1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_EIGENSOLVER_H
12 #define EIGEN_EIGENSOLVER_H
13 
14 #include "./RealSchur.h"
15 
16 namespace Eigen {
17 
18 /** \eigenvalues_module \ingroup Eigenvalues_Module
19   *
20   *
21   * \class EigenSolver
22   *
23   * \brief Computes eigenvalues and eigenvectors of general matrices
24   *
25   * \tparam _MatrixType the type of the matrix of which we are computing the
26   * eigendecomposition; this is expected to be an instantiation of the Matrix
27   * class template. Currently, only real matrices are supported.
28   *
29   * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
30   * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v \f$.  If
31   * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
32   * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
33   * V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
34   * have \f$ A = V D V^{-1} \f$. This is called the eigendecomposition.
35   *
36   * The eigenvalues and eigenvectors of a matrix may be complex, even when the
37   * matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D
38   * \f$ satisfying \f$ A V = V D \f$, just like the eigendecomposition, if the
39   * matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to
40   * have blocks of the form
41   * \f[ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f]
42   * (where \f$ u \f$ and \f$ v \f$ are real numbers) on the diagonal.  These
43   * blocks correspond to complex eigenvalue pairs \f$ u \pm iv \f$. We call
44   * this variant of the eigendecomposition the pseudo-eigendecomposition.
45   *
46   * Call the function compute() to compute the eigenvalues and eigenvectors of
47   * a given matrix. Alternatively, you can use the
48   * EigenSolver(const MatrixType&, bool) constructor which computes the
49   * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
50   * eigenvectors are computed, they can be retrieved with the eigenvalues() and
51   * eigenvectors() functions. The pseudoEigenvalueMatrix() and
52   * pseudoEigenvectors() methods allow the construction of the
53   * pseudo-eigendecomposition.
54   *
55   * The documentation for EigenSolver(const MatrixType&, bool) contains an
56   * example of the typical use of this class.
57   *
58   * \note The implementation is adapted from
59   * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
60   * Their code is based on EISPACK.
61   *
62   * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
63   */
64 template<typename _MatrixType> class EigenSolver
65 {
66   public:
67 
68     /** \brief Synonym for the template parameter \p _MatrixType. */
69     typedef _MatrixType MatrixType;
70 
71     enum {
72       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
73       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
74       Options = MatrixType::Options,
75       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
76       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
77     };
78 
79     /** \brief Scalar type for matrices of type #MatrixType. */
80     typedef typename MatrixType::Scalar Scalar;
81     typedef typename NumTraits<Scalar>::Real RealScalar;
82     typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
83 
84     /** \brief Complex scalar type for #MatrixType.
85       *
86       * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
87       * \c float or \c double) and just \c Scalar if #Scalar is
88       * complex.
89       */
90     typedef std::complex<RealScalar> ComplexScalar;
91 
92     /** \brief Type for vector of eigenvalues as returned by eigenvalues().
93       *
94       * This is a column vector with entries of type #ComplexScalar.
95       * The length of the vector is the size of #MatrixType.
96       */
97     typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
98 
99     /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
100       *
101       * This is a square matrix with entries of type #ComplexScalar.
102       * The size is the same as the size of #MatrixType.
103       */
104     typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
105 
106     /** \brief Default constructor.
107       *
108       * The default constructor is useful in cases in which the user intends to
109       * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
110       *
111       * \sa compute() for an example.
112       */
EigenSolver()113     EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_realSchur(), m_matT(), m_tmp() {}
114 
115     /** \brief Default constructor with memory preallocation
116       *
117       * Like the default constructor but with preallocation of the internal data
118       * according to the specified problem \a size.
119       * \sa EigenSolver()
120       */
EigenSolver(Index size)121     explicit EigenSolver(Index size)
122       : m_eivec(size, size),
123         m_eivalues(size),
124         m_isInitialized(false),
125         m_eigenvectorsOk(false),
126         m_realSchur(size),
127         m_matT(size, size),
128         m_tmp(size)
129     {}
130 
131     /** \brief Constructor; computes eigendecomposition of given matrix.
132       *
133       * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
134       * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
135       *    eigenvalues are computed; if false, only the eigenvalues are
136       *    computed.
137       *
138       * This constructor calls compute() to compute the eigenvalues
139       * and eigenvectors.
140       *
141       * Example: \include EigenSolver_EigenSolver_MatrixType.cpp
142       * Output: \verbinclude EigenSolver_EigenSolver_MatrixType.out
143       *
144       * \sa compute()
145       */
146     template<typename InputType>
147     explicit EigenSolver(const EigenBase<InputType>& matrix, bool computeEigenvectors = true)
148       : m_eivec(matrix.rows(), matrix.cols()),
149         m_eivalues(matrix.cols()),
150         m_isInitialized(false),
151         m_eigenvectorsOk(false),
152         m_realSchur(matrix.cols()),
153         m_matT(matrix.rows(), matrix.cols()),
154         m_tmp(matrix.cols())
155     {
156       compute(matrix.derived(), computeEigenvectors);
157     }
158 
159     /** \brief Returns the eigenvectors of given matrix.
160       *
161       * \returns  %Matrix whose columns are the (possibly complex) eigenvectors.
162       *
163       * \pre Either the constructor
164       * EigenSolver(const MatrixType&,bool) or the member function
165       * compute(const MatrixType&, bool) has been called before, and
166       * \p computeEigenvectors was set to true (the default).
167       *
168       * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
169       * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The
170       * eigenvectors are normalized to have (Euclidean) norm equal to one. The
171       * matrix returned by this function is the matrix \f$ V \f$ in the
172       * eigendecomposition \f$ A = V D V^{-1} \f$, if it exists.
173       *
174       * Example: \include EigenSolver_eigenvectors.cpp
175       * Output: \verbinclude EigenSolver_eigenvectors.out
176       *
177       * \sa eigenvalues(), pseudoEigenvectors()
178       */
179     EigenvectorsType eigenvectors() const;
180 
181     /** \brief Returns the pseudo-eigenvectors of given matrix.
182       *
183       * \returns  Const reference to matrix whose columns are the pseudo-eigenvectors.
184       *
185       * \pre Either the constructor
186       * EigenSolver(const MatrixType&,bool) or the member function
187       * compute(const MatrixType&, bool) has been called before, and
188       * \p computeEigenvectors was set to true (the default).
189       *
190       * The real matrix \f$ V \f$ returned by this function and the
191       * block-diagonal matrix \f$ D \f$ returned by pseudoEigenvalueMatrix()
192       * satisfy \f$ AV = VD \f$.
193       *
194       * Example: \include EigenSolver_pseudoEigenvectors.cpp
195       * Output: \verbinclude EigenSolver_pseudoEigenvectors.out
196       *
197       * \sa pseudoEigenvalueMatrix(), eigenvectors()
198       */
pseudoEigenvectors()199     const MatrixType& pseudoEigenvectors() const
200     {
201       eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
202       eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
203       return m_eivec;
204     }
205 
206     /** \brief Returns the block-diagonal matrix in the pseudo-eigendecomposition.
207       *
208       * \returns  A block-diagonal matrix.
209       *
210       * \pre Either the constructor
211       * EigenSolver(const MatrixType&,bool) or the member function
212       * compute(const MatrixType&, bool) has been called before.
213       *
214       * The matrix \f$ D \f$ returned by this function is real and
215       * block-diagonal. The blocks on the diagonal are either 1-by-1 or 2-by-2
216       * blocks of the form
217       * \f$ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f$.
218       * These blocks are not sorted in any particular order.
219       * The matrix \f$ D \f$ and the matrix \f$ V \f$ returned by
220       * pseudoEigenvectors() satisfy \f$ AV = VD \f$.
221       *
222       * \sa pseudoEigenvectors() for an example, eigenvalues()
223       */
224     MatrixType pseudoEigenvalueMatrix() const;
225 
226     /** \brief Returns the eigenvalues of given matrix.
227       *
228       * \returns A const reference to the column vector containing the eigenvalues.
229       *
230       * \pre Either the constructor
231       * EigenSolver(const MatrixType&,bool) or the member function
232       * compute(const MatrixType&, bool) has been called before.
233       *
234       * The eigenvalues are repeated according to their algebraic multiplicity,
235       * so there are as many eigenvalues as rows in the matrix. The eigenvalues
236       * are not sorted in any particular order.
237       *
238       * Example: \include EigenSolver_eigenvalues.cpp
239       * Output: \verbinclude EigenSolver_eigenvalues.out
240       *
241       * \sa eigenvectors(), pseudoEigenvalueMatrix(),
242       *     MatrixBase::eigenvalues()
243       */
eigenvalues()244     const EigenvalueType& eigenvalues() const
245     {
246       eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
247       return m_eivalues;
248     }
249 
250     /** \brief Computes eigendecomposition of given matrix.
251       *
252       * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
253       * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
254       *    eigenvalues are computed; if false, only the eigenvalues are
255       *    computed.
256       * \returns    Reference to \c *this
257       *
258       * This function computes the eigenvalues of the real matrix \p matrix.
259       * The eigenvalues() function can be used to retrieve them.  If
260       * \p computeEigenvectors is true, then the eigenvectors are also computed
261       * and can be retrieved by calling eigenvectors().
262       *
263       * The matrix is first reduced to real Schur form using the RealSchur
264       * class. The Schur decomposition is then used to compute the eigenvalues
265       * and eigenvectors.
266       *
267       * The cost of the computation is dominated by the cost of the
268       * Schur decomposition, which is very approximately \f$ 25n^3 \f$
269       * (where \f$ n \f$ is the size of the matrix) if \p computeEigenvectors
270       * is true, and \f$ 10n^3 \f$ if \p computeEigenvectors is false.
271       *
272       * This method reuses of the allocated data in the EigenSolver object.
273       *
274       * Example: \include EigenSolver_compute.cpp
275       * Output: \verbinclude EigenSolver_compute.out
276       */
277     template<typename InputType>
278     EigenSolver& compute(const EigenBase<InputType>& matrix, bool computeEigenvectors = true);
279 
280     /** \returns NumericalIssue if the input contains INF or NaN values or overflow occured. Returns Success otherwise. */
info()281     ComputationInfo info() const
282     {
283       eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
284       return m_info;
285     }
286 
287     /** \brief Sets the maximum number of iterations allowed. */
setMaxIterations(Index maxIters)288     EigenSolver& setMaxIterations(Index maxIters)
289     {
290       m_realSchur.setMaxIterations(maxIters);
291       return *this;
292     }
293 
294     /** \brief Returns the maximum number of iterations. */
getMaxIterations()295     Index getMaxIterations()
296     {
297       return m_realSchur.getMaxIterations();
298     }
299 
300   private:
301     void doComputeEigenvectors();
302 
303   protected:
304 
check_template_parameters()305     static void check_template_parameters()
306     {
307       EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
308       EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL);
309     }
310 
311     MatrixType m_eivec;
312     EigenvalueType m_eivalues;
313     bool m_isInitialized;
314     bool m_eigenvectorsOk;
315     ComputationInfo m_info;
316     RealSchur<MatrixType> m_realSchur;
317     MatrixType m_matT;
318 
319     typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
320     ColumnVectorType m_tmp;
321 };
322 
323 template<typename MatrixType>
pseudoEigenvalueMatrix()324 MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const
325 {
326   eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
327   const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon();
328   Index n = m_eivalues.rows();
329   MatrixType matD = MatrixType::Zero(n,n);
330   for (Index i=0; i<n; ++i)
331   {
332     if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i)), precision))
333       matD.coeffRef(i,i) = numext::real(m_eivalues.coeff(i));
334     else
335     {
336       matD.template block<2,2>(i,i) <<  numext::real(m_eivalues.coeff(i)), numext::imag(m_eivalues.coeff(i)),
337                                        -numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i));
338       ++i;
339     }
340   }
341   return matD;
342 }
343 
344 template<typename MatrixType>
eigenvectors()345 typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eigenvectors() const
346 {
347   eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
348   eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
349   const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon();
350   Index n = m_eivec.cols();
351   EigenvectorsType matV(n,n);
352   for (Index j=0; j<n; ++j)
353   {
354     if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(j)), numext::real(m_eivalues.coeff(j)), precision) || j+1==n)
355     {
356       // we have a real eigen value
357       matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>();
358       matV.col(j).normalize();
359     }
360     else
361     {
362       // we have a pair of complex eigen values
363       for (Index i=0; i<n; ++i)
364       {
365         matV.coeffRef(i,j)   = ComplexScalar(m_eivec.coeff(i,j),  m_eivec.coeff(i,j+1));
366         matV.coeffRef(i,j+1) = ComplexScalar(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1));
367       }
368       matV.col(j).normalize();
369       matV.col(j+1).normalize();
370       ++j;
371     }
372   }
373   return matV;
374 }
375 
376 template<typename MatrixType>
377 template<typename InputType>
378 EigenSolver<MatrixType>&
compute(const EigenBase<InputType> & matrix,bool computeEigenvectors)379 EigenSolver<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeEigenvectors)
380 {
381   check_template_parameters();
382 
383   using std::sqrt;
384   using std::abs;
385   using numext::isfinite;
386   eigen_assert(matrix.cols() == matrix.rows());
387 
388   // Reduce to real Schur form.
389   m_realSchur.compute(matrix.derived(), computeEigenvectors);
390 
391   m_info = m_realSchur.info();
392 
393   if (m_info == Success)
394   {
395     m_matT = m_realSchur.matrixT();
396     if (computeEigenvectors)
397       m_eivec = m_realSchur.matrixU();
398 
399     // Compute eigenvalues from matT
400     m_eivalues.resize(matrix.cols());
401     Index i = 0;
402     while (i < matrix.cols())
403     {
404       if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) == Scalar(0))
405       {
406         m_eivalues.coeffRef(i) = m_matT.coeff(i, i);
407         if(!(isfinite)(m_eivalues.coeffRef(i)))
408         {
409           m_isInitialized = true;
410           m_eigenvectorsOk = false;
411           m_info = NumericalIssue;
412           return *this;
413         }
414         ++i;
415       }
416       else
417       {
418         Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1));
419         Scalar z;
420         // Compute z = sqrt(abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1)));
421         // without overflow
422         {
423           Scalar t0 = m_matT.coeff(i+1, i);
424           Scalar t1 = m_matT.coeff(i, i+1);
425           Scalar maxval = numext::maxi<Scalar>(abs(p),numext::maxi<Scalar>(abs(t0),abs(t1)));
426           t0 /= maxval;
427           t1 /= maxval;
428           Scalar p0 = p/maxval;
429           z = maxval * sqrt(abs(p0 * p0 + t0 * t1));
430         }
431 
432         m_eivalues.coeffRef(i)   = ComplexScalar(m_matT.coeff(i+1, i+1) + p, z);
433         m_eivalues.coeffRef(i+1) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z);
434         if(!((isfinite)(m_eivalues.coeffRef(i)) && (isfinite)(m_eivalues.coeffRef(i+1))))
435         {
436           m_isInitialized = true;
437           m_eigenvectorsOk = false;
438           m_info = NumericalIssue;
439           return *this;
440         }
441         i += 2;
442       }
443     }
444 
445     // Compute eigenvectors.
446     if (computeEigenvectors)
447       doComputeEigenvectors();
448   }
449 
450   m_isInitialized = true;
451   m_eigenvectorsOk = computeEigenvectors;
452 
453   return *this;
454 }
455 
456 
457 template<typename MatrixType>
doComputeEigenvectors()458 void EigenSolver<MatrixType>::doComputeEigenvectors()
459 {
460   using std::abs;
461   const Index size = m_eivec.cols();
462   const Scalar eps = NumTraits<Scalar>::epsilon();
463 
464   // inefficient! this is already computed in RealSchur
465   Scalar norm(0);
466   for (Index j = 0; j < size; ++j)
467   {
468     norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum();
469   }
470 
471   // Backsubstitute to find vectors of upper triangular form
472   if (norm == Scalar(0))
473   {
474     return;
475   }
476 
477   for (Index n = size-1; n >= 0; n--)
478   {
479     Scalar p = m_eivalues.coeff(n).real();
480     Scalar q = m_eivalues.coeff(n).imag();
481 
482     // Scalar vector
483     if (q == Scalar(0))
484     {
485       Scalar lastr(0), lastw(0);
486       Index l = n;
487 
488       m_matT.coeffRef(n,n) = Scalar(1);
489       for (Index i = n-1; i >= 0; i--)
490       {
491         Scalar w = m_matT.coeff(i,i) - p;
492         Scalar r = m_matT.row(i).segment(l,n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
493 
494         if (m_eivalues.coeff(i).imag() < Scalar(0))
495         {
496           lastw = w;
497           lastr = r;
498         }
499         else
500         {
501           l = i;
502           if (m_eivalues.coeff(i).imag() == Scalar(0))
503           {
504             if (w != Scalar(0))
505               m_matT.coeffRef(i,n) = -r / w;
506             else
507               m_matT.coeffRef(i,n) = -r / (eps * norm);
508           }
509           else // Solve real equations
510           {
511             Scalar x = m_matT.coeff(i,i+1);
512             Scalar y = m_matT.coeff(i+1,i);
513             Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag();
514             Scalar t = (x * lastr - lastw * r) / denom;
515             m_matT.coeffRef(i,n) = t;
516             if (abs(x) > abs(lastw))
517               m_matT.coeffRef(i+1,n) = (-r - w * t) / x;
518             else
519               m_matT.coeffRef(i+1,n) = (-lastr - y * t) / lastw;
520           }
521 
522           // Overflow control
523           Scalar t = abs(m_matT.coeff(i,n));
524           if ((eps * t) * t > Scalar(1))
525             m_matT.col(n).tail(size-i) /= t;
526         }
527       }
528     }
529     else if (q < Scalar(0) && n > 0) // Complex vector
530     {
531       Scalar lastra(0), lastsa(0), lastw(0);
532       Index l = n-1;
533 
534       // Last vector component imaginary so matrix is triangular
535       if (abs(m_matT.coeff(n,n-1)) > abs(m_matT.coeff(n-1,n)))
536       {
537         m_matT.coeffRef(n-1,n-1) = q / m_matT.coeff(n,n-1);
538         m_matT.coeffRef(n-1,n) = -(m_matT.coeff(n,n) - p) / m_matT.coeff(n,n-1);
539       }
540       else
541       {
542         ComplexScalar cc = ComplexScalar(Scalar(0),-m_matT.coeff(n-1,n)) / ComplexScalar(m_matT.coeff(n-1,n-1)-p,q);
543         m_matT.coeffRef(n-1,n-1) = numext::real(cc);
544         m_matT.coeffRef(n-1,n) = numext::imag(cc);
545       }
546       m_matT.coeffRef(n,n-1) = Scalar(0);
547       m_matT.coeffRef(n,n) = Scalar(1);
548       for (Index i = n-2; i >= 0; i--)
549       {
550         Scalar ra = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n-1).segment(l, n-l+1));
551         Scalar sa = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
552         Scalar w = m_matT.coeff(i,i) - p;
553 
554         if (m_eivalues.coeff(i).imag() < Scalar(0))
555         {
556           lastw = w;
557           lastra = ra;
558           lastsa = sa;
559         }
560         else
561         {
562           l = i;
563           if (m_eivalues.coeff(i).imag() == RealScalar(0))
564           {
565             ComplexScalar cc = ComplexScalar(-ra,-sa) / ComplexScalar(w,q);
566             m_matT.coeffRef(i,n-1) = numext::real(cc);
567             m_matT.coeffRef(i,n) = numext::imag(cc);
568           }
569           else
570           {
571             // Solve complex equations
572             Scalar x = m_matT.coeff(i,i+1);
573             Scalar y = m_matT.coeff(i+1,i);
574             Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q;
575             Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q;
576             if ((vr == Scalar(0)) && (vi == Scalar(0)))
577               vr = eps * norm * (abs(w) + abs(q) + abs(x) + abs(y) + abs(lastw));
578 
579             ComplexScalar cc = ComplexScalar(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra) / ComplexScalar(vr,vi);
580             m_matT.coeffRef(i,n-1) = numext::real(cc);
581             m_matT.coeffRef(i,n) = numext::imag(cc);
582             if (abs(x) > (abs(lastw) + abs(q)))
583             {
584               m_matT.coeffRef(i+1,n-1) = (-ra - w * m_matT.coeff(i,n-1) + q * m_matT.coeff(i,n)) / x;
585               m_matT.coeffRef(i+1,n) = (-sa - w * m_matT.coeff(i,n) - q * m_matT.coeff(i,n-1)) / x;
586             }
587             else
588             {
589               cc = ComplexScalar(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n)) / ComplexScalar(lastw,q);
590               m_matT.coeffRef(i+1,n-1) = numext::real(cc);
591               m_matT.coeffRef(i+1,n) = numext::imag(cc);
592             }
593           }
594 
595           // Overflow control
596           Scalar t = numext::maxi<Scalar>(abs(m_matT.coeff(i,n-1)),abs(m_matT.coeff(i,n)));
597           if ((eps * t) * t > Scalar(1))
598             m_matT.block(i, n-1, size-i, 2) /= t;
599 
600         }
601       }
602 
603       // We handled a pair of complex conjugate eigenvalues, so need to skip them both
604       n--;
605     }
606     else
607     {
608       eigen_assert(0 && "Internal bug in EigenSolver (INF or NaN has not been detected)"); // this should not happen
609     }
610   }
611 
612   // Back transformation to get eigenvectors of original matrix
613   for (Index j = size-1; j >= 0; j--)
614   {
615     m_tmp.noalias() = m_eivec.leftCols(j+1) * m_matT.col(j).segment(0, j+1);
616     m_eivec.col(j) = m_tmp;
617   }
618 }
619 
620 } // end namespace Eigen
621 
622 #endif // EIGEN_EIGENSOLVER_H
623