1 /* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #define EIGEN_USE_THREADS
17 
18 #include <vector>
19 
20 #include "tensorflow/cc/client/client_session.h"
21 #include "tensorflow/cc/ops/array_ops.h"
22 #include "tensorflow/cc/ops/const_op.h"
23 #include "tensorflow/cc/ops/image_ops.h"
24 #include "tensorflow/core/framework/node_def_builder.h"
25 #include "tensorflow/core/framework/node_def_util.h"
26 #include "tensorflow/core/framework/shape_inference_testutil.h"
27 #include "tensorflow/core/framework/tensor_testutil.h"
28 #include "tensorflow/core/graph/gradients.h"
29 #include "tensorflow/core/kernels/quantization_utils.h"
30 #include "tensorflow/core/lib/core/status_test_util.h"
31 #include "tensorflow/core/platform/test.h"
32 
33 namespace tensorflow {
34 
35 namespace {
36 constexpr const float RESIZE_VAL_TOLERANCE = 1.0e-8;
37 
38 template <typename T>
BuildTensor(const int batch_size,const int height,const int width,const int channels,const float ratio,const float min,const float max)39 Tensor BuildTensor(const int batch_size, const int height, const int width,
40                    const int channels, const float ratio, const float min,
41                    const float max) {
42   Tensor tensor(DataTypeToEnum<T>::value,
43                 TensorShape({batch_size, height, width, channels}));
44   for (int64 i = 0; i < tensor.NumElements(); ++i) {
45     tensor.flat<T>()(i) =
46         FloatToQuantized<T>(static_cast<float>(i) / ratio, min, max);
47   }
48   return tensor;
49 }
50 
51 template <>
BuildTensor(const int batch_size,const int height,const int width,const int channels,const float ratio,const float min,const float max)52 Tensor BuildTensor<float>(const int batch_size, const int height,
53                           const int width, const int channels,
54                           const float ratio, const float min, const float max) {
55   Tensor tensor(DT_FLOAT, TensorShape({batch_size, height, width, channels}));
56   for (int64 i = 0; i < tensor.NumElements(); ++i) {
57     tensor.flat<float>()(i) = static_cast<float>(i) / ratio;
58   }
59   return tensor;
60 }
61 
CalculateResizeScale(int64 in_size,int64 out_size,bool align_corners)62 float CalculateResizeScale(int64 in_size, int64 out_size, bool align_corners) {
63   return (align_corners && out_size > 1)
64              ? (in_size - 1) / static_cast<float>(out_size - 1)
65              : in_size / static_cast<float>(out_size);
66 }
67 
GetReferenceWeight(const bool half_pixel_centers,const int64 out_size,const int64 in_size,const int step,const int index,const float scale)68 inline std::tuple<int64, int64, float> GetReferenceWeight(
69     const bool half_pixel_centers, const int64 out_size, const int64 in_size,
70     const int step, const int index, const float scale) {
71   const float in = half_pixel_centers
72                        ? (static_cast<float>(index) + 0.5f) * scale - 0.5f
73                        : index * scale;
74   const float in_f = std::floor(in);
75   const int64 lower = std::max(static_cast<int64>(in_f), static_cast<int64>(0));
76   const int64 upper = std::min(static_cast<int64>(std::ceil(in)), in_size - 1);
77   return std::make_tuple(lower * step, upper * step, in - in_f);
78 }
79 
80 template <typename T>
ComputeLerpReference(const T in_top_left,const T in_top_right,const T in_bottom_left,const T in_bottom_right,const float x_lerp,const float y_lerp,const float min,const float max)81 T ComputeLerpReference(const T in_top_left, const T in_top_right,
82                        const T in_bottom_left, const T in_bottom_right,
83                        const float x_lerp, const float y_lerp, const float min,
84                        const float max) {
85   const float top_left = QuantizedToFloat<T>(in_top_left, min, max);
86   const float top_right = QuantizedToFloat<T>(in_top_right, min, max);
87   const float bottom_left = QuantizedToFloat<T>(in_bottom_left, min, max);
88   const float bottom_right = QuantizedToFloat<T>(in_bottom_right, min, max);
89   const float top = top_left + (top_right - top_left) * x_lerp;
90   const float bottom = bottom_left + (bottom_right - bottom_left) * x_lerp;
91   const float out = top + (bottom - top) * y_lerp;
92   return FloatToQuantized<T>(out, min, max);
93 }
94 
95 template <>
ComputeLerpReference(const float in_top_left,const float in_top_right,const float in_bottom_left,const float in_bottom_right,const float x_lerp,const float y_lerp,const float min,const float max)96 float ComputeLerpReference<float>(const float in_top_left,
97                                   const float in_top_right,
98                                   const float in_bottom_left,
99                                   const float in_bottom_right,
100                                   const float x_lerp, const float y_lerp,
101                                   const float min, const float max) {
102   const float top = in_top_left + (in_top_right - in_top_left) * x_lerp;
103   const float bottom =
104       in_bottom_left + (in_bottom_right - in_bottom_left) * x_lerp;
105   return top + (bottom - top) * y_lerp;
106 }
107 
108 template <typename T>
CalcReferenceResizedVal(const T * image_data,const bool half_pixel_centers,const int batch_size,const int64 in_height,const int64 in_width,const int64 out_height,const int64 out_width,const int channels,const float height_scale,const float width_scale,const float min,const float max,const int b,const int64 x,const int64 y,const int c)109 T CalcReferenceResizedVal(const T* image_data, const bool half_pixel_centers,
110                           const int batch_size, const int64 in_height,
111                           const int64 in_width, const int64 out_height,
112                           const int64 out_width, const int channels,
113                           const float height_scale, const float width_scale,
114                           const float min, const float max, const int b,
115                           const int64 x, const int64 y, const int c) {
116   const std::tuple<int64, int64, float> x_weight = GetReferenceWeight(
117       half_pixel_centers, out_width, in_width, channels, x, width_scale);
118   const std::tuple<int64, int64, float> y_weight = GetReferenceWeight(
119       half_pixel_centers, out_height, in_height, 1, y, height_scale);
120 
121   const int64 in_row_size = in_width * channels;
122   const int64 in_batch_num_values = in_height * in_row_size;
123 
124   const int y_lower_index =
125       b * in_batch_num_values + std::get<0>(y_weight) * in_row_size;
126   const int y_upper_index =
127       b * in_batch_num_values + std::get<1>(y_weight) * in_row_size;
128 
129   const int64 xs_lower = std::get<0>(x_weight);
130   const int64 xs_upper = std::get<1>(x_weight);
131   const float xs_lerp = std::get<2>(x_weight);
132   const float ys_lerp = std::get<2>(y_weight);
133   const float top_left = image_data[y_lower_index + xs_lower + c];
134   const float top_right = image_data[y_lower_index + xs_upper + c];
135   const float bottom_left = image_data[y_upper_index + xs_lower + c];
136   const float bottom_right = image_data[y_upper_index + xs_upper + c];
137   const float val =
138       ComputeLerpReference<T>(top_left, top_right, bottom_left, bottom_right,
139                               xs_lerp, ys_lerp, min, max);
140   return val;
141 }
142 
143 template <typename T>
CheckTensorValue(const T * in_data,const T * out_data,const int batch_size,const int64 in_height,const int64 in_width,const int64 out_height,const int64 out_width,const int channels,const bool align_corners,const bool half_pixel_centers,const float min,const float max,const float tolerance,const bool relative)144 void CheckTensorValue(const T* in_data, const T* out_data, const int batch_size,
145                       const int64 in_height, const int64 in_width,
146                       const int64 out_height, const int64 out_width,
147                       const int channels, const bool align_corners,
148                       const bool half_pixel_centers, const float min,
149                       const float max, const float tolerance,
150                       const bool relative) {
151   const int64 out_row_size = out_width * channels;
152   const float height_scale =
153       CalculateResizeScale(in_height, out_height, align_corners);
154   const float width_scale =
155       CalculateResizeScale(in_width, out_width, align_corners);
156 
157   for (int b = 0; b < batch_size; ++b) {
158     for (int64 y = 0; y < out_height; ++y) {
159       for (int64 x = 0; x < out_width; ++x) {
160         for (int c = 0; c < channels; ++c) {
161           const T ref_qval = CalcReferenceResizedVal<T>(
162               in_data, half_pixel_centers, batch_size, in_height, in_width,
163               out_height, out_width, channels, height_scale, width_scale, min,
164               max, b, x, y, c);
165           const T qval =
166               out_data[(b * out_height + y) * out_row_size + x * channels + c];
167           const float ref_val = QuantizedToFloat<T>(ref_qval, min, max);
168           const float val = QuantizedToFloat<T>(qval, min, max);
169           if (!relative) {
170             const int q_tolerance = std::round(tolerance);
171             EXPECT_TRUE(std::abs(static_cast<int32>(ref_qval) -
172                                  static_cast<int32>(qval)) <= q_tolerance)
173                 << "ref = " << ref_val << ", val = " << val << ", " << b << ", "
174                 << y << ", " << x << ", " << c << ", qval = " << qval
175                 << ", ref qval = " << ref_qval << ", " << q_tolerance;
176           } else {
177             const float rel_tolerance = std::max(ref_val, 1.0f) * tolerance;
178             EXPECT_NEAR(ref_val, val, rel_tolerance)
179                 << "ref = " << ref_val << ", val = " << val << ", " << b << ", "
180                 << y << ", " << x << ", " << c << ", ref qval = " << qval;
181           }
182         }
183       }
184     }
185   }
186 }
187 
TestResizeBilinear(const Tensor & image_tensor,const DataType dt,const Input::Initializer & new_size,const bool show_time,const int64 iterations,const float min,const float max,const bool half_pixel_centers,std::vector<Tensor> * outputs)188 void TestResizeBilinear(const Tensor& image_tensor, const DataType dt,
189                         const Input::Initializer& new_size,
190                         const bool show_time, const int64 iterations,
191                         const float min, const float max,
192                         const bool half_pixel_centers,
193                         std::vector<Tensor>* outputs) {
194   Scope root = Scope::NewRootScope();
195 
196   Output placeholder = ops::Placeholder(root.WithOpName("placeholder"), dt);
197   Output size = ops::Const<int32>(root.WithOpName("size"), new_size);
198   Output in_min = ops::Const<float>(root.WithOpName("min"), min);
199   Output in_max = ops::Const<float>(root.WithOpName("max"), max);
200 
201   ops::QuantizedResizeBilinear qrb = ops::QuantizedResizeBilinear(
202       root.WithOpName("qrb"), placeholder, size, in_min, in_max,
203       ops::QuantizedResizeBilinear::HalfPixelCenters(half_pixel_centers));
204 
205   TF_EXPECT_OK(root.status());
206 
207   ClientSession session(root);
208 
209   int64 total_duration = 0;
210   outputs->clear();
211 
212   for (int i = 0; i < iterations; ++i) {
213     const int64 start_time = Env::Default()->NowMicros();
214     TF_EXPECT_OK(session.Run({{placeholder, image_tensor}},
215                              {qrb.resized_images, qrb.out_min, qrb.out_max},
216                              outputs));
217     const int64 end_time = Env::Default()->NowMicros();
218     total_duration += end_time - start_time;
219   }
220   const int64 one_run_duration = total_duration / iterations;
221 
222   const int64 num_ops = outputs->at(0).NumElements();
223 
224   const double million_ops_per_second =
225       (iterations * num_ops) / static_cast<double>(total_duration);
226 
227   if (show_time) {
228     LOG(INFO) << "Time resize bilinear: "
229               << TensorShape(image_tensor.shape()).DebugString()
230               << ": iterations=" << iterations
231               << ", MOps/s=" << million_ops_per_second
232               << ", one_run_duration=" << one_run_duration
233               << ", total_duration=" << total_duration;
234   }
235 }
236 
237 }  // namespace
238 
TestResizeBilinearOneDim()239 void TestResizeBilinearOneDim() {
240   constexpr float TOLERANCE = 1.0e-5;
241   constexpr int IN_WIDTH = 128;
242   constexpr int OUT_WIDTH = 256;
243   constexpr float MIN = 0.0f;
244   constexpr float MAX = 256.0f;
245   constexpr float SCALE = static_cast<float>(IN_WIDTH) / OUT_WIDTH;
246   Tensor image_quantized_tensor(DT_QINT32, TensorShape({1, 1, IN_WIDTH, 1}));
247 
248   for (int64 i = 0; i < image_quantized_tensor.NumElements(); ++i) {
249     image_quantized_tensor.flat<qint32>()(i) =
250         FloatToQuantized<qint32>(static_cast<float>(i), MIN, MAX);
251   }
252 
253   std::vector<Tensor> outputs;
254   TestResizeBilinear(image_quantized_tensor, DT_QINT32, {1, OUT_WIDTH}, false,
255                      1, MIN, MAX, false, &outputs);
256   ASSERT_EQ(3, outputs.size());
257   ASSERT_EQ(OUT_WIDTH, outputs.at(0).NumElements());
258   ASSERT_EQ(4, outputs.at(0).shape().dims());
259   ASSERT_EQ(OUT_WIDTH, outputs.at(0).shape().dim_size(2));
260 
261   // Manual value testing
262   for (int64 i = 0; i < outputs.at(0).NumElements(); ++i) {
263     const float resized_image_val =
264         QuantizedToFloat<qint32>(outputs.at(0).flat<qint32>()(i), MIN, MAX);
265     float expected_val = 0.0f;
266     if (i == 0 || i == outputs.at(0).NumElements() - 1 || i % 2 == 0) {
267       expected_val = QuantizedToFloat<qint32>(
268           image_quantized_tensor.flat<qint32>()(i / 2), MIN, MAX);
269     } else {
270       const float image_val0 = QuantizedToFloat<qint32>(
271           image_quantized_tensor.flat<qint32>()(i / 2), MIN, MAX);
272       const float image_val1 = QuantizedToFloat<qint32>(
273           image_quantized_tensor.flat<qint32>()(i / 2 + 1), MIN, MAX);
274       expected_val = (image_val0 + image_val1) * SCALE;
275     }
276     VLOG(1) << "(" << i << ") " << expected_val << ", " << resized_image_val;
277     EXPECT_NEAR(expected_val, resized_image_val, RESIZE_VAL_TOLERANCE)
278         << expected_val << ", " << resized_image_val;
279   }
280 
281   // Value testing with reference implementation
282   CheckTensorValue<qint32>(image_quantized_tensor.flat<qint32>().data(),
283                            outputs.at(0).flat<qint32>().data(),
284                            /*batch_size=*/1,
285                            /*in_height=*/IN_WIDTH,
286                            /*in_width=*/1,
287                            /*out_height=*/OUT_WIDTH,
288                            /*out_width=*/1,
289                            /*channels=*/1,
290                            /*align_corners=*/false,
291                            /*half_pixel_centers=*/false, MIN, MAX, TOLERANCE,
292                            true);
293 }
294 
295 template <typename T>
RunTestResizeBilinearTwoDims(int batch_size,int in_height,int in_width,int out_height,int out_width,int channels,float tolerance,bool relative,const bool half_pixel_centers)296 void RunTestResizeBilinearTwoDims(int batch_size, int in_height, int in_width,
297                                   int out_height, int out_width, int channels,
298                                   float tolerance, bool relative,
299                                   const bool half_pixel_centers) {
300   constexpr float RATIO = 100.0f;
301   const float min = 0.0f;
302   const float max = batch_size * in_height * in_width * channels / RATIO;
303 
304   const Tensor image_quantized_tensor = BuildTensor<T>(
305       batch_size, in_height, in_width, channels, RATIO, min, max);
306 
307   std::vector<Tensor> outputs;
308   TestResizeBilinear(image_quantized_tensor, DataTypeToEnum<T>::value,
309                      {out_height, out_width}, false, 1, min, max,
310                      half_pixel_centers, &outputs);
311   CheckTensorValue<T>(
312       image_quantized_tensor.flat<T>().data(), outputs.at(0).flat<T>().data(),
313       batch_size, in_height, in_width, out_height, out_width, channels,
314       /*align_corners=*/false,
315       /*half_pixel_centers=*/half_pixel_centers, min, max, tolerance, relative);
316 }
317 
318 template <typename T>
RunBenchmarkResizeBilinearTwoDims(int batch_size,int in_height,int in_width,int out_height,int out_width,int channels,int iteration,const bool half_pixel_centers)319 void RunBenchmarkResizeBilinearTwoDims(int batch_size, int in_height,
320                                        int in_width, int out_height,
321                                        int out_width, int channels,
322                                        int iteration,
323                                        const bool half_pixel_centers) {
324   constexpr float RATIO = 100.0f;
325   const float min = 0.0f;
326   const float max = batch_size * in_height * in_width * channels / RATIO;
327 
328   const Tensor image_quantized_tensor = BuildTensor<T>(
329       batch_size, in_height, in_width, channels, RATIO, min, max);
330 
331   std::vector<Tensor> outputs;
332   TestResizeBilinear(image_quantized_tensor, DataTypeToEnum<T>::value,
333                      {out_height, out_width}, true, iteration, min, max, false,
334                      &outputs);
335 }
336 
337 template <typename T>
TestResizeBilinearTwoDimsType(const float tolerance,const bool relative,const bool half_pixel_centers)338 void TestResizeBilinearTwoDimsType(const float tolerance, const bool relative,
339                                    const bool half_pixel_centers) {
340   RunTestResizeBilinearTwoDims<T>(1, 1, 1, 1, 1, 1, tolerance, relative,
341                                   half_pixel_centers);
342   RunTestResizeBilinearTwoDims<T>(1, 1, 128, 1, 256, 1, tolerance, relative,
343                                   half_pixel_centers);
344   RunTestResizeBilinearTwoDims<T>(1, 128, 1, 256, 1, 1, tolerance, relative,
345                                   half_pixel_centers);
346   RunTestResizeBilinearTwoDims<T>(1, 128, 128, 256, 256, 1, tolerance, relative,
347                                   half_pixel_centers);
348   RunTestResizeBilinearTwoDims<T>(1, 256, 256, 128, 128, 1, tolerance, relative,
349                                   half_pixel_centers);
350   RunTestResizeBilinearTwoDims<T>(1, 1, 128, 1, 256, 2, tolerance, relative,
351                                   half_pixel_centers);
352   RunTestResizeBilinearTwoDims<T>(1, 128, 1, 256, 1, 2, tolerance, relative,
353                                   half_pixel_centers);
354   RunTestResizeBilinearTwoDims<T>(1, 128, 128, 256, 256, 2, tolerance, relative,
355                                   half_pixel_centers);
356   RunTestResizeBilinearTwoDims<T>(1, 256, 256, 128, 128, 2, tolerance, relative,
357                                   half_pixel_centers);
358   RunTestResizeBilinearTwoDims<T>(1, 1, 16, 1, 32, 3, tolerance, relative,
359                                   half_pixel_centers);
360   RunTestResizeBilinearTwoDims<T>(1, 1, 128, 1, 256, 3, tolerance, relative,
361                                   half_pixel_centers);
362   RunTestResizeBilinearTwoDims<T>(1, 128, 128, 256, 256, 3, tolerance, relative,
363                                   half_pixel_centers);
364   RunTestResizeBilinearTwoDims<T>(1, 256, 256, 128, 128, 3, tolerance, relative,
365                                   half_pixel_centers);
366 }
367 
TestResizeBilinearTwoDims()368 void TestResizeBilinearTwoDims() {
369   for (const bool half_pixel_centers : {false, true}) {
370     TestResizeBilinearTwoDimsType<quint8>(1.0f, false, half_pixel_centers);
371     TestResizeBilinearTwoDimsType<qint32>(1.0e-5, true, half_pixel_centers);
372     TestResizeBilinearTwoDimsType<float>(1.0e-5, true, half_pixel_centers);
373   }
374 }
375 
376 template <typename T>
RunBenchmarkResizeBilinearTwoDimsType()377 void RunBenchmarkResizeBilinearTwoDimsType() {
378   constexpr int ITER = 100;
379   RunBenchmarkResizeBilinearTwoDims<T>(1, 1, 1, 2, 2, 1, ITER, false);
380   RunBenchmarkResizeBilinearTwoDims<T>(1, 128, 128, 256, 256, 1, ITER, false);
381   RunBenchmarkResizeBilinearTwoDims<T>(1, 128, 128, 256, 256, 3, ITER, false);
382   RunBenchmarkResizeBilinearTwoDims<T>(1, 64, 64, 128, 128, 2, ITER, false);
383   RunBenchmarkResizeBilinearTwoDims<T>(1, 32, 32, 64, 64, 16, ITER, false);
384 }
385 
RunBenchmarkResizeBilinearTwoDims()386 void RunBenchmarkResizeBilinearTwoDims() {
387   LOG(INFO) << "Benchmark quint8";
388   RunBenchmarkResizeBilinearTwoDimsType<quint8>();
389   LOG(INFO) << "Benchmark qint32";
390   RunBenchmarkResizeBilinearTwoDimsType<qint32>();
391   LOG(INFO) << "Benchmark float";
392   RunBenchmarkResizeBilinearTwoDimsType<float>();
393 }
394 
395 }  // namespace tensorflow
396 
397 #define RUN_TEST(t) \
398   TEST(QuantizationResizeBilenarTest, t) { tensorflow::t(); }
399 
400 RUN_TEST(TestResizeBilinearOneDim);
401 RUN_TEST(TestResizeBilinearTwoDims);
402 
403 #if defined(__ANDROID__)
404 
405 RUN_TEST(RunBenchmarkResizeBilinearTwoDims);
406 
407 #endif  // __ANDROID__
408 
main(int argc,char ** argv)409 int main(int argc, char** argv) {
410   // On Linux, add: FLAGS_logtostderr = true;
411   ::testing::InitGoogleTest(&argc, argv);
412   return RUN_ALL_TESTS();
413 }
414