1 /*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "AudioResampler"
18 //#define LOG_NDEBUG 0
19
20 #include <pthread.h>
21 #include <stdint.h>
22 #include <stdlib.h>
23 #include <sys/types.h>
24
25 #include <cutils/properties.h>
26 #include <log/log.h>
27
28 #include <audio_utils/primitives.h>
29 #include <media/AudioResampler.h>
30 #include "AudioResamplerSinc.h"
31 #include "AudioResamplerCubic.h"
32 #include "AudioResamplerDyn.h"
33
34 #ifdef __arm__
35 // bug 13102576
36 //#define ASM_ARM_RESAMP1 // enable asm optimisation for ResamplerOrder1
37 #endif
38
39 namespace android {
40
41 // ----------------------------------------------------------------------------
42
43 class AudioResamplerOrder1 : public AudioResampler {
44 public:
AudioResamplerOrder1(int inChannelCount,int32_t sampleRate)45 AudioResamplerOrder1(int inChannelCount, int32_t sampleRate) :
46 AudioResampler(inChannelCount, sampleRate, LOW_QUALITY), mX0L(0), mX0R(0) {
47 }
48 virtual size_t resample(int32_t* out, size_t outFrameCount,
49 AudioBufferProvider* provider);
50 private:
51 // number of bits used in interpolation multiply - 15 bits avoids overflow
52 static const int kNumInterpBits = 15;
53
54 // bits to shift the phase fraction down to avoid overflow
55 static const int kPreInterpShift = kNumPhaseBits - kNumInterpBits;
56
init()57 void init() {}
58 size_t resampleMono16(int32_t* out, size_t outFrameCount,
59 AudioBufferProvider* provider);
60 size_t resampleStereo16(int32_t* out, size_t outFrameCount,
61 AudioBufferProvider* provider);
62 #ifdef ASM_ARM_RESAMP1 // asm optimisation for ResamplerOrder1
63 void AsmMono16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
64 size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
65 uint32_t &phaseFraction, uint32_t phaseIncrement);
66 void AsmStereo16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
67 size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
68 uint32_t &phaseFraction, uint32_t phaseIncrement);
69 #endif // ASM_ARM_RESAMP1
70
Interp(int32_t x0,int32_t x1,uint32_t f)71 static inline int32_t Interp(int32_t x0, int32_t x1, uint32_t f) {
72 return x0 + (((x1 - x0) * (int32_t)(f >> kPreInterpShift)) >> kNumInterpBits);
73 }
Advance(size_t * index,uint32_t * frac,uint32_t inc)74 static inline void Advance(size_t* index, uint32_t* frac, uint32_t inc) {
75 *frac += inc;
76 *index += (size_t)(*frac >> kNumPhaseBits);
77 *frac &= kPhaseMask;
78 }
79 int mX0L;
80 int mX0R;
81 };
82
83 /*static*/
84 const double AudioResampler::kPhaseMultiplier = 1L << AudioResampler::kNumPhaseBits;
85
qualityIsSupported(src_quality quality)86 bool AudioResampler::qualityIsSupported(src_quality quality)
87 {
88 switch (quality) {
89 case DEFAULT_QUALITY:
90 case LOW_QUALITY:
91 case MED_QUALITY:
92 case HIGH_QUALITY:
93 case VERY_HIGH_QUALITY:
94 case DYN_LOW_QUALITY:
95 case DYN_MED_QUALITY:
96 case DYN_HIGH_QUALITY:
97 return true;
98 default:
99 return false;
100 }
101 }
102
103 // ----------------------------------------------------------------------------
104
105 static pthread_once_t once_control = PTHREAD_ONCE_INIT;
106 static AudioResampler::src_quality defaultQuality = AudioResampler::DEFAULT_QUALITY;
107
init_routine()108 void AudioResampler::init_routine()
109 {
110 char value[PROPERTY_VALUE_MAX];
111 if (property_get("af.resampler.quality", value, NULL) > 0) {
112 char *endptr;
113 unsigned long l = strtoul(value, &endptr, 0);
114 if (*endptr == '\0') {
115 defaultQuality = (src_quality) l;
116 ALOGD("forcing AudioResampler quality to %d", defaultQuality);
117 if (defaultQuality < DEFAULT_QUALITY || defaultQuality > DYN_HIGH_QUALITY) {
118 defaultQuality = DEFAULT_QUALITY;
119 }
120 }
121 }
122 }
123
qualityMHz(src_quality quality)124 uint32_t AudioResampler::qualityMHz(src_quality quality)
125 {
126 switch (quality) {
127 default:
128 case DEFAULT_QUALITY:
129 case LOW_QUALITY:
130 return 3;
131 case MED_QUALITY:
132 return 6;
133 case HIGH_QUALITY:
134 return 20;
135 case VERY_HIGH_QUALITY:
136 return 34;
137 case DYN_LOW_QUALITY:
138 return 4;
139 case DYN_MED_QUALITY:
140 return 6;
141 case DYN_HIGH_QUALITY:
142 return 12;
143 }
144 }
145
146 static const uint32_t maxMHz = 130; // an arbitrary number that permits 3 VHQ, should be tunable
147 static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
148 static uint32_t currentMHz = 0;
149
create(audio_format_t format,int inChannelCount,int32_t sampleRate,src_quality quality)150 AudioResampler* AudioResampler::create(audio_format_t format, int inChannelCount,
151 int32_t sampleRate, src_quality quality) {
152
153 bool atFinalQuality;
154 if (quality == DEFAULT_QUALITY) {
155 // read the resampler default quality property the first time it is needed
156 int ok = pthread_once(&once_control, init_routine);
157 if (ok != 0) {
158 ALOGE("%s pthread_once failed: %d", __func__, ok);
159 }
160 quality = defaultQuality;
161 atFinalQuality = false;
162 } else {
163 atFinalQuality = true;
164 }
165
166 /* if the caller requests DEFAULT_QUALITY and af.resampler.property
167 * has not been set, the target resampler quality is set to DYN_MED_QUALITY,
168 * and allowed to "throttle" down to DYN_LOW_QUALITY if necessary
169 * due to estimated CPU load of having too many active resamplers
170 * (the code below the if).
171 */
172 if (quality == DEFAULT_QUALITY) {
173 quality = DYN_MED_QUALITY;
174 }
175
176 // naive implementation of CPU load throttling doesn't account for whether resampler is active
177 pthread_mutex_lock(&mutex);
178 for (;;) {
179 uint32_t deltaMHz = qualityMHz(quality);
180 uint32_t newMHz = currentMHz + deltaMHz;
181 if ((qualityIsSupported(quality) && newMHz <= maxMHz) || atFinalQuality) {
182 ALOGV("resampler load %u -> %u MHz due to delta +%u MHz from quality %d",
183 currentMHz, newMHz, deltaMHz, quality);
184 currentMHz = newMHz;
185 break;
186 }
187 // not enough CPU available for proposed quality level, so try next lowest level
188 switch (quality) {
189 default:
190 case LOW_QUALITY:
191 atFinalQuality = true;
192 break;
193 case MED_QUALITY:
194 quality = LOW_QUALITY;
195 break;
196 case HIGH_QUALITY:
197 quality = MED_QUALITY;
198 break;
199 case VERY_HIGH_QUALITY:
200 quality = HIGH_QUALITY;
201 break;
202 case DYN_LOW_QUALITY:
203 atFinalQuality = true;
204 break;
205 case DYN_MED_QUALITY:
206 quality = DYN_LOW_QUALITY;
207 break;
208 case DYN_HIGH_QUALITY:
209 quality = DYN_MED_QUALITY;
210 break;
211 }
212 }
213 pthread_mutex_unlock(&mutex);
214
215 AudioResampler* resampler;
216
217 switch (quality) {
218 default:
219 case LOW_QUALITY:
220 ALOGV("Create linear Resampler");
221 LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT);
222 resampler = new AudioResamplerOrder1(inChannelCount, sampleRate);
223 break;
224 case MED_QUALITY:
225 ALOGV("Create cubic Resampler");
226 LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT);
227 resampler = new AudioResamplerCubic(inChannelCount, sampleRate);
228 break;
229 case HIGH_QUALITY:
230 ALOGV("Create HIGH_QUALITY sinc Resampler");
231 LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT);
232 resampler = new AudioResamplerSinc(inChannelCount, sampleRate);
233 break;
234 case VERY_HIGH_QUALITY:
235 ALOGV("Create VERY_HIGH_QUALITY sinc Resampler = %d", quality);
236 LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT);
237 resampler = new AudioResamplerSinc(inChannelCount, sampleRate, quality);
238 break;
239 case DYN_LOW_QUALITY:
240 case DYN_MED_QUALITY:
241 case DYN_HIGH_QUALITY:
242 ALOGV("Create dynamic Resampler = %d", quality);
243 if (format == AUDIO_FORMAT_PCM_FLOAT) {
244 resampler = new AudioResamplerDyn<float, float, float>(inChannelCount,
245 sampleRate, quality);
246 } else {
247 LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT);
248 if (quality == DYN_HIGH_QUALITY) {
249 resampler = new AudioResamplerDyn<int32_t, int16_t, int32_t>(inChannelCount,
250 sampleRate, quality);
251 } else {
252 resampler = new AudioResamplerDyn<int16_t, int16_t, int32_t>(inChannelCount,
253 sampleRate, quality);
254 }
255 }
256 break;
257 }
258
259 // initialize resampler
260 resampler->init();
261 return resampler;
262 }
263
AudioResampler(int inChannelCount,int32_t sampleRate,src_quality quality)264 AudioResampler::AudioResampler(int inChannelCount,
265 int32_t sampleRate, src_quality quality) :
266 mChannelCount(inChannelCount),
267 mSampleRate(sampleRate), mInSampleRate(sampleRate), mInputIndex(0),
268 mPhaseFraction(0),
269 mQuality(quality) {
270
271 const int maxChannels = quality < DYN_LOW_QUALITY ? 2 : 8;
272 if (inChannelCount < 1
273 || inChannelCount > maxChannels) {
274 LOG_ALWAYS_FATAL("Unsupported sample format %d quality %d channels",
275 quality, inChannelCount);
276 }
277 if (sampleRate <= 0) {
278 LOG_ALWAYS_FATAL("Unsupported sample rate %d Hz", sampleRate);
279 }
280
281 // initialize common members
282 mVolume[0] = mVolume[1] = 0;
283 mBuffer.frameCount = 0;
284 }
285
~AudioResampler()286 AudioResampler::~AudioResampler() {
287 pthread_mutex_lock(&mutex);
288 src_quality quality = getQuality();
289 uint32_t deltaMHz = qualityMHz(quality);
290 int32_t newMHz = currentMHz - deltaMHz;
291 ALOGV("resampler load %u -> %d MHz due to delta -%u MHz from quality %d",
292 currentMHz, newMHz, deltaMHz, quality);
293 LOG_ALWAYS_FATAL_IF(newMHz < 0, "negative resampler load %d MHz", newMHz);
294 currentMHz = newMHz;
295 pthread_mutex_unlock(&mutex);
296 }
297
setSampleRate(int32_t inSampleRate)298 void AudioResampler::setSampleRate(int32_t inSampleRate) {
299 mInSampleRate = inSampleRate;
300 mPhaseIncrement = (uint32_t)((kPhaseMultiplier * inSampleRate) / mSampleRate);
301 }
302
setVolume(float left,float right)303 void AudioResampler::setVolume(float left, float right) {
304 // TODO: Implement anti-zipper filter
305 // convert to U4.12 for internal integer use (round down)
306 // integer volume values are clamped to 0 to UNITY_GAIN.
307 mVolume[0] = u4_12_from_float(clampFloatVol(left));
308 mVolume[1] = u4_12_from_float(clampFloatVol(right));
309 }
310
reset()311 void AudioResampler::reset() {
312 mInputIndex = 0;
313 mPhaseFraction = 0;
314 mBuffer.frameCount = 0;
315 }
316
317 // ----------------------------------------------------------------------------
318
resample(int32_t * out,size_t outFrameCount,AudioBufferProvider * provider)319 size_t AudioResamplerOrder1::resample(int32_t* out, size_t outFrameCount,
320 AudioBufferProvider* provider) {
321
322 // should never happen, but we overflow if it does
323 // ALOG_ASSERT(outFrameCount < 32767);
324
325 // select the appropriate resampler
326 switch (mChannelCount) {
327 case 1:
328 return resampleMono16(out, outFrameCount, provider);
329 case 2:
330 return resampleStereo16(out, outFrameCount, provider);
331 default:
332 LOG_ALWAYS_FATAL("invalid channel count: %d", mChannelCount);
333 return 0;
334 }
335 }
336
resampleStereo16(int32_t * out,size_t outFrameCount,AudioBufferProvider * provider)337 size_t AudioResamplerOrder1::resampleStereo16(int32_t* out, size_t outFrameCount,
338 AudioBufferProvider* provider) {
339
340 int32_t vl = mVolume[0];
341 int32_t vr = mVolume[1];
342
343 size_t inputIndex = mInputIndex;
344 uint32_t phaseFraction = mPhaseFraction;
345 uint32_t phaseIncrement = mPhaseIncrement;
346 size_t outputIndex = 0;
347 size_t outputSampleCount = outFrameCount * 2;
348 size_t inFrameCount = getInFrameCountRequired(outFrameCount);
349
350 // ALOGE("starting resample %d frames, inputIndex=%d, phaseFraction=%d, phaseIncrement=%d",
351 // outFrameCount, inputIndex, phaseFraction, phaseIncrement);
352
353 while (outputIndex < outputSampleCount) {
354
355 // buffer is empty, fetch a new one
356 while (mBuffer.frameCount == 0) {
357 mBuffer.frameCount = inFrameCount;
358 provider->getNextBuffer(&mBuffer);
359 if (mBuffer.raw == NULL) {
360 goto resampleStereo16_exit;
361 }
362
363 // ALOGE("New buffer fetched: %d frames", mBuffer.frameCount);
364 if (mBuffer.frameCount > inputIndex) break;
365
366 inputIndex -= mBuffer.frameCount;
367 mX0L = mBuffer.i16[mBuffer.frameCount*2-2];
368 mX0R = mBuffer.i16[mBuffer.frameCount*2-1];
369 provider->releaseBuffer(&mBuffer);
370 // mBuffer.frameCount == 0 now so we reload a new buffer
371 }
372
373 int16_t *in = mBuffer.i16;
374
375 // handle boundary case
376 while (inputIndex == 0) {
377 // ALOGE("boundary case");
378 out[outputIndex++] += vl * Interp(mX0L, in[0], phaseFraction);
379 out[outputIndex++] += vr * Interp(mX0R, in[1], phaseFraction);
380 Advance(&inputIndex, &phaseFraction, phaseIncrement);
381 if (outputIndex == outputSampleCount) {
382 break;
383 }
384 }
385
386 // process input samples
387 // ALOGE("general case");
388
389 #ifdef ASM_ARM_RESAMP1 // asm optimisation for ResamplerOrder1
390 if (inputIndex + 2 < mBuffer.frameCount) {
391 int32_t* maxOutPt;
392 int32_t maxInIdx;
393
394 maxOutPt = out + (outputSampleCount - 2); // 2 because 2 frames per loop
395 maxInIdx = mBuffer.frameCount - 2;
396 AsmStereo16Loop(in, maxOutPt, maxInIdx, outputIndex, out, inputIndex, vl, vr,
397 phaseFraction, phaseIncrement);
398 }
399 #endif // ASM_ARM_RESAMP1
400
401 while (outputIndex < outputSampleCount && inputIndex < mBuffer.frameCount) {
402 out[outputIndex++] += vl * Interp(in[inputIndex*2-2],
403 in[inputIndex*2], phaseFraction);
404 out[outputIndex++] += vr * Interp(in[inputIndex*2-1],
405 in[inputIndex*2+1], phaseFraction);
406 Advance(&inputIndex, &phaseFraction, phaseIncrement);
407 }
408
409 // ALOGE("loop done - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex);
410
411 // if done with buffer, save samples
412 if (inputIndex >= mBuffer.frameCount) {
413 inputIndex -= mBuffer.frameCount;
414
415 // ALOGE("buffer done, new input index %d", inputIndex);
416
417 mX0L = mBuffer.i16[mBuffer.frameCount*2-2];
418 mX0R = mBuffer.i16[mBuffer.frameCount*2-1];
419 provider->releaseBuffer(&mBuffer);
420
421 // verify that the releaseBuffer resets the buffer frameCount
422 // ALOG_ASSERT(mBuffer.frameCount == 0);
423 }
424 }
425
426 // ALOGE("output buffer full - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex);
427
428 resampleStereo16_exit:
429 // save state
430 mInputIndex = inputIndex;
431 mPhaseFraction = phaseFraction;
432 return outputIndex / 2 /* channels for stereo */;
433 }
434
resampleMono16(int32_t * out,size_t outFrameCount,AudioBufferProvider * provider)435 size_t AudioResamplerOrder1::resampleMono16(int32_t* out, size_t outFrameCount,
436 AudioBufferProvider* provider) {
437
438 int32_t vl = mVolume[0];
439 int32_t vr = mVolume[1];
440
441 size_t inputIndex = mInputIndex;
442 uint32_t phaseFraction = mPhaseFraction;
443 uint32_t phaseIncrement = mPhaseIncrement;
444 size_t outputIndex = 0;
445 size_t outputSampleCount = outFrameCount * 2;
446 size_t inFrameCount = getInFrameCountRequired(outFrameCount);
447
448 // ALOGE("starting resample %d frames, inputIndex=%d, phaseFraction=%d, phaseIncrement=%d",
449 // outFrameCount, inputIndex, phaseFraction, phaseIncrement);
450 while (outputIndex < outputSampleCount) {
451 // buffer is empty, fetch a new one
452 while (mBuffer.frameCount == 0) {
453 mBuffer.frameCount = inFrameCount;
454 provider->getNextBuffer(&mBuffer);
455 if (mBuffer.raw == NULL) {
456 mInputIndex = inputIndex;
457 mPhaseFraction = phaseFraction;
458 goto resampleMono16_exit;
459 }
460 // ALOGE("New buffer fetched: %d frames", mBuffer.frameCount);
461 if (mBuffer.frameCount > inputIndex) break;
462
463 inputIndex -= mBuffer.frameCount;
464 mX0L = mBuffer.i16[mBuffer.frameCount-1];
465 provider->releaseBuffer(&mBuffer);
466 // mBuffer.frameCount == 0 now so we reload a new buffer
467 }
468 int16_t *in = mBuffer.i16;
469
470 // handle boundary case
471 while (inputIndex == 0) {
472 // ALOGE("boundary case");
473 int32_t sample = Interp(mX0L, in[0], phaseFraction);
474 out[outputIndex++] += vl * sample;
475 out[outputIndex++] += vr * sample;
476 Advance(&inputIndex, &phaseFraction, phaseIncrement);
477 if (outputIndex == outputSampleCount) {
478 break;
479 }
480 }
481
482 // process input samples
483 // ALOGE("general case");
484
485 #ifdef ASM_ARM_RESAMP1 // asm optimisation for ResamplerOrder1
486 if (inputIndex + 2 < mBuffer.frameCount) {
487 int32_t* maxOutPt;
488 int32_t maxInIdx;
489
490 maxOutPt = out + (outputSampleCount - 2);
491 maxInIdx = (int32_t)mBuffer.frameCount - 2;
492 AsmMono16Loop(in, maxOutPt, maxInIdx, outputIndex, out, inputIndex, vl, vr,
493 phaseFraction, phaseIncrement);
494 }
495 #endif // ASM_ARM_RESAMP1
496
497 while (outputIndex < outputSampleCount && inputIndex < mBuffer.frameCount) {
498 int32_t sample = Interp(in[inputIndex-1], in[inputIndex],
499 phaseFraction);
500 out[outputIndex++] += vl * sample;
501 out[outputIndex++] += vr * sample;
502 Advance(&inputIndex, &phaseFraction, phaseIncrement);
503 }
504
505
506 // ALOGE("loop done - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex);
507
508 // if done with buffer, save samples
509 if (inputIndex >= mBuffer.frameCount) {
510 inputIndex -= mBuffer.frameCount;
511
512 // ALOGE("buffer done, new input index %d", inputIndex);
513
514 mX0L = mBuffer.i16[mBuffer.frameCount-1];
515 provider->releaseBuffer(&mBuffer);
516
517 // verify that the releaseBuffer resets the buffer frameCount
518 // ALOG_ASSERT(mBuffer.frameCount == 0);
519 }
520 }
521
522 // ALOGE("output buffer full - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex);
523
524 resampleMono16_exit:
525 // save state
526 mInputIndex = inputIndex;
527 mPhaseFraction = phaseFraction;
528 return outputIndex;
529 }
530
531 #ifdef ASM_ARM_RESAMP1 // asm optimisation for ResamplerOrder1
532
533 /*******************************************************************
534 *
535 * AsmMono16Loop
536 * asm optimized monotonic loop version; one loop is 2 frames
537 * Input:
538 * in : pointer on input samples
539 * maxOutPt : pointer on first not filled
540 * maxInIdx : index on first not used
541 * outputIndex : pointer on current output index
542 * out : pointer on output buffer
543 * inputIndex : pointer on current input index
544 * vl, vr : left and right gain
545 * phaseFraction : pointer on current phase fraction
546 * phaseIncrement
547 * Ouput:
548 * outputIndex :
549 * out : updated buffer
550 * inputIndex : index of next to use
551 * phaseFraction : phase fraction for next interpolation
552 *
553 *******************************************************************/
554 __attribute__((noinline))
AsmMono16Loop(int16_t * in,int32_t * maxOutPt,int32_t maxInIdx,size_t & outputIndex,int32_t * out,size_t & inputIndex,int32_t vl,int32_t vr,uint32_t & phaseFraction,uint32_t phaseIncrement)555 void AudioResamplerOrder1::AsmMono16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
556 size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
557 uint32_t &phaseFraction, uint32_t phaseIncrement)
558 {
559 (void)maxOutPt; // remove unused parameter warnings
560 (void)maxInIdx;
561 (void)outputIndex;
562 (void)out;
563 (void)inputIndex;
564 (void)vl;
565 (void)vr;
566 (void)phaseFraction;
567 (void)phaseIncrement;
568 (void)in;
569 #define MO_PARAM5 "36" // offset of parameter 5 (outputIndex)
570
571 asm(
572 "stmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, lr}\n"
573 // get parameters
574 " ldr r6, [sp, #" MO_PARAM5 " + 20]\n" // &phaseFraction
575 " ldr r6, [r6]\n" // phaseFraction
576 " ldr r7, [sp, #" MO_PARAM5 " + 8]\n" // &inputIndex
577 " ldr r7, [r7]\n" // inputIndex
578 " ldr r8, [sp, #" MO_PARAM5 " + 4]\n" // out
579 " ldr r0, [sp, #" MO_PARAM5 " + 0]\n" // &outputIndex
580 " ldr r0, [r0]\n" // outputIndex
581 " add r8, r8, r0, asl #2\n" // curOut
582 " ldr r9, [sp, #" MO_PARAM5 " + 24]\n" // phaseIncrement
583 " ldr r10, [sp, #" MO_PARAM5 " + 12]\n" // vl
584 " ldr r11, [sp, #" MO_PARAM5 " + 16]\n" // vr
585
586 // r0 pin, x0, Samp
587
588 // r1 in
589 // r2 maxOutPt
590 // r3 maxInIdx
591
592 // r4 x1, i1, i3, Out1
593 // r5 out0
594
595 // r6 frac
596 // r7 inputIndex
597 // r8 curOut
598
599 // r9 inc
600 // r10 vl
601 // r11 vr
602
603 // r12
604 // r13 sp
605 // r14
606
607 // the following loop works on 2 frames
608
609 "1:\n"
610 " cmp r8, r2\n" // curOut - maxCurOut
611 " bcs 2f\n"
612
613 #define MO_ONE_FRAME \
614 " add r0, r1, r7, asl #1\n" /* in + inputIndex */\
615 " ldrsh r4, [r0]\n" /* in[inputIndex] */\
616 " ldr r5, [r8]\n" /* out[outputIndex] */\
617 " ldrsh r0, [r0, #-2]\n" /* in[inputIndex-1] */\
618 " bic r6, r6, #0xC0000000\n" /* phaseFraction & ... */\
619 " sub r4, r4, r0\n" /* in[inputIndex] - in[inputIndex-1] */\
620 " mov r4, r4, lsl #2\n" /* <<2 */\
621 " smulwt r4, r4, r6\n" /* (x1-x0)*.. */\
622 " add r6, r6, r9\n" /* phaseFraction + phaseIncrement */\
623 " add r0, r0, r4\n" /* x0 - (..) */\
624 " mla r5, r0, r10, r5\n" /* vl*interp + out[] */\
625 " ldr r4, [r8, #4]\n" /* out[outputIndex+1] */\
626 " str r5, [r8], #4\n" /* out[outputIndex++] = ... */\
627 " mla r4, r0, r11, r4\n" /* vr*interp + out[] */\
628 " add r7, r7, r6, lsr #30\n" /* inputIndex + phaseFraction>>30 */\
629 " str r4, [r8], #4\n" /* out[outputIndex++] = ... */
630
631 MO_ONE_FRAME // frame 1
632 MO_ONE_FRAME // frame 2
633
634 " cmp r7, r3\n" // inputIndex - maxInIdx
635 " bcc 1b\n"
636 "2:\n"
637
638 " bic r6, r6, #0xC0000000\n" // phaseFraction & ...
639 // save modified values
640 " ldr r0, [sp, #" MO_PARAM5 " + 20]\n" // &phaseFraction
641 " str r6, [r0]\n" // phaseFraction
642 " ldr r0, [sp, #" MO_PARAM5 " + 8]\n" // &inputIndex
643 " str r7, [r0]\n" // inputIndex
644 " ldr r0, [sp, #" MO_PARAM5 " + 4]\n" // out
645 " sub r8, r0\n" // curOut - out
646 " asr r8, #2\n" // new outputIndex
647 " ldr r0, [sp, #" MO_PARAM5 " + 0]\n" // &outputIndex
648 " str r8, [r0]\n" // save outputIndex
649
650 " ldmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, pc}\n"
651 );
652 }
653
654 /*******************************************************************
655 *
656 * AsmStereo16Loop
657 * asm optimized stereo loop version; one loop is 2 frames
658 * Input:
659 * in : pointer on input samples
660 * maxOutPt : pointer on first not filled
661 * maxInIdx : index on first not used
662 * outputIndex : pointer on current output index
663 * out : pointer on output buffer
664 * inputIndex : pointer on current input index
665 * vl, vr : left and right gain
666 * phaseFraction : pointer on current phase fraction
667 * phaseIncrement
668 * Ouput:
669 * outputIndex :
670 * out : updated buffer
671 * inputIndex : index of next to use
672 * phaseFraction : phase fraction for next interpolation
673 *
674 *******************************************************************/
675 __attribute__((noinline))
AsmStereo16Loop(int16_t * in,int32_t * maxOutPt,int32_t maxInIdx,size_t & outputIndex,int32_t * out,size_t & inputIndex,int32_t vl,int32_t vr,uint32_t & phaseFraction,uint32_t phaseIncrement)676 void AudioResamplerOrder1::AsmStereo16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
677 size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
678 uint32_t &phaseFraction, uint32_t phaseIncrement)
679 {
680 (void)maxOutPt; // remove unused parameter warnings
681 (void)maxInIdx;
682 (void)outputIndex;
683 (void)out;
684 (void)inputIndex;
685 (void)vl;
686 (void)vr;
687 (void)phaseFraction;
688 (void)phaseIncrement;
689 (void)in;
690 #define ST_PARAM5 "40" // offset of parameter 5 (outputIndex)
691 asm(
692 "stmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, lr}\n"
693 // get parameters
694 " ldr r6, [sp, #" ST_PARAM5 " + 20]\n" // &phaseFraction
695 " ldr r6, [r6]\n" // phaseFraction
696 " ldr r7, [sp, #" ST_PARAM5 " + 8]\n" // &inputIndex
697 " ldr r7, [r7]\n" // inputIndex
698 " ldr r8, [sp, #" ST_PARAM5 " + 4]\n" // out
699 " ldr r0, [sp, #" ST_PARAM5 " + 0]\n" // &outputIndex
700 " ldr r0, [r0]\n" // outputIndex
701 " add r8, r8, r0, asl #2\n" // curOut
702 " ldr r9, [sp, #" ST_PARAM5 " + 24]\n" // phaseIncrement
703 " ldr r10, [sp, #" ST_PARAM5 " + 12]\n" // vl
704 " ldr r11, [sp, #" ST_PARAM5 " + 16]\n" // vr
705
706 // r0 pin, x0, Samp
707
708 // r1 in
709 // r2 maxOutPt
710 // r3 maxInIdx
711
712 // r4 x1, i1, i3, out1
713 // r5 out0
714
715 // r6 frac
716 // r7 inputIndex
717 // r8 curOut
718
719 // r9 inc
720 // r10 vl
721 // r11 vr
722
723 // r12 temporary
724 // r13 sp
725 // r14
726
727 "3:\n"
728 " cmp r8, r2\n" // curOut - maxCurOut
729 " bcs 4f\n"
730
731 #define ST_ONE_FRAME \
732 " bic r6, r6, #0xC0000000\n" /* phaseFraction & ... */\
733 \
734 " add r0, r1, r7, asl #2\n" /* in + 2*inputIndex */\
735 \
736 " ldrsh r4, [r0]\n" /* in[2*inputIndex] */\
737 " ldr r5, [r8]\n" /* out[outputIndex] */\
738 " ldrsh r12, [r0, #-4]\n" /* in[2*inputIndex-2] */\
739 " sub r4, r4, r12\n" /* in[2*InputIndex] - in[2*InputIndex-2] */\
740 " mov r4, r4, lsl #2\n" /* <<2 */\
741 " smulwt r4, r4, r6\n" /* (x1-x0)*.. */\
742 " add r12, r12, r4\n" /* x0 - (..) */\
743 " mla r5, r12, r10, r5\n" /* vl*interp + out[] */\
744 " ldr r4, [r8, #4]\n" /* out[outputIndex+1] */\
745 " str r5, [r8], #4\n" /* out[outputIndex++] = ... */\
746 \
747 " ldrsh r12, [r0, #+2]\n" /* in[2*inputIndex+1] */\
748 " ldrsh r0, [r0, #-2]\n" /* in[2*inputIndex-1] */\
749 " sub r12, r12, r0\n" /* in[2*InputIndex] - in[2*InputIndex-2] */\
750 " mov r12, r12, lsl #2\n" /* <<2 */\
751 " smulwt r12, r12, r6\n" /* (x1-x0)*.. */\
752 " add r12, r0, r12\n" /* x0 - (..) */\
753 " mla r4, r12, r11, r4\n" /* vr*interp + out[] */\
754 " str r4, [r8], #4\n" /* out[outputIndex++] = ... */\
755 \
756 " add r6, r6, r9\n" /* phaseFraction + phaseIncrement */\
757 " add r7, r7, r6, lsr #30\n" /* inputIndex + phaseFraction>>30 */
758
759 ST_ONE_FRAME // frame 1
760 ST_ONE_FRAME // frame 1
761
762 " cmp r7, r3\n" // inputIndex - maxInIdx
763 " bcc 3b\n"
764 "4:\n"
765
766 " bic r6, r6, #0xC0000000\n" // phaseFraction & ...
767 // save modified values
768 " ldr r0, [sp, #" ST_PARAM5 " + 20]\n" // &phaseFraction
769 " str r6, [r0]\n" // phaseFraction
770 " ldr r0, [sp, #" ST_PARAM5 " + 8]\n" // &inputIndex
771 " str r7, [r0]\n" // inputIndex
772 " ldr r0, [sp, #" ST_PARAM5 " + 4]\n" // out
773 " sub r8, r0\n" // curOut - out
774 " asr r8, #2\n" // new outputIndex
775 " ldr r0, [sp, #" ST_PARAM5 " + 0]\n" // &outputIndex
776 " str r8, [r0]\n" // save outputIndex
777
778 " ldmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, pc}\n"
779 );
780 }
781
782 #endif // ASM_ARM_RESAMP1
783
784
785 // ----------------------------------------------------------------------------
786
787 } // namespace android
788