1 /*
2  * mpx-mini-test.c: routines to test Intel MPX (Memory Protection eXtentions)
3  *
4  * Written by:
5  * "Ren, Qiaowei" <qiaowei.ren@intel.com>
6  * "Wei, Gang" <gang.wei@intel.com>
7  * "Hansen, Dave" <dave.hansen@intel.com>
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms and conditions of the GNU General Public License,
11  * version 2.
12  */
13 
14 /*
15  * 2014-12-05: Dave Hansen: fixed all of the compiler warnings, and made sure
16  *	       it works on 32-bit.
17  */
18 
19 int inspect_every_this_many_mallocs = 100;
20 int zap_all_every_this_many_mallocs = 1000;
21 
22 #define _GNU_SOURCE
23 #define _LARGEFILE64_SOURCE
24 
25 #include <string.h>
26 #include <stdio.h>
27 #include <stdint.h>
28 #include <stdbool.h>
29 #include <signal.h>
30 #include <assert.h>
31 #include <stdlib.h>
32 #include <ucontext.h>
33 #include <sys/mman.h>
34 #include <sys/types.h>
35 #include <sys/stat.h>
36 #include <fcntl.h>
37 #include <unistd.h>
38 
39 #include "mpx-hw.h"
40 #include "mpx-debug.h"
41 #include "mpx-mm.h"
42 
43 #ifndef __always_inline
44 #define __always_inline inline __attribute__((always_inline)
45 #endif
46 
47 #ifndef TEST_DURATION_SECS
48 #define TEST_DURATION_SECS 3
49 #endif
50 
write_int_to(char * prefix,char * file,int int_to_write)51 void write_int_to(char *prefix, char *file, int int_to_write)
52 {
53 	char buf[100];
54 	int fd = open(file, O_RDWR);
55 	int len;
56 	int ret;
57 
58 	assert(fd >= 0);
59 	len = snprintf(buf, sizeof(buf), "%s%d", prefix, int_to_write);
60 	assert(len >= 0);
61 	assert(len < sizeof(buf));
62 	ret = write(fd, buf, len);
63 	assert(ret == len);
64 	ret = close(fd);
65 	assert(!ret);
66 }
67 
write_pid_to(char * prefix,char * file)68 void write_pid_to(char *prefix, char *file)
69 {
70 	write_int_to(prefix, file, getpid());
71 }
72 
trace_me(void)73 void trace_me(void)
74 {
75 /* tracing events dir */
76 #define TED "/sys/kernel/debug/tracing/events/"
77 /*
78 	write_pid_to("common_pid=", TED "signal/filter");
79 	write_pid_to("common_pid=", TED "exceptions/filter");
80 	write_int_to("", TED "signal/enable", 1);
81 	write_int_to("", TED "exceptions/enable", 1);
82 */
83 	write_pid_to("", "/sys/kernel/debug/tracing/set_ftrace_pid");
84 	write_int_to("", "/sys/kernel/debug/tracing/trace", 0);
85 }
86 
87 #define test_failed() __test_failed(__FILE__, __LINE__)
__test_failed(char * f,int l)88 static void __test_failed(char *f, int l)
89 {
90 	fprintf(stderr, "abort @ %s::%d\n", f, l);
91 	abort();
92 }
93 
94 /* Error Printf */
95 #define eprintf(args...)	fprintf(stderr, args)
96 
97 #ifdef __i386__
98 
99 /* i386 directory size is 4MB */
100 #define REG_IP_IDX	REG_EIP
101 #define REX_PREFIX
102 
103 #define XSAVE_OFFSET_IN_FPMEM	sizeof(struct _libc_fpstate)
104 
105 /*
106  * __cpuid() is from the Linux Kernel:
107  */
__cpuid(unsigned int * eax,unsigned int * ebx,unsigned int * ecx,unsigned int * edx)108 static inline void __cpuid(unsigned int *eax, unsigned int *ebx,
109 		unsigned int *ecx, unsigned int *edx)
110 {
111 	/* ecx is often an input as well as an output. */
112 	asm volatile(
113 		"push %%ebx;"
114 		"cpuid;"
115 		"mov %%ebx, %1;"
116 		"pop %%ebx"
117 		: "=a" (*eax),
118 		  "=g" (*ebx),
119 		  "=c" (*ecx),
120 		  "=d" (*edx)
121 		: "0" (*eax), "2" (*ecx));
122 }
123 
124 #else /* __i386__ */
125 
126 #define REG_IP_IDX	REG_RIP
127 #define REX_PREFIX "0x48, "
128 
129 #define XSAVE_OFFSET_IN_FPMEM	0
130 
131 /*
132  * __cpuid() is from the Linux Kernel:
133  */
__cpuid(unsigned int * eax,unsigned int * ebx,unsigned int * ecx,unsigned int * edx)134 static inline void __cpuid(unsigned int *eax, unsigned int *ebx,
135 		unsigned int *ecx, unsigned int *edx)
136 {
137 	/* ecx is often an input as well as an output. */
138 	asm volatile(
139 		"cpuid;"
140 		: "=a" (*eax),
141 		  "=b" (*ebx),
142 		  "=c" (*ecx),
143 		  "=d" (*edx)
144 		: "0" (*eax), "2" (*ecx));
145 }
146 
147 #endif /* !__i386__ */
148 
149 struct xsave_hdr_struct {
150 	uint64_t xstate_bv;
151 	uint64_t reserved1[2];
152 	uint64_t reserved2[5];
153 } __attribute__((packed));
154 
155 struct bndregs_struct {
156 	uint64_t bndregs[8];
157 } __attribute__((packed));
158 
159 struct bndcsr_struct {
160 	uint64_t cfg_reg_u;
161 	uint64_t status_reg;
162 } __attribute__((packed));
163 
164 struct xsave_struct {
165 	uint8_t fpu_sse[512];
166 	struct xsave_hdr_struct xsave_hdr;
167 	uint8_t ymm[256];
168 	uint8_t lwp[128];
169 	struct bndregs_struct bndregs;
170 	struct bndcsr_struct bndcsr;
171 } __attribute__((packed));
172 
173 uint8_t __attribute__((__aligned__(64))) buffer[4096];
174 struct xsave_struct *xsave_buf = (struct xsave_struct *)buffer;
175 
176 uint8_t __attribute__((__aligned__(64))) test_buffer[4096];
177 struct xsave_struct *xsave_test_buf = (struct xsave_struct *)test_buffer;
178 
179 uint64_t num_bnd_chk;
180 
xrstor_state(struct xsave_struct * fx,uint64_t mask)181 static __always_inline void xrstor_state(struct xsave_struct *fx, uint64_t mask)
182 {
183 	uint32_t lmask = mask;
184 	uint32_t hmask = mask >> 32;
185 
186 	asm volatile(".byte " REX_PREFIX "0x0f,0xae,0x2f\n\t"
187 		     : : "D" (fx), "m" (*fx), "a" (lmask), "d" (hmask)
188 		     :   "memory");
189 }
190 
xsave_state_1(void * _fx,uint64_t mask)191 static __always_inline void xsave_state_1(void *_fx, uint64_t mask)
192 {
193 	uint32_t lmask = mask;
194 	uint32_t hmask = mask >> 32;
195 	unsigned char *fx = _fx;
196 
197 	asm volatile(".byte " REX_PREFIX "0x0f,0xae,0x27\n\t"
198 		     : : "D" (fx), "m" (*fx), "a" (lmask), "d" (hmask)
199 		     :   "memory");
200 }
201 
xgetbv(uint32_t index)202 static inline uint64_t xgetbv(uint32_t index)
203 {
204 	uint32_t eax, edx;
205 
206 	asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
207 		     : "=a" (eax), "=d" (edx)
208 		     : "c" (index));
209 	return eax + ((uint64_t)edx << 32);
210 }
211 
read_mpx_status_sig(ucontext_t * uctxt)212 static uint64_t read_mpx_status_sig(ucontext_t *uctxt)
213 {
214 	memset(buffer, 0, sizeof(buffer));
215 	memcpy(buffer,
216 		(uint8_t *)uctxt->uc_mcontext.fpregs + XSAVE_OFFSET_IN_FPMEM,
217 		sizeof(struct xsave_struct));
218 
219 	return xsave_buf->bndcsr.status_reg;
220 }
221 
222 #include <pthread.h>
223 
get_next_inst_ip(uint8_t * addr)224 static uint8_t *get_next_inst_ip(uint8_t *addr)
225 {
226 	uint8_t *ip = addr;
227 	uint8_t sib;
228 	uint8_t rm;
229 	uint8_t mod;
230 	uint8_t base;
231 	uint8_t modrm;
232 
233 	/* determine the prefix. */
234 	switch(*ip) {
235 	case 0xf2:
236 	case 0xf3:
237 	case 0x66:
238 		ip++;
239 		break;
240 	}
241 
242 	/* look for rex prefix */
243 	if ((*ip & 0x40) == 0x40)
244 		ip++;
245 
246 	/* Make sure we have a MPX instruction. */
247 	if (*ip++ != 0x0f)
248 		return addr;
249 
250 	/* Skip the op code byte. */
251 	ip++;
252 
253 	/* Get the modrm byte. */
254 	modrm = *ip++;
255 
256 	/* Break it down into parts. */
257 	rm = modrm & 7;
258 	mod = (modrm >> 6);
259 
260 	/* Init the parts of the address mode. */
261 	base = 8;
262 
263 	/* Is it a mem mode? */
264 	if (mod != 3) {
265 		/* look for scaled indexed addressing */
266 		if (rm == 4) {
267 			/* SIB addressing */
268 			sib = *ip++;
269 			base = sib & 7;
270 			switch (mod) {
271 			case 0:
272 				if (base == 5)
273 					ip += 4;
274 				break;
275 
276 			case 1:
277 				ip++;
278 				break;
279 
280 			case 2:
281 				ip += 4;
282 				break;
283 			}
284 
285 		} else {
286 			/* MODRM addressing */
287 			switch (mod) {
288 			case 0:
289 				/* DISP32 addressing, no base */
290 				if (rm == 5)
291 					ip += 4;
292 				break;
293 
294 			case 1:
295 				ip++;
296 				break;
297 
298 			case 2:
299 				ip += 4;
300 				break;
301 			}
302 		}
303 	}
304 	return ip;
305 }
306 
307 #ifdef si_lower
__si_bounds_lower(siginfo_t * si)308 static inline void *__si_bounds_lower(siginfo_t *si)
309 {
310 	return si->si_lower;
311 }
312 
__si_bounds_upper(siginfo_t * si)313 static inline void *__si_bounds_upper(siginfo_t *si)
314 {
315 	return si->si_upper;
316 }
317 #else
318 
319 /*
320  * This deals with old version of _sigfault in some distros:
321  *
322 
323 old _sigfault:
324         struct {
325             void *si_addr;
326 	} _sigfault;
327 
328 new _sigfault:
329 	struct {
330 		void __user *_addr;
331 		int _trapno;
332 		short _addr_lsb;
333 		union {
334 			struct {
335 				void __user *_lower;
336 				void __user *_upper;
337 			} _addr_bnd;
338 			__u32 _pkey;
339 		};
340 	} _sigfault;
341  *
342  */
343 
__si_bounds_hack(siginfo_t * si)344 static inline void **__si_bounds_hack(siginfo_t *si)
345 {
346 	void *sigfault = &si->_sifields._sigfault;
347 	void *end_sigfault = sigfault + sizeof(si->_sifields._sigfault);
348 	int *trapno = (int*)end_sigfault;
349 	/* skip _trapno and _addr_lsb */
350 	void **__si_lower = (void**)(trapno + 2);
351 
352 	return __si_lower;
353 }
354 
__si_bounds_lower(siginfo_t * si)355 static inline void *__si_bounds_lower(siginfo_t *si)
356 {
357 	return *__si_bounds_hack(si);
358 }
359 
__si_bounds_upper(siginfo_t * si)360 static inline void *__si_bounds_upper(siginfo_t *si)
361 {
362 	return *(__si_bounds_hack(si) + 1);
363 }
364 #endif
365 
366 static int br_count;
367 static int expected_bnd_index = -1;
368 uint64_t shadow_plb[NR_MPX_BOUNDS_REGISTERS][2]; /* shadow MPX bound registers */
369 unsigned long shadow_map[NR_MPX_BOUNDS_REGISTERS];
370 
371 /* Failed address bound checks: */
372 #ifndef SEGV_BNDERR
373 # define SEGV_BNDERR	3
374 #endif
375 
376 /*
377  * The kernel is supposed to provide some information about the bounds
378  * exception in the siginfo.  It should match what we have in the bounds
379  * registers that we are checking against.  Just check against the shadow copy
380  * since it is easily available, and we also check that *it* matches the real
381  * registers.
382  */
check_siginfo_vs_shadow(siginfo_t * si)383 void check_siginfo_vs_shadow(siginfo_t* si)
384 {
385 	int siginfo_ok = 1;
386 	void *shadow_lower = (void *)(unsigned long)shadow_plb[expected_bnd_index][0];
387 	void *shadow_upper = (void *)(unsigned long)shadow_plb[expected_bnd_index][1];
388 
389 	if ((expected_bnd_index < 0) ||
390 	    (expected_bnd_index >= NR_MPX_BOUNDS_REGISTERS)) {
391 		fprintf(stderr, "ERROR: invalid expected_bnd_index: %d\n",
392 			expected_bnd_index);
393 		exit(6);
394 	}
395 	if (__si_bounds_lower(si) != shadow_lower)
396 		siginfo_ok = 0;
397 	if (__si_bounds_upper(si) != shadow_upper)
398 		siginfo_ok = 0;
399 
400 	if (!siginfo_ok) {
401 		fprintf(stderr, "ERROR: siginfo bounds do not match "
402 			"shadow bounds for register %d\n", expected_bnd_index);
403 		exit(7);
404 	}
405 }
406 
handler(int signum,siginfo_t * si,void * vucontext)407 void handler(int signum, siginfo_t *si, void *vucontext)
408 {
409 	int i;
410 	ucontext_t *uctxt = vucontext;
411 	int trapno;
412 	unsigned long ip;
413 
414 	dprintf1("entered signal handler\n");
415 
416 	trapno = uctxt->uc_mcontext.gregs[REG_TRAPNO];
417 	ip = uctxt->uc_mcontext.gregs[REG_IP_IDX];
418 
419 	if (trapno == 5) {
420 		typeof(si->si_addr) *si_addr_ptr = &si->si_addr;
421 		uint64_t status = read_mpx_status_sig(uctxt);
422 		uint64_t br_reason =  status & 0x3;
423 
424 		br_count++;
425 		dprintf1("#BR 0x%jx (total seen: %d)\n", status, br_count);
426 
427 		dprintf2("Saw a #BR! status 0x%jx at %016lx br_reason: %jx\n",
428 				status, ip, br_reason);
429 		dprintf2("si_signo: %d\n", si->si_signo);
430 		dprintf2("  signum: %d\n", signum);
431 		dprintf2("info->si_code == SEGV_BNDERR: %d\n",
432 				(si->si_code == SEGV_BNDERR));
433 		dprintf2("info->si_code: %d\n", si->si_code);
434 		dprintf2("info->si_lower: %p\n", __si_bounds_lower(si));
435 		dprintf2("info->si_upper: %p\n", __si_bounds_upper(si));
436 
437 		for (i = 0; i < 8; i++)
438 			dprintf3("[%d]: %p\n", i, si_addr_ptr[i]);
439 		switch (br_reason) {
440 		case 0: /* traditional BR */
441 			fprintf(stderr,
442 				"Undefined status with bound exception:%jx\n",
443 				 status);
444 			exit(5);
445 		case 1: /* #BR MPX bounds exception */
446 			/* these are normal and we expect to see them */
447 
448 			check_siginfo_vs_shadow(si);
449 
450 			dprintf1("bounds exception (normal): status 0x%jx at %p si_addr: %p\n",
451 				status, (void *)ip, si->si_addr);
452 			num_bnd_chk++;
453 			uctxt->uc_mcontext.gregs[REG_IP_IDX] =
454 				(greg_t)get_next_inst_ip((uint8_t *)ip);
455 			break;
456 		case 2:
457 			fprintf(stderr, "#BR status == 2, missing bounds table,"
458 					"kernel should have handled!!\n");
459 			exit(4);
460 			break;
461 		default:
462 			fprintf(stderr, "bound check error: status 0x%jx at %p\n",
463 				status, (void *)ip);
464 			num_bnd_chk++;
465 			uctxt->uc_mcontext.gregs[REG_IP_IDX] =
466 				(greg_t)get_next_inst_ip((uint8_t *)ip);
467 			fprintf(stderr, "bound check error: si_addr %p\n", si->si_addr);
468 			exit(3);
469 		}
470 	} else if (trapno == 14) {
471 		eprintf("ERROR: In signal handler, page fault, trapno = %d, ip = %016lx\n",
472 			trapno, ip);
473 		eprintf("si_addr %p\n", si->si_addr);
474 		eprintf("REG_ERR: %lx\n", (unsigned long)uctxt->uc_mcontext.gregs[REG_ERR]);
475 		test_failed();
476 	} else {
477 		eprintf("unexpected trap %d! at 0x%lx\n", trapno, ip);
478 		eprintf("si_addr %p\n", si->si_addr);
479 		eprintf("REG_ERR: %lx\n", (unsigned long)uctxt->uc_mcontext.gregs[REG_ERR]);
480 		test_failed();
481 	}
482 }
483 
cpuid_count(unsigned int op,int count,unsigned int * eax,unsigned int * ebx,unsigned int * ecx,unsigned int * edx)484 static inline void cpuid_count(unsigned int op, int count,
485 			       unsigned int *eax, unsigned int *ebx,
486 			       unsigned int *ecx, unsigned int *edx)
487 {
488 	*eax = op;
489 	*ecx = count;
490 	__cpuid(eax, ebx, ecx, edx);
491 }
492 
493 #define XSTATE_CPUID	    0x0000000d
494 
495 /*
496  * List of XSAVE features Linux knows about:
497  */
498 enum xfeature_bit {
499 	XSTATE_BIT_FP,
500 	XSTATE_BIT_SSE,
501 	XSTATE_BIT_YMM,
502 	XSTATE_BIT_BNDREGS,
503 	XSTATE_BIT_BNDCSR,
504 	XSTATE_BIT_OPMASK,
505 	XSTATE_BIT_ZMM_Hi256,
506 	XSTATE_BIT_Hi16_ZMM,
507 
508 	XFEATURES_NR_MAX,
509 };
510 
511 #define XSTATE_FP	       (1 << XSTATE_BIT_FP)
512 #define XSTATE_SSE	      (1 << XSTATE_BIT_SSE)
513 #define XSTATE_YMM	      (1 << XSTATE_BIT_YMM)
514 #define XSTATE_BNDREGS	  (1 << XSTATE_BIT_BNDREGS)
515 #define XSTATE_BNDCSR	   (1 << XSTATE_BIT_BNDCSR)
516 #define XSTATE_OPMASK	   (1 << XSTATE_BIT_OPMASK)
517 #define XSTATE_ZMM_Hi256	(1 << XSTATE_BIT_ZMM_Hi256)
518 #define XSTATE_Hi16_ZMM	 (1 << XSTATE_BIT_Hi16_ZMM)
519 
520 #define MPX_XSTATES		(XSTATE_BNDREGS | XSTATE_BNDCSR) /* 0x18 */
521 
one_bit(unsigned int x,int bit)522 bool one_bit(unsigned int x, int bit)
523 {
524 	return !!(x & (1<<bit));
525 }
526 
print_state_component(int state_bit_nr,char * name)527 void print_state_component(int state_bit_nr, char *name)
528 {
529 	unsigned int eax, ebx, ecx, edx;
530 	unsigned int state_component_size;
531 	unsigned int state_component_supervisor;
532 	unsigned int state_component_user;
533 	unsigned int state_component_aligned;
534 
535 	/* See SDM Section 13.2 */
536 	cpuid_count(XSTATE_CPUID, state_bit_nr, &eax, &ebx, &ecx, &edx);
537 	assert(eax || ebx || ecx);
538 	state_component_size = eax;
539 	state_component_supervisor = ((!ebx) && one_bit(ecx, 0));
540 	state_component_user = !one_bit(ecx, 0);
541 	state_component_aligned = one_bit(ecx, 1);
542 	printf("%8s: size: %d user: %d supervisor: %d aligned: %d\n",
543 		name,
544 		state_component_size,	    state_component_user,
545 		state_component_supervisor, state_component_aligned);
546 
547 }
548 
549 /* Intel-defined CPU features, CPUID level 0x00000001 (ecx) */
550 #define XSAVE_FEATURE_BIT       (26)  /* XSAVE/XRSTOR/XSETBV/XGETBV */
551 #define OSXSAVE_FEATURE_BIT     (27) /* XSAVE enabled in the OS */
552 
check_mpx_support(void)553 bool check_mpx_support(void)
554 {
555 	unsigned int eax, ebx, ecx, edx;
556 
557 	cpuid_count(1, 0, &eax, &ebx, &ecx, &edx);
558 
559 	/* We can't do much without XSAVE, so just make these assert()'s */
560 	if (!one_bit(ecx, XSAVE_FEATURE_BIT)) {
561 		fprintf(stderr, "processor lacks XSAVE, can not run MPX tests\n");
562 		exit(0);
563 	}
564 
565 	if (!one_bit(ecx, OSXSAVE_FEATURE_BIT)) {
566 		fprintf(stderr, "processor lacks OSXSAVE, can not run MPX tests\n");
567 		exit(0);
568 	}
569 
570 	/* CPUs not supporting the XSTATE CPUID leaf do not support MPX */
571 	/* Is this redundant with the feature bit checks? */
572 	cpuid_count(0, 0, &eax, &ebx, &ecx, &edx);
573 	if (eax < XSTATE_CPUID) {
574 		fprintf(stderr, "processor lacks XSTATE CPUID leaf,"
575 				" can not run MPX tests\n");
576 		exit(0);
577 	}
578 
579 	printf("XSAVE is supported by HW & OS\n");
580 
581 	cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
582 
583 	printf("XSAVE processor supported state mask: 0x%x\n", eax);
584 	printf("XSAVE OS supported state mask: 0x%jx\n", xgetbv(0));
585 
586 	/* Make sure that the MPX states are enabled in in XCR0 */
587 	if ((eax & MPX_XSTATES) != MPX_XSTATES) {
588 		fprintf(stderr, "processor lacks MPX XSTATE(s), can not run MPX tests\n");
589 		exit(0);
590 	}
591 
592 	/* Make sure the MPX states are supported by XSAVE* */
593 	if ((xgetbv(0) & MPX_XSTATES) != MPX_XSTATES) {
594 		fprintf(stderr, "MPX XSTATE(s) no enabled in XCR0, "
595 				"can not run MPX tests\n");
596 		exit(0);
597 	}
598 
599 	print_state_component(XSTATE_BIT_BNDREGS, "BNDREGS");
600 	print_state_component(XSTATE_BIT_BNDCSR,  "BNDCSR");
601 
602 	return true;
603 }
604 
enable_mpx(void * l1base)605 void enable_mpx(void *l1base)
606 {
607 	/* enable point lookup */
608 	memset(buffer, 0, sizeof(buffer));
609 	xrstor_state(xsave_buf, 0x18);
610 
611 	xsave_buf->xsave_hdr.xstate_bv = 0x10;
612 	xsave_buf->bndcsr.cfg_reg_u = (unsigned long)l1base | 1;
613 	xsave_buf->bndcsr.status_reg = 0;
614 
615 	dprintf2("bf xrstor\n");
616 	dprintf2("xsave cndcsr: status %jx, configu %jx\n",
617 	       xsave_buf->bndcsr.status_reg, xsave_buf->bndcsr.cfg_reg_u);
618 	xrstor_state(xsave_buf, 0x18);
619 	dprintf2("after xrstor\n");
620 
621 	xsave_state_1(xsave_buf, 0x18);
622 
623 	dprintf1("xsave bndcsr: status %jx, configu %jx\n",
624 	       xsave_buf->bndcsr.status_reg, xsave_buf->bndcsr.cfg_reg_u);
625 }
626 
627 #include <sys/prctl.h>
628 
629 struct mpx_bounds_dir *bounds_dir_ptr;
630 
__bd_incore(const char * func,int line)631 unsigned long __bd_incore(const char *func, int line)
632 {
633 	unsigned long ret = nr_incore(bounds_dir_ptr, MPX_BOUNDS_DIR_SIZE_BYTES);
634 	return ret;
635 }
636 #define bd_incore() __bd_incore(__func__, __LINE__)
637 
check_clear(void * ptr,unsigned long sz)638 void check_clear(void *ptr, unsigned long sz)
639 {
640 	unsigned long *i;
641 
642 	for (i = ptr; (void *)i < ptr + sz; i++) {
643 		if (*i) {
644 			dprintf1("%p is NOT clear at %p\n", ptr, i);
645 			assert(0);
646 		}
647 	}
648 	dprintf1("%p is clear for %lx\n", ptr, sz);
649 }
650 
check_clear_bd(void)651 void check_clear_bd(void)
652 {
653 	check_clear(bounds_dir_ptr, 2UL << 30);
654 }
655 
656 #define USE_MALLOC_FOR_BOUNDS_DIR 1
process_specific_init(void)657 bool process_specific_init(void)
658 {
659 	unsigned long size;
660 	unsigned long *dir;
661 	/* Guarantee we have the space to align it, add padding: */
662 	unsigned long pad = getpagesize();
663 
664 	size = 2UL << 30; /* 2GB */
665 	if (sizeof(unsigned long) == 4)
666 		size = 4UL << 20; /* 4MB */
667 	dprintf1("trying to allocate %ld MB bounds directory\n", (size >> 20));
668 
669 	if (USE_MALLOC_FOR_BOUNDS_DIR) {
670 		unsigned long _dir;
671 
672 		dir = malloc(size + pad);
673 		assert(dir);
674 		_dir = (unsigned long)dir;
675 		_dir += 0xfffUL;
676 		_dir &= ~0xfffUL;
677 		dir = (void *)_dir;
678 	} else {
679 		/*
680 		 * This makes debugging easier because the address
681 		 * calculations are simpler:
682 		 */
683 		dir = mmap((void *)0x200000000000, size + pad,
684 				PROT_READ|PROT_WRITE,
685 				MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
686 		if (dir == (void *)-1) {
687 			perror("unable to allocate bounds directory");
688 			abort();
689 		}
690 		check_clear(dir, size);
691 	}
692 	bounds_dir_ptr = (void *)dir;
693 	madvise(bounds_dir_ptr, size, MADV_NOHUGEPAGE);
694 	bd_incore();
695 	dprintf1("bounds directory: 0x%p -> 0x%p\n", bounds_dir_ptr,
696 			(char *)bounds_dir_ptr + size);
697 	check_clear(dir, size);
698 	enable_mpx(dir);
699 	check_clear(dir, size);
700 	if (prctl(43, 0, 0, 0, 0)) {
701 		printf("no MPX support\n");
702 		abort();
703 		return false;
704 	}
705 	return true;
706 }
707 
process_specific_finish(void)708 bool process_specific_finish(void)
709 {
710 	if (prctl(44)) {
711 		printf("no MPX support\n");
712 		return false;
713 	}
714 	return true;
715 }
716 
setup_handler()717 void setup_handler()
718 {
719 	int r, rs;
720 	struct sigaction newact;
721 	struct sigaction oldact;
722 
723 	/* #BR is mapped to sigsegv */
724 	int signum  = SIGSEGV;
725 
726 	newact.sa_handler = 0;   /* void(*)(int)*/
727 	newact.sa_sigaction = handler; /* void (*)(int, siginfo_t*, void *) */
728 
729 	/*sigset_t - signals to block while in the handler */
730 	/* get the old signal mask. */
731 	rs = sigprocmask(SIG_SETMASK, 0, &newact.sa_mask);
732 	assert(rs == 0);
733 
734 	/* call sa_sigaction, not sa_handler*/
735 	newact.sa_flags = SA_SIGINFO;
736 
737 	newact.sa_restorer = 0;  /* void(*)(), obsolete */
738 	r = sigaction(signum, &newact, &oldact);
739 	assert(r == 0);
740 }
741 
mpx_prepare(void)742 void mpx_prepare(void)
743 {
744 	dprintf2("%s()\n", __func__);
745 	setup_handler();
746 	process_specific_init();
747 }
748 
mpx_cleanup(void)749 void mpx_cleanup(void)
750 {
751 	printf("%s(): %jd BRs. bye...\n", __func__, num_bnd_chk);
752 	process_specific_finish();
753 }
754 
755 /*-------------- the following is test case ---------------*/
756 #include <stdint.h>
757 #include <stdbool.h>
758 #include <stdlib.h>
759 #include <stdio.h>
760 #include <time.h>
761 
762 uint64_t num_lower_brs;
763 uint64_t num_upper_brs;
764 
765 #define MPX_CONFIG_OFFSET 1024
766 #define MPX_BOUNDS_OFFSET 960
767 #define MPX_HEADER_OFFSET 512
768 #define MAX_ADDR_TESTED (1<<28)
769 #define TEST_ROUNDS 100
770 
771 /*
772       0F 1A /r BNDLDX-Load
773       0F 1B /r BNDSTX-Store Extended Bounds Using Address Translation
774    66 0F 1A /r BNDMOV bnd1, bnd2/m128
775    66 0F 1B /r BNDMOV bnd1/m128, bnd2
776    F2 0F 1A /r BNDCU bnd, r/m64
777    F2 0F 1B /r BNDCN bnd, r/m64
778    F3 0F 1A /r BNDCL bnd, r/m64
779    F3 0F 1B /r BNDMK bnd, m64
780 */
781 
xsave_state(void * _fx,uint64_t mask)782 static __always_inline void xsave_state(void *_fx, uint64_t mask)
783 {
784 	uint32_t lmask = mask;
785 	uint32_t hmask = mask >> 32;
786 	unsigned char *fx = _fx;
787 
788 	asm volatile(".byte " REX_PREFIX "0x0f,0xae,0x27\n\t"
789 		     : : "D" (fx), "m" (*fx), "a" (lmask), "d" (hmask)
790 		     :   "memory");
791 }
792 
mpx_clear_bnd0(void)793 static __always_inline void mpx_clear_bnd0(void)
794 {
795 	long size = 0;
796 	void *ptr = NULL;
797 	/* F3 0F 1B /r BNDMK bnd, m64			*/
798 	/* f3 0f 1b 04 11    bndmk  (%rcx,%rdx,1),%bnd0	*/
799 	asm volatile(".byte 0xf3,0x0f,0x1b,0x04,0x11\n\t"
800 		     : : "c" (ptr), "d" (size-1)
801 		     :   "memory");
802 }
803 
mpx_make_bound_helper(unsigned long ptr,unsigned long size)804 static __always_inline void mpx_make_bound_helper(unsigned long ptr,
805 		unsigned long size)
806 {
807 	/* F3 0F 1B /r		BNDMK bnd, m64			*/
808 	/* f3 0f 1b 04 11       bndmk  (%rcx,%rdx,1),%bnd0	*/
809 	asm volatile(".byte 0xf3,0x0f,0x1b,0x04,0x11\n\t"
810 		     : : "c" (ptr), "d" (size-1)
811 		     :   "memory");
812 }
813 
mpx_check_lowerbound_helper(unsigned long ptr)814 static __always_inline void mpx_check_lowerbound_helper(unsigned long ptr)
815 {
816 	/* F3 0F 1A /r	NDCL bnd, r/m64			*/
817 	/* f3 0f 1a 01	bndcl  (%rcx),%bnd0		*/
818 	asm volatile(".byte 0xf3,0x0f,0x1a,0x01\n\t"
819 		     : : "c" (ptr)
820 		     :   "memory");
821 }
822 
mpx_check_upperbound_helper(unsigned long ptr)823 static __always_inline void mpx_check_upperbound_helper(unsigned long ptr)
824 {
825 	/* F2 0F 1A /r	BNDCU bnd, r/m64	*/
826 	/* f2 0f 1a 01	bndcu  (%rcx),%bnd0	*/
827 	asm volatile(".byte 0xf2,0x0f,0x1a,0x01\n\t"
828 		     : : "c" (ptr)
829 		     :   "memory");
830 }
831 
mpx_movbndreg_helper()832 static __always_inline void mpx_movbndreg_helper()
833 {
834 	/* 66 0F 1B /r	BNDMOV bnd1/m128, bnd2	*/
835 	/* 66 0f 1b c2	bndmov %bnd0,%bnd2	*/
836 
837 	asm volatile(".byte 0x66,0x0f,0x1b,0xc2\n\t");
838 }
839 
mpx_movbnd2mem_helper(uint8_t * mem)840 static __always_inline void mpx_movbnd2mem_helper(uint8_t *mem)
841 {
842 	/* 66 0F 1B /r	BNDMOV bnd1/m128, bnd2	*/
843 	/* 66 0f 1b 01	bndmov %bnd0,(%rcx)	*/
844 	asm volatile(".byte 0x66,0x0f,0x1b,0x01\n\t"
845 		     : : "c" (mem)
846 		     :   "memory");
847 }
848 
mpx_movbnd_from_mem_helper(uint8_t * mem)849 static __always_inline void mpx_movbnd_from_mem_helper(uint8_t *mem)
850 {
851 	/* 66 0F 1A /r	BNDMOV bnd1, bnd2/m128	*/
852 	/* 66 0f 1a 01	bndmov (%rcx),%bnd0	*/
853 	asm volatile(".byte 0x66,0x0f,0x1a,0x01\n\t"
854 		     : : "c" (mem)
855 		     :   "memory");
856 }
857 
mpx_store_dsc_helper(unsigned long ptr_addr,unsigned long ptr_val)858 static __always_inline void mpx_store_dsc_helper(unsigned long ptr_addr,
859 		unsigned long ptr_val)
860 {
861 	/* 0F 1B /r	BNDSTX-Store Extended Bounds Using Address Translation	*/
862 	/* 0f 1b 04 11	bndstx %bnd0,(%rcx,%rdx,1)				*/
863 	asm volatile(".byte 0x0f,0x1b,0x04,0x11\n\t"
864 		     : : "c" (ptr_addr), "d" (ptr_val)
865 		     :   "memory");
866 }
867 
mpx_load_dsc_helper(unsigned long ptr_addr,unsigned long ptr_val)868 static __always_inline void mpx_load_dsc_helper(unsigned long ptr_addr,
869 		unsigned long ptr_val)
870 {
871 	/* 0F 1A /r	BNDLDX-Load			*/
872 	/*/ 0f 1a 04 11	bndldx (%rcx,%rdx,1),%bnd0	*/
873 	asm volatile(".byte 0x0f,0x1a,0x04,0x11\n\t"
874 		     : : "c" (ptr_addr), "d" (ptr_val)
875 		     :   "memory");
876 }
877 
__print_context(void * __print_xsave_buffer,int line)878 void __print_context(void *__print_xsave_buffer, int line)
879 {
880 	uint64_t *bounds = (uint64_t *)(__print_xsave_buffer + MPX_BOUNDS_OFFSET);
881 	uint64_t *cfg    = (uint64_t *)(__print_xsave_buffer + MPX_CONFIG_OFFSET);
882 
883 	int i;
884 	eprintf("%s()::%d\n", "print_context", line);
885 	for (i = 0; i < 4; i++) {
886 		eprintf("bound[%d]: 0x%016lx 0x%016lx(0x%016lx)\n", i,
887 		       (unsigned long)bounds[i*2],
888 		       ~(unsigned long)bounds[i*2+1],
889 			(unsigned long)bounds[i*2+1]);
890 	}
891 
892 	eprintf("cpcfg: %jx  cpstatus: %jx\n", cfg[0], cfg[1]);
893 }
894 #define print_context(x) __print_context(x, __LINE__)
895 #ifdef DEBUG
896 #define dprint_context(x) print_context(x)
897 #else
898 #define dprint_context(x) do{}while(0)
899 #endif
900 
init()901 void init()
902 {
903 	int i;
904 
905 	srand((unsigned int)time(NULL));
906 
907 	for (i = 0; i < 4; i++) {
908 		shadow_plb[i][0] = 0;
909 		shadow_plb[i][1] = ~(unsigned long)0;
910 	}
911 }
912 
__mpx_random(int line)913 long int __mpx_random(int line)
914 {
915 #ifdef NOT_SO_RANDOM
916 	static long fake = 722122311;
917 	fake += 563792075;
918 	return fakse;
919 #else
920 	return random();
921 #endif
922 }
923 #define mpx_random() __mpx_random(__LINE__)
924 
get_random_addr()925 uint8_t *get_random_addr()
926 {
927 	uint8_t*addr = (uint8_t *)(unsigned long)(rand() % MAX_ADDR_TESTED);
928 	return (addr - (unsigned long)addr % sizeof(uint8_t *));
929 }
930 
compare_context(void * __xsave_buffer)931 static inline bool compare_context(void *__xsave_buffer)
932 {
933 	uint64_t *bounds = (uint64_t *)(__xsave_buffer + MPX_BOUNDS_OFFSET);
934 
935 	int i;
936 	for (i = 0; i < 4; i++) {
937 		dprintf3("shadow[%d]{%016lx/%016lx}\nbounds[%d]{%016lx/%016lx}\n",
938 		       i, (unsigned long)shadow_plb[i][0], (unsigned long)shadow_plb[i][1],
939 		       i, (unsigned long)bounds[i*2],     ~(unsigned long)bounds[i*2+1]);
940 		if ((shadow_plb[i][0] != bounds[i*2]) ||
941 		    (shadow_plb[i][1] != ~(unsigned long)bounds[i*2+1])) {
942 			eprintf("ERROR comparing shadow to real bound register %d\n", i);
943 			eprintf("shadow{0x%016lx/0x%016lx}\nbounds{0x%016lx/0x%016lx}\n",
944 			       (unsigned long)shadow_plb[i][0], (unsigned long)shadow_plb[i][1],
945 			       (unsigned long)bounds[i*2], (unsigned long)bounds[i*2+1]);
946 			return false;
947 		}
948 	}
949 
950 	return true;
951 }
952 
mkbnd_shadow(uint8_t * ptr,int index,long offset)953 void mkbnd_shadow(uint8_t *ptr, int index, long offset)
954 {
955 	uint64_t *lower = (uint64_t *)&(shadow_plb[index][0]);
956 	uint64_t *upper = (uint64_t *)&(shadow_plb[index][1]);
957 	*lower = (unsigned long)ptr;
958 	*upper = (unsigned long)ptr + offset - 1;
959 }
960 
check_lowerbound_shadow(uint8_t * ptr,int index)961 void check_lowerbound_shadow(uint8_t *ptr, int index)
962 {
963 	uint64_t *lower = (uint64_t *)&(shadow_plb[index][0]);
964 	if (*lower > (uint64_t)(unsigned long)ptr)
965 		num_lower_brs++;
966 	else
967 		dprintf1("LowerBoundChk passed:%p\n", ptr);
968 }
969 
check_upperbound_shadow(uint8_t * ptr,int index)970 void check_upperbound_shadow(uint8_t *ptr, int index)
971 {
972 	uint64_t upper = *(uint64_t *)&(shadow_plb[index][1]);
973 	if (upper < (uint64_t)(unsigned long)ptr)
974 		num_upper_brs++;
975 	else
976 		dprintf1("UpperBoundChk passed:%p\n", ptr);
977 }
978 
movbndreg_shadow(int src,int dest)979 __always_inline void movbndreg_shadow(int src, int dest)
980 {
981 	shadow_plb[dest][0] = shadow_plb[src][0];
982 	shadow_plb[dest][1] = shadow_plb[src][1];
983 }
984 
movbnd2mem_shadow(int src,unsigned long * dest)985 __always_inline void movbnd2mem_shadow(int src, unsigned long *dest)
986 {
987 	unsigned long *lower = (unsigned long *)&(shadow_plb[src][0]);
988 	unsigned long *upper = (unsigned long *)&(shadow_plb[src][1]);
989 	*dest = *lower;
990 	*(dest+1) = *upper;
991 }
992 
movbnd_from_mem_shadow(unsigned long * src,int dest)993 __always_inline void movbnd_from_mem_shadow(unsigned long *src, int dest)
994 {
995 	unsigned long *lower = (unsigned long *)&(shadow_plb[dest][0]);
996 	unsigned long *upper = (unsigned long *)&(shadow_plb[dest][1]);
997 	*lower = *src;
998 	*upper = *(src+1);
999 }
1000 
stdsc_shadow(int index,uint8_t * ptr,uint8_t * ptr_val)1001 __always_inline void stdsc_shadow(int index, uint8_t *ptr, uint8_t *ptr_val)
1002 {
1003 	shadow_map[0] = (unsigned long)shadow_plb[index][0];
1004 	shadow_map[1] = (unsigned long)shadow_plb[index][1];
1005 	shadow_map[2] = (unsigned long)ptr_val;
1006 	dprintf3("%s(%d, %p, %p) set shadow map[2]: %p\n", __func__,
1007 			index, ptr, ptr_val, ptr_val);
1008 	/*ptr ignored */
1009 }
1010 
lddsc_shadow(int index,uint8_t * ptr,uint8_t * ptr_val)1011 void lddsc_shadow(int index, uint8_t *ptr, uint8_t *ptr_val)
1012 {
1013 	uint64_t lower = shadow_map[0];
1014 	uint64_t upper = shadow_map[1];
1015 	uint8_t *value = (uint8_t *)shadow_map[2];
1016 
1017 	if (value != ptr_val) {
1018 		dprintf2("%s(%d, %p, %p) init shadow bounds[%d] "
1019 			 "because %p != %p\n", __func__, index, ptr,
1020 			 ptr_val, index, value, ptr_val);
1021 		shadow_plb[index][0] = 0;
1022 		shadow_plb[index][1] = ~(unsigned long)0;
1023 	} else {
1024 		shadow_plb[index][0] = lower;
1025 		shadow_plb[index][1] = upper;
1026 	}
1027 	/* ptr ignored */
1028 }
1029 
mpx_test_helper0(uint8_t * buf,uint8_t * ptr)1030 static __always_inline void mpx_test_helper0(uint8_t *buf, uint8_t *ptr)
1031 {
1032 	mpx_make_bound_helper((unsigned long)ptr, 0x1800);
1033 }
1034 
mpx_test_helper0_shadow(uint8_t * buf,uint8_t * ptr)1035 static __always_inline void mpx_test_helper0_shadow(uint8_t *buf, uint8_t *ptr)
1036 {
1037 	mkbnd_shadow(ptr, 0, 0x1800);
1038 }
1039 
mpx_test_helper1(uint8_t * buf,uint8_t * ptr)1040 static __always_inline void mpx_test_helper1(uint8_t *buf, uint8_t *ptr)
1041 {
1042 	/* these are hard-coded to check bnd0 */
1043 	expected_bnd_index = 0;
1044 	mpx_check_lowerbound_helper((unsigned long)(ptr-1));
1045 	mpx_check_upperbound_helper((unsigned long)(ptr+0x1800));
1046 	/* reset this since we do not expect any more bounds exceptions */
1047 	expected_bnd_index = -1;
1048 }
1049 
mpx_test_helper1_shadow(uint8_t * buf,uint8_t * ptr)1050 static __always_inline void mpx_test_helper1_shadow(uint8_t *buf, uint8_t *ptr)
1051 {
1052 	check_lowerbound_shadow(ptr-1, 0);
1053 	check_upperbound_shadow(ptr+0x1800, 0);
1054 }
1055 
mpx_test_helper2(uint8_t * buf,uint8_t * ptr)1056 static __always_inline void mpx_test_helper2(uint8_t *buf, uint8_t *ptr)
1057 {
1058 	mpx_make_bound_helper((unsigned long)ptr, 0x1800);
1059 	mpx_movbndreg_helper();
1060 	mpx_movbnd2mem_helper(buf);
1061 	mpx_make_bound_helper((unsigned long)(ptr+0x12), 0x1800);
1062 }
1063 
mpx_test_helper2_shadow(uint8_t * buf,uint8_t * ptr)1064 static __always_inline void mpx_test_helper2_shadow(uint8_t *buf, uint8_t *ptr)
1065 {
1066 	mkbnd_shadow(ptr, 0, 0x1800);
1067 	movbndreg_shadow(0, 2);
1068 	movbnd2mem_shadow(0, (unsigned long *)buf);
1069 	mkbnd_shadow(ptr+0x12, 0, 0x1800);
1070 }
1071 
mpx_test_helper3(uint8_t * buf,uint8_t * ptr)1072 static __always_inline void mpx_test_helper3(uint8_t *buf, uint8_t *ptr)
1073 {
1074 	mpx_movbnd_from_mem_helper(buf);
1075 }
1076 
mpx_test_helper3_shadow(uint8_t * buf,uint8_t * ptr)1077 static __always_inline void mpx_test_helper3_shadow(uint8_t *buf, uint8_t *ptr)
1078 {
1079 	movbnd_from_mem_shadow((unsigned long *)buf, 0);
1080 }
1081 
mpx_test_helper4(uint8_t * buf,uint8_t * ptr)1082 static __always_inline void mpx_test_helper4(uint8_t *buf, uint8_t *ptr)
1083 {
1084 	mpx_store_dsc_helper((unsigned long)buf, (unsigned long)ptr);
1085 	mpx_make_bound_helper((unsigned long)(ptr+0x12), 0x1800);
1086 }
1087 
mpx_test_helper4_shadow(uint8_t * buf,uint8_t * ptr)1088 static __always_inline void mpx_test_helper4_shadow(uint8_t *buf, uint8_t *ptr)
1089 {
1090 	stdsc_shadow(0, buf, ptr);
1091 	mkbnd_shadow(ptr+0x12, 0, 0x1800);
1092 }
1093 
mpx_test_helper5(uint8_t * buf,uint8_t * ptr)1094 static __always_inline void mpx_test_helper5(uint8_t *buf, uint8_t *ptr)
1095 {
1096 	mpx_load_dsc_helper((unsigned long)buf, (unsigned long)ptr);
1097 }
1098 
mpx_test_helper5_shadow(uint8_t * buf,uint8_t * ptr)1099 static __always_inline void mpx_test_helper5_shadow(uint8_t *buf, uint8_t *ptr)
1100 {
1101 	lddsc_shadow(0, buf, ptr);
1102 }
1103 
1104 #define NR_MPX_TEST_FUNCTIONS 6
1105 
1106 /*
1107  * For compatibility reasons, MPX will clear the bounds registers
1108  * when you make function calls (among other things).  We have to
1109  * preserve the registers in between calls to the "helpers" since
1110  * they build on each other.
1111  *
1112  * Be very careful not to make any function calls inside the
1113  * helpers, or anywhere else beween the xrstor and xsave.
1114  */
1115 #define run_helper(helper_nr, buf, buf_shadow, ptr)	do {	\
1116 	xrstor_state(xsave_test_buf, flags);			\
1117 	mpx_test_helper##helper_nr(buf, ptr);			\
1118 	xsave_state(xsave_test_buf, flags);			\
1119 	mpx_test_helper##helper_nr##_shadow(buf_shadow, ptr);	\
1120 } while (0)
1121 
run_helpers(int nr,uint8_t * buf,uint8_t * buf_shadow,uint8_t * ptr)1122 static void run_helpers(int nr, uint8_t *buf, uint8_t *buf_shadow, uint8_t *ptr)
1123 {
1124 	uint64_t flags = 0x18;
1125 
1126 	dprint_context(xsave_test_buf);
1127 	switch (nr) {
1128 	case 0:
1129 		run_helper(0, buf, buf_shadow, ptr);
1130 		break;
1131 	case 1:
1132 		run_helper(1, buf, buf_shadow, ptr);
1133 		break;
1134 	case 2:
1135 		run_helper(2, buf, buf_shadow, ptr);
1136 		break;
1137 	case 3:
1138 		run_helper(3, buf, buf_shadow, ptr);
1139 		break;
1140 	case 4:
1141 		run_helper(4, buf, buf_shadow, ptr);
1142 		break;
1143 	case 5:
1144 		run_helper(5, buf, buf_shadow, ptr);
1145 		break;
1146 	default:
1147 		test_failed();
1148 		break;
1149 	}
1150 	dprint_context(xsave_test_buf);
1151 }
1152 
1153 unsigned long buf_shadow[1024]; /* used to check load / store descriptors */
1154 extern long inspect_me(struct mpx_bounds_dir *bounds_dir);
1155 
cover_buf_with_bt_entries(void * buf,long buf_len)1156 long cover_buf_with_bt_entries(void *buf, long buf_len)
1157 {
1158 	int i;
1159 	long nr_to_fill;
1160 	int ratio = 1000;
1161 	unsigned long buf_len_in_ptrs;
1162 
1163 	/* Fill about 1/100 of the space with bt entries */
1164 	nr_to_fill = buf_len / (sizeof(unsigned long) * ratio);
1165 
1166 	if (!nr_to_fill)
1167 		dprintf3("%s() nr_to_fill: %ld\n", __func__, nr_to_fill);
1168 
1169 	/* Align the buffer to pointer size */
1170 	while (((unsigned long)buf) % sizeof(void *)) {
1171 		buf++;
1172 		buf_len--;
1173 	}
1174 	/* We are storing pointers, so make */
1175 	buf_len_in_ptrs = buf_len / sizeof(void *);
1176 
1177 	for (i = 0; i < nr_to_fill; i++) {
1178 		long index = (mpx_random() % buf_len_in_ptrs);
1179 		void *ptr = buf + index * sizeof(unsigned long);
1180 		unsigned long ptr_addr = (unsigned long)ptr;
1181 
1182 		/* ptr and size can be anything */
1183 		mpx_make_bound_helper((unsigned long)ptr, 8);
1184 
1185 		/*
1186 		 * take bnd0 and put it in to bounds tables "buf + index" is an
1187 		 * address inside the buffer where we are pretending that we
1188 		 * are going to put a pointer We do not, though because we will
1189 		 * never load entries from the table, so it doesn't matter.
1190 		 */
1191 		mpx_store_dsc_helper(ptr_addr, (unsigned long)ptr);
1192 		dprintf4("storing bound table entry for %lx (buf start @ %p)\n",
1193 				ptr_addr, buf);
1194 	}
1195 	return nr_to_fill;
1196 }
1197 
align_down(unsigned long alignme,unsigned long align_to)1198 unsigned long align_down(unsigned long alignme, unsigned long align_to)
1199 {
1200 	return alignme & ~(align_to-1);
1201 }
1202 
align_up(unsigned long alignme,unsigned long align_to)1203 unsigned long align_up(unsigned long alignme, unsigned long align_to)
1204 {
1205 	return (alignme + align_to - 1) & ~(align_to-1);
1206 }
1207 
1208 /*
1209  * Using 1MB alignment guarantees that each no allocation
1210  * will overlap with another's bounds tables.
1211  *
1212  * We have to cook our own allocator here.  malloc() can
1213  * mix other allocation with ours which means that even
1214  * if we free all of our allocations, there might still
1215  * be bounds tables for the *areas* since there is other
1216  * valid memory there.
1217  *
1218  * We also can't use malloc() because a free() of an area
1219  * might not free it back to the kernel.  We want it
1220  * completely unmapped an malloc() does not guarantee
1221  * that.
1222  */
1223 #ifdef __i386__
1224 long alignment = 4096;
1225 long sz_alignment = 4096;
1226 #else
1227 long alignment = 1 * MB;
1228 long sz_alignment = 1 * MB;
1229 #endif
mpx_mini_alloc(unsigned long sz)1230 void *mpx_mini_alloc(unsigned long sz)
1231 {
1232 	unsigned long long tries = 0;
1233 	static void *last;
1234 	void *ptr;
1235 	void *try_at;
1236 
1237 	sz = align_up(sz, sz_alignment);
1238 
1239 	try_at = last + alignment;
1240 	while (1) {
1241 		ptr = mmap(try_at, sz, PROT_READ|PROT_WRITE,
1242 				MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1243 		if (ptr == (void *)-1)
1244 			return NULL;
1245 		if (ptr == try_at)
1246 			break;
1247 
1248 		munmap(ptr, sz);
1249 		try_at += alignment;
1250 #ifdef __i386__
1251 		/*
1252 		 * This isn't quite correct for 32-bit binaries
1253 		 * on 64-bit kernels since they can use the
1254 		 * entire 32-bit address space, but it's close
1255 		 * enough.
1256 		 */
1257 		if (try_at > (void *)0xC0000000)
1258 #else
1259 		if (try_at > (void *)0x0000800000000000)
1260 #endif
1261 			try_at = (void *)0x0;
1262 		if (!(++tries % 10000))
1263 			dprintf1("stuck in %s(), tries: %lld\n", __func__, tries);
1264 		continue;
1265 	}
1266 	last = ptr;
1267 	dprintf3("mpx_mini_alloc(0x%lx) returning: %p\n", sz, ptr);
1268 	return ptr;
1269 }
mpx_mini_free(void * ptr,long sz)1270 void mpx_mini_free(void *ptr, long sz)
1271 {
1272 	dprintf2("%s() ptr: %p\n", __func__, ptr);
1273 	if ((unsigned long)ptr > 0x100000000000) {
1274 		dprintf1("uh oh !!!!!!!!!!!!!!! pointer too high: %p\n", ptr);
1275 		test_failed();
1276 	}
1277 	sz = align_up(sz, sz_alignment);
1278 	dprintf3("%s() ptr: %p before munmap\n", __func__, ptr);
1279 	munmap(ptr, sz);
1280 	dprintf3("%s() ptr: %p DONE\n", __func__, ptr);
1281 }
1282 
1283 #define NR_MALLOCS 100
1284 struct one_malloc {
1285 	char *ptr;
1286 	int nr_filled_btes;
1287 	unsigned long size;
1288 };
1289 struct one_malloc mallocs[NR_MALLOCS];
1290 
free_one_malloc(int index)1291 void free_one_malloc(int index)
1292 {
1293 	unsigned long free_ptr;
1294 	unsigned long mask;
1295 
1296 	if (!mallocs[index].ptr)
1297 		return;
1298 
1299 	mpx_mini_free(mallocs[index].ptr, mallocs[index].size);
1300 	dprintf4("freed[%d]:  %p\n", index, mallocs[index].ptr);
1301 
1302 	free_ptr = (unsigned long)mallocs[index].ptr;
1303 	mask = alignment-1;
1304 	dprintf4("lowerbits: %lx / %lx mask: %lx\n", free_ptr,
1305 			(free_ptr & mask), mask);
1306 	assert((free_ptr & mask) == 0);
1307 
1308 	mallocs[index].ptr = NULL;
1309 }
1310 
1311 #ifdef __i386__
1312 #define MPX_BOUNDS_TABLE_COVERS 4096
1313 #else
1314 #define MPX_BOUNDS_TABLE_COVERS (1 * MB)
1315 #endif
zap_everything(void)1316 void zap_everything(void)
1317 {
1318 	long after_zap;
1319 	long before_zap;
1320 	int i;
1321 
1322 	before_zap = inspect_me(bounds_dir_ptr);
1323 	dprintf1("zapping everything start: %ld\n", before_zap);
1324 	for (i = 0; i < NR_MALLOCS; i++)
1325 		free_one_malloc(i);
1326 
1327 	after_zap = inspect_me(bounds_dir_ptr);
1328 	dprintf1("zapping everything done: %ld\n", after_zap);
1329 	/*
1330 	 * We only guarantee to empty the thing out if our allocations are
1331 	 * exactly aligned on the boundaries of a boudns table.
1332 	 */
1333 	if ((alignment >= MPX_BOUNDS_TABLE_COVERS) &&
1334 	    (sz_alignment >= MPX_BOUNDS_TABLE_COVERS)) {
1335 		if (after_zap != 0)
1336 			test_failed();
1337 
1338 		assert(after_zap == 0);
1339 	}
1340 }
1341 
do_one_malloc(void)1342 void do_one_malloc(void)
1343 {
1344 	static int malloc_counter;
1345 	long sz;
1346 	int rand_index = (mpx_random() % NR_MALLOCS);
1347 	void *ptr = mallocs[rand_index].ptr;
1348 
1349 	dprintf3("%s() enter\n", __func__);
1350 
1351 	if (ptr) {
1352 		dprintf3("freeing one malloc at index: %d\n", rand_index);
1353 		free_one_malloc(rand_index);
1354 		if (mpx_random() % (NR_MALLOCS*3) == 3) {
1355 			int i;
1356 			dprintf3("zapping some more\n");
1357 			for (i = rand_index; i < NR_MALLOCS; i++)
1358 				free_one_malloc(i);
1359 		}
1360 		if ((mpx_random() % zap_all_every_this_many_mallocs) == 4)
1361 			zap_everything();
1362 	}
1363 
1364 	/* 1->~1M */
1365 	sz = (1 + mpx_random() % 1000) * 1000;
1366 	ptr = mpx_mini_alloc(sz);
1367 	if (!ptr) {
1368 		/*
1369 		 * If we are failing allocations, just assume we
1370 		 * are out of memory and zap everything.
1371 		 */
1372 		dprintf3("zapping everything because out of memory\n");
1373 		zap_everything();
1374 		goto out;
1375 	}
1376 
1377 	dprintf3("malloc: %p size: 0x%lx\n", ptr, sz);
1378 	mallocs[rand_index].nr_filled_btes = cover_buf_with_bt_entries(ptr, sz);
1379 	mallocs[rand_index].ptr = ptr;
1380 	mallocs[rand_index].size = sz;
1381 out:
1382 	if ((++malloc_counter) % inspect_every_this_many_mallocs == 0)
1383 		inspect_me(bounds_dir_ptr);
1384 }
1385 
run_timed_test(void (* test_func)(void))1386 void run_timed_test(void (*test_func)(void))
1387 {
1388 	int done = 0;
1389 	long iteration = 0;
1390 	static time_t last_print;
1391 	time_t now;
1392 	time_t start;
1393 
1394 	time(&start);
1395 	while (!done) {
1396 		time(&now);
1397 		if ((now - start) > TEST_DURATION_SECS)
1398 			done = 1;
1399 
1400 		test_func();
1401 		iteration++;
1402 
1403 		if ((now - last_print > 1) || done) {
1404 			printf("iteration %ld complete, OK so far\n", iteration);
1405 			last_print = now;
1406 		}
1407 	}
1408 }
1409 
check_bounds_table_frees(void)1410 void check_bounds_table_frees(void)
1411 {
1412 	printf("executing unmaptest\n");
1413 	inspect_me(bounds_dir_ptr);
1414 	run_timed_test(&do_one_malloc);
1415 	printf("done with malloc() fun\n");
1416 }
1417 
insn_test_failed(int test_nr,int test_round,void * buf,void * buf_shadow,void * ptr)1418 void insn_test_failed(int test_nr, int test_round, void *buf,
1419 		void *buf_shadow, void *ptr)
1420 {
1421 	print_context(xsave_test_buf);
1422 	eprintf("ERROR: test %d round %d failed\n", test_nr, test_round);
1423 	while (test_nr == 5) {
1424 		struct mpx_bt_entry *bte;
1425 		struct mpx_bounds_dir *bd = (void *)bounds_dir_ptr;
1426 		struct mpx_bd_entry *bde = mpx_vaddr_to_bd_entry(buf, bd);
1427 
1428 		printf("  bd: %p\n", bd);
1429 		printf("&bde: %p\n", bde);
1430 		printf("*bde: %lx\n", *(unsigned long *)bde);
1431 		if (!bd_entry_valid(bde))
1432 			break;
1433 
1434 		bte = mpx_vaddr_to_bt_entry(buf, bd);
1435 		printf(" te: %p\n", bte);
1436 		printf("bte[0]: %lx\n", bte->contents[0]);
1437 		printf("bte[1]: %lx\n", bte->contents[1]);
1438 		printf("bte[2]: %lx\n", bte->contents[2]);
1439 		printf("bte[3]: %lx\n", bte->contents[3]);
1440 		break;
1441 	}
1442 	test_failed();
1443 }
1444 
check_mpx_insns_and_tables(void)1445 void check_mpx_insns_and_tables(void)
1446 {
1447 	int successes = 0;
1448 	int failures  = 0;
1449 	int buf_size = (1024*1024);
1450 	unsigned long *buf = malloc(buf_size);
1451 	const int total_nr_tests = NR_MPX_TEST_FUNCTIONS * TEST_ROUNDS;
1452 	int i, j;
1453 
1454 	memset(buf, 0, buf_size);
1455 	memset(buf_shadow, 0, sizeof(buf_shadow));
1456 
1457 	for (i = 0; i < TEST_ROUNDS; i++) {
1458 		uint8_t *ptr = get_random_addr() + 8;
1459 
1460 		for (j = 0; j < NR_MPX_TEST_FUNCTIONS; j++) {
1461 			if (0 && j != 5) {
1462 				successes++;
1463 				continue;
1464 			}
1465 			dprintf2("starting test %d round %d\n", j, i);
1466 			dprint_context(xsave_test_buf);
1467 			/*
1468 			 * test5 loads an address from the bounds tables.
1469 			 * The load will only complete if 'ptr' matches
1470 			 * the load and the store, so with random addrs,
1471 			 * the odds of this are very small.  Make it
1472 			 * higher by only moving 'ptr' 1/10 times.
1473 			 */
1474 			if (random() % 10 <= 0)
1475 				ptr = get_random_addr() + 8;
1476 			dprintf3("random ptr{%p}\n", ptr);
1477 			dprint_context(xsave_test_buf);
1478 			run_helpers(j, (void *)buf, (void *)buf_shadow, ptr);
1479 			dprint_context(xsave_test_buf);
1480 			if (!compare_context(xsave_test_buf)) {
1481 				insn_test_failed(j, i, buf, buf_shadow, ptr);
1482 				failures++;
1483 				goto exit;
1484 			}
1485 			successes++;
1486 			dprint_context(xsave_test_buf);
1487 			dprintf2("finished test %d round %d\n", j, i);
1488 			dprintf3("\n");
1489 			dprint_context(xsave_test_buf);
1490 		}
1491 	}
1492 
1493 exit:
1494 	dprintf2("\nabout to free:\n");
1495 	free(buf);
1496 	dprintf1("successes: %d\n", successes);
1497 	dprintf1(" failures: %d\n", failures);
1498 	dprintf1("    tests: %d\n", total_nr_tests);
1499 	dprintf1(" expected: %jd #BRs\n", num_upper_brs + num_lower_brs);
1500 	dprintf1("      saw: %d #BRs\n", br_count);
1501 	if (failures) {
1502 		eprintf("ERROR: non-zero number of failures\n");
1503 		exit(20);
1504 	}
1505 	if (successes != total_nr_tests) {
1506 		eprintf("ERROR: succeded fewer than number of tries (%d != %d)\n",
1507 				successes, total_nr_tests);
1508 		exit(21);
1509 	}
1510 	if (num_upper_brs + num_lower_brs != br_count) {
1511 		eprintf("ERROR: unexpected number of #BRs: %jd %jd %d\n",
1512 				num_upper_brs, num_lower_brs, br_count);
1513 		eprintf("successes: %d\n", successes);
1514 		eprintf(" failures: %d\n", failures);
1515 		eprintf("    tests: %d\n", total_nr_tests);
1516 		eprintf(" expected: %jd #BRs\n", num_upper_brs + num_lower_brs);
1517 		eprintf("      saw: %d #BRs\n", br_count);
1518 		exit(22);
1519 	}
1520 }
1521 
1522 /*
1523  * This is supposed to SIGSEGV nicely once the kernel
1524  * can no longer allocate vaddr space.
1525  */
exhaust_vaddr_space(void)1526 void exhaust_vaddr_space(void)
1527 {
1528 	unsigned long ptr;
1529 	/* Try to make sure there is no room for a bounds table anywhere */
1530 	unsigned long skip = MPX_BOUNDS_TABLE_SIZE_BYTES - PAGE_SIZE;
1531 #ifdef __i386__
1532 	unsigned long max_vaddr = 0xf7788000UL;
1533 #else
1534 	unsigned long max_vaddr = 0x800000000000UL;
1535 #endif
1536 
1537 	dprintf1("%s() start\n", __func__);
1538 	/* do not start at 0, we aren't allowed to map there */
1539 	for (ptr = PAGE_SIZE; ptr < max_vaddr; ptr += skip) {
1540 		void *ptr_ret;
1541 		int ret = madvise((void *)ptr, PAGE_SIZE, MADV_NORMAL);
1542 
1543 		if (!ret) {
1544 			dprintf1("madvise() %lx ret: %d\n", ptr, ret);
1545 			continue;
1546 		}
1547 		ptr_ret = mmap((void *)ptr, PAGE_SIZE, PROT_READ|PROT_WRITE,
1548 				MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1549 		if (ptr_ret != (void *)ptr) {
1550 			perror("mmap");
1551 			dprintf1("mmap(%lx) ret: %p\n", ptr, ptr_ret);
1552 			break;
1553 		}
1554 		if (!(ptr & 0xffffff))
1555 			dprintf1("mmap(%lx) ret: %p\n", ptr, ptr_ret);
1556 	}
1557 	for (ptr = PAGE_SIZE; ptr < max_vaddr; ptr += skip) {
1558 		dprintf2("covering 0x%lx with bounds table entries\n", ptr);
1559 		cover_buf_with_bt_entries((void *)ptr, PAGE_SIZE);
1560 	}
1561 	dprintf1("%s() end\n", __func__);
1562 	printf("done with vaddr space fun\n");
1563 }
1564 
mpx_table_test(void)1565 void mpx_table_test(void)
1566 {
1567 	printf("starting mpx bounds table test\n");
1568 	run_timed_test(check_mpx_insns_and_tables);
1569 	printf("done with mpx bounds table test\n");
1570 }
1571 
main(int argc,char ** argv)1572 int main(int argc, char **argv)
1573 {
1574 	int unmaptest = 0;
1575 	int vaddrexhaust = 0;
1576 	int tabletest = 0;
1577 	int i;
1578 
1579 	check_mpx_support();
1580 	mpx_prepare();
1581 	srandom(11179);
1582 
1583 	bd_incore();
1584 	init();
1585 	bd_incore();
1586 
1587 	trace_me();
1588 
1589 	xsave_state((void *)xsave_test_buf, 0x1f);
1590 	if (!compare_context(xsave_test_buf))
1591 		printf("Init failed\n");
1592 
1593 	for (i = 1; i < argc; i++) {
1594 		if (!strcmp(argv[i], "unmaptest"))
1595 			unmaptest = 1;
1596 		if (!strcmp(argv[i], "vaddrexhaust"))
1597 			vaddrexhaust = 1;
1598 		if (!strcmp(argv[i], "tabletest"))
1599 			tabletest = 1;
1600 	}
1601 	if (!(unmaptest || vaddrexhaust || tabletest)) {
1602 		unmaptest = 1;
1603 		/* vaddrexhaust = 1; */
1604 		tabletest = 1;
1605 	}
1606 	if (unmaptest)
1607 		check_bounds_table_frees();
1608 	if (tabletest)
1609 		mpx_table_test();
1610 	if (vaddrexhaust)
1611 		exhaust_vaddr_space();
1612 	printf("%s completed successfully\n", argv[0]);
1613 	exit(0);
1614 }
1615 
1616 #include "mpx-dig.c"
1617