vm,
2690                        const VRegister& va) {
2691   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2692   FPDataProcessing3SourceOp op;
2693   if (vd.Is1H()) {
2694     VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2695     op = FNMADD_h;
2696   } else if (vd.Is1S()) {
2697     op = FNMADD_s;
2698   } else {
2699     VIXL_ASSERT(vd.Is1D());
2700     op = FNMADD_d;
2701   }
2702   FPDataProcessing3Source(vd, vn, vm, va, op);
2703 }
2704 
2705 
fnmsub(const VRegister & vd,const VRegister & vn,const VRegister & vm,const VRegister & va)2706 void Assembler::fnmsub(const VRegister& vd,
2707                        const VRegister& vn,
2708                        const VRegister& vm,
2709                        const VRegister& va) {
2710   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2711   FPDataProcessing3SourceOp op;
2712   if (vd.Is1H()) {
2713     VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2714     op = FNMSUB_h;
2715   } else if (vd.Is1S()) {
2716     op = FNMSUB_s;
2717   } else {
2718     VIXL_ASSERT(vd.Is1D());
2719     op = FNMSUB_d;
2720   }
2721   FPDataProcessing3Source(vd, vn, vm, va, op);
2722 }
2723 
2724 
fnmul(const VRegister & vd,const VRegister & vn,const VRegister & vm)2725 void Assembler::fnmul(const VRegister& vd,
2726                       const VRegister& vn,
2727                       const VRegister& vm) {
2728   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2729   VIXL_ASSERT(AreSameSizeAndType(vd, vn, vm));
2730   Instr op;
2731   if (vd.Is1H()) {
2732     VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2733     op = FNMUL_h;
2734   } else if (vd.Is1S()) {
2735     op = FNMUL_s;
2736   } else {
2737     VIXL_ASSERT(vd.Is1D());
2738     op = FNMUL_d;
2739   }
2740   Emit(FPType(vd) | op | Rm(vm) | Rn(vn) | Rd(vd));
2741 }
2742 
2743 
FPCompareMacro(const VRegister & vn,double value,FPTrapFlags trap)2744 void Assembler::FPCompareMacro(const VRegister& vn,
2745                                double value,
2746                                FPTrapFlags trap) {
2747   USE(value);
2748   // Although the fcmp{e} instructions can strictly only take an immediate
2749   // value of +0.0, we don't need to check for -0.0 because the sign of 0.0
2750   // doesn't affect the result of the comparison.
2751   VIXL_ASSERT(value == 0.0);
2752   VIXL_ASSERT(vn.Is1H() || vn.Is1S() || vn.Is1D());
2753   Instr op = (trap == EnableTrap) ? FCMPE_zero : FCMP_zero;
2754   Emit(FPType(vn) | op | Rn(vn));
2755 }
2756 
2757 
FPCompareMacro(const VRegister & vn,const VRegister & vm,FPTrapFlags trap)2758 void Assembler::FPCompareMacro(const VRegister& vn,
2759                                const VRegister& vm,
2760                                FPTrapFlags trap) {
2761   VIXL_ASSERT(vn.Is1H() || vn.Is1S() || vn.Is1D());
2762   VIXL_ASSERT(vn.IsSameSizeAndType(vm));
2763   Instr op = (trap == EnableTrap) ? FCMPE : FCMP;
2764   Emit(FPType(vn) | op | Rm(vm) | Rn(vn));
2765 }
2766 
2767 
fcmp(const VRegister & vn,const VRegister & vm)2768 void Assembler::fcmp(const VRegister& vn, const VRegister& vm) {
2769   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2770   if (vn.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2771   FPCompareMacro(vn, vm, DisableTrap);
2772 }
2773 
2774 
fcmpe(const VRegister & vn,const VRegister & vm)2775 void Assembler::fcmpe(const VRegister& vn, const VRegister& vm) {
2776   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2777   if (vn.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2778   FPCompareMacro(vn, vm, EnableTrap);
2779 }
2780 
2781 
fcmp(const VRegister & vn,double value)2782 void Assembler::fcmp(const VRegister& vn, double value) {
2783   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2784   if (vn.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2785   FPCompareMacro(vn, value, DisableTrap);
2786 }
2787 
2788 
fcmpe(const VRegister & vn,double value)2789 void Assembler::fcmpe(const VRegister& vn, double value) {
2790   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2791   if (vn.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2792   FPCompareMacro(vn, value, EnableTrap);
2793 }
2794 
2795 
FPCCompareMacro(const VRegister & vn,const VRegister & vm,StatusFlags nzcv,Condition cond,FPTrapFlags trap)2796 void Assembler::FPCCompareMacro(const VRegister& vn,
2797                                 const VRegister& vm,
2798                                 StatusFlags nzcv,
2799                                 Condition cond,
2800                                 FPTrapFlags trap) {
2801   VIXL_ASSERT(vn.Is1H() || vn.Is1S() || vn.Is1D());
2802   VIXL_ASSERT(vn.IsSameSizeAndType(vm));
2803   Instr op = (trap == EnableTrap) ? FCCMPE : FCCMP;
2804   Emit(FPType(vn) | op | Rm(vm) | Cond(cond) | Rn(vn) | Nzcv(nzcv));
2805 }
2806 
fccmp(const VRegister & vn,const VRegister & vm,StatusFlags nzcv,Condition cond)2807 void Assembler::fccmp(const VRegister& vn,
2808                       const VRegister& vm,
2809                       StatusFlags nzcv,
2810                       Condition cond) {
2811   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2812   if (vn.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2813   FPCCompareMacro(vn, vm, nzcv, cond, DisableTrap);
2814 }
2815 
2816 
fccmpe(const VRegister & vn,const VRegister & vm,StatusFlags nzcv,Condition cond)2817 void Assembler::fccmpe(const VRegister& vn,
2818                        const VRegister& vm,
2819                        StatusFlags nzcv,
2820                        Condition cond) {
2821   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2822   if (vn.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2823   FPCCompareMacro(vn, vm, nzcv, cond, EnableTrap);
2824 }
2825 
2826 
fcsel(const VRegister & vd,const VRegister & vn,const VRegister & vm,Condition cond)2827 void Assembler::fcsel(const VRegister& vd,
2828                       const VRegister& vn,
2829                       const VRegister& vm,
2830                       Condition cond) {
2831   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2832   if (vd.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2833   VIXL_ASSERT(vd.Is1H() || vd.Is1S() || vd.Is1D());
2834   VIXL_ASSERT(AreSameFormat(vd, vn, vm));
2835   Emit(FPType(vd) | FCSEL | Rm(vm) | Cond(cond) | Rn(vn) | Rd(vd));
2836 }
2837 
2838 
fcvt(const VRegister & vd,const VRegister & vn)2839 void Assembler::fcvt(const VRegister& vd, const VRegister& vn) {
2840   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2841   FPDataProcessing1SourceOp op;
2842   // The half-precision variants belong to base FP, and do not require kFPHalf.
2843   if (vd.Is1D()) {
2844     VIXL_ASSERT(vn.Is1S() || vn.Is1H());
2845     op = vn.Is1S() ? FCVT_ds : FCVT_dh;
2846   } else if (vd.Is1S()) {
2847     VIXL_ASSERT(vn.Is1D() || vn.Is1H());
2848     op = vn.Is1D() ? FCVT_sd : FCVT_sh;
2849   } else {
2850     VIXL_ASSERT(vd.Is1H());
2851     VIXL_ASSERT(vn.Is1D() || vn.Is1S());
2852     op = vn.Is1D() ? FCVT_hd : FCVT_hs;
2853   }
2854   FPDataProcessing1Source(vd, vn, op);
2855 }
2856 
2857 
fcvtl(const VRegister & vd,const VRegister & vn)2858 void Assembler::fcvtl(const VRegister& vd, const VRegister& vn) {
2859   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
2860   VIXL_ASSERT((vd.Is4S() && vn.Is4H()) || (vd.Is2D() && vn.Is2S()));
2861   // The half-precision variants belong to base FP, and do not require kFPHalf.
2862   Instr format = vd.Is2D() ? (1 << NEONSize_offset) : 0;
2863   Emit(format | NEON_FCVTL | Rn(vn) | Rd(vd));
2864 }
2865 
2866 
fcvtl2(const VRegister & vd,const VRegister & vn)2867 void Assembler::fcvtl2(const VRegister& vd, const VRegister& vn) {
2868   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
2869   VIXL_ASSERT((vd.Is4S() && vn.Is8H()) || (vd.Is2D() && vn.Is4S()));
2870   // The half-precision variants belong to base FP, and do not require kFPHalf.
2871   Instr format = vd.Is2D() ? (1 << NEONSize_offset) : 0;
2872   Emit(NEON_Q | format | NEON_FCVTL | Rn(vn) | Rd(vd));
2873 }
2874 
2875 
fcvtn(const VRegister & vd,const VRegister & vn)2876 void Assembler::fcvtn(const VRegister& vd, const VRegister& vn) {
2877   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
2878   VIXL_ASSERT((vn.Is4S() && vd.Is4H()) || (vn.Is2D() && vd.Is2S()));
2879   // The half-precision variants belong to base FP, and do not require kFPHalf.
2880   Instr format = vn.Is2D() ? (1 << NEONSize_offset) : 0;
2881   Emit(format | NEON_FCVTN | Rn(vn) | Rd(vd));
2882 }
2883 
2884 
fcvtn2(const VRegister & vd,const VRegister & vn)2885 void Assembler::fcvtn2(const VRegister& vd, const VRegister& vn) {
2886   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
2887   VIXL_ASSERT((vn.Is4S() && vd.Is8H()) || (vn.Is2D() && vd.Is4S()));
2888   // The half-precision variants belong to base FP, and do not require kFPHalf.
2889   Instr format = vn.Is2D() ? (1 << NEONSize_offset) : 0;
2890   Emit(NEON_Q | format | NEON_FCVTN | Rn(vn) | Rd(vd));
2891 }
2892 
2893 
fcvtxn(const VRegister & vd,const VRegister & vn)2894 void Assembler::fcvtxn(const VRegister& vd, const VRegister& vn) {
2895   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
2896   Instr format = 1 << NEONSize_offset;
2897   if (vd.IsScalar()) {
2898     VIXL_ASSERT(vd.Is1S() && vn.Is1D());
2899     Emit(format | NEON_FCVTXN_scalar | Rn(vn) | Rd(vd));
2900   } else {
2901     VIXL_ASSERT(vd.Is2S() && vn.Is2D());
2902     Emit(format | NEON_FCVTXN | Rn(vn) | Rd(vd));
2903   }
2904 }
2905 
2906 
fcvtxn2(const VRegister & vd,const VRegister & vn)2907 void Assembler::fcvtxn2(const VRegister& vd, const VRegister& vn) {
2908   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
2909   VIXL_ASSERT(vd.Is4S() && vn.Is2D());
2910   Instr format = 1 << NEONSize_offset;
2911   Emit(NEON_Q | format | NEON_FCVTXN | Rn(vn) | Rd(vd));
2912 }
2913 
fjcvtzs(const Register & rd,const VRegister & vn)2914 void Assembler::fjcvtzs(const Register& rd, const VRegister& vn) {
2915   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kJSCVT));
2916   VIXL_ASSERT(rd.IsW() && vn.Is1D());
2917   Emit(FJCVTZS | Rn(vn) | Rd(rd));
2918 }
2919 
2920 
NEONFPConvertToInt(const Register & rd,const VRegister & vn,Instr op)2921 void Assembler::NEONFPConvertToInt(const Register& rd,
2922                                    const VRegister& vn,
2923                                    Instr op) {
2924   Emit(SF(rd) | FPType(vn) | op | Rn(vn) | Rd(rd));
2925 }
2926 
2927 
NEONFPConvertToInt(const VRegister & vd,const VRegister & vn,Instr op)2928 void Assembler::NEONFPConvertToInt(const VRegister& vd,
2929                                    const VRegister& vn,
2930                                    Instr op) {
2931   if (vn.IsScalar()) {
2932     VIXL_ASSERT((vd.Is1S() && vn.Is1S()) || (vd.Is1D() && vn.Is1D()));
2933     op |= NEON_Q | NEONScalar;
2934   }
2935   Emit(FPFormat(vn) | op | Rn(vn) | Rd(vd));
2936 }
2937 
2938 
NEONFP16ConvertToInt(const VRegister & vd,const VRegister & vn,Instr op)2939 void Assembler::NEONFP16ConvertToInt(const VRegister& vd,
2940                                      const VRegister& vn,
2941                                      Instr op) {
2942   VIXL_ASSERT(AreSameFormat(vd, vn));
2943   VIXL_ASSERT(vn.IsLaneSizeH());
2944   if (vn.IsScalar()) {
2945     op |= NEON_Q | NEONScalar;
2946   } else if (vn.Is8H()) {
2947     op |= NEON_Q;
2948   }
2949   Emit(op | Rn(vn) | Rd(vd));
2950 }
2951 
2952 
2953 #define NEON_FP2REGMISC_FCVT_LIST(V) \
2954   V(fcvtnu, NEON_FCVTNU, FCVTNU)     \
2955   V(fcvtns, NEON_FCVTNS, FCVTNS)     \
2956   V(fcvtpu, NEON_FCVTPU, FCVTPU)     \
2957   V(fcvtps, NEON_FCVTPS, FCVTPS)     \
2958   V(fcvtmu, NEON_FCVTMU, FCVTMU)     \
2959   V(fcvtms, NEON_FCVTMS, FCVTMS)     \
2960   V(fcvtau, NEON_FCVTAU, FCVTAU)     \
2961   V(fcvtas, NEON_FCVTAS, FCVTAS)
2962 
2963 #define DEFINE_ASM_FUNCS(FN, VEC_OP, SCA_OP)                     \
2964   void Assembler::FN(const Register& rd, const VRegister& vn) {  \
2965     VIXL_ASSERT(CPUHas(CPUFeatures::kFP));                       \
2966     if (vn.IsH()) VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));     \
2967     NEONFPConvertToInt(rd, vn, SCA_OP);                          \
2968   }                                                              \
2969   void Assembler::FN(const VRegister& vd, const VRegister& vn) { \
2970     VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));   \
2971     if (vd.IsLaneSizeH()) {                                      \
2972       VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));               \
2973       NEONFP16ConvertToInt(vd, vn, VEC_OP##_H);                  \
2974     } else {                                                     \
2975       NEONFPConvertToInt(vd, vn, VEC_OP);                        \
2976     }                                                            \
2977   }
NEON_FP2REGMISC_FCVT_LIST(DEFINE_ASM_FUNCS)2978 NEON_FP2REGMISC_FCVT_LIST(DEFINE_ASM_FUNCS)
2979 #undef DEFINE_ASM_FUNCS
2980 
2981 
2982 void Assembler::fcvtzs(const Register& rd, const VRegister& vn, int fbits) {
2983   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2984   if (vn.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2985   VIXL_ASSERT(vn.Is1H() || vn.Is1S() || vn.Is1D());
2986   VIXL_ASSERT((fbits >= 0) && (fbits <= rd.GetSizeInBits()));
2987   if (fbits == 0) {
2988     Emit(SF(rd) | FPType(vn) | FCVTZS | Rn(vn) | Rd(rd));
2989   } else {
2990     Emit(SF(rd) | FPType(vn) | FCVTZS_fixed | FPScale(64 - fbits) | Rn(vn) |
2991          Rd(rd));
2992   }
2993 }
2994 
2995 
fcvtzs(const VRegister & vd,const VRegister & vn,int fbits)2996 void Assembler::fcvtzs(const VRegister& vd, const VRegister& vn, int fbits) {
2997   // This form is a NEON scalar FP instruction.
2998   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
2999   if (vn.IsLaneSizeH()) VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3000   VIXL_ASSERT(fbits >= 0);
3001   if (fbits == 0) {
3002     if (vd.IsLaneSizeH()) {
3003       NEONFP2RegMiscFP16(vd, vn, NEON_FCVTZS_H);
3004     } else {
3005       NEONFP2RegMisc(vd, vn, NEON_FCVTZS);
3006     }
3007   } else {
3008     VIXL_ASSERT(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S() ||
3009                 vd.Is1H() || vd.Is4H() || vd.Is8H());
3010     NEONShiftRightImmediate(vd, vn, fbits, NEON_FCVTZS_imm);
3011   }
3012 }
3013 
3014 
fcvtzu(const Register & rd,const VRegister & vn,int fbits)3015 void Assembler::fcvtzu(const Register& rd, const VRegister& vn, int fbits) {
3016   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
3017   if (vn.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
3018   VIXL_ASSERT(vn.Is1H() || vn.Is1S() || vn.Is1D());
3019   VIXL_ASSERT((fbits >= 0) && (fbits <= rd.GetSizeInBits()));
3020   if (fbits == 0) {
3021     Emit(SF(rd) | FPType(vn) | FCVTZU | Rn(vn) | Rd(rd));
3022   } else {
3023     Emit(SF(rd) | FPType(vn) | FCVTZU_fixed | FPScale(64 - fbits) | Rn(vn) |
3024          Rd(rd));
3025   }
3026 }
3027 
3028 
fcvtzu(const VRegister & vd,const VRegister & vn,int fbits)3029 void Assembler::fcvtzu(const VRegister& vd, const VRegister& vn, int fbits) {
3030   // This form is a NEON scalar FP instruction.
3031   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3032   if (vn.IsLaneSizeH()) VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3033   VIXL_ASSERT(fbits >= 0);
3034   if (fbits == 0) {
3035     if (vd.IsLaneSizeH()) {
3036       NEONFP2RegMiscFP16(vd, vn, NEON_FCVTZU_H);
3037     } else {
3038       NEONFP2RegMisc(vd, vn, NEON_FCVTZU);
3039     }
3040   } else {
3041     VIXL_ASSERT(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S() ||
3042                 vd.Is1H() || vd.Is4H() || vd.Is8H());
3043     NEONShiftRightImmediate(vd, vn, fbits, NEON_FCVTZU_imm);
3044   }
3045 }
3046 
ucvtf(const VRegister & vd,const VRegister & vn,int fbits)3047 void Assembler::ucvtf(const VRegister& vd, const VRegister& vn, int fbits) {
3048   // This form is a NEON scalar FP instruction.
3049   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3050   if (vn.IsLaneSizeH()) VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3051   VIXL_ASSERT(fbits >= 0);
3052   if (fbits == 0) {
3053     if (vd.IsLaneSizeH()) {
3054       NEONFP2RegMiscFP16(vd, vn, NEON_UCVTF_H);
3055     } else {
3056       NEONFP2RegMisc(vd, vn, NEON_UCVTF);
3057     }
3058   } else {
3059     VIXL_ASSERT(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S() ||
3060                 vd.Is1H() || vd.Is4H() || vd.Is8H());
3061     NEONShiftRightImmediate(vd, vn, fbits, NEON_UCVTF_imm);
3062   }
3063 }
3064 
scvtf(const VRegister & vd,const VRegister & vn,int fbits)3065 void Assembler::scvtf(const VRegister& vd, const VRegister& vn, int fbits) {
3066   // This form is a NEON scalar FP instruction.
3067   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3068   if (vn.IsLaneSizeH()) VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3069   VIXL_ASSERT(fbits >= 0);
3070   if (fbits == 0) {
3071     if (vd.IsLaneSizeH()) {
3072       NEONFP2RegMiscFP16(vd, vn, NEON_SCVTF_H);
3073     } else {
3074       NEONFP2RegMisc(vd, vn, NEON_SCVTF);
3075     }
3076   } else {
3077     VIXL_ASSERT(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S() ||
3078                 vd.Is1H() || vd.Is4H() || vd.Is8H());
3079     NEONShiftRightImmediate(vd, vn, fbits, NEON_SCVTF_imm);
3080   }
3081 }
3082 
3083 
scvtf(const VRegister & vd,const Register & rn,int fbits)3084 void Assembler::scvtf(const VRegister& vd, const Register& rn, int fbits) {
3085   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
3086   if (vd.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
3087   VIXL_ASSERT(vd.Is1H() || vd.Is1S() || vd.Is1D());
3088   VIXL_ASSERT(fbits >= 0);
3089   if (fbits == 0) {
3090     Emit(SF(rn) | FPType(vd) | SCVTF | Rn(rn) | Rd(vd));
3091   } else {
3092     Emit(SF(rn) | FPType(vd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
3093          Rd(vd));
3094   }
3095 }
3096 
3097 
ucvtf(const VRegister & vd,const Register & rn,int fbits)3098 void Assembler::ucvtf(const VRegister& vd, const Register& rn, int fbits) {
3099   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
3100   if (vd.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
3101   VIXL_ASSERT(vd.Is1H() || vd.Is1S() || vd.Is1D());
3102   VIXL_ASSERT(fbits >= 0);
3103   if (fbits == 0) {
3104     Emit(SF(rn) | FPType(vd) | UCVTF | Rn(rn) | Rd(vd));
3105   } else {
3106     Emit(SF(rn) | FPType(vd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
3107          Rd(vd));
3108   }
3109 }
3110 
3111 
NEON3Same(const VRegister & vd,const VRegister & vn,const VRegister & vm,NEON3SameOp vop)3112 void Assembler::NEON3Same(const VRegister& vd,
3113                           const VRegister& vn,
3114                           const VRegister& vm,
3115                           NEON3SameOp vop) {
3116   VIXL_ASSERT(AreSameFormat(vd, vn, vm));
3117   VIXL_ASSERT(vd.IsVector() || !vd.IsQ());
3118 
3119   Instr format, op = vop;
3120   if (vd.IsScalar()) {
3121     op |= NEON_Q | NEONScalar;
3122     format = SFormat(vd);
3123   } else {
3124     format = VFormat(vd);
3125   }
3126 
3127   Emit(format | op | Rm(vm) | Rn(vn) | Rd(vd));
3128 }
3129 
3130 
NEONFP3Same(const VRegister & vd,const VRegister & vn,const VRegister & vm,Instr op)3131 void Assembler::NEONFP3Same(const VRegister& vd,
3132                             const VRegister& vn,
3133                             const VRegister& vm,
3134                             Instr op) {
3135   VIXL_ASSERT(AreSameFormat(vd, vn, vm));
3136   Emit(FPFormat(vd) | op | Rm(vm) | Rn(vn) | Rd(vd));
3137 }
3138 
3139 
NEON3SameFP16(const VRegister & vd,const VRegister & vn,const VRegister & vm,Instr op)3140 void Assembler::NEON3SameFP16(const VRegister& vd,
3141                               const VRegister& vn,
3142                               const VRegister& vm,
3143                               Instr op) {
3144   VIXL_ASSERT(AreSameFormat(vd, vn, vm));
3145   VIXL_ASSERT(vd.GetLaneSizeInBytes() == kHRegSizeInBytes);
3146   if (vd.Is8H()) op |= NEON_Q;
3147   Emit(op | Rm(vm) | Rn(vn) | Rd(vd));
3148 }
3149 
3150 
3151 // clang-format off
3152 #define NEON_FP2REGMISC_LIST(V)                                        \
3153   V(fabs,    NEON_FABS,    FABS,                FABS_h)                \
3154   V(fneg,    NEON_FNEG,    FNEG,                FNEG_h)                \
3155   V(fsqrt,   NEON_FSQRT,   FSQRT,               FSQRT_h)               \
3156   V(frintn,  NEON_FRINTN,  FRINTN,              FRINTN_h)              \
3157   V(frinta,  NEON_FRINTA,  FRINTA,              FRINTA_h)              \
3158   V(frintp,  NEON_FRINTP,  FRINTP,              FRINTP_h)              \
3159   V(frintm,  NEON_FRINTM,  FRINTM,              FRINTM_h)              \
3160   V(frintx,  NEON_FRINTX,  FRINTX,              FRINTX_h)              \
3161   V(frintz,  NEON_FRINTZ,  FRINTZ,              FRINTZ_h)              \
3162   V(frinti,  NEON_FRINTI,  FRINTI,              FRINTI_h)              \
3163   V(frsqrte, NEON_FRSQRTE, NEON_FRSQRTE_scalar, NEON_FRSQRTE_H_scalar) \
3164   V(frecpe,  NEON_FRECPE,  NEON_FRECPE_scalar,  NEON_FRECPE_H_scalar)
3165 // clang-format on
3166 
3167 #define DEFINE_ASM_FUNC(FN, VEC_OP, SCA_OP, SCA_OP_H)                        \
3168   void Assembler::FN(const VRegister& vd, const VRegister& vn) {             \
3169     VIXL_ASSERT(CPUHas(CPUFeatures::kFP));                                   \
3170     Instr op;                                                                \
3171     if (vd.IsScalar()) {                                                     \
3172       if (vd.Is1H()) {                                                       \
3173         if ((SCA_OP_H & NEONScalar2RegMiscFP16FMask) ==                      \
3174             NEONScalar2RegMiscFP16Fixed) {                                   \
3175           VIXL_ASSERT(CPUHas(CPUFeatures::kNEON, CPUFeatures::kNEONHalf));   \
3176         } else {                                                             \
3177           VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));                         \
3178         }                                                                    \
3179         op = SCA_OP_H;                                                       \
3180       } else {                                                               \
3181         if ((SCA_OP & NEONScalar2RegMiscFMask) == NEONScalar2RegMiscFixed) { \
3182           VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));                           \
3183         }                                                                    \
3184         VIXL_ASSERT(vd.Is1S() || vd.Is1D());                                 \
3185         op = SCA_OP;                                                         \
3186       }                                                                      \
3187     } else {                                                                 \
3188       VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));                               \
3189       VIXL_ASSERT(vd.Is4H() || vd.Is8H() || vd.Is2S() || vd.Is2D() ||        \
3190                   vd.Is4S());                                                \
3191       if (vd.IsLaneSizeH()) {                                                \
3192         VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));                         \
3193         op = VEC_OP##_H;                                                     \
3194         if (vd.Is8H()) {                                                     \
3195           op |= NEON_Q;                                                      \
3196         }                                                                    \
3197       } else {                                                               \
3198         op = VEC_OP;                                                         \
3199       }                                                                      \
3200     }                                                                        \
3201     if (vd.IsLaneSizeH()) {                                                  \
3202       NEONFP2RegMiscFP16(vd, vn, op);                                        \
3203     } else {                                                                 \
3204       NEONFP2RegMisc(vd, vn, op);                                            \
3205     }                                                                        \
3206   }
NEON_FP2REGMISC_LIST(DEFINE_ASM_FUNC)3207 NEON_FP2REGMISC_LIST(DEFINE_ASM_FUNC)
3208 #undef DEFINE_ASM_FUNC
3209 
3210 
3211 void Assembler::NEONFP2RegMiscFP16(const VRegister& vd,
3212                                    const VRegister& vn,
3213                                    Instr op) {
3214   VIXL_ASSERT(AreSameFormat(vd, vn));
3215   Emit(op | Rn(vn) | Rd(vd));
3216 }
3217 
3218 
NEONFP2RegMisc(const VRegister & vd,const VRegister & vn,Instr op)3219 void Assembler::NEONFP2RegMisc(const VRegister& vd,
3220                                const VRegister& vn,
3221                                Instr op) {
3222   VIXL_ASSERT(AreSameFormat(vd, vn));
3223   Emit(FPFormat(vd) | op | Rn(vn) | Rd(vd));
3224 }
3225 
3226 
NEON2RegMisc(const VRegister & vd,const VRegister & vn,NEON2RegMiscOp vop,int value)3227 void Assembler::NEON2RegMisc(const VRegister& vd,
3228                              const VRegister& vn,
3229                              NEON2RegMiscOp vop,
3230                              int value) {
3231   VIXL_ASSERT(AreSameFormat(vd, vn));
3232   VIXL_ASSERT(value == 0);
3233   USE(value);
3234 
3235   Instr format, op = vop;
3236   if (vd.IsScalar()) {
3237     op |= NEON_Q | NEONScalar;
3238     format = SFormat(vd);
3239   } else {
3240     format = VFormat(vd);
3241   }
3242 
3243   Emit(format | op | Rn(vn) | Rd(vd));
3244 }
3245 
3246 
cmeq(const VRegister & vd,const VRegister & vn,int value)3247 void Assembler::cmeq(const VRegister& vd, const VRegister& vn, int value) {
3248   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3249   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
3250   NEON2RegMisc(vd, vn, NEON_CMEQ_zero, value);
3251 }
3252 
3253 
cmge(const VRegister & vd,const VRegister & vn,int value)3254 void Assembler::cmge(const VRegister& vd, const VRegister& vn, int value) {
3255   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3256   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
3257   NEON2RegMisc(vd, vn, NEON_CMGE_zero, value);
3258 }
3259 
3260 
cmgt(const VRegister & vd,const VRegister & vn,int value)3261 void Assembler::cmgt(const VRegister& vd, const VRegister& vn, int value) {
3262   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3263   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
3264   NEON2RegMisc(vd, vn, NEON_CMGT_zero, value);
3265 }
3266 
3267 
cmle(const VRegister & vd,const VRegister & vn,int value)3268 void Assembler::cmle(const VRegister& vd, const VRegister& vn, int value) {
3269   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
3270   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3271   NEON2RegMisc(vd, vn, NEON_CMLE_zero, value);
3272 }
3273 
3274 
cmlt(const VRegister & vd,const VRegister & vn,int value)3275 void Assembler::cmlt(const VRegister& vd, const VRegister& vn, int value) {
3276   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3277   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
3278   NEON2RegMisc(vd, vn, NEON_CMLT_zero, value);
3279 }
3280 
3281 
shll(const VRegister & vd,const VRegister & vn,int shift)3282 void Assembler::shll(const VRegister& vd, const VRegister& vn, int shift) {
3283   USE(shift);
3284   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3285   VIXL_ASSERT((vd.Is8H() && vn.Is8B() && shift == 8) ||
3286               (vd.Is4S() && vn.Is4H() && shift == 16) ||
3287               (vd.Is2D() && vn.Is2S() && shift == 32));
3288   Emit(VFormat(vn) | NEON_SHLL | Rn(vn) | Rd(vd));
3289 }
3290 
3291 
shll2(const VRegister & vd,const VRegister & vn,int shift)3292 void Assembler::shll2(const VRegister& vd, const VRegister& vn, int shift) {
3293   USE(shift);
3294   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3295   VIXL_ASSERT((vd.Is8H() && vn.Is16B() && shift == 8) ||
3296               (vd.Is4S() && vn.Is8H() && shift == 16) ||
3297               (vd.Is2D() && vn.Is4S() && shift == 32));
3298   Emit(VFormat(vn) | NEON_SHLL | Rn(vn) | Rd(vd));
3299 }
3300 
3301 
NEONFP2RegMisc(const VRegister & vd,const VRegister & vn,NEON2RegMiscOp vop,double value)3302 void Assembler::NEONFP2RegMisc(const VRegister& vd,
3303                                const VRegister& vn,
3304                                NEON2RegMiscOp vop,
3305                                double value) {
3306   VIXL_ASSERT(AreSameFormat(vd, vn));
3307   VIXL_ASSERT(value == 0.0);
3308   USE(value);
3309 
3310   Instr op = vop;
3311   if (vd.IsScalar()) {
3312     VIXL_ASSERT(vd.Is1S() || vd.Is1D());
3313     op |= NEON_Q | NEONScalar;
3314   } else {
3315     VIXL_ASSERT(vd.Is2S() || vd.Is2D() || vd.Is4S());
3316   }
3317 
3318   Emit(FPFormat(vd) | op | Rn(vn) | Rd(vd));
3319 }
3320 
3321 
NEONFP2RegMiscFP16(const VRegister & vd,const VRegister & vn,NEON2RegMiscFP16Op vop,double value)3322 void Assembler::NEONFP2RegMiscFP16(const VRegister& vd,
3323                                    const VRegister& vn,
3324                                    NEON2RegMiscFP16Op vop,
3325                                    double value) {
3326   VIXL_ASSERT(AreSameFormat(vd, vn));
3327   VIXL_ASSERT(value == 0.0);
3328   USE(value);
3329 
3330   Instr op = vop;
3331   if (vd.IsScalar()) {
3332     VIXL_ASSERT(vd.Is1H());
3333     op |= NEON_Q | NEONScalar;
3334   } else {
3335     VIXL_ASSERT(vd.Is4H() || vd.Is8H());
3336     if (vd.Is8H()) {
3337       op |= NEON_Q;
3338     }
3339   }
3340 
3341   Emit(op | Rn(vn) | Rd(vd));
3342 }
3343 
3344 
fcmeq(const VRegister & vd,const VRegister & vn,double value)3345 void Assembler::fcmeq(const VRegister& vd, const VRegister& vn, double value) {
3346   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3347   if (vd.IsLaneSizeH()) {
3348     VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3349     NEONFP2RegMiscFP16(vd, vn, NEON_FCMEQ_H_zero, value);
3350   } else {
3351     NEONFP2RegMisc(vd, vn, NEON_FCMEQ_zero, value);
3352   }
3353 }
3354 
3355 
fcmge(const VRegister & vd,const VRegister & vn,double value)3356 void Assembler::fcmge(const VRegister& vd, const VRegister& vn, double value) {
3357   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3358   if (vd.IsLaneSizeH()) {
3359     VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3360     NEONFP2RegMiscFP16(vd, vn, NEON_FCMGE_H_zero, value);
3361   } else {
3362     NEONFP2RegMisc(vd, vn, NEON_FCMGE_zero, value);
3363   }
3364 }
3365 
3366 
fcmgt(const VRegister & vd,const VRegister & vn,double value)3367 void Assembler::fcmgt(const VRegister& vd, const VRegister& vn, double value) {
3368   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3369   if (vd.IsLaneSizeH()) {
3370     VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3371     NEONFP2RegMiscFP16(vd, vn, NEON_FCMGT_H_zero, value);
3372   } else {
3373     NEONFP2RegMisc(vd, vn, NEON_FCMGT_zero, value);
3374   }
3375 }
3376 
3377 
fcmle(const VRegister & vd,const VRegister & vn,double value)3378 void Assembler::fcmle(const VRegister& vd, const VRegister& vn, double value) {
3379   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3380   if (vd.IsLaneSizeH()) {
3381     VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3382     NEONFP2RegMiscFP16(vd, vn, NEON_FCMLE_H_zero, value);
3383   } else {
3384     NEONFP2RegMisc(vd, vn, NEON_FCMLE_zero, value);
3385   }
3386 }
3387 
3388 
fcmlt(const VRegister & vd,const VRegister & vn,double value)3389 void Assembler::fcmlt(const VRegister& vd, const VRegister& vn, double value) {
3390   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3391   if (vd.IsLaneSizeH()) {
3392     VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3393     NEONFP2RegMiscFP16(vd, vn, NEON_FCMLT_H_zero, value);
3394   } else {
3395     NEONFP2RegMisc(vd, vn, NEON_FCMLT_zero, value);
3396   }
3397 }
3398 
3399 
frecpx(const VRegister & vd,const VRegister & vn)3400 void Assembler::frecpx(const VRegister& vd, const VRegister& vn) {
3401   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3402   VIXL_ASSERT(vd.IsScalar());
3403   VIXL_ASSERT(AreSameFormat(vd, vn));
3404   Instr op;
3405   if (vd.Is1H()) {
3406     VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3407     op = NEON_FRECPX_H_scalar;
3408   } else {
3409     VIXL_ASSERT(vd.Is1S() || vd.Is1D());
3410     op = NEON_FRECPX_scalar;
3411   }
3412   Emit(FPFormat(vd) | op | Rn(vn) | Rd(vd));
3413 }
3414 
3415 
3416 // clang-format off
3417 #define NEON_3SAME_LIST(V) \
3418   V(add,      NEON_ADD,      vd.IsVector() || vd.Is1D())            \
3419   V(addp,     NEON_ADDP,     vd.IsVector() || vd.Is1D())            \
3420   V(sub,      NEON_SUB,      vd.IsVector() || vd.Is1D())            \
3421   V(cmeq,     NEON_CMEQ,     vd.IsVector() || vd.Is1D())            \
3422   V(cmge,     NEON_CMGE,     vd.IsVector() || vd.Is1D())            \
3423   V(cmgt,     NEON_CMGT,     vd.IsVector() || vd.Is1D())            \
3424   V(cmhi,     NEON_CMHI,     vd.IsVector() || vd.Is1D())            \
3425   V(cmhs,     NEON_CMHS,     vd.IsVector() || vd.Is1D())            \
3426   V(cmtst,    NEON_CMTST,    vd.IsVector() || vd.Is1D())            \
3427   V(sshl,     NEON_SSHL,     vd.IsVector() || vd.Is1D())            \
3428   V(ushl,     NEON_USHL,     vd.IsVector() || vd.Is1D())            \
3429   V(srshl,    NEON_SRSHL,    vd.IsVector() || vd.Is1D())            \
3430   V(urshl,    NEON_URSHL,    vd.IsVector() || vd.Is1D())            \
3431   V(sqdmulh,  NEON_SQDMULH,  vd.IsLaneSizeH() || vd.IsLaneSizeS())  \
3432   V(sqrdmulh, NEON_SQRDMULH, vd.IsLaneSizeH() || vd.IsLaneSizeS())  \
3433   V(shadd,    NEON_SHADD,    vd.IsVector() && !vd.IsLaneSizeD())    \
3434   V(uhadd,    NEON_UHADD,    vd.IsVector() && !vd.IsLaneSizeD())    \
3435   V(srhadd,   NEON_SRHADD,   vd.IsVector() && !vd.IsLaneSizeD())    \
3436   V(urhadd,   NEON_URHADD,   vd.IsVector() && !vd.IsLaneSizeD())    \
3437   V(shsub,    NEON_SHSUB,    vd.IsVector() && !vd.IsLaneSizeD())    \
3438   V(uhsub,    NEON_UHSUB,    vd.IsVector() && !vd.IsLaneSizeD())    \
3439   V(smax,     NEON_SMAX,     vd.IsVector() && !vd.IsLaneSizeD())    \
3440   V(smaxp,    NEON_SMAXP,    vd.IsVector() && !vd.IsLaneSizeD())    \
3441   V(smin,     NEON_SMIN,     vd.IsVector() && !vd.IsLaneSizeD())    \
3442   V(sminp,    NEON_SMINP,    vd.IsVector() && !vd.IsLaneSizeD())    \
3443   V(umax,     NEON_UMAX,     vd.IsVector() && !vd.IsLaneSizeD())    \
3444   V(umaxp,    NEON_UMAXP,    vd.IsVector() && !vd.IsLaneSizeD())    \
3445   V(umin,     NEON_UMIN,     vd.IsVector() && !vd.IsLaneSizeD())    \
3446   V(uminp,    NEON_UMINP,    vd.IsVector() && !vd.IsLaneSizeD())    \
3447   V(saba,     NEON_SABA,     vd.IsVector() && !vd.IsLaneSizeD())    \
3448   V(sabd,     NEON_SABD,     vd.IsVector() && !vd.IsLaneSizeD())    \
3449   V(uaba,     NEON_UABA,     vd.IsVector() && !vd.IsLaneSizeD())    \
3450   V(uabd,     NEON_UABD,     vd.IsVector() && !vd.IsLaneSizeD())    \
3451   V(mla,      NEON_MLA,      vd.IsVector() && !vd.IsLaneSizeD())    \
3452   V(mls,      NEON_MLS,      vd.IsVector() && !vd.IsLaneSizeD())    \
3453   V(mul,      NEON_MUL,      vd.IsVector() && !vd.IsLaneSizeD())    \
3454   V(and_,     NEON_AND,      vd.Is8B() || vd.Is16B())               \
3455   V(orr,      NEON_ORR,      vd.Is8B() || vd.Is16B())               \
3456   V(orn,      NEON_ORN,      vd.Is8B() || vd.Is16B())               \
3457   V(eor,      NEON_EOR,      vd.Is8B() || vd.Is16B())               \
3458   V(bic,      NEON_BIC,      vd.Is8B() || vd.Is16B())               \
3459   V(bit,      NEON_BIT,      vd.Is8B() || vd.Is16B())               \
3460   V(bif,      NEON_BIF,      vd.Is8B() || vd.Is16B())               \
3461   V(bsl,      NEON_BSL,      vd.Is8B() || vd.Is16B())               \
3462   V(pmul,     NEON_PMUL,     vd.Is8B() || vd.Is16B())               \
3463   V(uqadd,    NEON_UQADD,    true)                                  \
3464   V(sqadd,    NEON_SQADD,    true)                                  \
3465   V(uqsub,    NEON_UQSUB,    true)                                  \
3466   V(sqsub,    NEON_SQSUB,    true)                                  \
3467   V(sqshl,    NEON_SQSHL,    true)                                  \
3468   V(uqshl,    NEON_UQSHL,    true)                                  \
3469   V(sqrshl,   NEON_SQRSHL,   true)                                  \
3470   V(uqrshl,   NEON_UQRSHL,   true)
3471 // clang-format on
3472 
3473 #define DEFINE_ASM_FUNC(FN, OP, AS)          \
3474   void Assembler::FN(const VRegister& vd,    \
3475                      const VRegister& vn,    \
3476                      const VRegister& vm) {  \
3477     VIXL_ASSERT(CPUHas(CPUFeatures::kNEON)); \
3478     VIXL_ASSERT(AS);                         \
3479     NEON3Same(vd, vn, vm, OP);               \
3480   }
3481 NEON_3SAME_LIST(DEFINE_ASM_FUNC)
3482 #undef DEFINE_ASM_FUNC
3483 
3484 // clang-format off
3485 #define NEON_FP3SAME_OP_LIST(V)                                        \
3486   V(fmulx,   NEON_FMULX,   NEON_FMULX_scalar,   NEON_FMULX_H_scalar)   \
3487   V(frecps,  NEON_FRECPS,  NEON_FRECPS_scalar,  NEON_FRECPS_H_scalar)  \
3488   V(frsqrts, NEON_FRSQRTS, NEON_FRSQRTS_scalar, NEON_FRSQRTS_H_scalar) \
3489   V(fabd,    NEON_FABD,    NEON_FABD_scalar,    NEON_FABD_H_scalar)    \
3490   V(fmla,    NEON_FMLA,    0,                   0)                     \
3491   V(fmls,    NEON_FMLS,    0,                   0)                     \
3492   V(facge,   NEON_FACGE,   NEON_FACGE_scalar,   NEON_FACGE_H_scalar)   \
3493   V(facgt,   NEON_FACGT,   NEON_FACGT_scalar,   NEON_FACGT_H_scalar)   \
3494   V(fcmeq,   NEON_FCMEQ,   NEON_FCMEQ_scalar,   NEON_FCMEQ_H_scalar)   \
3495   V(fcmge,   NEON_FCMGE,   NEON_FCMGE_scalar,   NEON_FCMGE_H_scalar)   \
3496   V(fcmgt,   NEON_FCMGT,   NEON_FCMGT_scalar,   NEON_FCMGT_H_scalar)   \
3497   V(faddp,   NEON_FADDP,   0,                   0)                     \
3498   V(fmaxp,   NEON_FMAXP,   0,                   0)                     \
3499   V(fminp,   NEON_FMINP,   0,                   0)                     \
3500   V(fmaxnmp, NEON_FMAXNMP, 0,                   0)                     \
3501   V(fadd,    NEON_FADD,    FADD,                0)                     \
3502   V(fsub,    NEON_FSUB,    FSUB,                0)                     \
3503   V(fmul,    NEON_FMUL,    FMUL,                0)                     \
3504   V(fdiv,    NEON_FDIV,    FDIV,                0)                     \
3505   V(fmax,    NEON_FMAX,    FMAX,                0)                     \
3506   V(fmin,    NEON_FMIN,    FMIN,                0)                     \
3507   V(fmaxnm,  NEON_FMAXNM,  FMAXNM,              0)                     \
3508   V(fminnm,  NEON_FMINNM,  FMINNM,              0)                     \
3509   V(fminnmp, NEON_FMINNMP, 0,                   0)
3510 // clang-format on
3511 
3512 // TODO: This macro is complicated because it classifies the instructions in the
3513 // macro list above, and treats each case differently. It could be somewhat
3514 // simpler if we were to split the macro, at the cost of some duplication.
3515 #define DEFINE_ASM_FUNC(FN, VEC_OP, SCA_OP, SCA_OP_H)                    \
3516   void Assembler::FN(const VRegister& vd,                                \
3517                      const VRegister& vn,                                \
3518                      const VRegister& vm) {                              \
3519     VIXL_ASSERT(CPUHas(CPUFeatures::kFP));                               \
3520     Instr op;                                                            \
3521     bool is_fp16 = false;                                                \
3522     if ((SCA_OP != 0) && vd.IsScalar()) {                                \
3523       if ((SCA_OP_H != 0) && vd.Is1H()) {                                \
3524         VIXL_ASSERT(CPUHas(CPUFeatures::kNEON, CPUFeatures::kNEONHalf)); \
3525         is_fp16 = true;                                                  \
3526         op = SCA_OP_H;                                                   \
3527       } else {                                                           \
3528         VIXL_ASSERT(vd.Is1H() || vd.Is1S() || vd.Is1D());                \
3529         if ((SCA_OP & NEONScalar3SameFMask) == NEONScalar3SameFixed) {   \
3530           VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));                       \
3531           if (vd.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));    \
3532         } else if (vd.Is1H()) {                                          \
3533           VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));                     \
3534         }                                                                \
3535         op = SCA_OP;                                                     \
3536       }                                                                  \
3537     } else {                                                             \
3538       VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));                           \
3539       VIXL_ASSERT(vd.IsVector());                                        \
3540       if (vd.Is4H() || vd.Is8H()) {                                      \
3541         VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));                     \
3542         is_fp16 = true;                                                  \
3543         op = VEC_OP##_H;                                                 \
3544       } else {                                                           \
3545         VIXL_ASSERT(vd.Is2S() || vd.Is2D() || vd.Is4S());                \
3546         op = VEC_OP;                                                     \
3547       }                                                                  \
3548     }                                                                    \
3549     if (is_fp16) {                                                       \
3550       NEON3SameFP16(vd, vn, vm, op);                                     \
3551     } else {                                                             \
3552       NEONFP3Same(vd, vn, vm, op);                                       \
3553     }                                                                    \
3554   }
NEON_FP3SAME_OP_LIST(DEFINE_ASM_FUNC)3555 NEON_FP3SAME_OP_LIST(DEFINE_ASM_FUNC)
3556 #undef DEFINE_ASM_FUNC
3557 
3558 
3559 void Assembler::addp(const VRegister& vd, const VRegister& vn) {
3560   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3561   VIXL_ASSERT((vd.Is1D() && vn.Is2D()));
3562   Emit(SFormat(vd) | NEON_ADDP_scalar | Rn(vn) | Rd(vd));
3563 }
3564 
3565 
sqrdmlah(const VRegister & vd,const VRegister & vn,const VRegister & vm)3566 void Assembler::sqrdmlah(const VRegister& vd,
3567                          const VRegister& vn,
3568                          const VRegister& vm) {
3569   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON, CPUFeatures::kRDM));
3570   VIXL_ASSERT(AreSameFormat(vd, vn, vm));
3571   VIXL_ASSERT(vd.IsVector() || !vd.IsQ());
3572 
3573   Instr format, op = NEON_SQRDMLAH;
3574   if (vd.IsScalar()) {
3575     op |= NEON_Q | NEONScalar;
3576     format = SFormat(vd);
3577   } else {
3578     format = VFormat(vd);
3579   }
3580 
3581   Emit(format | op | Rm(vm) | Rn(vn) | Rd(vd));
3582 }
3583 
3584 
sqrdmlsh(const VRegister & vd,const VRegister & vn,const VRegister & vm)3585 void Assembler::sqrdmlsh(const VRegister& vd,
3586                          const VRegister& vn,
3587                          const VRegister& vm) {
3588   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON, CPUFeatures::kRDM));
3589   VIXL_ASSERT(AreSameFormat(vd, vn, vm));
3590   VIXL_ASSERT(vd.IsVector() || !vd.IsQ());
3591 
3592   Instr format, op = NEON_SQRDMLSH;
3593   if (vd.IsScalar()) {
3594     op |= NEON_Q | NEONScalar;
3595     format = SFormat(vd);
3596   } else {
3597     format = VFormat(vd);
3598   }
3599 
3600   Emit(format | op | Rm(vm) | Rn(vn) | Rd(vd));
3601 }
3602 
3603 
sdot(const VRegister & vd,const VRegister & vn,const VRegister & vm)3604 void Assembler::sdot(const VRegister& vd,
3605                      const VRegister& vn,
3606                      const VRegister& vm) {
3607   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON, CPUFeatures::kDotProduct));
3608   VIXL_ASSERT(AreSameFormat(vn, vm));
3609   VIXL_ASSERT((vd.Is2S() && vn.Is8B()) || (vd.Is4S() && vn.Is16B()));
3610 
3611   Emit(VFormat(vd) | NEON_SDOT | Rm(vm) | Rn(vn) | Rd(vd));
3612 }
3613 
3614 
udot(const VRegister & vd,const VRegister & vn,const VRegister & vm)3615 void Assembler::udot(const VRegister& vd,
3616                      const VRegister& vn,
3617                      const VRegister& vm) {
3618   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON, CPUFeatures::kDotProduct));
3619   VIXL_ASSERT(AreSameFormat(vn, vm));
3620   VIXL_ASSERT((vd.Is2S() && vn.Is8B()) || (vd.Is4S() && vn.Is16B()));
3621 
3622   Emit(VFormat(vd) | NEON_UDOT | Rm(vm) | Rn(vn) | Rd(vd));
3623 }
3624 
3625 
faddp(const VRegister & vd,const VRegister & vn)3626 void Assembler::faddp(const VRegister& vd, const VRegister& vn) {
3627   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3628   VIXL_ASSERT((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D()) ||
3629               (vd.Is1H() && vn.Is2H()));
3630   if (vd.Is1H()) {
3631     VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3632     Emit(NEON_FADDP_h_scalar | Rn(vn) | Rd(vd));
3633   } else {
3634     Emit(FPFormat(vd) | NEON_FADDP_scalar | Rn(vn) | Rd(vd));
3635   }
3636 }
3637 
3638 
fmaxp(const VRegister & vd,const VRegister & vn)3639 void Assembler::fmaxp(const VRegister& vd, const VRegister& vn) {
3640   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3641   VIXL_ASSERT((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D()) ||
3642               (vd.Is1H() && vn.Is2H()));
3643   if (vd.Is1H()) {
3644     VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3645     Emit(NEON_FMAXP_h_scalar | Rn(vn) | Rd(vd));
3646   } else {
3647     Emit(FPFormat(vd) | NEON_FMAXP_scalar | Rn(vn) | Rd(vd));
3648   }
3649 }
3650 
3651 
fminp(const VRegister & vd,const VRegister & vn)3652 void Assembler::fminp(const VRegister& vd, const VRegister& vn) {
3653   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3654   VIXL_ASSERT((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D()) ||
3655               (vd.Is1H() && vn.Is2H()));
3656   if (vd.Is1H()) {
3657     VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3658     Emit(NEON_FMINP_h_scalar | Rn(vn) | Rd(vd));
3659   } else {
3660     Emit(FPFormat(vd) | NEON_FMINP_scalar | Rn(vn) | Rd(vd));
3661   }
3662 }
3663 
3664 
fmaxnmp(const VRegister & vd,const VRegister & vn)3665 void Assembler::fmaxnmp(const VRegister& vd, const VRegister& vn) {
3666   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3667   VIXL_ASSERT((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D()) ||
3668               (vd.Is1H() && vn.Is2H()));
3669   if (vd.Is1H()) {
3670     VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3671     Emit(NEON_FMAXNMP_h_scalar | Rn(vn) | Rd(vd));
3672   } else {
3673     Emit(FPFormat(vd) | NEON_FMAXNMP_scalar | Rn(vn) | Rd(vd));
3674   }
3675 }
3676 
3677 
fminnmp(const VRegister & vd,const VRegister & vn)3678 void Assembler::fminnmp(const VRegister& vd, const VRegister& vn) {
3679   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3680   VIXL_ASSERT((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D()) ||
3681               (vd.Is1H() && vn.Is2H()));
3682   if (vd.Is1H()) {
3683     VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3684     Emit(NEON_FMINNMP_h_scalar | Rn(vn) | Rd(vd));
3685   } else {
3686     Emit(FPFormat(vd) | NEON_FMINNMP_scalar | Rn(vn) | Rd(vd));
3687   }
3688 }
3689 
3690 
3691 // v8.3 complex numbers - floating-point complex multiply accumulate.
fcmla(const VRegister & vd,const VRegister & vn,const VRegister & vm,int vm_index,int rot)3692 void Assembler::fcmla(const VRegister& vd,
3693                       const VRegister& vn,
3694                       const VRegister& vm,
3695                       int vm_index,
3696                       int rot) {
3697   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON, CPUFeatures::kFcma));
3698   VIXL_ASSERT(vd.IsVector() && AreSameFormat(vd, vn));
3699   VIXL_ASSERT((vm.IsH() && (vd.Is8H() || vd.Is4H())) ||
3700               (vm.IsS() && vd.Is4S()));
3701   if (vd.IsLaneSizeH()) VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3702   int index_num_bits = vd.Is4S() ? 1 : 2;
3703   Emit(VFormat(vd) | Rm(vm) | NEON_FCMLA_byelement |
3704        ImmNEONHLM(vm_index, index_num_bits) | ImmRotFcmlaSca(rot) | Rn(vn) |
3705        Rd(vd));
3706 }
3707 
3708 
fcmla(const VRegister & vd,const VRegister & vn,const VRegister & vm,int rot)3709 void Assembler::fcmla(const VRegister& vd,
3710                       const VRegister& vn,
3711                       const VRegister& vm,
3712                       int rot) {
3713   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON, CPUFeatures::kFcma));
3714   VIXL_ASSERT(AreSameFormat(vd, vn, vm));
3715   VIXL_ASSERT(vd.IsVector() && !vd.IsLaneSizeB());
3716   if (vd.IsLaneSizeH()) VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3717   Emit(VFormat(vd) | Rm(vm) | NEON_FCMLA | ImmRotFcmlaVec(rot) | Rn(vn) |
3718        Rd(vd));
3719 }
3720 
3721 
3722 // v8.3 complex numbers - floating-point complex add.
fcadd(const VRegister & vd,const VRegister & vn,const VRegister & vm,int rot)3723 void Assembler::fcadd(const VRegister& vd,
3724                       const VRegister& vn,
3725                       const VRegister& vm,
3726                       int rot) {
3727   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON, CPUFeatures::kFcma));
3728   VIXL_ASSERT(AreSameFormat(vd, vn, vm));
3729   VIXL_ASSERT(vd.IsVector() && !vd.IsLaneSizeB());
3730   if (vd.IsLaneSizeH()) VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3731   Emit(VFormat(vd) | Rm(vm) | NEON_FCADD | ImmRotFcadd(rot) | Rn(vn) | Rd(vd));
3732 }
3733 
3734 
orr(const VRegister & vd,const int imm8,const int left_shift)3735 void Assembler::orr(const VRegister& vd, const int imm8, const int left_shift) {
3736   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3737   NEONModifiedImmShiftLsl(vd, imm8, left_shift, NEONModifiedImmediate_ORR);
3738 }
3739 
3740 
mov(const VRegister & vd,const VRegister & vn)3741 void Assembler::mov(const VRegister& vd, const VRegister& vn) {
3742   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3743   VIXL_ASSERT(AreSameFormat(vd, vn));
3744   if (vd.IsD()) {
3745     orr(vd.V8B(), vn.V8B(), vn.V8B());
3746   } else {
3747     VIXL_ASSERT(vd.IsQ());
3748     orr(vd.V16B(), vn.V16B(), vn.V16B());
3749   }
3750 }
3751 
3752 
bic(const VRegister & vd,const int imm8,const int left_shift)3753 void Assembler::bic(const VRegister& vd, const int imm8, const int left_shift) {
3754   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3755   NEONModifiedImmShiftLsl(vd, imm8, left_shift, NEONModifiedImmediate_BIC);
3756 }
3757 
3758 
movi(const VRegister & vd,const uint64_t imm,Shift shift,const int shift_amount)3759 void Assembler::movi(const VRegister& vd,
3760                      const uint64_t imm,
3761                      Shift shift,
3762                      const int shift_amount) {
3763   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3764   VIXL_ASSERT((shift == LSL) || (shift == MSL));
3765   if (vd.Is2D() || vd.Is1D()) {
3766     VIXL_ASSERT(shift_amount == 0);
3767     int imm8 = 0;
3768     for (int i = 0; i < 8; ++i) {
3769       int byte = (imm >> (i * 8)) & 0xff;
3770       VIXL_ASSERT((byte == 0) || (byte == 0xff));
3771       if (byte == 0xff) {
3772         imm8 |= (1 << i);
3773       }
3774     }
3775     int q = vd.Is2D() ? NEON_Q : 0;
3776     Emit(q | NEONModImmOp(1) | NEONModifiedImmediate_MOVI |
3777          ImmNEONabcdefgh(imm8) | NEONCmode(0xe) | Rd(vd));
3778   } else if (shift == LSL) {
3779     VIXL_ASSERT(IsUint8(imm));
3780     NEONModifiedImmShiftLsl(vd,
3781                             static_cast<int>(imm),
3782                             shift_amount,
3783                             NEONModifiedImmediate_MOVI);
3784   } else {
3785     VIXL_ASSERT(IsUint8(imm));
3786     NEONModifiedImmShiftMsl(vd,
3787                             static_cast<int>(imm),
3788                             shift_amount,
3789                             NEONModifiedImmediate_MOVI);
3790   }
3791 }
3792 
3793 
mvn(const VRegister & vd,const VRegister & vn)3794 void Assembler::mvn(const VRegister& vd, const VRegister& vn) {
3795   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3796   VIXL_ASSERT(AreSameFormat(vd, vn));
3797   if (vd.IsD()) {
3798     not_(vd.V8B(), vn.V8B());
3799   } else {
3800     VIXL_ASSERT(vd.IsQ());
3801     not_(vd.V16B(), vn.V16B());
3802   }
3803 }
3804 
3805 
mvni(const VRegister & vd,const int imm8,Shift shift,const int shift_amount)3806 void Assembler::mvni(const VRegister& vd,
3807                      const int imm8,
3808                      Shift shift,
3809                      const int shift_amount) {
3810   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3811   VIXL_ASSERT((shift == LSL) || (shift == MSL));
3812   if (shift == LSL) {
3813     NEONModifiedImmShiftLsl(vd, imm8, shift_amount, NEONModifiedImmediate_MVNI);
3814   } else {
3815     NEONModifiedImmShiftMsl(vd, imm8, shift_amount, NEONModifiedImmediate_MVNI);
3816   }
3817 }
3818 
3819 
NEONFPByElement(const VRegister & vd,const VRegister & vn,const VRegister & vm,int vm_index,NEONByIndexedElementOp vop,NEONByIndexedElementOp vop_half)3820 void Assembler::NEONFPByElement(const VRegister& vd,
3821                                 const VRegister& vn,
3822                                 const VRegister& vm,
3823                                 int vm_index,
3824                                 NEONByIndexedElementOp vop,
3825                                 NEONByIndexedElementOp vop_half) {
3826   VIXL_ASSERT(AreSameFormat(vd, vn));
3827   VIXL_ASSERT((vd.Is2S() && vm.Is1S()) || (vd.Is4S() && vm.Is1S()) ||
3828               (vd.Is1S() && vm.Is1S()) || (vd.Is2D() && vm.Is1D()) ||
3829               (vd.Is1D() && vm.Is1D()) || (vd.Is4H() && vm.Is1H()) ||
3830               (vd.Is8H() && vm.Is1H()) || (vd.Is1H() && vm.Is1H()));
3831   VIXL_ASSERT((vm.Is1S() && (vm_index < 4)) || (vm.Is1D() && (vm_index < 2)) ||
3832               (vm.Is1H() && (vm.GetCode() < 16) && (vm_index < 8)));
3833 
3834   Instr op = vop;
3835   int index_num_bits;
3836   if (vm.Is1D()) {
3837     index_num_bits = 1;
3838   } else if (vm.Is1S()) {
3839     index_num_bits = 2;
3840   } else {
3841     index_num_bits = 3;
3842     op = vop_half;
3843   }
3844 
3845   if (vd.IsScalar()) {
3846     op |= NEON_Q | NEONScalar;
3847   }
3848 
3849   if (!vm.Is1H()) {
3850     op |= FPFormat(vd);
3851   } else if (vd.Is8H()) {
3852     op |= NEON_Q;
3853   }
3854 
3855   Emit(op | ImmNEONHLM(vm_index, index_num_bits) | Rm(vm) | Rn(vn) | Rd(vd));
3856 }
3857 
3858 
NEONByElement(const VRegister & vd,const VRegister & vn,const VRegister & vm,int vm_index,NEONByIndexedElementOp vop)3859 void Assembler::NEONByElement(const VRegister& vd,
3860                               const VRegister& vn,
3861                               const VRegister& vm,
3862                               int vm_index,
3863                               NEONByIndexedElementOp vop) {
3864   VIXL_ASSERT(AreSameFormat(vd, vn));
3865   VIXL_ASSERT((vd.Is4H() && vm.Is1H()) || (vd.Is8H() && vm.Is1H()) ||
3866               (vd.Is1H() && vm.Is1H()) || (vd.Is2S() && vm.Is1S()) ||
3867               (vd.Is4S() && vm.Is1S()) || (vd.Is1S() && vm.Is1S()));
3868   VIXL_ASSERT((vm.Is1H() && (vm.GetCode() < 16) && (vm_index < 8)) ||
3869               (vm.Is1S() && (vm_index < 4)));
3870 
3871   Instr format, op = vop;
3872   int index_num_bits = vm.Is1H() ? 3 : 2;
3873   if (vd.IsScalar()) {
3874     op |= NEONScalar | NEON_Q;
3875     format = SFormat(vn);
3876   } else {
3877     format = VFormat(vn);
3878   }
3879   Emit(format | op | ImmNEONHLM(vm_index, index_num_bits) | Rm(vm) | Rn(vn) |
3880        Rd(vd));
3881 }
3882 
3883 
NEONByElementL(const VRegister & vd,const VRegister & vn,const VRegister & vm,int vm_index,NEONByIndexedElementOp vop)3884 void Assembler::NEONByElementL(const VRegister& vd,
3885                                const VRegister& vn,
3886                                const VRegister& vm,
3887                                int vm_index,
3888                                NEONByIndexedElementOp vop) {
3889   VIXL_ASSERT((vd.Is4S() && vn.Is4H() && vm.Is1H()) ||
3890               (vd.Is4S() && vn.Is8H() && vm.Is1H()) ||
3891               (vd.Is1S() && vn.Is1H() && vm.Is1H()) ||
3892               (vd.Is2D() && vn.Is2S() && vm.Is1S()) ||
3893               (vd.Is2D() && vn.Is4S() && vm.Is1S()) ||
3894               (vd.Is1D() && vn.Is1S() && vm.Is1S()));
3895 
3896   VIXL_ASSERT((vm.Is1H() && (vm.GetCode() < 16) && (vm_index < 8)) ||
3897               (vm.Is1S() && (vm_index < 4)));
3898 
3899   Instr format, op = vop;
3900   int index_num_bits = vm.Is1H() ? 3 : 2;
3901   if (vd.IsScalar()) {
3902     op |= NEONScalar | NEON_Q;
3903     format = SFormat(vn);
3904   } else {
3905     format = VFormat(vn);
3906   }
3907   Emit(format | op | ImmNEONHLM(vm_index, index_num_bits) | Rm(vm) | Rn(vn) |
3908        Rd(vd));
3909 }
3910 
3911 
sdot(const VRegister & vd,const VRegister & vn,const VRegister & vm,int vm_index)3912 void Assembler::sdot(const VRegister& vd,
3913                      const VRegister& vn,
3914                      const VRegister& vm,
3915                      int vm_index) {
3916   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON, CPUFeatures::kDotProduct));
3917   VIXL_ASSERT((vd.Is2S() && vn.Is8B() && vm.Is1S4B()) ||
3918               (vd.Is4S() && vn.Is16B() && vm.Is1S4B()));
3919 
3920   int index_num_bits = 2;
3921   Emit(VFormat(vd) | NEON_SDOT_byelement |
3922        ImmNEONHLM(vm_index, index_num_bits) | Rm(vm) | Rn(vn) | Rd(vd));
3923 }
3924 
3925 
udot(const VRegister & vd,const VRegister & vn,const VRegister & vm,int vm_index)3926 void Assembler::udot(const VRegister& vd,
3927                      const VRegister& vn,
3928                      const VRegister& vm,
3929                      int vm_index) {
3930   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON, CPUFeatures::kDotProduct));
3931   VIXL_ASSERT((vd.Is2S() && vn.Is8B() && vm.Is1S4B()) ||
3932               (vd.Is4S() && vn.Is16B() && vm.Is1S4B()));
3933 
3934   int index_num_bits = 2;
3935   Emit(VFormat(vd) | NEON_UDOT_byelement |
3936        ImmNEONHLM(vm_index, index_num_bits) | Rm(vm) | Rn(vn) | Rd(vd));
3937 }
3938 
3939 
3940 // clang-format off
3941 #define NEON_BYELEMENT_LIST(V)                        \
3942   V(mul,      NEON_MUL_byelement,      vn.IsVector()) \
3943   V(mla,      NEON_MLA_byelement,      vn.IsVector()) \
3944   V(mls,      NEON_MLS_byelement,      vn.IsVector()) \
3945   V(sqdmulh,  NEON_SQDMULH_byelement,  true)          \
3946   V(sqrdmulh, NEON_SQRDMULH_byelement, true)          \
3947 // clang-format on
3948 
3949 #define DEFINE_ASM_FUNC(FN, OP, AS)                     \
3950   void Assembler::FN(const VRegister& vd,               \
3951                      const VRegister& vn,               \
3952                      const VRegister& vm,               \
3953                      int vm_index) {                    \
3954     VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));            \
3955     VIXL_ASSERT(AS);                                    \
3956     NEONByElement(vd, vn, vm, vm_index, OP);            \
3957   }
3958 NEON_BYELEMENT_LIST(DEFINE_ASM_FUNC)
3959 #undef DEFINE_ASM_FUNC
3960 
3961 
3962 // clang-format off
3963 #define NEON_BYELEMENT_RDM_LIST(V)     \
3964   V(sqrdmlah, NEON_SQRDMLAH_byelement) \
3965   V(sqrdmlsh, NEON_SQRDMLSH_byelement)
3966 // clang-format on
3967 
3968 #define DEFINE_ASM_FUNC(FN, OP)                                 \
3969   void Assembler::FN(const VRegister& vd,                       \
3970                      const VRegister& vn,                       \
3971                      const VRegister& vm,                       \
3972                      int vm_index) {                            \
3973     VIXL_ASSERT(CPUHas(CPUFeatures::kNEON, CPUFeatures::kRDM)); \
3974     NEONByElement(vd, vn, vm, vm_index, OP);                    \
3975   }
NEON_BYELEMENT_RDM_LIST(DEFINE_ASM_FUNC)3976 NEON_BYELEMENT_RDM_LIST(DEFINE_ASM_FUNC)
3977 #undef DEFINE_ASM_FUNC
3978 
3979 
3980 // clang-format off
3981 #define NEON_FPBYELEMENT_LIST(V) \
3982   V(fmul,  NEON_FMUL_byelement,  NEON_FMUL_H_byelement)  \
3983   V(fmla,  NEON_FMLA_byelement,  NEON_FMLA_H_byelement)  \
3984   V(fmls,  NEON_FMLS_byelement,  NEON_FMLS_H_byelement)  \
3985   V(fmulx, NEON_FMULX_byelement, NEON_FMULX_H_byelement)
3986 // clang-format on
3987 
3988 #define DEFINE_ASM_FUNC(FN, OP, OP_H)                                  \
3989   void Assembler::FN(const VRegister& vd,                              \
3990                      const VRegister& vn,                              \
3991                      const VRegister& vm,                              \
3992                      int vm_index) {                                   \
3993     VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));         \
3994     if (vd.IsLaneSizeH()) VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf)); \
3995     NEONFPByElement(vd, vn, vm, vm_index, OP, OP_H);                   \
3996   }
3997 NEON_FPBYELEMENT_LIST(DEFINE_ASM_FUNC)
3998 #undef DEFINE_ASM_FUNC
3999 
4000 
4001 // clang-format off
4002 #define NEON_BYELEMENT_LONG_LIST(V)                               \
4003   V(sqdmull,  NEON_SQDMULL_byelement, vn.IsScalar() || vn.IsD())  \
4004   V(sqdmull2, NEON_SQDMULL_byelement, vn.IsVector() && vn.IsQ())  \
4005   V(sqdmlal,  NEON_SQDMLAL_byelement, vn.IsScalar() || vn.IsD())  \
4006   V(sqdmlal2, NEON_SQDMLAL_byelement, vn.IsVector() && vn.IsQ())  \
4007   V(sqdmlsl,  NEON_SQDMLSL_byelement, vn.IsScalar() || vn.IsD())  \
4008   V(sqdmlsl2, NEON_SQDMLSL_byelement, vn.IsVector() && vn.IsQ())  \
4009   V(smull,    NEON_SMULL_byelement,   vn.IsVector() && vn.IsD())  \
4010   V(smull2,   NEON_SMULL_byelement,   vn.IsVector() && vn.IsQ())  \
4011   V(umull,    NEON_UMULL_byelement,   vn.IsVector() && vn.IsD())  \
4012   V(umull2,   NEON_UMULL_byelement,   vn.IsVector() && vn.IsQ())  \
4013   V(smlal,    NEON_SMLAL_byelement,   vn.IsVector() && vn.IsD())  \
4014   V(smlal2,   NEON_SMLAL_byelement,   vn.IsVector() && vn.IsQ())  \
4015   V(umlal,    NEON_UMLAL_byelement,   vn.IsVector() && vn.IsD())  \
4016   V(umlal2,   NEON_UMLAL_byelement,   vn.IsVector() && vn.IsQ())  \
4017   V(smlsl,    NEON_SMLSL_byelement,   vn.IsVector() && vn.IsD())  \
4018   V(smlsl2,   NEON_SMLSL_byelement,   vn.IsVector() && vn.IsQ())  \
4019   V(umlsl,    NEON_UMLSL_byelement,   vn.IsVector() && vn.IsD())  \
4020   V(umlsl2,   NEON_UMLSL_byelement,   vn.IsVector() && vn.IsQ())
4021 // clang-format on
4022 
4023 
4024 #define DEFINE_ASM_FUNC(FN, OP, AS)           \
4025   void Assembler::FN(const VRegister& vd,     \
4026                      const VRegister& vn,     \
4027                      const VRegister& vm,     \
4028                      int vm_index) {          \
4029     VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));  \
4030     VIXL_ASSERT(AS);                          \
4031     NEONByElementL(vd, vn, vm, vm_index, OP); \
4032   }
4033 NEON_BYELEMENT_LONG_LIST(DEFINE_ASM_FUNC)
4034 #undef DEFINE_ASM_FUNC
4035 
4036 
4037 void Assembler::suqadd(const VRegister& vd, const VRegister& vn) {
4038   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4039   NEON2RegMisc(vd, vn, NEON_SUQADD);
4040 }
4041 
4042 
usqadd(const VRegister & vd,const VRegister & vn)4043 void Assembler::usqadd(const VRegister& vd, const VRegister& vn) {
4044   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4045   NEON2RegMisc(vd, vn, NEON_USQADD);
4046 }
4047 
4048 
abs(const VRegister & vd,const VRegister & vn)4049 void Assembler::abs(const VRegister& vd, const VRegister& vn) {
4050   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4051   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
4052   NEON2RegMisc(vd, vn, NEON_ABS);
4053 }
4054 
4055 
sqabs(const VRegister & vd,const VRegister & vn)4056 void Assembler::sqabs(const VRegister& vd, const VRegister& vn) {
4057   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4058   NEON2RegMisc(vd, vn, NEON_SQABS);
4059 }
4060 
4061 
neg(const VRegister & vd,const VRegister & vn)4062 void Assembler::neg(const VRegister& vd, const VRegister& vn) {
4063   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4064   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
4065   NEON2RegMisc(vd, vn, NEON_NEG);
4066 }
4067 
4068 
sqneg(const VRegister & vd,const VRegister & vn)4069 void Assembler::sqneg(const VRegister& vd, const VRegister& vn) {
4070   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4071   NEON2RegMisc(vd, vn, NEON_SQNEG);
4072 }
4073 
4074 
NEONXtn(const VRegister & vd,const VRegister & vn,NEON2RegMiscOp vop)4075 void Assembler::NEONXtn(const VRegister& vd,
4076                         const VRegister& vn,
4077                         NEON2RegMiscOp vop) {
4078   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4079   Instr format, op = vop;
4080   if (vd.IsScalar()) {
4081     VIXL_ASSERT((vd.Is1B() && vn.Is1H()) || (vd.Is1H() && vn.Is1S()) ||
4082                 (vd.Is1S() && vn.Is1D()));
4083     op |= NEON_Q | NEONScalar;
4084     format = SFormat(vd);
4085   } else {
4086     VIXL_ASSERT((vd.Is8B() && vn.Is8H()) || (vd.Is4H() && vn.Is4S()) ||
4087                 (vd.Is2S() && vn.Is2D()) || (vd.Is16B() && vn.Is8H()) ||
4088                 (vd.Is8H() && vn.Is4S()) || (vd.Is4S() && vn.Is2D()));
4089     format = VFormat(vd);
4090   }
4091   Emit(format | op | Rn(vn) | Rd(vd));
4092 }
4093 
4094 
xtn(const VRegister & vd,const VRegister & vn)4095 void Assembler::xtn(const VRegister& vd, const VRegister& vn) {
4096   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4097   VIXL_ASSERT(vd.IsVector() && vd.IsD());
4098   NEONXtn(vd, vn, NEON_XTN);
4099 }
4100 
4101 
xtn2(const VRegister & vd,const VRegister & vn)4102 void Assembler::xtn2(const VRegister& vd, const VRegister& vn) {
4103   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4104   VIXL_ASSERT(vd.IsVector() && vd.IsQ());
4105   NEONXtn(vd, vn, NEON_XTN);
4106 }
4107 
4108 
sqxtn(const VRegister & vd,const VRegister & vn)4109 void Assembler::sqxtn(const VRegister& vd, const VRegister& vn) {
4110   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4111   VIXL_ASSERT(vd.IsScalar() || vd.IsD());
4112   NEONXtn(vd, vn, NEON_SQXTN);
4113 }
4114 
4115 
sqxtn2(const VRegister & vd,const VRegister & vn)4116 void Assembler::sqxtn2(const VRegister& vd, const VRegister& vn) {
4117   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4118   VIXL_ASSERT(vd.IsVector() && vd.IsQ());
4119   NEONXtn(vd, vn, NEON_SQXTN);
4120 }
4121 
4122 
sqxtun(const VRegister & vd,const VRegister & vn)4123 void Assembler::sqxtun(const VRegister& vd, const VRegister& vn) {
4124   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4125   VIXL_ASSERT(vd.IsScalar() || vd.IsD());
4126   NEONXtn(vd, vn, NEON_SQXTUN);
4127 }
4128 
4129 
sqxtun2(const VRegister & vd,const VRegister & vn)4130 void Assembler::sqxtun2(const VRegister& vd, const VRegister& vn) {
4131   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4132   VIXL_ASSERT(vd.IsVector() && vd.IsQ());
4133   NEONXtn(vd, vn, NEON_SQXTUN);
4134 }
4135 
4136 
uqxtn(const VRegister & vd,const VRegister & vn)4137 void Assembler::uqxtn(const VRegister& vd, const VRegister& vn) {
4138   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4139   VIXL_ASSERT(vd.IsScalar() || vd.IsD());
4140   NEONXtn(vd, vn, NEON_UQXTN);
4141 }
4142 
4143 
uqxtn2(const VRegister & vd,const VRegister & vn)4144 void Assembler::uqxtn2(const VRegister& vd, const VRegister& vn) {
4145   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4146   VIXL_ASSERT(vd.IsVector() && vd.IsQ());
4147   NEONXtn(vd, vn, NEON_UQXTN);
4148 }
4149 
4150 
4151 // NEON NOT and RBIT are distinguised by bit 22, the bottom bit of "size".
not_(const VRegister & vd,const VRegister & vn)4152 void Assembler::not_(const VRegister& vd, const VRegister& vn) {
4153   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4154   VIXL_ASSERT(AreSameFormat(vd, vn));
4155   VIXL_ASSERT(vd.Is8B() || vd.Is16B());
4156   Emit(VFormat(vd) | NEON_RBIT_NOT | Rn(vn) | Rd(vd));
4157 }
4158 
4159 
rbit(const VRegister & vd,const VRegister & vn)4160 void Assembler::rbit(const VRegister& vd, const VRegister& vn) {
4161   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4162   VIXL_ASSERT(AreSameFormat(vd, vn));
4163   VIXL_ASSERT(vd.Is8B() || vd.Is16B());
4164   Emit(VFormat(vn) | (1 << NEONSize_offset) | NEON_RBIT_NOT | Rn(vn) | Rd(vd));
4165 }
4166 
4167 
ext(const VRegister & vd,const VRegister & vn,const VRegister & vm,int index)4168 void Assembler::ext(const VRegister& vd,
4169                     const VRegister& vn,
4170                     const VRegister& vm,
4171                     int index) {
4172   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4173   VIXL_ASSERT(AreSameFormat(vd, vn, vm));
4174   VIXL_ASSERT(vd.Is8B() || vd.Is16B());
4175   VIXL_ASSERT((0 <= index) && (index < vd.GetLanes()));
4176   Emit(VFormat(vd) | NEON_EXT | Rm(vm) | ImmNEONExt(index) | Rn(vn) | Rd(vd));
4177 }
4178 
4179 
dup(const VRegister & vd,const VRegister & vn,int vn_index)4180 void Assembler::dup(const VRegister& vd, const VRegister& vn, int vn_index) {
4181   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4182   Instr q, scalar;
4183 
4184   // We support vn arguments of the form vn.VxT() or vn.T(), where x is the
4185   // number of lanes, and T is b, h, s or d.
4186   int lane_size = vn.GetLaneSizeInBytes();
4187   NEONFormatField format;
4188   switch (lane_size) {
4189     case 1:
4190       format = NEON_16B;
4191       break;
4192     case 2:
4193       format = NEON_8H;
4194       break;
4195     case 4:
4196       format = NEON_4S;
4197       break;
4198     default:
4199       VIXL_ASSERT(lane_size == 8);
4200       format = NEON_2D;
4201       break;
4202   }
4203 
4204   if (vd.IsScalar()) {
4205     q = NEON_Q;
4206     scalar = NEONScalar;
4207   } else {
4208     VIXL_ASSERT(!vd.Is1D());
4209     q = vd.IsD() ? 0 : NEON_Q;
4210     scalar = 0;
4211   }
4212   Emit(q | scalar | NEON_DUP_ELEMENT | ImmNEON5(format, vn_index) | Rn(vn) |
4213        Rd(vd));
4214 }
4215 
4216 
mov(const VRegister & vd,const VRegister & vn,int vn_index)4217 void Assembler::mov(const VRegister& vd, const VRegister& vn, int vn_index) {
4218   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4219   VIXL_ASSERT(vd.IsScalar());
4220   dup(vd, vn, vn_index);
4221 }
4222 
4223 
dup(const VRegister & vd,const Register & rn)4224 void Assembler::dup(const VRegister& vd, const Register& rn) {
4225   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4226   VIXL_ASSERT(!vd.Is1D());
4227   VIXL_ASSERT(vd.Is2D() == rn.IsX());
4228   int q = vd.IsD() ? 0 : NEON_Q;
4229   Emit(q | NEON_DUP_GENERAL | ImmNEON5(VFormat(vd), 0) | Rn(rn) | Rd(vd));
4230 }
4231 
4232 
ins(const VRegister & vd,int vd_index,const VRegister & vn,int vn_index)4233 void Assembler::ins(const VRegister& vd,
4234                     int vd_index,
4235                     const VRegister& vn,
4236                     int vn_index) {
4237   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4238   VIXL_ASSERT(AreSameFormat(vd, vn));
4239   // We support vd arguments of the form vd.VxT() or vd.T(), where x is the
4240   // number of lanes, and T is b, h, s or d.
4241   int lane_size = vd.GetLaneSizeInBytes();
4242   NEONFormatField format;
4243   switch (lane_size) {
4244     case 1:
4245       format = NEON_16B;
4246       break;
4247     case 2:
4248       format = NEON_8H;
4249       break;
4250     case 4:
4251       format = NEON_4S;
4252       break;
4253     default:
4254       VIXL_ASSERT(lane_size == 8);
4255       format = NEON_2D;
4256       break;
4257   }
4258 
4259   VIXL_ASSERT(
4260       (0 <= vd_index) &&
4261       (vd_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
4262   VIXL_ASSERT(
4263       (0 <= vn_index) &&
4264       (vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
4265   Emit(NEON_INS_ELEMENT | ImmNEON5(format, vd_index) |
4266        ImmNEON4(format, vn_index) | Rn(vn) | Rd(vd));
4267 }
4268 
4269 
mov(const VRegister & vd,int vd_index,const VRegister & vn,int vn_index)4270 void Assembler::mov(const VRegister& vd,
4271                     int vd_index,
4272                     const VRegister& vn,
4273                     int vn_index) {
4274   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4275   ins(vd, vd_index, vn, vn_index);
4276 }
4277 
4278 
ins(const VRegister & vd,int vd_index,const Register & rn)4279 void Assembler::ins(const VRegister& vd, int vd_index, const Register& rn) {
4280   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4281   // We support vd arguments of the form vd.VxT() or vd.T(), where x is the
4282   // number of lanes, and T is b, h, s or d.
4283   int lane_size = vd.GetLaneSizeInBytes();
4284   NEONFormatField format;
4285   switch (lane_size) {
4286     case 1:
4287       format = NEON_16B;
4288       VIXL_ASSERT(rn.IsW());
4289       break;
4290     case 2:
4291       format = NEON_8H;
4292       VIXL_ASSERT(rn.IsW());
4293       break;
4294     case 4:
4295       format = NEON_4S;
4296       VIXL_ASSERT(rn.IsW());
4297       break;
4298     default:
4299       VIXL_ASSERT(lane_size == 8);
4300       VIXL_ASSERT(rn.IsX());
4301       format = NEON_2D;
4302       break;
4303   }
4304 
4305   VIXL_ASSERT(
4306       (0 <= vd_index) &&
4307       (vd_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
4308   Emit(NEON_INS_GENERAL | ImmNEON5(format, vd_index) | Rn(rn) | Rd(vd));
4309 }
4310 
4311 
mov(const VRegister & vd,int vd_index,const Register & rn)4312 void Assembler::mov(const VRegister& vd, int vd_index, const Register& rn) {
4313   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4314   ins(vd, vd_index, rn);
4315 }
4316 
4317 
umov(const Register & rd,const VRegister & vn,int vn_index)4318 void Assembler::umov(const Register& rd, const VRegister& vn, int vn_index) {
4319   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4320   // We support vn arguments of the form vn.VxT() or vn.T(), where x is the
4321   // number of lanes, and T is b, h, s or d.
4322   int lane_size = vn.GetLaneSizeInBytes();
4323   NEONFormatField format;
4324   Instr q = 0;
4325   switch (lane_size) {
4326     case 1:
4327       format = NEON_16B;
4328       VIXL_ASSERT(rd.IsW());
4329       break;
4330     case 2:
4331       format = NEON_8H;
4332       VIXL_ASSERT(rd.IsW());
4333       break;
4334     case 4:
4335       format = NEON_4S;
4336       VIXL_ASSERT(rd.IsW());
4337       break;
4338     default:
4339       VIXL_ASSERT(lane_size == 8);
4340       VIXL_ASSERT(rd.IsX());
4341       format = NEON_2D;
4342       q = NEON_Q;
4343       break;
4344   }
4345 
4346   VIXL_ASSERT(
4347       (0 <= vn_index) &&
4348       (vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
4349   Emit(q | NEON_UMOV | ImmNEON5(format, vn_index) | Rn(vn) | Rd(rd));
4350 }
4351 
4352 
mov(const Register & rd,const VRegister & vn,int vn_index)4353 void Assembler::mov(const Register& rd, const VRegister& vn, int vn_index) {
4354   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4355   VIXL_ASSERT(vn.GetSizeInBytes() >= 4);
4356   umov(rd, vn, vn_index);
4357 }
4358 
4359 
smov(const Register & rd,const VRegister & vn,int vn_index)4360 void Assembler::smov(const Register& rd, const VRegister& vn, int vn_index) {
4361   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4362   // We support vn arguments of the form vn.VxT() or vn.T(), where x is the
4363   // number of lanes, and T is b, h, s.
4364   int lane_size = vn.GetLaneSizeInBytes();
4365   NEONFormatField format;
4366   Instr q = 0;
4367   VIXL_ASSERT(lane_size != 8);
4368   switch (lane_size) {
4369     case 1:
4370       format = NEON_16B;
4371       break;
4372     case 2:
4373       format = NEON_8H;
4374       break;
4375     default:
4376       VIXL_ASSERT(lane_size == 4);
4377       VIXL_ASSERT(rd.IsX());
4378       format = NEON_4S;
4379       break;
4380   }
4381   q = rd.IsW() ? 0 : NEON_Q;
4382   VIXL_ASSERT(
4383       (0 <= vn_index) &&
4384       (vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
4385   Emit(q | NEON_SMOV | ImmNEON5(format, vn_index) | Rn(vn) | Rd(rd));
4386 }
4387 
4388 
cls(const VRegister & vd,const VRegister & vn)4389 void Assembler::cls(const VRegister& vd, const VRegister& vn) {
4390   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4391   VIXL_ASSERT(AreSameFormat(vd, vn));
4392   VIXL_ASSERT(!vd.Is1D() && !vd.Is2D());
4393   Emit(VFormat(vn) | NEON_CLS | Rn(vn) | Rd(vd));
4394 }
4395 
4396 
clz(const VRegister & vd,const VRegister & vn)4397 void Assembler::clz(const VRegister& vd, const VRegister& vn) {
4398   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4399   VIXL_ASSERT(AreSameFormat(vd, vn));
4400   VIXL_ASSERT(!vd.Is1D() && !vd.Is2D());
4401   Emit(VFormat(vn) | NEON_CLZ | Rn(vn) | Rd(vd));
4402 }
4403 
4404 
cnt(const VRegister & vd,const VRegister & vn)4405 void Assembler::cnt(const VRegister& vd, const VRegister& vn) {
4406   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4407   VIXL_ASSERT(AreSameFormat(vd, vn));
4408   VIXL_ASSERT(vd.Is8B() || vd.Is16B());
4409   Emit(VFormat(vn) | NEON_CNT | Rn(vn) | Rd(vd));
4410 }
4411 
4412 
rev16(const VRegister & vd,const VRegister & vn)4413 void Assembler::rev16(const VRegister& vd, const VRegister& vn) {
4414   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4415   VIXL_ASSERT(AreSameFormat(vd, vn));
4416   VIXL_ASSERT(vd.Is8B() || vd.Is16B());
4417   Emit(VFormat(vn) | NEON_REV16 | Rn(vn) | Rd(vd));
4418 }
4419 
4420 
rev32(const VRegister & vd,const VRegister & vn)4421 void Assembler::rev32(const VRegister& vd, const VRegister& vn) {
4422   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4423   VIXL_ASSERT(AreSameFormat(vd, vn));
4424   VIXL_ASSERT(vd.Is8B() || vd.Is16B() || vd.Is4H() || vd.Is8H());
4425   Emit(VFormat(vn) | NEON_REV32 | Rn(vn) | Rd(vd));
4426 }
4427 
4428 
rev64(const VRegister & vd,const VRegister & vn)4429 void Assembler::rev64(const VRegister& vd, const VRegister& vn) {
4430   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4431   VIXL_ASSERT(AreSameFormat(vd, vn));
4432   VIXL_ASSERT(!vd.Is1D() && !vd.Is2D());
4433   Emit(VFormat(vn) | NEON_REV64 | Rn(vn) | Rd(vd));
4434 }
4435 
4436 
ursqrte(const VRegister & vd,const VRegister & vn)4437 void Assembler::ursqrte(const VRegister& vd, const VRegister& vn) {
4438   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4439   VIXL_ASSERT(AreSameFormat(vd, vn));
4440   VIXL_ASSERT(vd.Is2S() || vd.Is4S());
4441   Emit(VFormat(vn) | NEON_URSQRTE | Rn(vn) | Rd(vd));
4442 }
4443 
4444 
urecpe(const VRegister & vd,const VRegister & vn)4445 void Assembler::urecpe(const VRegister& vd, const VRegister& vn) {
4446   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4447   VIXL_ASSERT(AreSameFormat(vd, vn));
4448   VIXL_ASSERT(vd.Is2S() || vd.Is4S());
4449   Emit(VFormat(vn) | NEON_URECPE | Rn(vn) | Rd(vd));
4450 }
4451 
4452 
NEONAddlp(const VRegister & vd,const VRegister & vn,NEON2RegMiscOp op)4453 void Assembler::NEONAddlp(const VRegister& vd,
4454                           const VRegister& vn,
4455                           NEON2RegMiscOp op) {
4456   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4457   VIXL_ASSERT((op == NEON_SADDLP) || (op == NEON_UADDLP) ||
4458               (op == NEON_SADALP) || (op == NEON_UADALP));
4459 
4460   VIXL_ASSERT((vn.Is8B() && vd.Is4H()) || (vn.Is4H() && vd.Is2S()) ||
4461               (vn.Is2S() && vd.Is1D()) || (vn.Is16B() && vd.Is8H()) ||
4462               (vn.Is8H() && vd.Is4S()) || (vn.Is4S() && vd.Is2D()));
4463   Emit(VFormat(vn) | op | Rn(vn) | Rd(vd));
4464 }
4465 
4466 
saddlp(const VRegister & vd,const VRegister & vn)4467 void Assembler::saddlp(const VRegister& vd, const VRegister& vn) {
4468   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4469   NEONAddlp(vd, vn, NEON_SADDLP);
4470 }
4471 
4472 
uaddlp(const VRegister & vd,const VRegister & vn)4473 void Assembler::uaddlp(const VRegister& vd, const VRegister& vn) {
4474   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4475   NEONAddlp(vd, vn, NEON_UADDLP);
4476 }
4477 
4478 
sadalp(const VRegister & vd,const VRegister & vn)4479 void Assembler::sadalp(const VRegister& vd, const VRegister& vn) {
4480   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4481   NEONAddlp(vd, vn, NEON_SADALP);
4482 }
4483 
4484 
uadalp(const VRegister & vd,const VRegister & vn)4485 void Assembler::uadalp(const VRegister& vd, const VRegister& vn) {
4486   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4487   NEONAddlp(vd, vn, NEON_UADALP);
4488 }
4489 
4490 
NEONAcrossLanesL(const VRegister & vd,const VRegister & vn,NEONAcrossLanesOp op)4491 void Assembler::NEONAcrossLanesL(const VRegister& vd,
4492                                  const VRegister& vn,
4493                                  NEONAcrossLanesOp op) {
4494   VIXL_ASSERT((vn.Is8B() && vd.Is1H()) || (vn.Is16B() && vd.Is1H()) ||
4495               (vn.Is4H() && vd.Is1S()) || (vn.Is8H() && vd.Is1S()) ||
4496               (vn.Is4S() && vd.Is1D()));
4497   Emit(VFormat(vn) | op | Rn(vn) | Rd(vd));
4498 }
4499 
4500 
saddlv(const VRegister & vd,const VRegister & vn)4501 void Assembler::saddlv(const VRegister& vd, const VRegister& vn) {
4502   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4503   NEONAcrossLanesL(vd, vn, NEON_SADDLV);
4504 }
4505 
4506 
uaddlv(const VRegister & vd,const VRegister & vn)4507 void Assembler::uaddlv(const VRegister& vd, const VRegister& vn) {
4508   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4509   NEONAcrossLanesL(vd, vn, NEON_UADDLV);
4510 }
4511 
4512 
NEONAcrossLanes(const VRegister & vd,const VRegister & vn,NEONAcrossLanesOp op,Instr op_half)4513 void Assembler::NEONAcrossLanes(const VRegister& vd,
4514                                 const VRegister& vn,
4515                                 NEONAcrossLanesOp op,
4516                                 Instr op_half) {
4517   VIXL_ASSERT((vn.Is8B() && vd.Is1B()) || (vn.Is16B() && vd.Is1B()) ||
4518               (vn.Is4H() && vd.Is1H()) || (vn.Is8H() && vd.Is1H()) ||
4519               (vn.Is4S() && vd.Is1S()));
4520   if ((op & NEONAcrossLanesFPFMask) == NEONAcrossLanesFPFixed) {
4521     if (vd.Is1H()) {
4522       VIXL_ASSERT(op_half != 0);
4523       Instr vop = op_half;
4524       if (vn.Is8H()) {
4525         vop |= NEON_Q;
4526       }
4527       Emit(vop | Rn(vn) | Rd(vd));
4528     } else {
4529       Emit(FPFormat(vn) | op | Rn(vn) | Rd(vd));
4530     }
4531   } else {
4532     Emit(VFormat(vn) | op | Rn(vn) | Rd(vd));
4533   }
4534 }
4535 
4536 // clang-format off
4537 #define NEON_ACROSSLANES_LIST(V)           \
4538   V(addv,    NEON_ADDV)                    \
4539   V(smaxv,   NEON_SMAXV)                   \
4540   V(sminv,   NEON_SMINV)                   \
4541   V(umaxv,   NEON_UMAXV)                   \
4542   V(uminv,   NEON_UMINV)
4543 // clang-format on
4544 
4545 #define DEFINE_ASM_FUNC(FN, OP)                                  \
4546   void Assembler::FN(const VRegister& vd, const VRegister& vn) { \
4547     VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));                     \
4548     NEONAcrossLanes(vd, vn, OP, 0);                              \
4549   }
4550 NEON_ACROSSLANES_LIST(DEFINE_ASM_FUNC)
4551 #undef DEFINE_ASM_FUNC
4552 
4553 
4554 // clang-format off
4555 #define NEON_ACROSSLANES_FP_LIST(V)   \
4556   V(fmaxv,   NEON_FMAXV,   NEON_FMAXV_H) \
4557   V(fminv,   NEON_FMINV,   NEON_FMINV_H) \
4558   V(fmaxnmv, NEON_FMAXNMV, NEON_FMAXNMV_H) \
4559   V(fminnmv, NEON_FMINNMV, NEON_FMINNMV_H) \
4560 // clang-format on
4561 
4562 #define DEFINE_ASM_FUNC(FN, OP, OP_H)                            \
4563   void Assembler::FN(const VRegister& vd, const VRegister& vn) { \
4564     VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));   \
4565     if (vd.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));  \
4566     VIXL_ASSERT(vd.Is1S() || vd.Is1H());                         \
4567     NEONAcrossLanes(vd, vn, OP, OP_H);                           \
4568   }
NEON_ACROSSLANES_FP_LIST(DEFINE_ASM_FUNC)4569 NEON_ACROSSLANES_FP_LIST(DEFINE_ASM_FUNC)
4570 #undef DEFINE_ASM_FUNC
4571 
4572 
4573 void Assembler::NEONPerm(const VRegister& vd,
4574                          const VRegister& vn,
4575                          const VRegister& vm,
4576                          NEONPermOp op) {
4577   VIXL_ASSERT(AreSameFormat(vd, vn, vm));
4578   VIXL_ASSERT(!vd.Is1D());
4579   Emit(VFormat(vd) | op | Rm(vm) | Rn(vn) | Rd(vd));
4580 }
4581 
4582 
trn1(const VRegister & vd,const VRegister & vn,const VRegister & vm)4583 void Assembler::trn1(const VRegister& vd,
4584                      const VRegister& vn,
4585                      const VRegister& vm) {
4586   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4587   NEONPerm(vd, vn, vm, NEON_TRN1);
4588 }
4589 
4590 
trn2(const VRegister & vd,const VRegister & vn,const VRegister & vm)4591 void Assembler::trn2(const VRegister& vd,
4592                      const VRegister& vn,
4593                      const VRegister& vm) {
4594   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4595   NEONPerm(vd, vn, vm, NEON_TRN2);
4596 }
4597 
4598 
uzp1(const VRegister & vd,const VRegister & vn,const VRegister & vm)4599 void Assembler::uzp1(const VRegister& vd,
4600                      const VRegister& vn,
4601                      const VRegister& vm) {
4602   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4603   NEONPerm(vd, vn, vm, NEON_UZP1);
4604 }
4605 
4606 
uzp2(const VRegister & vd,const VRegister & vn,const VRegister & vm)4607 void Assembler::uzp2(const VRegister& vd,
4608                      const VRegister& vn,
4609                      const VRegister& vm) {
4610   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4611   NEONPerm(vd, vn, vm, NEON_UZP2);
4612 }
4613 
4614 
zip1(const VRegister & vd,const VRegister & vn,const VRegister & vm)4615 void Assembler::zip1(const VRegister& vd,
4616                      const VRegister& vn,
4617                      const VRegister& vm) {
4618   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4619   NEONPerm(vd, vn, vm, NEON_ZIP1);
4620 }
4621 
4622 
zip2(const VRegister & vd,const VRegister & vn,const VRegister & vm)4623 void Assembler::zip2(const VRegister& vd,
4624                      const VRegister& vn,
4625                      const VRegister& vm) {
4626   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4627   NEONPerm(vd, vn, vm, NEON_ZIP2);
4628 }
4629 
4630 
NEONShiftImmediate(const VRegister & vd,const VRegister & vn,NEONShiftImmediateOp op,int immh_immb)4631 void Assembler::NEONShiftImmediate(const VRegister& vd,
4632                                    const VRegister& vn,
4633                                    NEONShiftImmediateOp op,
4634                                    int immh_immb) {
4635   VIXL_ASSERT(AreSameFormat(vd, vn));
4636   Instr q, scalar;
4637   if (vn.IsScalar()) {
4638     q = NEON_Q;
4639     scalar = NEONScalar;
4640   } else {
4641     q = vd.IsD() ? 0 : NEON_Q;
4642     scalar = 0;
4643   }
4644   Emit(q | op | scalar | immh_immb | Rn(vn) | Rd(vd));
4645 }
4646 
4647 
NEONShiftLeftImmediate(const VRegister & vd,const VRegister & vn,int shift,NEONShiftImmediateOp op)4648 void Assembler::NEONShiftLeftImmediate(const VRegister& vd,
4649                                        const VRegister& vn,
4650                                        int shift,
4651                                        NEONShiftImmediateOp op) {
4652   int laneSizeInBits = vn.GetLaneSizeInBits();
4653   VIXL_ASSERT((shift >= 0) && (shift < laneSizeInBits));
4654   NEONShiftImmediate(vd, vn, op, (laneSizeInBits + shift) << 16);
4655 }
4656 
4657 
NEONShiftRightImmediate(const VRegister & vd,const VRegister & vn,int shift,NEONShiftImmediateOp op)4658 void Assembler::NEONShiftRightImmediate(const VRegister& vd,
4659                                         const VRegister& vn,
4660                                         int shift,
4661                                         NEONShiftImmediateOp op) {
4662   int laneSizeInBits = vn.GetLaneSizeInBits();
4663   VIXL_ASSERT((shift >= 1) && (shift <= laneSizeInBits));
4664   NEONShiftImmediate(vd, vn, op, ((2 * laneSizeInBits) - shift) << 16);
4665 }
4666 
4667 
NEONShiftImmediateL(const VRegister & vd,const VRegister & vn,int shift,NEONShiftImmediateOp op)4668 void Assembler::NEONShiftImmediateL(const VRegister& vd,
4669                                     const VRegister& vn,
4670                                     int shift,
4671                                     NEONShiftImmediateOp op) {
4672   int laneSizeInBits = vn.GetLaneSizeInBits();
4673   VIXL_ASSERT((shift >= 0) && (shift < laneSizeInBits));
4674   int immh_immb = (laneSizeInBits + shift) << 16;
4675 
4676   VIXL_ASSERT((vn.Is8B() && vd.Is8H()) || (vn.Is4H() && vd.Is4S()) ||
4677               (vn.Is2S() && vd.Is2D()) || (vn.Is16B() && vd.Is8H()) ||
4678               (vn.Is8H() && vd.Is4S()) || (vn.Is4S() && vd.Is2D()));
4679   Instr q;
4680   q = vn.IsD() ? 0 : NEON_Q;
4681   Emit(q | op | immh_immb | Rn(vn) | Rd(vd));
4682 }
4683 
4684 
NEONShiftImmediateN(const VRegister & vd,const VRegister & vn,int shift,NEONShiftImmediateOp op)4685 void Assembler::NEONShiftImmediateN(const VRegister& vd,
4686                                     const VRegister& vn,
4687                                     int shift,
4688                                     NEONShiftImmediateOp op) {
4689   Instr q, scalar;
4690   int laneSizeInBits = vd.GetLaneSizeInBits();
4691   VIXL_ASSERT((shift >= 1) && (shift <= laneSizeInBits));
4692   int immh_immb = (2 * laneSizeInBits - shift) << 16;
4693 
4694   if (vn.IsScalar()) {
4695     VIXL_ASSERT((vd.Is1B() && vn.Is1H()) || (vd.Is1H() && vn.Is1S()) ||
4696                 (vd.Is1S() && vn.Is1D()));
4697     q = NEON_Q;
4698     scalar = NEONScalar;
4699   } else {
4700     VIXL_ASSERT((vd.Is8B() && vn.Is8H()) || (vd.Is4H() && vn.Is4S()) ||
4701                 (vd.Is2S() && vn.Is2D()) || (vd.Is16B() && vn.Is8H()) ||
4702                 (vd.Is8H() && vn.Is4S()) || (vd.Is4S() && vn.Is2D()));
4703     scalar = 0;
4704     q = vd.IsD() ? 0 : NEON_Q;
4705   }
4706   Emit(q | op | scalar | immh_immb | Rn(vn) | Rd(vd));
4707 }
4708 
4709 
shl(const VRegister & vd,const VRegister & vn,int shift)4710 void Assembler::shl(const VRegister& vd, const VRegister& vn, int shift) {
4711   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4712   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
4713   NEONShiftLeftImmediate(vd, vn, shift, NEON_SHL);
4714 }
4715 
4716 
sli(const VRegister & vd,const VRegister & vn,int shift)4717 void Assembler::sli(const VRegister& vd, const VRegister& vn, int shift) {
4718   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4719   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
4720   NEONShiftLeftImmediate(vd, vn, shift, NEON_SLI);
4721 }
4722 
4723 
sqshl(const VRegister & vd,const VRegister & vn,int shift)4724 void Assembler::sqshl(const VRegister& vd, const VRegister& vn, int shift) {
4725   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4726   NEONShiftLeftImmediate(vd, vn, shift, NEON_SQSHL_imm);
4727 }
4728 
4729 
sqshlu(const VRegister & vd,const VRegister & vn,int shift)4730 void Assembler::sqshlu(const VRegister& vd, const VRegister& vn, int shift) {
4731   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4732   NEONShiftLeftImmediate(vd, vn, shift, NEON_SQSHLU);
4733 }
4734 
4735 
uqshl(const VRegister & vd,const VRegister & vn,int shift)4736 void Assembler::uqshl(const VRegister& vd, const VRegister& vn, int shift) {
4737   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4738   NEONShiftLeftImmediate(vd, vn, shift, NEON_UQSHL_imm);
4739 }
4740 
4741 
sshll(const VRegister & vd,const VRegister & vn,int shift)4742 void Assembler::sshll(const VRegister& vd, const VRegister& vn, int shift) {
4743   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4744   VIXL_ASSERT(vn.IsD());
4745   NEONShiftImmediateL(vd, vn, shift, NEON_SSHLL);
4746 }
4747 
4748 
sshll2(const VRegister & vd,const VRegister & vn,int shift)4749 void Assembler::sshll2(const VRegister& vd, const VRegister& vn, int shift) {
4750   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4751   VIXL_ASSERT(vn.IsQ());
4752   NEONShiftImmediateL(vd, vn, shift, NEON_SSHLL);
4753 }
4754 
4755 
sxtl(const VRegister & vd,const VRegister & vn)4756 void Assembler::sxtl(const VRegister& vd, const VRegister& vn) {
4757   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4758   sshll(vd, vn, 0);
4759 }
4760 
4761 
sxtl2(const VRegister & vd,const VRegister & vn)4762 void Assembler::sxtl2(const VRegister& vd, const VRegister& vn) {
4763   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4764   sshll2(vd, vn, 0);
4765 }
4766 
4767 
ushll(const VRegister & vd,const VRegister & vn,int shift)4768 void Assembler::ushll(const VRegister& vd, const VRegister& vn, int shift) {
4769   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4770   VIXL_ASSERT(vn.IsD());
4771   NEONShiftImmediateL(vd, vn, shift, NEON_USHLL);
4772 }
4773 
4774 
ushll2(const VRegister & vd,const VRegister & vn,int shift)4775 void Assembler::ushll2(const VRegister& vd, const VRegister& vn, int shift) {
4776   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4777   VIXL_ASSERT(vn.IsQ());
4778   NEONShiftImmediateL(vd, vn, shift, NEON_USHLL);
4779 }
4780 
4781 
uxtl(const VRegister & vd,const VRegister & vn)4782 void Assembler::uxtl(const VRegister& vd, const VRegister& vn) {
4783   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4784   ushll(vd, vn, 0);
4785 }
4786 
4787 
uxtl2(const VRegister & vd,const VRegister & vn)4788 void Assembler::uxtl2(const VRegister& vd, const VRegister& vn) {
4789   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4790   ushll2(vd, vn, 0);
4791 }
4792 
4793 
sri(const VRegister & vd,const VRegister & vn,int shift)4794 void Assembler::sri(const VRegister& vd, const VRegister& vn, int shift) {
4795   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4796   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
4797   NEONShiftRightImmediate(vd, vn, shift, NEON_SRI);
4798 }
4799 
4800 
sshr(const VRegister & vd,const VRegister & vn,int shift)4801 void Assembler::sshr(const VRegister& vd, const VRegister& vn, int shift) {
4802   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4803   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
4804   NEONShiftRightImmediate(vd, vn, shift, NEON_SSHR);
4805 }
4806 
4807 
ushr(const VRegister & vd,const VRegister & vn,int shift)4808 void Assembler::ushr(const VRegister& vd, const VRegister& vn, int shift) {
4809   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4810   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
4811   NEONShiftRightImmediate(vd, vn, shift, NEON_USHR);
4812 }
4813 
4814 
srshr(const VRegister & vd,const VRegister & vn,int shift)4815 void Assembler::srshr(const VRegister& vd, const VRegister& vn, int shift) {
4816   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4817   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
4818   NEONShiftRightImmediate(vd, vn, shift, NEON_SRSHR);
4819 }
4820 
4821 
urshr(const VRegister & vd,const VRegister & vn,int shift)4822 void Assembler::urshr(const VRegister& vd, const VRegister& vn, int shift) {
4823   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4824   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
4825   NEONShiftRightImmediate(vd, vn, shift, NEON_URSHR);
4826 }
4827 
4828 
ssra(const VRegister & vd,const VRegister & vn,int shift)4829 void Assembler::ssra(const VRegister& vd, const VRegister& vn, int shift) {
4830   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4831   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
4832   NEONShiftRightImmediate(vd, vn, shift, NEON_SSRA);
4833 }
4834 
4835 
usra(const VRegister & vd,const VRegister & vn,int shift)4836 void Assembler::usra(const VRegister& vd, const VRegister& vn, int shift) {
4837   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4838   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
4839   NEONShiftRightImmediate(vd, vn, shift, NEON_USRA);
4840 }
4841 
4842 
srsra(const VRegister & vd,const VRegister & vn,int shift)4843 void Assembler::srsra(const VRegister& vd, const VRegister& vn, int shift) {
4844   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4845   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
4846   NEONShiftRightImmediate(vd, vn, shift, NEON_SRSRA);
4847 }
4848 
4849 
ursra(const VRegister & vd,const VRegister & vn,int shift)4850 void Assembler::ursra(const VRegister& vd, const VRegister& vn, int shift) {
4851   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4852   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
4853   NEONShiftRightImmediate(vd, vn, shift, NEON_URSRA);
4854 }
4855 
4856 
shrn(const VRegister & vd,const VRegister & vn,int shift)4857 void Assembler::shrn(const VRegister& vd, const VRegister& vn, int shift) {
4858   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4859   VIXL_ASSERT(vn.IsVector() && vd.IsD());
4860   NEONShiftImmediateN(vd, vn, shift, NEON_SHRN);
4861 }
4862 
4863 
shrn2(const VRegister & vd,const VRegister & vn,int shift)4864 void Assembler::shrn2(const VRegister& vd, const VRegister& vn, int shift) {
4865   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4866   VIXL_ASSERT(vn.IsVector() && vd.IsQ());
4867   NEONShiftImmediateN(vd, vn, shift, NEON_SHRN);
4868 }
4869 
4870 
rshrn(const VRegister & vd,const VRegister & vn,int shift)4871 void Assembler::rshrn(const VRegister& vd, const VRegister& vn, int shift) {
4872   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4873   VIXL_ASSERT(vn.IsVector() && vd.IsD());
4874   NEONShiftImmediateN(vd, vn, shift, NEON_RSHRN);
4875 }
4876 
4877 
rshrn2(const VRegister & vd,const VRegister & vn,int shift)4878 void Assembler::rshrn2(const VRegister& vd, const VRegister& vn, int shift) {
4879   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4880   VIXL_ASSERT(vn.IsVector() && vd.IsQ());
4881   NEONShiftImmediateN(vd, vn, shift, NEON_RSHRN);
4882 }
4883 
4884 
sqshrn(const VRegister & vd,const VRegister & vn,int shift)4885 void Assembler::sqshrn(const VRegister& vd, const VRegister& vn, int shift) {
4886   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4887   VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
4888   NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRN);
4889 }
4890 
4891 
sqshrn2(const VRegister & vd,const VRegister & vn,int shift)4892 void Assembler::sqshrn2(const VRegister& vd, const VRegister& vn, int shift) {
4893   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4894   VIXL_ASSERT(vn.IsVector() && vd.IsQ());
4895   NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRN);
4896 }
4897 
4898 
sqrshrn(const VRegister & vd,const VRegister & vn,int shift)4899 void Assembler::sqrshrn(const VRegister& vd, const VRegister& vn, int shift) {
4900   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4901   VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
4902   NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRN);
4903 }
4904 
4905 
sqrshrn2(const VRegister & vd,const VRegister & vn,int shift)4906 void Assembler::sqrshrn2(const VRegister& vd, const VRegister& vn, int shift) {
4907   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4908   VIXL_ASSERT(vn.IsVector() && vd.IsQ());
4909   NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRN);
4910 }
4911 
4912 
sqshrun(const VRegister & vd,const VRegister & vn,int shift)4913 void Assembler::sqshrun(const VRegister& vd, const VRegister& vn, int shift) {
4914   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4915   VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
4916   NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRUN);
4917 }
4918 
4919 
sqshrun2(const VRegister & vd,const VRegister & vn,int shift)4920 void Assembler::sqshrun2(const VRegister& vd, const VRegister& vn, int shift) {
4921   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4922   VIXL_ASSERT(vn.IsVector() && vd.IsQ());
4923   NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRUN);
4924 }
4925 
4926 
sqrshrun(const VRegister & vd,const VRegister & vn,int shift)4927 void Assembler::sqrshrun(const VRegister& vd, const VRegister& vn, int shift) {
4928   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4929   VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
4930   NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRUN);
4931 }
4932 
4933 
sqrshrun2(const VRegister & vd,const VRegister & vn,int shift)4934 void Assembler::sqrshrun2(const VRegister& vd, const VRegister& vn, int shift) {
4935   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4936   VIXL_ASSERT(vn.IsVector() && vd.IsQ());
4937   NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRUN);
4938 }
4939 
4940 
uqshrn(const VRegister & vd,const VRegister & vn,int shift)4941 void Assembler::uqshrn(const VRegister& vd, const VRegister& vn, int shift) {
4942   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4943   VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
4944   NEONShiftImmediateN(vd, vn, shift, NEON_UQSHRN);
4945 }
4946 
4947 
uqshrn2(const VRegister & vd,const VRegister & vn,int shift)4948 void Assembler::uqshrn2(const VRegister& vd, const VRegister& vn, int shift) {
4949   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4950   VIXL_ASSERT(vn.IsVector() && vd.IsQ());
4951   NEONShiftImmediateN(vd, vn, shift, NEON_UQSHRN);
4952 }
4953 
4954 
uqrshrn(const VRegister & vd,const VRegister & vn,int shift)4955 void Assembler::uqrshrn(const VRegister& vd, const VRegister& vn, int shift) {
4956   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4957   VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
4958   NEONShiftImmediateN(vd, vn, shift, NEON_UQRSHRN);
4959 }
4960 
4961 
uqrshrn2(const VRegister & vd,const VRegister & vn,int shift)4962 void Assembler::uqrshrn2(const VRegister& vd, const VRegister& vn, int shift) {
4963   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4964   VIXL_ASSERT(vn.IsVector() && vd.IsQ());
4965   NEONShiftImmediateN(vd, vn, shift, NEON_UQRSHRN);
4966 }
4967 
4968 
4969 // Note:
4970 // For all ToImm instructions below, a difference in case
4971 // for the same letter indicates a negated bit.
4972 // If b is 1, then B is 0.
FP16ToImm8(Float16 imm)4973 uint32_t Assembler::FP16ToImm8(Float16 imm) {
4974   VIXL_ASSERT(IsImmFP16(imm));
4975   // Half: aBbb.cdef.gh00.0000 (16 bits)
4976   uint16_t bits = Float16ToRawbits(imm);
4977   // bit7: a000.0000
4978   uint16_t bit7 = ((bits >> 15) & 0x1) << 7;
4979   // bit6: 0b00.0000
4980   uint16_t bit6 = ((bits >> 13) & 0x1) << 6;
4981   // bit5_to_0: 00cd.efgh
4982   uint16_t bit5_to_0 = (bits >> 6) & 0x3f;
4983   uint32_t result = static_cast<uint32_t>(bit7 | bit6 | bit5_to_0);
4984   return result;
4985 }
4986 
4987 
ImmFP16(Float16 imm)4988 Instr Assembler::ImmFP16(Float16 imm) {
4989   return FP16ToImm8(imm) << ImmFP_offset;
4990 }
4991 
4992 
FP32ToImm8(float imm)4993 uint32_t Assembler::FP32ToImm8(float imm) {
4994   VIXL_ASSERT(IsImmFP32(imm));
4995   // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
4996   uint32_t bits = FloatToRawbits(imm);
4997   // bit7: a000.0000
4998   uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
4999   // bit6: 0b00.0000
5000   uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
5001   // bit5_to_0: 00cd.efgh
5002   uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
5003 
5004   return bit7 | bit6 | bit5_to_0;
5005 }
5006 
5007 
ImmFP32(float imm)5008 Instr Assembler::ImmFP32(float imm) { return FP32ToImm8(imm) << ImmFP_offset; }
5009 
5010 
FP64ToImm8(double imm)5011 uint32_t Assembler::FP64ToImm8(double imm) {
5012   VIXL_ASSERT(IsImmFP64(imm));
5013   // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
5014   //       0000.0000.0000.0000.0000.0000.0000.0000
5015   uint64_t bits = DoubleToRawbits(imm);
5016   // bit7: a000.0000
5017   uint64_t bit7 = ((bits >> 63) & 0x1) << 7;
5018   // bit6: 0b00.0000
5019   uint64_t bit6 = ((bits >> 61) & 0x1) << 6;
5020   // bit5_to_0: 00cd.efgh
5021   uint64_t bit5_to_0 = (bits >> 48) & 0x3f;
5022 
5023   return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0);
5024 }
5025 
5026 
ImmFP64(double imm)5027 Instr Assembler::ImmFP64(double imm) { return FP64ToImm8(imm) << ImmFP_offset; }
5028 
5029 
5030 // Code generation helpers.
MoveWide(const Register & rd,uint64_t imm,int shift,MoveWideImmediateOp mov_op)5031 void Assembler::MoveWide(const Register& rd,
5032                          uint64_t imm,
5033                          int shift,
5034                          MoveWideImmediateOp mov_op) {
5035   // Ignore the top 32 bits of an immediate if we're moving to a W register.
5036   if (rd.Is32Bits()) {
5037     // Check that the top 32 bits are zero (a positive 32-bit number) or top
5038     // 33 bits are one (a negative 32-bit number, sign extended to 64 bits).
5039     VIXL_ASSERT(((imm >> kWRegSize) == 0) ||
5040                 ((imm >> (kWRegSize - 1)) == 0x1ffffffff));
5041     imm &= kWRegMask;
5042   }
5043 
5044   if (shift >= 0) {
5045     // Explicit shift specified.
5046     VIXL_ASSERT((shift == 0) || (shift == 16) || (shift == 32) ||
5047                 (shift == 48));
5048     VIXL_ASSERT(rd.Is64Bits() || (shift == 0) || (shift == 16));
5049     shift /= 16;
5050   } else {
5051     // Calculate a new immediate and shift combination to encode the immediate
5052     // argument.
5053     shift = 0;
5054     if ((imm & 0xffffffffffff0000) == 0) {
5055       // Nothing to do.
5056     } else if ((imm & 0xffffffff0000ffff) == 0) {
5057       imm >>= 16;
5058       shift = 1;
5059     } else if ((imm & 0xffff0000ffffffff) == 0) {
5060       VIXL_ASSERT(rd.Is64Bits());
5061       imm >>= 32;
5062       shift = 2;
5063     } else if ((imm & 0x0000ffffffffffff) == 0) {
5064       VIXL_ASSERT(rd.Is64Bits());
5065       imm >>= 48;
5066       shift = 3;
5067     }
5068   }
5069 
5070   VIXL_ASSERT(IsUint16(imm));
5071 
5072   Emit(SF(rd) | MoveWideImmediateFixed | mov_op | Rd(rd) | ImmMoveWide(imm) |
5073        ShiftMoveWide(shift));
5074 }
5075 
5076 
AddSub(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubOp op)5077 void Assembler::AddSub(const Register& rd,
5078                        const Register& rn,
5079                        const Operand& operand,
5080                        FlagsUpdate S,
5081                        AddSubOp op) {
5082   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
5083   if (operand.IsImmediate()) {
5084     int64_t immediate = operand.GetImmediate();
5085     VIXL_ASSERT(IsImmAddSub(immediate));
5086     Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
5087     Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) |
5088          ImmAddSub(static_cast<int>(immediate)) | dest_reg | RnSP(rn));
5089   } else if (operand.IsShiftedRegister()) {
5090     VIXL_ASSERT(operand.GetRegister().GetSizeInBits() == rd.GetSizeInBits());
5091     VIXL_ASSERT(operand.GetShift() != ROR);
5092 
5093     // For instructions of the form:
5094     //   add/sub   wsp, <Wn>, <Wm> [, LSL #0-3 ]
5095     //   add/sub   <Wd>, wsp, <Wm> [, LSL #0-3 ]
5096     //   add/sub   wsp, wsp, <Wm> [, LSL #0-3 ]
5097     //   adds/subs <Wd>, wsp, <Wm> [, LSL #0-3 ]
5098     // or their 64-bit register equivalents, convert the operand from shifted to
5099     // extended register mode, and emit an add/sub extended instruction.
5100     if (rn.IsSP() || rd.IsSP()) {
5101       VIXL_ASSERT(!(rd.IsSP() && (S == SetFlags)));
5102       DataProcExtendedRegister(rd,
5103                                rn,
5104                                operand.ToExtendedRegister(),
5105                                S,
5106                                AddSubExtendedFixed | op);
5107     } else {
5108       DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op);
5109     }
5110   } else {
5111     VIXL_ASSERT(operand.IsExtendedRegister());
5112     DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op);
5113   }
5114 }
5115 
5116 
AddSubWithCarry(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubWithCarryOp op)5117 void Assembler::AddSubWithCarry(const Register& rd,
5118                                 const Register& rn,
5119                                 const Operand& operand,
5120                                 FlagsUpdate S,
5121                                 AddSubWithCarryOp op) {
5122   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
5123   VIXL_ASSERT(rd.GetSizeInBits() == operand.GetRegister().GetSizeInBits());
5124   VIXL_ASSERT(operand.IsShiftedRegister() && (operand.GetShiftAmount() == 0));
5125   Emit(SF(rd) | op | Flags(S) | Rm(operand.GetRegister()) | Rn(rn) | Rd(rd));
5126 }
5127 
5128 
hlt(int code)5129 void Assembler::hlt(int code) {
5130   VIXL_ASSERT(IsUint16(code));
5131   Emit(HLT | ImmException(code));
5132 }
5133 
5134 
brk(int code)5135 void Assembler::brk(int code) {
5136   VIXL_ASSERT(IsUint16(code));
5137   Emit(BRK | ImmException(code));
5138 }
5139 
5140 
svc(int code)5141 void Assembler::svc(int code) { Emit(SVC | ImmException(code)); }
5142 
5143 
5144 // TODO(all): The third parameter should be passed by reference but gcc 4.8.2
5145 // reports a bogus uninitialised warning then.
Logical(const Register & rd,const Register & rn,const Operand operand,LogicalOp op)5146 void Assembler::Logical(const Register& rd,
5147                         const Register& rn,
5148                         const Operand operand,
5149                         LogicalOp op) {
5150   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
5151   if (operand.IsImmediate()) {
5152     int64_t immediate = operand.GetImmediate();
5153     unsigned reg_size = rd.GetSizeInBits();
5154 
5155     VIXL_ASSERT(immediate != 0);
5156     VIXL_ASSERT(immediate != -1);
5157     VIXL_ASSERT(rd.Is64Bits() || IsUint32(immediate));
5158 
5159     // If the operation is NOT, invert the operation and immediate.
5160     if ((op & NOT) == NOT) {
5161       op = static_cast<LogicalOp>(op & ~NOT);
5162       immediate = rd.Is64Bits() ? ~immediate : (~immediate & kWRegMask);
5163     }
5164 
5165     unsigned n, imm_s, imm_r;
5166     if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
5167       // Immediate can be encoded in the instruction.
5168       LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
5169     } else {
5170       // This case is handled in the macro assembler.
5171       VIXL_UNREACHABLE();
5172     }
5173   } else {
5174     VIXL_ASSERT(operand.IsShiftedRegister());
5175     VIXL_ASSERT(operand.GetRegister().GetSizeInBits() == rd.GetSizeInBits());
5176     Instr dp_op = static_cast<Instr>(op | LogicalShiftedFixed);
5177     DataProcShiftedRegister(rd, rn, operand, LeaveFlags, dp_op);
5178   }
5179 }
5180 
5181 
LogicalImmediate(const Register & rd,const Register & rn,unsigned n,unsigned imm_s,unsigned imm_r,LogicalOp op)5182 void Assembler::LogicalImmediate(const Register& rd,
5183                                  const Register& rn,
5184                                  unsigned n,
5185                                  unsigned imm_s,
5186                                  unsigned imm_r,
5187                                  LogicalOp op) {
5188   unsigned reg_size = rd.GetSizeInBits();
5189   Instr dest_reg = (op == ANDS) ? Rd(rd) : RdSP(rd);
5190   Emit(SF(rd) | LogicalImmediateFixed | op | BitN(n, reg_size) |
5191        ImmSetBits(imm_s, reg_size) | ImmRotate(imm_r, reg_size) | dest_reg |
5192        Rn(rn));
5193 }
5194 
5195 
ConditionalCompare(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond,ConditionalCompareOp op)5196 void Assembler::ConditionalCompare(const Register& rn,
5197                                    const Operand& operand,
5198                                    StatusFlags nzcv,
5199                                    Condition cond,
5200                                    ConditionalCompareOp op) {
5201   Instr ccmpop;
5202   if (operand.IsImmediate()) {
5203     int64_t immediate = operand.GetImmediate();
5204     VIXL_ASSERT(IsImmConditionalCompare(immediate));
5205     ccmpop = ConditionalCompareImmediateFixed | op |
5206              ImmCondCmp(static_cast<unsigned>(immediate));
5207   } else {
5208     VIXL_ASSERT(operand.IsShiftedRegister() && (operand.GetShiftAmount() == 0));
5209     ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.GetRegister());
5210   }
5211   Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv));
5212 }
5213 
5214 
DataProcessing1Source(const Register & rd,const Register & rn,DataProcessing1SourceOp op)5215 void Assembler::DataProcessing1Source(const Register& rd,
5216                                       const Register& rn,
5217                                       DataProcessing1SourceOp op) {
5218   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
5219   Emit(SF(rn) | op | Rn(rn) | Rd(rd));
5220 }
5221 
5222 
FPDataProcessing1Source(const VRegister & vd,const VRegister & vn,FPDataProcessing1SourceOp op)5223 void Assembler::FPDataProcessing1Source(const VRegister& vd,
5224                                         const VRegister& vn,
5225                                         FPDataProcessing1SourceOp op) {
5226   VIXL_ASSERT(vd.Is1H() || vd.Is1S() || vd.Is1D());
5227   Emit(FPType(vn) | op | Rn(vn) | Rd(vd));
5228 }
5229 
5230 
FPDataProcessing3Source(const VRegister & vd,const VRegister & vn,const VRegister & vm,const VRegister & va,FPDataProcessing3SourceOp op)5231 void Assembler::FPDataProcessing3Source(const VRegister& vd,
5232                                         const VRegister& vn,
5233                                         const VRegister& vm,
5234                                         const VRegister& va,
5235                                         FPDataProcessing3SourceOp op) {
5236   VIXL_ASSERT(vd.Is1H() || vd.Is1S() || vd.Is1D());
5237   VIXL_ASSERT(AreSameSizeAndType(vd, vn, vm, va));
5238   Emit(FPType(vd) | op | Rm(vm) | Rn(vn) | Rd(vd) | Ra(va));
5239 }
5240 
5241 
NEONModifiedImmShiftLsl(const VRegister & vd,const int imm8,const int left_shift,NEONModifiedImmediateOp op)5242 void Assembler::NEONModifiedImmShiftLsl(const VRegister& vd,
5243                                         const int imm8,
5244                                         const int left_shift,
5245                                         NEONModifiedImmediateOp op) {
5246   VIXL_ASSERT(vd.Is8B() || vd.Is16B() || vd.Is4H() || vd.Is8H() || vd.Is2S() ||
5247               vd.Is4S());
5248   VIXL_ASSERT((left_shift == 0) || (left_shift == 8) || (left_shift == 16) ||
5249               (left_shift == 24));
5250   VIXL_ASSERT(IsUint8(imm8));
5251 
5252   int cmode_1, cmode_2, cmode_3;
5253   if (vd.Is8B() || vd.Is16B()) {
5254     VIXL_ASSERT(op == NEONModifiedImmediate_MOVI);
5255     cmode_1 = 1;
5256     cmode_2 = 1;
5257     cmode_3 = 1;
5258   } else {
5259     cmode_1 = (left_shift >> 3) & 1;
5260     cmode_2 = left_shift >> 4;
5261     cmode_3 = 0;
5262     if (vd.Is4H() || vd.Is8H()) {
5263       VIXL_ASSERT((left_shift == 0) || (left_shift == 8));
5264       cmode_3 = 1;
5265     }
5266   }
5267   int cmode = (cmode_3 << 3) | (cmode_2 << 2) | (cmode_1 << 1);
5268 
5269   int q = vd.IsQ() ? NEON_Q : 0;
5270 
5271   Emit(q | op | ImmNEONabcdefgh(imm8) | NEONCmode(cmode) | Rd(vd));
5272 }
5273 
5274 
NEONModifiedImmShiftMsl(const VRegister & vd,const int imm8,const int shift_amount,NEONModifiedImmediateOp op)5275 void Assembler::NEONModifiedImmShiftMsl(const VRegister& vd,
5276                                         const int imm8,
5277                                         const int shift_amount,
5278                                         NEONModifiedImmediateOp op) {
5279   VIXL_ASSERT(vd.Is2S() || vd.Is4S());
5280   VIXL_ASSERT((shift_amount == 8) || (shift_amount == 16));
5281   VIXL_ASSERT(IsUint8(imm8));
5282 
5283   int cmode_0 = (shift_amount >> 4) & 1;
5284   int cmode = 0xc | cmode_0;
5285 
5286   int q = vd.IsQ() ? NEON_Q : 0;
5287 
5288   Emit(q | op | ImmNEONabcdefgh(imm8) | NEONCmode(cmode) | Rd(vd));
5289 }
5290 
5291 
EmitShift(const Register & rd,const Register & rn,Shift shift,unsigned shift_amount)5292 void Assembler::EmitShift(const Register& rd,
5293                           const Register& rn,
5294                           Shift shift,
5295                           unsigned shift_amount) {
5296   switch (shift) {
5297     case LSL:
5298       lsl(rd, rn, shift_amount);
5299       break;
5300     case LSR:
5301       lsr(rd, rn, shift_amount);
5302       break;
5303     case ASR:
5304       asr(rd, rn, shift_amount);
5305       break;
5306     case ROR:
5307       ror(rd, rn, shift_amount);
5308       break;
5309     default:
5310       VIXL_UNREACHABLE();
5311   }
5312 }
5313 
5314 
EmitExtendShift(const Register & rd,const Register & rn,Extend extend,unsigned left_shift)5315 void Assembler::EmitExtendShift(const Register& rd,
5316                                 const Register& rn,
5317                                 Extend extend,
5318                                 unsigned left_shift) {
5319   VIXL_ASSERT(rd.GetSizeInBits() >= rn.GetSizeInBits());
5320   unsigned reg_size = rd.GetSizeInBits();
5321   // Use the correct size of register.
5322   Register rn_ = Register(rn.GetCode(), rd.GetSizeInBits());
5323   // Bits extracted are high_bit:0.
5324   unsigned high_bit = (8 << (extend & 0x3)) - 1;
5325   // Number of bits left in the result that are not introduced by the shift.
5326   unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1);
5327 
5328   if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) {
5329     switch (extend) {
5330       case UXTB:
5331       case UXTH:
5332       case UXTW:
5333         ubfm(rd, rn_, non_shift_bits, high_bit);
5334         break;
5335       case SXTB:
5336       case SXTH:
5337       case SXTW:
5338         sbfm(rd, rn_, non_shift_bits, high_bit);
5339         break;
5340       case UXTX:
5341       case SXTX: {
5342         VIXL_ASSERT(rn.GetSizeInBits() == kXRegSize);
5343         // Nothing to extend. Just shift.
5344         lsl(rd, rn_, left_shift);
5345         break;
5346       }
5347       default:
5348         VIXL_UNREACHABLE();
5349     }
5350   } else {
5351     // No need to extend as the extended bits would be shifted away.
5352     lsl(rd, rn_, left_shift);
5353   }
5354 }
5355 
5356 
DataProcShiftedRegister(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,Instr op)5357 void Assembler::DataProcShiftedRegister(const Register& rd,
5358                                         const Register& rn,
5359                                         const Operand& operand,
5360                                         FlagsUpdate S,
5361                                         Instr op) {
5362   VIXL_ASSERT(operand.IsShiftedRegister());
5363   VIXL_ASSERT(rn.Is64Bits() ||
5364               (rn.Is32Bits() && IsUint5(operand.GetShiftAmount())));
5365   Emit(SF(rd) | op | Flags(S) | ShiftDP(operand.GetShift()) |
5366        ImmDPShift(operand.GetShiftAmount()) | Rm(operand.GetRegister()) |
5367        Rn(rn) | Rd(rd));
5368 }
5369 
5370 
DataProcExtendedRegister(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,Instr op)5371 void Assembler::DataProcExtendedRegister(const Register& rd,
5372                                          const Register& rn,
5373                                          const Operand& operand,
5374                                          FlagsUpdate S,
5375                                          Instr op) {
5376   Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
5377   Emit(SF(rd) | op | Flags(S) | Rm(operand.GetRegister()) |
5378        ExtendMode(operand.GetExtend()) |
5379        ImmExtendShift(operand.GetShiftAmount()) | dest_reg | RnSP(rn));
5380 }
5381 
5382 
LoadStoreMemOperand(const MemOperand & addr,unsigned access_size,LoadStoreScalingOption option)5383 Instr Assembler::LoadStoreMemOperand(const MemOperand& addr,
5384                                      unsigned access_size,
5385                                      LoadStoreScalingOption option) {
5386   Instr base = RnSP(addr.GetBaseRegister());
5387   int64_t offset = addr.GetOffset();
5388 
5389   if (addr.IsImmediateOffset()) {
5390     bool prefer_unscaled =
5391         (option == PreferUnscaledOffset) || (option == RequireUnscaledOffset);
5392     if (prefer_unscaled && IsImmLSUnscaled(offset)) {
5393       // Use the unscaled addressing mode.
5394       return base | LoadStoreUnscaledOffsetFixed |
5395              ImmLS(static_cast<int>(offset));
5396     }
5397 
5398     if ((option != RequireUnscaledOffset) &&
5399         IsImmLSScaled(offset, access_size)) {
5400       // Use the scaled addressing mode.
5401       return base | LoadStoreUnsignedOffsetFixed |
5402              ImmLSUnsigned(static_cast<int>(offset) >> access_size);
5403     }
5404 
5405     if ((option != RequireScaledOffset) && IsImmLSUnscaled(offset)) {
5406       // Use the unscaled addressing mode.
5407       return base | LoadStoreUnscaledOffsetFixed |
5408              ImmLS(static_cast<int>(offset));
5409     }
5410   }
5411 
5412   // All remaining addressing modes are register-offset, pre-indexed or
5413   // post-indexed modes.
5414   VIXL_ASSERT((option != RequireUnscaledOffset) &&
5415               (option != RequireScaledOffset));
5416 
5417   if (addr.IsRegisterOffset()) {
5418     Extend ext = addr.GetExtend();
5419     Shift shift = addr.GetShift();
5420     unsigned shift_amount = addr.GetShiftAmount();
5421 
5422     // LSL is encoded in the option field as UXTX.
5423     if (shift == LSL) {
5424       ext = UXTX;
5425     }
5426 
5427     // Shifts are encoded in one bit, indicating a left shift by the memory
5428     // access size.
5429     VIXL_ASSERT((shift_amount == 0) || (shift_amount == access_size));
5430     return base | LoadStoreRegisterOffsetFixed | Rm(addr.GetRegisterOffset()) |
5431            ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0);
5432   }
5433 
5434   if (addr.IsPreIndex() && IsImmLSUnscaled(offset)) {
5435     return base | LoadStorePreIndexFixed | ImmLS(static_cast<int>(offset));
5436   }
5437 
5438   if (addr.IsPostIndex() && IsImmLSUnscaled(offset)) {
5439     return base | LoadStorePostIndexFixed | ImmLS(static_cast<int>(offset));
5440   }
5441 
5442   // If this point is reached, the MemOperand (addr) cannot be encoded.
5443   VIXL_UNREACHABLE();
5444   return 0;
5445 }
5446 
5447 
LoadStore(const CPURegister & rt,const MemOperand & addr,LoadStoreOp op,LoadStoreScalingOption option)5448 void Assembler::LoadStore(const CPURegister& rt,
5449                           const MemOperand& addr,
5450                           LoadStoreOp op,
5451                           LoadStoreScalingOption option) {
5452   VIXL_ASSERT(CPUHas(rt));
5453   Emit(op | Rt(rt) | LoadStoreMemOperand(addr, CalcLSDataSize(op), option));
5454 }
5455 
5456 
Prefetch(PrefetchOperation op,const MemOperand & addr,LoadStoreScalingOption option)5457 void Assembler::Prefetch(PrefetchOperation op,
5458                          const MemOperand& addr,
5459                          LoadStoreScalingOption option) {
5460   VIXL_ASSERT(addr.IsRegisterOffset() || addr.IsImmediateOffset());
5461 
5462   Instr prfop = ImmPrefetchOperation(op);
5463   Emit(PRFM | prfop | LoadStoreMemOperand(addr, kXRegSizeInBytesLog2, option));
5464 }
5465 
5466 
IsImmAddSub(int64_t immediate)5467 bool Assembler::IsImmAddSub(int64_t immediate) {
5468   return IsUint12(immediate) ||
5469          (IsUint12(immediate >> 12) && ((immediate & 0xfff) == 0));
5470 }
5471 
5472 
IsImmConditionalCompare(int64_t immediate)5473 bool Assembler::IsImmConditionalCompare(int64_t immediate) {
5474   return IsUint5(immediate);
5475 }
5476 
5477 
IsImmFP16(Float16 imm)5478 bool Assembler::IsImmFP16(Float16 imm) {
5479   // Valid values will have the form:
5480   // aBbb.cdef.gh00.000
5481   uint16_t bits = Float16ToRawbits(imm);
5482   // bits[6..0] are cleared.
5483   if ((bits & 0x3f) != 0) {
5484     return false;
5485   }
5486 
5487   // bits[13..12] are all set or all cleared.
5488   uint16_t b_pattern = (bits >> 12) & 0x03;
5489   if (b_pattern != 0 && b_pattern != 0x03) {
5490     return false;
5491   }
5492 
5493   // bit[15] and bit[14] are opposite.
5494   if (((bits ^ (bits << 1)) & 0x4000) == 0) {
5495     return false;
5496   }
5497 
5498   return true;
5499 }
5500 
5501 
IsImmFP32(float imm)5502 bool Assembler::IsImmFP32(float imm) {
5503   // Valid values will have the form:
5504   // aBbb.bbbc.defg.h000.0000.0000.0000.0000
5505   uint32_t bits = FloatToRawbits(imm);
5506   // bits[19..0] are cleared.
5507   if ((bits & 0x7ffff) != 0) {
5508     return false;
5509   }
5510 
5511   // bits[29..25] are all set or all cleared.
5512   uint32_t b_pattern = (bits >> 16) & 0x3e00;
5513   if (b_pattern != 0 && b_pattern != 0x3e00) {
5514     return false;
5515   }
5516 
5517   // bit[30] and bit[29] are opposite.
5518   if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
5519     return false;
5520   }
5521 
5522   return true;
5523 }
5524 
5525 
IsImmFP64(double imm)5526 bool Assembler::IsImmFP64(double imm) {
5527   // Valid values will have the form:
5528   // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
5529   // 0000.0000.0000.0000.0000.0000.0000.0000
5530   uint64_t bits = DoubleToRawbits(imm);
5531   // bits[47..0] are cleared.
5532   if ((bits & 0x0000ffffffffffff) != 0) {
5533     return false;
5534   }
5535 
5536   // bits[61..54] are all set or all cleared.
5537   uint32_t b_pattern = (bits >> 48) & 0x3fc0;
5538   if ((b_pattern != 0) && (b_pattern != 0x3fc0)) {
5539     return false;
5540   }
5541 
5542   // bit[62] and bit[61] are opposite.
5543   if (((bits ^ (bits << 1)) & (UINT64_C(1) << 62)) == 0) {
5544     return false;
5545   }
5546 
5547   return true;
5548 }
5549 
5550 
IsImmLSPair(int64_t offset,unsigned access_size)5551 bool Assembler::IsImmLSPair(int64_t offset, unsigned access_size) {
5552   VIXL_ASSERT(access_size <= kQRegSizeInBytesLog2);
5553   return IsMultiple(offset, 1 << access_size) &&
5554          IsInt7(offset / (1 << access_size));
5555 }
5556 
5557 
IsImmLSScaled(int64_t offset,unsigned access_size)5558 bool Assembler::IsImmLSScaled(int64_t offset, unsigned access_size) {
5559   VIXL_ASSERT(access_size <= kQRegSizeInBytesLog2);
5560   return IsMultiple(offset, 1 << access_size) &&
5561          IsUint12(offset / (1 << access_size));
5562 }
5563 
5564 
IsImmLSUnscaled(int64_t offset)5565 bool Assembler::IsImmLSUnscaled(int64_t offset) { return IsInt9(offset); }
5566 
5567 
5568 // The movn instruction can generate immediates containing an arbitrary 16-bit
5569 // value, with remaining bits set, eg. 0xffff1234, 0xffff1234ffffffff.
IsImmMovn(uint64_t imm,unsigned reg_size)5570 bool Assembler::IsImmMovn(uint64_t imm, unsigned reg_size) {
5571   return IsImmMovz(~imm, reg_size);
5572 }
5573 
5574 
5575 // The movz instruction can generate immediates containing an arbitrary 16-bit
5576 // value, with remaining bits clear, eg. 0x00001234, 0x0000123400000000.
IsImmMovz(uint64_t imm,unsigned reg_size)5577 bool Assembler::IsImmMovz(uint64_t imm, unsigned reg_size) {
5578   VIXL_ASSERT((reg_size == kXRegSize) || (reg_size == kWRegSize));
5579   return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1);
5580 }
5581 
5582 
5583 // Test if a given value can be encoded in the immediate field of a logical
5584 // instruction.
5585 // If it can be encoded, the function returns true, and values pointed to by n,
5586 // imm_s and imm_r are updated with immediates encoded in the format required
5587 // by the corresponding fields in the logical instruction.
5588 // If it can not be encoded, the function returns false, and the values pointed
5589 // to by n, imm_s and imm_r are undefined.
IsImmLogical(uint64_t value,unsigned width,unsigned * n,unsigned * imm_s,unsigned * imm_r)5590 bool Assembler::IsImmLogical(uint64_t value,
5591                              unsigned width,
5592                              unsigned* n,
5593                              unsigned* imm_s,
5594                              unsigned* imm_r) {
5595   VIXL_ASSERT((width == kWRegSize) || (width == kXRegSize));
5596 
5597   bool negate = false;
5598 
5599   // Logical immediates are encoded using parameters n, imm_s and imm_r using
5600   // the following table:
5601   //
5602   //    N   imms    immr    size        S             R
5603   //    1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
5604   //    0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
5605   //    0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
5606   //    0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
5607   //    0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
5608   //    0  11110s  xxxxxr     2    UInt(s)       UInt(r)
5609   // (s bits must not be all set)
5610   //
5611   // A pattern is constructed of size bits, where the least significant S+1 bits
5612   // are set. The pattern is rotated right by R, and repeated across a 32 or
5613   // 64-bit value, depending on destination register width.
5614   //
5615   // Put another way: the basic format of a logical immediate is a single
5616   // contiguous stretch of 1 bits, repeated across the whole word at intervals
5617   // given by a power of 2. To identify them quickly, we first locate the
5618   // lowest stretch of 1 bits, then the next 1 bit above that; that combination
5619   // is different for every logical immediate, so it gives us all the
5620   // information we need to identify the only logical immediate that our input
5621   // could be, and then we simply check if that's the value we actually have.
5622   //
5623   // (The rotation parameter does give the possibility of the stretch of 1 bits
5624   // going 'round the end' of the word. To deal with that, we observe that in
5625   // any situation where that happens the bitwise NOT of the value is also a
5626   // valid logical immediate. So we simply invert the input whenever its low bit
5627   // is set, and then we know that the rotated case can't arise.)
5628 
5629   if (value & 1) {
5630     // If the low bit is 1, negate the value, and set a flag to remember that we
5631     // did (so that we can adjust the return values appropriately).
5632     negate = true;
5633     value = ~value;
5634   }
5635 
5636   if (width == kWRegSize) {
5637     // To handle 32-bit logical immediates, the very easiest thing is to repeat
5638     // the input value twice to make a 64-bit word. The correct encoding of that
5639     // as a logical immediate will also be the correct encoding of the 32-bit
5640     // value.
5641 
5642     // Avoid making the assumption that the most-significant 32 bits are zero by
5643     // shifting the value left and duplicating it.
5644     value <<= kWRegSize;
5645     value |= value >> kWRegSize;
5646   }
5647 
5648   // The basic analysis idea: imagine our input word looks like this.
5649   //
5650   //    0011111000111110001111100011111000111110001111100011111000111110
5651   //                                                          c  b    a
5652   //                                                          |<--d-->|
5653   //
5654   // We find the lowest set bit (as an actual power-of-2 value, not its index)
5655   // and call it a. Then we add a to our original number, which wipes out the
5656   // bottommost stretch of set bits and replaces it with a 1 carried into the
5657   // next zero bit. Then we look for the new lowest set bit, which is in
5658   // position b, and subtract it, so now our number is just like the original
5659   // but with the lowest stretch of set bits completely gone. Now we find the
5660   // lowest set bit again, which is position c in the diagram above. Then we'll
5661   // measure the distance d between bit positions a and c (using CLZ), and that
5662   // tells us that the only valid logical immediate that could possibly be equal
5663   // to this number is the one in which a stretch of bits running from a to just
5664   // below b is replicated every d bits.
5665   uint64_t a = LowestSetBit(value);
5666   uint64_t value_plus_a = value + a;
5667   uint64_t b = LowestSetBit(value_plus_a);
5668   uint64_t value_plus_a_minus_b = value_plus_a - b;
5669   uint64_t c = LowestSetBit(value_plus_a_minus_b);
5670 
5671   int d, clz_a, out_n;
5672   uint64_t mask;
5673 
5674   if (c != 0) {
5675     // The general case, in which there is more than one stretch of set bits.
5676     // Compute the repeat distance d, and set up a bitmask covering the basic
5677     // unit of repetition (i.e. a word with the bottom d bits set). Also, in all
5678     // of these cases the N bit of the output will be zero.
5679     clz_a = CountLeadingZeros(a, kXRegSize);
5680     int clz_c = CountLeadingZeros(c, kXRegSize);
5681     d = clz_a - clz_c;
5682     mask = ((UINT64_C(1) << d) - 1);
5683     out_n = 0;
5684   } else {
5685     // Handle degenerate cases.
5686     //
5687     // If any of those 'find lowest set bit' operations didn't find a set bit at
5688     // all, then the word will have been zero thereafter, so in particular the
5689     // last lowest_set_bit operation will have returned zero. So we can test for
5690     // all the special case conditions in one go by seeing if c is zero.
5691     if (a == 0) {
5692       // The input was zero (or all 1 bits, which will come to here too after we
5693       // inverted it at the start of the function), for which we just return
5694       // false.
5695       return false;
5696     } else {
5697       // Otherwise, if c was zero but a was not, then there's just one stretch
5698       // of set bits in our word, meaning that we have the trivial case of
5699       // d == 64 and only one 'repetition'. Set up all the same variables as in
5700       // the general case above, and set the N bit in the output.
5701       clz_a = CountLeadingZeros(a, kXRegSize);
5702       d = 64;
5703       mask = ~UINT64_C(0);
5704       out_n = 1;
5705     }
5706   }
5707 
5708   // If the repeat period d is not a power of two, it can't be encoded.
5709   if (!IsPowerOf2(d)) {
5710     return false;
5711   }
5712 
5713   if (((b - a) & ~mask) != 0) {
5714     // If the bit stretch (b - a) does not fit within the mask derived from the
5715     // repeat period, then fail.
5716     return false;
5717   }
5718 
5719   // The only possible option is b - a repeated every d bits. Now we're going to
5720   // actually construct the valid logical immediate derived from that
5721   // specification, and see if it equals our original input.
5722   //
5723   // To repeat a value every d bits, we multiply it by a number of the form
5724   // (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
5725   // be derived using a table lookup on CLZ(d).
5726   static const uint64_t multipliers[] = {
5727       0x0000000000000001UL,
5728       0x0000000100000001UL,
5729       0x0001000100010001UL,
5730       0x0101010101010101UL,
5731       0x1111111111111111UL,
5732       0x5555555555555555UL,
5733   };
5734   uint64_t multiplier = multipliers[CountLeadingZeros(d, kXRegSize) - 57];
5735   uint64_t candidate = (b - a) * multiplier;
5736 
5737   if (value != candidate) {
5738     // The candidate pattern doesn't match our input value, so fail.
5739     return false;
5740   }
5741 
5742   // We have a match! This is a valid logical immediate, so now we have to
5743   // construct the bits and pieces of the instruction encoding that generates
5744   // it.
5745 
5746   // Count the set bits in our basic stretch. The special case of clz(0) == -1
5747   // makes the answer come out right for stretches that reach the very top of
5748   // the word (e.g. numbers like 0xffffc00000000000).
5749   int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSize);
5750   int s = clz_a - clz_b;
5751 
5752   // Decide how many bits to rotate right by, to put the low bit of that basic
5753   // stretch in position a.
5754   int r;
5755   if (negate) {
5756     // If we inverted the input right at the start of this function, here's
5757     // where we compensate: the number of set bits becomes the number of clear
5758     // bits, and the rotation count is based on position b rather than position
5759     // a (since b is the location of the 'lowest' 1 bit after inversion).
5760     s = d - s;
5761     r = (clz_b + 1) & (d - 1);
5762   } else {
5763     r = (clz_a + 1) & (d - 1);
5764   }
5765 
5766   // Now we're done, except for having to encode the S output in such a way that
5767   // it gives both the number of set bits and the length of the repeated
5768   // segment. The s field is encoded like this:
5769   //
5770   //     imms    size        S
5771   //    ssssss    64    UInt(ssssss)
5772   //    0sssss    32    UInt(sssss)
5773   //    10ssss    16    UInt(ssss)
5774   //    110sss     8    UInt(sss)
5775   //    1110ss     4    UInt(ss)
5776   //    11110s     2    UInt(s)
5777   //
5778   // So we 'or' (2 * -d) with our computed s to form imms.
5779   if ((n != NULL) || (imm_s != NULL) || (imm_r != NULL)) {
5780     *n = out_n;
5781     *imm_s = ((2 * -d) | (s - 1)) & 0x3f;
5782     *imm_r = r;
5783   }
5784 
5785   return true;
5786 }
5787 
5788 
LoadOpFor(const CPURegister & rt)5789 LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) {
5790   VIXL_ASSERT(rt.IsValid());
5791   if (rt.IsRegister()) {
5792     return rt.Is64Bits() ? LDR_x : LDR_w;
5793   } else {
5794     VIXL_ASSERT(rt.IsVRegister());
5795     switch (rt.GetSizeInBits()) {
5796       case kBRegSize:
5797         return LDR_b;
5798       case kHRegSize:
5799         return LDR_h;
5800       case kSRegSize:
5801         return LDR_s;
5802       case kDRegSize:
5803         return LDR_d;
5804       default:
5805         VIXL_ASSERT(rt.IsQ());
5806         return LDR_q;
5807     }
5808   }
5809 }
5810 
5811 
StoreOpFor(const CPURegister & rt)5812 LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) {
5813   VIXL_ASSERT(rt.IsValid());
5814   if (rt.IsRegister()) {
5815     return rt.Is64Bits() ? STR_x : STR_w;
5816   } else {
5817     VIXL_ASSERT(rt.IsVRegister());
5818     switch (rt.GetSizeInBits()) {
5819       case kBRegSize:
5820         return STR_b;
5821       case kHRegSize:
5822         return STR_h;
5823       case kSRegSize:
5824         return STR_s;
5825       case kDRegSize:
5826         return STR_d;
5827       default:
5828         VIXL_ASSERT(rt.IsQ());
5829         return STR_q;
5830     }
5831   }
5832 }
5833 
5834 
StorePairOpFor(const CPURegister & rt,const CPURegister & rt2)5835 LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt,
5836                                           const CPURegister& rt2) {
5837   VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
5838   USE(rt2);
5839   if (rt.IsRegister()) {
5840     return rt.Is64Bits() ? STP_x : STP_w;
5841   } else {
5842     VIXL_ASSERT(rt.IsVRegister());
5843     switch (rt.GetSizeInBytes()) {
5844       case kSRegSizeInBytes:
5845         return STP_s;
5846       case kDRegSizeInBytes:
5847         return STP_d;
5848       default:
5849         VIXL_ASSERT(rt.IsQ());
5850         return STP_q;
5851     }
5852   }
5853 }
5854 
5855 
LoadPairOpFor(const CPURegister & rt,const CPURegister & rt2)5856 LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt,
5857                                          const CPURegister& rt2) {
5858   VIXL_ASSERT((STP_w | LoadStorePairLBit) == LDP_w);
5859   return static_cast<LoadStorePairOp>(StorePairOpFor(rt, rt2) |
5860                                       LoadStorePairLBit);
5861 }
5862 
5863 
StorePairNonTemporalOpFor(const CPURegister & rt,const CPURegister & rt2)5864 LoadStorePairNonTemporalOp Assembler::StorePairNonTemporalOpFor(
5865     const CPURegister& rt, const CPURegister& rt2) {
5866   VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
5867   USE(rt2);
5868   if (rt.IsRegister()) {
5869     return rt.Is64Bits() ? STNP_x : STNP_w;
5870   } else {
5871     VIXL_ASSERT(rt.IsVRegister());
5872     switch (rt.GetSizeInBytes()) {
5873       case kSRegSizeInBytes:
5874         return STNP_s;
5875       case kDRegSizeInBytes:
5876         return STNP_d;
5877       default:
5878         VIXL_ASSERT(rt.IsQ());
5879         return STNP_q;
5880     }
5881   }
5882 }
5883 
5884 
LoadPairNonTemporalOpFor(const CPURegister & rt,const CPURegister & rt2)5885 LoadStorePairNonTemporalOp Assembler::LoadPairNonTemporalOpFor(
5886     const CPURegister& rt, const CPURegister& rt2) {
5887   VIXL_ASSERT((STNP_w | LoadStorePairNonTemporalLBit) == LDNP_w);
5888   return static_cast<LoadStorePairNonTemporalOp>(
5889       StorePairNonTemporalOpFor(rt, rt2) | LoadStorePairNonTemporalLBit);
5890 }
5891 
5892 
LoadLiteralOpFor(const CPURegister & rt)5893 LoadLiteralOp Assembler::LoadLiteralOpFor(const CPURegister& rt) {
5894   if (rt.IsRegister()) {
5895     return rt.IsX() ? LDR_x_lit : LDR_w_lit;
5896   } else {
5897     VIXL_ASSERT(rt.IsVRegister());
5898     switch (rt.GetSizeInBytes()) {
5899       case kSRegSizeInBytes:
5900         return LDR_s_lit;
5901       case kDRegSizeInBytes:
5902         return LDR_d_lit;
5903       default:
5904         VIXL_ASSERT(rt.IsQ());
5905         return LDR_q_lit;
5906     }
5907   }
5908 }
5909 
5910 
CPUHas(const CPURegister & rt) const5911 bool Assembler::CPUHas(const CPURegister& rt) const {
5912   // Core registers are available without any particular CPU features.
5913   if (rt.IsRegister()) return true;
5914   VIXL_ASSERT(rt.IsVRegister());
5915   // The architecture does not allow FP and NEON to be implemented separately,
5916   // but we can crudely categorise them based on register size, since FP only
5917   // uses D, S and (occasionally) H registers.
5918   if (rt.IsH() || rt.IsS() || rt.IsD()) {
5919     return CPUHas(CPUFeatures::kFP) || CPUHas(CPUFeatures::kNEON);
5920   }
5921   VIXL_ASSERT(rt.IsB() || rt.IsQ());
5922   return CPUHas(CPUFeatures::kNEON);
5923 }
5924 
5925 
CPUHas(const CPURegister & rt,const CPURegister & rt2) const5926 bool Assembler::CPUHas(const CPURegister& rt, const CPURegister& rt2) const {
5927   // This is currently only used for loads and stores, where rt and rt2 must
5928   // have the same size and type. We could extend this to cover other cases if
5929   // necessary, but for now we can avoid checking both registers.
5930   VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
5931   USE(rt2);
5932   return CPUHas(rt);
5933 }
5934 
5935 
AreAliased(const CPURegister & reg1,const CPURegister & reg2,const CPURegister & reg3,const CPURegister & reg4,const CPURegister & reg5,const CPURegister & reg6,const CPURegister & reg7,const CPURegister & reg8)5936 bool AreAliased(const CPURegister& reg1,
5937                 const CPURegister& reg2,
5938                 const CPURegister& reg3,
5939                 const CPURegister& reg4,
5940                 const CPURegister& reg5,
5941                 const CPURegister& reg6,
5942                 const CPURegister& reg7,
5943                 const CPURegister& reg8) {
5944   int number_of_valid_regs = 0;
5945   int number_of_valid_fpregs = 0;
5946 
5947   RegList unique_regs = 0;
5948   RegList unique_fpregs = 0;
5949 
5950   const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8};
5951 
5952   for (size_t i = 0; i < ArrayLength(regs); i++) {
5953     if (regs[i].IsRegister()) {
5954       number_of_valid_regs++;
5955       unique_regs |= regs[i].GetBit();
5956     } else if (regs[i].IsVRegister()) {
5957       number_of_valid_fpregs++;
5958       unique_fpregs |= regs[i].GetBit();
5959     } else {
5960       VIXL_ASSERT(!regs[i].IsValid());
5961     }
5962   }
5963 
5964   int number_of_unique_regs = CountSetBits(unique_regs);
5965   int number_of_unique_fpregs = CountSetBits(unique_fpregs);
5966 
5967   VIXL_ASSERT(number_of_valid_regs >= number_of_unique_regs);
5968   VIXL_ASSERT(number_of_valid_fpregs >= number_of_unique_fpregs);
5969 
5970   return (number_of_valid_regs != number_of_unique_regs) ||
5971          (number_of_valid_fpregs != number_of_unique_fpregs);
5972 }
5973 
5974 
AreSameSizeAndType(const CPURegister & reg1,const CPURegister & reg2,const CPURegister & reg3,const CPURegister & reg4,const CPURegister & reg5,const CPURegister & reg6,const CPURegister & reg7,const CPURegister & reg8)5975 bool AreSameSizeAndType(const CPURegister& reg1,
5976                         const CPURegister& reg2,
5977                         const CPURegister& reg3,
5978                         const CPURegister& reg4,
5979                         const CPURegister& reg5,
5980                         const CPURegister& reg6,
5981                         const CPURegister& reg7,
5982                         const CPURegister& reg8) {
5983   VIXL_ASSERT(reg1.IsValid());
5984   bool match = true;
5985   match &= !reg2.IsValid() || reg2.IsSameSizeAndType(reg1);
5986   match &= !reg3.IsValid() || reg3.IsSameSizeAndType(reg1);
5987   match &= !reg4.IsValid() || reg4.IsSameSizeAndType(reg1);
5988   match &= !reg5.IsValid() || reg5.IsSameSizeAndType(reg1);
5989   match &= !reg6.IsValid() || reg6.IsSameSizeAndType(reg1);
5990   match &= !reg7.IsValid() || reg7.IsSameSizeAndType(reg1);
5991   match &= !reg8.IsValid() || reg8.IsSameSizeAndType(reg1);
5992   return match;
5993 }
5994 
AreEven(const CPURegister & reg1,const CPURegister & reg2,const CPURegister & reg3,const CPURegister & reg4,const CPURegister & reg5,const CPURegister & reg6,const CPURegister & reg7,const CPURegister & reg8)5995 bool AreEven(const CPURegister& reg1,
5996              const CPURegister& reg2,
5997              const CPURegister& reg3,
5998              const CPURegister& reg4,
5999              const CPURegister& reg5,
6000              const CPURegister& reg6,
6001              const CPURegister& reg7,
6002              const CPURegister& reg8) {
6003   VIXL_ASSERT(reg1.IsValid());
6004   bool even = (reg1.GetCode() % 2) == 0;
6005   even &= !reg2.IsValid() || ((reg2.GetCode() % 2) == 0);
6006   even &= !reg3.IsValid() || ((reg3.GetCode() % 2) == 0);
6007   even &= !reg4.IsValid() || ((reg4.GetCode() % 2) == 0);
6008   even &= !reg5.IsValid() || ((reg5.GetCode() % 2) == 0);
6009   even &= !reg6.IsValid() || ((reg6.GetCode() % 2) == 0);
6010   even &= !reg7.IsValid() || ((reg7.GetCode() % 2) == 0);
6011   even &= !reg8.IsValid() || ((reg8.GetCode() % 2) == 0);
6012   return even;
6013 }
6014 
6015 
AreConsecutive(const CPURegister & reg1,const CPURegister & reg2,const CPURegister & reg3,const CPURegister & reg4)6016 bool AreConsecutive(const CPURegister& reg1,
6017                     const CPURegister& reg2,
6018                     const CPURegister& reg3,
6019                     const CPURegister& reg4) {
6020   VIXL_ASSERT(reg1.IsValid());
6021 
6022   if (!reg2.IsValid()) {
6023     return true;
6024   } else if (reg2.GetCode() != ((reg1.GetCode() + 1) % kNumberOfRegisters)) {
6025     return false;
6026   }
6027 
6028   if (!reg3.IsValid()) {
6029     return true;
6030   } else if (reg3.GetCode() != ((reg2.GetCode() + 1) % kNumberOfRegisters)) {
6031     return false;
6032   }
6033 
6034   if (!reg4.IsValid()) {
6035     return true;
6036   } else if (reg4.GetCode() != ((reg3.GetCode() + 1) % kNumberOfRegisters)) {
6037     return false;
6038   }
6039 
6040   return true;
6041 }
6042 
6043 
AreSameFormat(const VRegister & reg1,const VRegister & reg2,const VRegister & reg3,const VRegister & reg4)6044 bool AreSameFormat(const VRegister& reg1,
6045                    const VRegister& reg2,
6046                    const VRegister& reg3,
6047                    const VRegister& reg4) {
6048   VIXL_ASSERT(reg1.IsValid());
6049   bool match = true;
6050   match &= !reg2.IsValid() || reg2.IsSameFormat(reg1);
6051   match &= !reg3.IsValid() || reg3.IsSameFormat(reg1);
6052   match &= !reg4.IsValid() || reg4.IsSameFormat(reg1);
6053   return match;
6054 }
6055 
6056 
AreConsecutive(const VRegister & reg1,const VRegister & reg2,const VRegister & reg3,const VRegister & reg4)6057 bool AreConsecutive(const VRegister& reg1,
6058                     const VRegister& reg2,
6059                     const VRegister& reg3,
6060                     const VRegister& reg4) {
6061   VIXL_ASSERT(reg1.IsValid());
6062 
6063   if (!reg2.IsValid()) {
6064     return true;
6065   } else if (reg2.GetCode() != ((reg1.GetCode() + 1) % kNumberOfVRegisters)) {
6066     return false;
6067   }
6068 
6069   if (!reg3.IsValid()) {
6070     return true;
6071   } else if (reg3.GetCode() != ((reg2.GetCode() + 1) % kNumberOfVRegisters)) {
6072     return false;
6073   }
6074 
6075   if (!reg4.IsValid()) {
6076     return true;
6077   } else if (reg4.GetCode() != ((reg3.GetCode() + 1) % kNumberOfVRegisters)) {
6078     return false;
6079   }
6080 
6081   return true;
6082 }
6083 }  // namespace aarch64
6084 }  // namespace vixl
6085