1 /***********************************************************************
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3 Redistribution and use in source and binary forms, with or without
4 modification, are permitted provided that the following conditions
5 are met:
6 - Redistributions of source code must retain the above copyright notice,
7 this list of conditions and the following disclaimer.
8 - Redistributions in binary form must reproduce the above copyright
9 notice, this list of conditions and the following disclaimer in the
10 documentation and/or other materials provided with the distribution.
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
12 names of specific contributors, may be used to endorse or promote
13 products derived from this software without specific prior written
14 permission.
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 POSSIBILITY OF SUCH DAMAGE.
26 ***********************************************************************/
27 
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31 
32 #include "main_FLP.h"
33 
34 /* Wrappers. Calls flp / fix code */
35 
36 /* Convert AR filter coefficients to NLSF parameters */
silk_A2NLSF_FLP(opus_int16 * NLSF_Q15,const silk_float * pAR,const opus_int LPC_order)37 void silk_A2NLSF_FLP(
38     opus_int16                      *NLSF_Q15,                          /* O    NLSF vector      [ LPC_order ]              */
39     const silk_float                *pAR,                               /* I    LPC coefficients [ LPC_order ]              */
40     const opus_int                  LPC_order                           /* I    LPC order                                   */
41 )
42 {
43     opus_int   i;
44     opus_int32 a_fix_Q16[ MAX_LPC_ORDER ];
45 
46     for( i = 0; i < LPC_order; i++ ) {
47         a_fix_Q16[ i ] = silk_float2int( pAR[ i ] * 65536.0f );
48     }
49 
50     silk_A2NLSF( NLSF_Q15, a_fix_Q16, LPC_order );
51 }
52 
53 /* Convert LSF parameters to AR prediction filter coefficients */
silk_NLSF2A_FLP(silk_float * pAR,const opus_int16 * NLSF_Q15,const opus_int LPC_order,int arch)54 void silk_NLSF2A_FLP(
55     silk_float                      *pAR,                               /* O    LPC coefficients [ LPC_order ]              */
56     const opus_int16                *NLSF_Q15,                          /* I    NLSF vector      [ LPC_order ]              */
57     const opus_int                  LPC_order,                          /* I    LPC order                                   */
58     int                             arch                                /* I    Run-time architecture                       */
59 )
60 {
61     opus_int   i;
62     opus_int16 a_fix_Q12[ MAX_LPC_ORDER ];
63 
64     silk_NLSF2A( a_fix_Q12, NLSF_Q15, LPC_order, arch );
65 
66     for( i = 0; i < LPC_order; i++ ) {
67         pAR[ i ] = ( silk_float )a_fix_Q12[ i ] * ( 1.0f / 4096.0f );
68     }
69 }
70 
71 /******************************************/
72 /* Floating-point NLSF processing wrapper */
73 /******************************************/
silk_process_NLSFs_FLP(silk_encoder_state * psEncC,silk_float PredCoef[2][MAX_LPC_ORDER],opus_int16 NLSF_Q15[MAX_LPC_ORDER],const opus_int16 prev_NLSF_Q15[MAX_LPC_ORDER])74 void silk_process_NLSFs_FLP(
75     silk_encoder_state              *psEncC,                            /* I/O  Encoder state                               */
76     silk_float                      PredCoef[ 2 ][ MAX_LPC_ORDER ],     /* O    Prediction coefficients                     */
77     opus_int16                      NLSF_Q15[      MAX_LPC_ORDER ],     /* I/O  Normalized LSFs (quant out) (0 - (2^15-1))  */
78     const opus_int16                prev_NLSF_Q15[ MAX_LPC_ORDER ]      /* I    Previous Normalized LSFs (0 - (2^15-1))     */
79 )
80 {
81     opus_int     i, j;
82     opus_int16   PredCoef_Q12[ 2 ][ MAX_LPC_ORDER ];
83 
84     silk_process_NLSFs( psEncC, PredCoef_Q12, NLSF_Q15, prev_NLSF_Q15);
85 
86     for( j = 0; j < 2; j++ ) {
87         for( i = 0; i < psEncC->predictLPCOrder; i++ ) {
88             PredCoef[ j ][ i ] = ( silk_float )PredCoef_Q12[ j ][ i ] * ( 1.0f / 4096.0f );
89         }
90     }
91 }
92 
93 /****************************************/
94 /* Floating-point Silk NSQ wrapper      */
95 /****************************************/
silk_NSQ_wrapper_FLP(silk_encoder_state_FLP * psEnc,silk_encoder_control_FLP * psEncCtrl,SideInfoIndices * psIndices,silk_nsq_state * psNSQ,opus_int8 pulses[],const silk_float x[])96 void silk_NSQ_wrapper_FLP(
97     silk_encoder_state_FLP          *psEnc,                             /* I/O  Encoder state FLP                           */
98     silk_encoder_control_FLP        *psEncCtrl,                         /* I/O  Encoder control FLP                         */
99     SideInfoIndices                 *psIndices,                         /* I/O  Quantization indices                        */
100     silk_nsq_state                  *psNSQ,                             /* I/O  Noise Shaping Quantzation state             */
101     opus_int8                       pulses[],                           /* O    Quantized pulse signal                      */
102     const silk_float                x[]                                 /* I    Prefiltered input signal                    */
103 )
104 {
105     opus_int     i, j;
106     opus_int16   x16[ MAX_FRAME_LENGTH ];
107     opus_int32   Gains_Q16[ MAX_NB_SUBFR ];
108     silk_DWORD_ALIGN opus_int16 PredCoef_Q12[ 2 ][ MAX_LPC_ORDER ];
109     opus_int16   LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ];
110     opus_int     LTP_scale_Q14;
111 
112     /* Noise shaping parameters */
113     opus_int16   AR_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ];
114     opus_int32   LF_shp_Q14[ MAX_NB_SUBFR ];         /* Packs two int16 coefficients per int32 value             */
115     opus_int     Lambda_Q10;
116     opus_int     Tilt_Q14[ MAX_NB_SUBFR ];
117     opus_int     HarmShapeGain_Q14[ MAX_NB_SUBFR ];
118 
119     /* Convert control struct to fix control struct */
120     /* Noise shape parameters */
121     for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
122         for( j = 0; j < psEnc->sCmn.shapingLPCOrder; j++ ) {
123             AR_Q13[ i * MAX_SHAPE_LPC_ORDER + j ] = silk_float2int( psEncCtrl->AR[ i * MAX_SHAPE_LPC_ORDER + j ] * 8192.0f );
124         }
125     }
126 
127     for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
128         LF_shp_Q14[ i ] =   silk_LSHIFT32( silk_float2int( psEncCtrl->LF_AR_shp[ i ]     * 16384.0f ), 16 ) |
129                               (opus_uint16)silk_float2int( psEncCtrl->LF_MA_shp[ i ]     * 16384.0f );
130         Tilt_Q14[ i ]   =        (opus_int)silk_float2int( psEncCtrl->Tilt[ i ]          * 16384.0f );
131         HarmShapeGain_Q14[ i ] = (opus_int)silk_float2int( psEncCtrl->HarmShapeGain[ i ] * 16384.0f );
132     }
133     Lambda_Q10 = ( opus_int )silk_float2int( psEncCtrl->Lambda * 1024.0f );
134 
135     /* prediction and coding parameters */
136     for( i = 0; i < psEnc->sCmn.nb_subfr * LTP_ORDER; i++ ) {
137         LTPCoef_Q14[ i ] = (opus_int16)silk_float2int( psEncCtrl->LTPCoef[ i ] * 16384.0f );
138     }
139 
140     for( j = 0; j < 2; j++ ) {
141         for( i = 0; i < psEnc->sCmn.predictLPCOrder; i++ ) {
142             PredCoef_Q12[ j ][ i ] = (opus_int16)silk_float2int( psEncCtrl->PredCoef[ j ][ i ] * 4096.0f );
143         }
144     }
145 
146     for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
147         Gains_Q16[ i ] = silk_float2int( psEncCtrl->Gains[ i ] * 65536.0f );
148         silk_assert( Gains_Q16[ i ] > 0 );
149     }
150 
151     if( psIndices->signalType == TYPE_VOICED ) {
152         LTP_scale_Q14 = silk_LTPScales_table_Q14[ psIndices->LTP_scaleIndex ];
153     } else {
154         LTP_scale_Q14 = 0;
155     }
156 
157     /* Convert input to fix */
158     for( i = 0; i < psEnc->sCmn.frame_length; i++ ) {
159         x16[ i ] = silk_float2int( x[ i ] );
160     }
161 
162     /* Call NSQ */
163     if( psEnc->sCmn.nStatesDelayedDecision > 1 || psEnc->sCmn.warping_Q16 > 0 ) {
164         silk_NSQ_del_dec( &psEnc->sCmn, psNSQ, psIndices, x16, pulses, PredCoef_Q12[ 0 ], LTPCoef_Q14,
165             AR_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, psEncCtrl->pitchL, Lambda_Q10, LTP_scale_Q14, psEnc->sCmn.arch );
166     } else {
167         silk_NSQ( &psEnc->sCmn, psNSQ, psIndices, x16, pulses, PredCoef_Q12[ 0 ], LTPCoef_Q14,
168             AR_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, psEncCtrl->pitchL, Lambda_Q10, LTP_scale_Q14, psEnc->sCmn.arch );
169     }
170 }
171 
172 /***********************************************/
173 /* Floating-point Silk LTP quantiation wrapper */
174 /***********************************************/
silk_quant_LTP_gains_FLP(silk_float B[MAX_NB_SUBFR * LTP_ORDER],opus_int8 cbk_index[MAX_NB_SUBFR],opus_int8 * periodicity_index,opus_int32 * sum_log_gain_Q7,silk_float * pred_gain_dB,const silk_float XX[MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER],const silk_float xX[MAX_NB_SUBFR * LTP_ORDER],const opus_int subfr_len,const opus_int nb_subfr,int arch)175 void silk_quant_LTP_gains_FLP(
176     silk_float                      B[ MAX_NB_SUBFR * LTP_ORDER ],      /* O    Quantized LTP gains                            */
177     opus_int8                       cbk_index[ MAX_NB_SUBFR ],          /* O    Codebook index                              */
178     opus_int8                       *periodicity_index,                 /* O    Periodicity index                           */
179     opus_int32                      *sum_log_gain_Q7,                   /* I/O  Cumulative max prediction gain  */
180     silk_float                      *pred_gain_dB,                        /* O    LTP prediction gain                            */
181     const silk_float                XX[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* I    Correlation matrix                    */
182     const silk_float                xX[ MAX_NB_SUBFR * LTP_ORDER ],        /* I    Correlation vector                            */
183     const opus_int                    subfr_len,                            /* I    Number of samples per subframe                */
184     const opus_int                    nb_subfr,                           /* I    Number of subframes                            */
185     int                             arch                                /* I    Run-time architecture                       */
186 )
187 {
188     opus_int   i, pred_gain_dB_Q7;
189     opus_int16 B_Q14[ MAX_NB_SUBFR * LTP_ORDER ];
190     opus_int32 XX_Q17[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ];
191     opus_int32 xX_Q17[ MAX_NB_SUBFR * LTP_ORDER ];
192 
193     for( i = 0; i < nb_subfr * LTP_ORDER * LTP_ORDER; i++ ) {
194         XX_Q17[ i ] = (opus_int32)silk_float2int( XX[ i ] * 131072.0f );
195     }
196     for( i = 0; i < nb_subfr * LTP_ORDER; i++ ) {
197         xX_Q17[ i ] = (opus_int32)silk_float2int( xX[ i ] * 131072.0f );
198     }
199 
200     silk_quant_LTP_gains( B_Q14, cbk_index, periodicity_index, sum_log_gain_Q7, &pred_gain_dB_Q7, XX_Q17, xX_Q17, subfr_len, nb_subfr, arch );
201 
202     for( i = 0; i < nb_subfr * LTP_ORDER; i++ ) {
203         B[ i ] = (silk_float)B_Q14[ i ] * ( 1.0f / 16384.0f );
204     }
205 
206     *pred_gain_dB = (silk_float)pred_gain_dB_Q7 * ( 1.0f / 128.0f );
207 }
208