• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "AudioResampler"
18 //#define LOG_NDEBUG 0
19 
20 #include <pthread.h>
21 #include <stdint.h>
22 #include <stdlib.h>
23 #include <sys/types.h>
24 
25 #include <cutils/properties.h>
26 #include <log/log.h>
27 
28 #include <audio_utils/primitives.h>
29 #include <media/AudioResampler.h>
30 #include "AudioResamplerSinc.h"
31 #include "AudioResamplerCubic.h"
32 #include "AudioResamplerDyn.h"
33 
34 #ifdef __arm__
35     // bug 13102576
36     //#define ASM_ARM_RESAMP1 // enable asm optimisation for ResamplerOrder1
37 #endif
38 
39 namespace android {
40 
41 // ----------------------------------------------------------------------------
42 
43 class AudioResamplerOrder1 : public AudioResampler {
44 public:
AudioResamplerOrder1(int inChannelCount,int32_t sampleRate)45     AudioResamplerOrder1(int inChannelCount, int32_t sampleRate) :
46         AudioResampler(inChannelCount, sampleRate, LOW_QUALITY), mX0L(0), mX0R(0) {
47     }
48     virtual size_t resample(int32_t* out, size_t outFrameCount,
49             AudioBufferProvider* provider);
50 private:
51     // number of bits used in interpolation multiply - 15 bits avoids overflow
52     static const int kNumInterpBits = 15;
53 
54     // bits to shift the phase fraction down to avoid overflow
55     static const int kPreInterpShift = kNumPhaseBits - kNumInterpBits;
56 
init()57     void init() {}
58     size_t resampleMono16(int32_t* out, size_t outFrameCount,
59             AudioBufferProvider* provider);
60     size_t resampleStereo16(int32_t* out, size_t outFrameCount,
61             AudioBufferProvider* provider);
62 #ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1
63     void AsmMono16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
64             size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
65             uint32_t &phaseFraction, uint32_t phaseIncrement);
66     void AsmStereo16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
67             size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
68             uint32_t &phaseFraction, uint32_t phaseIncrement);
69 #endif  // ASM_ARM_RESAMP1
70 
Interp(int32_t x0,int32_t x1,uint32_t f)71     static inline int32_t Interp(int32_t x0, int32_t x1, uint32_t f) {
72         return x0 + (((x1 - x0) * (int32_t)(f >> kPreInterpShift)) >> kNumInterpBits);
73     }
Advance(size_t * index,uint32_t * frac,uint32_t inc)74     static inline void Advance(size_t* index, uint32_t* frac, uint32_t inc) {
75         *frac += inc;
76         *index += (size_t)(*frac >> kNumPhaseBits);
77         *frac &= kPhaseMask;
78     }
79     int mX0L;
80     int mX0R;
81 };
82 
83 /*static*/
84 const double AudioResampler::kPhaseMultiplier = 1L << AudioResampler::kNumPhaseBits;
85 
qualityIsSupported(src_quality quality)86 bool AudioResampler::qualityIsSupported(src_quality quality)
87 {
88     switch (quality) {
89     case DEFAULT_QUALITY:
90     case LOW_QUALITY:
91     case MED_QUALITY:
92     case HIGH_QUALITY:
93     case VERY_HIGH_QUALITY:
94     case DYN_LOW_QUALITY:
95     case DYN_MED_QUALITY:
96     case DYN_HIGH_QUALITY:
97         return true;
98     default:
99         return false;
100     }
101 }
102 
103 // ----------------------------------------------------------------------------
104 
105 static pthread_once_t once_control = PTHREAD_ONCE_INIT;
106 static AudioResampler::src_quality defaultQuality = AudioResampler::DEFAULT_QUALITY;
107 
init_routine()108 void AudioResampler::init_routine()
109 {
110     char value[PROPERTY_VALUE_MAX];
111     if (property_get("af.resampler.quality", value, NULL) > 0) {
112         char *endptr;
113         unsigned long l = strtoul(value, &endptr, 0);
114         if (*endptr == '\0') {
115             defaultQuality = (src_quality) l;
116             ALOGD("forcing AudioResampler quality to %d", defaultQuality);
117             if (defaultQuality < DEFAULT_QUALITY || defaultQuality > DYN_HIGH_QUALITY) {
118                 defaultQuality = DEFAULT_QUALITY;
119             }
120         }
121     }
122 }
123 
qualityMHz(src_quality quality)124 uint32_t AudioResampler::qualityMHz(src_quality quality)
125 {
126     switch (quality) {
127     default:
128     case DEFAULT_QUALITY:
129     case LOW_QUALITY:
130         return 3;
131     case MED_QUALITY:
132         return 6;
133     case HIGH_QUALITY:
134         return 20;
135     case VERY_HIGH_QUALITY:
136         return 34;
137     case DYN_LOW_QUALITY:
138         return 4;
139     case DYN_MED_QUALITY:
140         return 6;
141     case DYN_HIGH_QUALITY:
142         return 12;
143     }
144 }
145 
146 static const uint32_t maxMHz = 130; // an arbitrary number that permits 3 VHQ, should be tunable
147 static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
148 static uint32_t currentMHz = 0;
149 
create(audio_format_t format,int inChannelCount,int32_t sampleRate,src_quality quality)150 AudioResampler* AudioResampler::create(audio_format_t format, int inChannelCount,
151         int32_t sampleRate, src_quality quality) {
152 
153     bool atFinalQuality;
154     if (quality == DEFAULT_QUALITY) {
155         // read the resampler default quality property the first time it is needed
156         int ok = pthread_once(&once_control, init_routine);
157         if (ok != 0) {
158             ALOGE("%s pthread_once failed: %d", __func__, ok);
159         }
160         quality = defaultQuality;
161         atFinalQuality = false;
162     } else {
163         atFinalQuality = true;
164     }
165 
166     /* if the caller requests DEFAULT_QUALITY and af.resampler.property
167      * has not been set, the target resampler quality is set to DYN_MED_QUALITY,
168      * and allowed to "throttle" down to DYN_LOW_QUALITY if necessary
169      * due to estimated CPU load of having too many active resamplers
170      * (the code below the if).
171      */
172     if (quality == DEFAULT_QUALITY) {
173         quality = DYN_MED_QUALITY;
174     }
175 
176     // naive implementation of CPU load throttling doesn't account for whether resampler is active
177     pthread_mutex_lock(&mutex);
178     for (;;) {
179         uint32_t deltaMHz = qualityMHz(quality);
180         uint32_t newMHz = currentMHz + deltaMHz;
181         if ((qualityIsSupported(quality) && newMHz <= maxMHz) || atFinalQuality) {
182             ALOGV("resampler load %u -> %u MHz due to delta +%u MHz from quality %d",
183                     currentMHz, newMHz, deltaMHz, quality);
184             currentMHz = newMHz;
185             break;
186         }
187         // not enough CPU available for proposed quality level, so try next lowest level
188         switch (quality) {
189         default:
190         case LOW_QUALITY:
191             atFinalQuality = true;
192             break;
193         case MED_QUALITY:
194             quality = LOW_QUALITY;
195             break;
196         case HIGH_QUALITY:
197             quality = MED_QUALITY;
198             break;
199         case VERY_HIGH_QUALITY:
200             quality = HIGH_QUALITY;
201             break;
202         case DYN_LOW_QUALITY:
203             atFinalQuality = true;
204             break;
205         case DYN_MED_QUALITY:
206             quality = DYN_LOW_QUALITY;
207             break;
208         case DYN_HIGH_QUALITY:
209             quality = DYN_MED_QUALITY;
210             break;
211         }
212     }
213     pthread_mutex_unlock(&mutex);
214 
215     AudioResampler* resampler;
216 
217     switch (quality) {
218     default:
219     case LOW_QUALITY:
220         ALOGV("Create linear Resampler");
221         LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT);
222         resampler = new AudioResamplerOrder1(inChannelCount, sampleRate);
223         break;
224     case MED_QUALITY:
225         ALOGV("Create cubic Resampler");
226         LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT);
227         resampler = new AudioResamplerCubic(inChannelCount, sampleRate);
228         break;
229     case HIGH_QUALITY:
230         ALOGV("Create HIGH_QUALITY sinc Resampler");
231         LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT);
232         resampler = new AudioResamplerSinc(inChannelCount, sampleRate);
233         break;
234     case VERY_HIGH_QUALITY:
235         ALOGV("Create VERY_HIGH_QUALITY sinc Resampler = %d", quality);
236         LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT);
237         resampler = new AudioResamplerSinc(inChannelCount, sampleRate, quality);
238         break;
239     case DYN_LOW_QUALITY:
240     case DYN_MED_QUALITY:
241     case DYN_HIGH_QUALITY:
242         ALOGV("Create dynamic Resampler = %d", quality);
243         if (format == AUDIO_FORMAT_PCM_FLOAT) {
244             resampler = new AudioResamplerDyn<float, float, float>(inChannelCount,
245                     sampleRate, quality);
246         } else {
247             LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT);
248             if (quality == DYN_HIGH_QUALITY) {
249                 resampler = new AudioResamplerDyn<int32_t, int16_t, int32_t>(inChannelCount,
250                         sampleRate, quality);
251             } else {
252                 resampler = new AudioResamplerDyn<int16_t, int16_t, int32_t>(inChannelCount,
253                         sampleRate, quality);
254             }
255         }
256         break;
257     }
258 
259     // initialize resampler
260     resampler->init();
261     return resampler;
262 }
263 
AudioResampler(int inChannelCount,int32_t sampleRate,src_quality quality)264 AudioResampler::AudioResampler(int inChannelCount,
265         int32_t sampleRate, src_quality quality) :
266         mChannelCount(inChannelCount),
267         mSampleRate(sampleRate), mInSampleRate(sampleRate), mInputIndex(0),
268         mPhaseFraction(0),
269         mQuality(quality) {
270 
271     const int maxChannels = quality < DYN_LOW_QUALITY ? 2 : 8;
272     if (inChannelCount < 1
273             || inChannelCount > maxChannels) {
274         LOG_ALWAYS_FATAL("Unsupported sample format %d quality %d channels",
275                 quality, inChannelCount);
276     }
277     if (sampleRate <= 0) {
278         LOG_ALWAYS_FATAL("Unsupported sample rate %d Hz", sampleRate);
279     }
280 
281     // initialize common members
282     mVolume[0] = mVolume[1] = 0;
283     mBuffer.frameCount = 0;
284 }
285 
~AudioResampler()286 AudioResampler::~AudioResampler() {
287     pthread_mutex_lock(&mutex);
288     src_quality quality = getQuality();
289     uint32_t deltaMHz = qualityMHz(quality);
290     int32_t newMHz = currentMHz - deltaMHz;
291     ALOGV("resampler load %u -> %d MHz due to delta -%u MHz from quality %d",
292             currentMHz, newMHz, deltaMHz, quality);
293     LOG_ALWAYS_FATAL_IF(newMHz < 0, "negative resampler load %d MHz", newMHz);
294     currentMHz = newMHz;
295     pthread_mutex_unlock(&mutex);
296 }
297 
setSampleRate(int32_t inSampleRate)298 void AudioResampler::setSampleRate(int32_t inSampleRate) {
299     mInSampleRate = inSampleRate;
300     mPhaseIncrement = (uint32_t)((kPhaseMultiplier * inSampleRate) / mSampleRate);
301 }
302 
setVolume(float left,float right)303 void AudioResampler::setVolume(float left, float right) {
304     // TODO: Implement anti-zipper filter
305     // convert to U4.12 for internal integer use (round down)
306     // integer volume values are clamped to 0 to UNITY_GAIN.
307     mVolume[0] = u4_12_from_float(clampFloatVol(left));
308     mVolume[1] = u4_12_from_float(clampFloatVol(right));
309 }
310 
reset()311 void AudioResampler::reset() {
312     mInputIndex = 0;
313     mPhaseFraction = 0;
314     mBuffer.frameCount = 0;
315 }
316 
317 // ----------------------------------------------------------------------------
318 
resample(int32_t * out,size_t outFrameCount,AudioBufferProvider * provider)319 size_t AudioResamplerOrder1::resample(int32_t* out, size_t outFrameCount,
320         AudioBufferProvider* provider) {
321 
322     // should never happen, but we overflow if it does
323     // ALOG_ASSERT(outFrameCount < 32767);
324 
325     // select the appropriate resampler
326     switch (mChannelCount) {
327     case 1:
328         return resampleMono16(out, outFrameCount, provider);
329     case 2:
330         return resampleStereo16(out, outFrameCount, provider);
331     default:
332         LOG_ALWAYS_FATAL("invalid channel count: %d", mChannelCount);
333         return 0;
334     }
335 }
336 
resampleStereo16(int32_t * out,size_t outFrameCount,AudioBufferProvider * provider)337 size_t AudioResamplerOrder1::resampleStereo16(int32_t* out, size_t outFrameCount,
338         AudioBufferProvider* provider) {
339 
340     int32_t vl = mVolume[0];
341     int32_t vr = mVolume[1];
342 
343     size_t inputIndex = mInputIndex;
344     uint32_t phaseFraction = mPhaseFraction;
345     uint32_t phaseIncrement = mPhaseIncrement;
346     size_t outputIndex = 0;
347     size_t outputSampleCount = outFrameCount * 2;
348     size_t inFrameCount = getInFrameCountRequired(outFrameCount);
349 
350     // ALOGE("starting resample %d frames, inputIndex=%d, phaseFraction=%d, phaseIncrement=%d",
351     //      outFrameCount, inputIndex, phaseFraction, phaseIncrement);
352 
353     while (outputIndex < outputSampleCount) {
354 
355         // buffer is empty, fetch a new one
356         while (mBuffer.frameCount == 0) {
357             mBuffer.frameCount = inFrameCount;
358             provider->getNextBuffer(&mBuffer);
359             if (mBuffer.raw == NULL) {
360                 goto resampleStereo16_exit;
361             }
362 
363             // ALOGE("New buffer fetched: %d frames", mBuffer.frameCount);
364             if (mBuffer.frameCount > inputIndex) break;
365 
366             inputIndex -= mBuffer.frameCount;
367             mX0L = mBuffer.i16[mBuffer.frameCount*2-2];
368             mX0R = mBuffer.i16[mBuffer.frameCount*2-1];
369             provider->releaseBuffer(&mBuffer);
370             // mBuffer.frameCount == 0 now so we reload a new buffer
371         }
372 
373         int16_t *in = mBuffer.i16;
374 
375         // handle boundary case
376         while (inputIndex == 0) {
377             // ALOGE("boundary case");
378             out[outputIndex++] += vl * Interp(mX0L, in[0], phaseFraction);
379             out[outputIndex++] += vr * Interp(mX0R, in[1], phaseFraction);
380             Advance(&inputIndex, &phaseFraction, phaseIncrement);
381             if (outputIndex == outputSampleCount) {
382                 break;
383             }
384         }
385 
386         // process input samples
387         // ALOGE("general case");
388 
389 #ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1
390         if (inputIndex + 2 < mBuffer.frameCount) {
391             int32_t* maxOutPt;
392             int32_t maxInIdx;
393 
394             maxOutPt = out + (outputSampleCount - 2);   // 2 because 2 frames per loop
395             maxInIdx = mBuffer.frameCount - 2;
396             AsmStereo16Loop(in, maxOutPt, maxInIdx, outputIndex, out, inputIndex, vl, vr,
397                     phaseFraction, phaseIncrement);
398         }
399 #endif  // ASM_ARM_RESAMP1
400 
401         while (outputIndex < outputSampleCount && inputIndex < mBuffer.frameCount) {
402             out[outputIndex++] += vl * Interp(in[inputIndex*2-2],
403                     in[inputIndex*2], phaseFraction);
404             out[outputIndex++] += vr * Interp(in[inputIndex*2-1],
405                     in[inputIndex*2+1], phaseFraction);
406             Advance(&inputIndex, &phaseFraction, phaseIncrement);
407         }
408 
409         // ALOGE("loop done - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex);
410 
411         // if done with buffer, save samples
412         if (inputIndex >= mBuffer.frameCount) {
413             inputIndex -= mBuffer.frameCount;
414 
415             // ALOGE("buffer done, new input index %d", inputIndex);
416 
417             mX0L = mBuffer.i16[mBuffer.frameCount*2-2];
418             mX0R = mBuffer.i16[mBuffer.frameCount*2-1];
419             provider->releaseBuffer(&mBuffer);
420 
421             // verify that the releaseBuffer resets the buffer frameCount
422             // ALOG_ASSERT(mBuffer.frameCount == 0);
423         }
424     }
425 
426     // ALOGE("output buffer full - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex);
427 
428 resampleStereo16_exit:
429     // save state
430     mInputIndex = inputIndex;
431     mPhaseFraction = phaseFraction;
432     return outputIndex / 2 /* channels for stereo */;
433 }
434 
resampleMono16(int32_t * out,size_t outFrameCount,AudioBufferProvider * provider)435 size_t AudioResamplerOrder1::resampleMono16(int32_t* out, size_t outFrameCount,
436         AudioBufferProvider* provider) {
437 
438     int32_t vl = mVolume[0];
439     int32_t vr = mVolume[1];
440 
441     size_t inputIndex = mInputIndex;
442     uint32_t phaseFraction = mPhaseFraction;
443     uint32_t phaseIncrement = mPhaseIncrement;
444     size_t outputIndex = 0;
445     size_t outputSampleCount = outFrameCount * 2;
446     size_t inFrameCount = getInFrameCountRequired(outFrameCount);
447 
448     // ALOGE("starting resample %d frames, inputIndex=%d, phaseFraction=%d, phaseIncrement=%d",
449     //      outFrameCount, inputIndex, phaseFraction, phaseIncrement);
450     while (outputIndex < outputSampleCount) {
451         // buffer is empty, fetch a new one
452         while (mBuffer.frameCount == 0) {
453             mBuffer.frameCount = inFrameCount;
454             provider->getNextBuffer(&mBuffer);
455             if (mBuffer.raw == NULL) {
456                 mInputIndex = inputIndex;
457                 mPhaseFraction = phaseFraction;
458                 goto resampleMono16_exit;
459             }
460             // ALOGE("New buffer fetched: %d frames", mBuffer.frameCount);
461             if (mBuffer.frameCount >  inputIndex) break;
462 
463             inputIndex -= mBuffer.frameCount;
464             mX0L = mBuffer.i16[mBuffer.frameCount-1];
465             provider->releaseBuffer(&mBuffer);
466             // mBuffer.frameCount == 0 now so we reload a new buffer
467         }
468         int16_t *in = mBuffer.i16;
469 
470         // handle boundary case
471         while (inputIndex == 0) {
472             // ALOGE("boundary case");
473             int32_t sample = Interp(mX0L, in[0], phaseFraction);
474             out[outputIndex++] += vl * sample;
475             out[outputIndex++] += vr * sample;
476             Advance(&inputIndex, &phaseFraction, phaseIncrement);
477             if (outputIndex == outputSampleCount) {
478                 break;
479             }
480         }
481 
482         // process input samples
483         // ALOGE("general case");
484 
485 #ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1
486         if (inputIndex + 2 < mBuffer.frameCount) {
487             int32_t* maxOutPt;
488             int32_t maxInIdx;
489 
490             maxOutPt = out + (outputSampleCount - 2);
491             maxInIdx = (int32_t)mBuffer.frameCount - 2;
492                 AsmMono16Loop(in, maxOutPt, maxInIdx, outputIndex, out, inputIndex, vl, vr,
493                         phaseFraction, phaseIncrement);
494         }
495 #endif  // ASM_ARM_RESAMP1
496 
497         while (outputIndex < outputSampleCount && inputIndex < mBuffer.frameCount) {
498             int32_t sample = Interp(in[inputIndex-1], in[inputIndex],
499                     phaseFraction);
500             out[outputIndex++] += vl * sample;
501             out[outputIndex++] += vr * sample;
502             Advance(&inputIndex, &phaseFraction, phaseIncrement);
503         }
504 
505 
506         // ALOGE("loop done - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex);
507 
508         // if done with buffer, save samples
509         if (inputIndex >= mBuffer.frameCount) {
510             inputIndex -= mBuffer.frameCount;
511 
512             // ALOGE("buffer done, new input index %d", inputIndex);
513 
514             mX0L = mBuffer.i16[mBuffer.frameCount-1];
515             provider->releaseBuffer(&mBuffer);
516 
517             // verify that the releaseBuffer resets the buffer frameCount
518             // ALOG_ASSERT(mBuffer.frameCount == 0);
519         }
520     }
521 
522     // ALOGE("output buffer full - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex);
523 
524 resampleMono16_exit:
525     // save state
526     mInputIndex = inputIndex;
527     mPhaseFraction = phaseFraction;
528     return outputIndex;
529 }
530 
531 #ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1
532 
533 /*******************************************************************
534 *
535 *   AsmMono16Loop
536 *   asm optimized monotonic loop version; one loop is 2 frames
537 *   Input:
538 *       in : pointer on input samples
539 *       maxOutPt : pointer on first not filled
540 *       maxInIdx : index on first not used
541 *       outputIndex : pointer on current output index
542 *       out : pointer on output buffer
543 *       inputIndex : pointer on current input index
544 *       vl, vr : left and right gain
545 *       phaseFraction : pointer on current phase fraction
546 *       phaseIncrement
547 *   Ouput:
548 *       outputIndex :
549 *       out : updated buffer
550 *       inputIndex : index of next to use
551 *       phaseFraction : phase fraction for next interpolation
552 *
553 *******************************************************************/
554 __attribute__((noinline))
AsmMono16Loop(int16_t * in,int32_t * maxOutPt,int32_t maxInIdx,size_t & outputIndex,int32_t * out,size_t & inputIndex,int32_t vl,int32_t vr,uint32_t & phaseFraction,uint32_t phaseIncrement)555 void AudioResamplerOrder1::AsmMono16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
556             size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
557             uint32_t &phaseFraction, uint32_t phaseIncrement)
558 {
559     (void)maxOutPt; // remove unused parameter warnings
560     (void)maxInIdx;
561     (void)outputIndex;
562     (void)out;
563     (void)inputIndex;
564     (void)vl;
565     (void)vr;
566     (void)phaseFraction;
567     (void)phaseIncrement;
568     (void)in;
569 #define MO_PARAM5   "36"        // offset of parameter 5 (outputIndex)
570 
571     asm(
572         "stmfd  sp!, {r4, r5, r6, r7, r8, r9, r10, r11, lr}\n"
573         // get parameters
574         "   ldr r6, [sp, #" MO_PARAM5 " + 20]\n"    // &phaseFraction
575         "   ldr r6, [r6]\n"                         // phaseFraction
576         "   ldr r7, [sp, #" MO_PARAM5 " + 8]\n"     // &inputIndex
577         "   ldr r7, [r7]\n"                         // inputIndex
578         "   ldr r8, [sp, #" MO_PARAM5 " + 4]\n"     // out
579         "   ldr r0, [sp, #" MO_PARAM5 " + 0]\n"     // &outputIndex
580         "   ldr r0, [r0]\n"                         // outputIndex
581         "   add r8, r8, r0, asl #2\n"               // curOut
582         "   ldr r9, [sp, #" MO_PARAM5 " + 24]\n"    // phaseIncrement
583         "   ldr r10, [sp, #" MO_PARAM5 " + 12]\n"   // vl
584         "   ldr r11, [sp, #" MO_PARAM5 " + 16]\n"   // vr
585 
586         // r0 pin, x0, Samp
587 
588         // r1 in
589         // r2 maxOutPt
590         // r3 maxInIdx
591 
592         // r4 x1, i1, i3, Out1
593         // r5 out0
594 
595         // r6 frac
596         // r7 inputIndex
597         // r8 curOut
598 
599         // r9 inc
600         // r10 vl
601         // r11 vr
602 
603         // r12
604         // r13 sp
605         // r14
606 
607         // the following loop works on 2 frames
608 
609         "1:\n"
610         "   cmp r8, r2\n"                   // curOut - maxCurOut
611         "   bcs 2f\n"
612 
613 #define MO_ONE_FRAME \
614     "   add r0, r1, r7, asl #1\n"       /* in + inputIndex */\
615     "   ldrsh r4, [r0]\n"               /* in[inputIndex] */\
616     "   ldr r5, [r8]\n"                 /* out[outputIndex] */\
617     "   ldrsh r0, [r0, #-2]\n"          /* in[inputIndex-1] */\
618     "   bic r6, r6, #0xC0000000\n"      /* phaseFraction & ... */\
619     "   sub r4, r4, r0\n"               /* in[inputIndex] - in[inputIndex-1] */\
620     "   mov r4, r4, lsl #2\n"           /* <<2 */\
621     "   smulwt r4, r4, r6\n"            /* (x1-x0)*.. */\
622     "   add r6, r6, r9\n"               /* phaseFraction + phaseIncrement */\
623     "   add r0, r0, r4\n"               /* x0 - (..) */\
624     "   mla r5, r0, r10, r5\n"          /* vl*interp + out[] */\
625     "   ldr r4, [r8, #4]\n"             /* out[outputIndex+1] */\
626     "   str r5, [r8], #4\n"             /* out[outputIndex++] = ... */\
627     "   mla r4, r0, r11, r4\n"          /* vr*interp + out[] */\
628     "   add r7, r7, r6, lsr #30\n"      /* inputIndex + phaseFraction>>30 */\
629     "   str r4, [r8], #4\n"             /* out[outputIndex++] = ... */
630 
631         MO_ONE_FRAME    // frame 1
632         MO_ONE_FRAME    // frame 2
633 
634         "   cmp r7, r3\n"                   // inputIndex - maxInIdx
635         "   bcc 1b\n"
636         "2:\n"
637 
638         "   bic r6, r6, #0xC0000000\n"             // phaseFraction & ...
639         // save modified values
640         "   ldr r0, [sp, #" MO_PARAM5 " + 20]\n"    // &phaseFraction
641         "   str r6, [r0]\n"                         // phaseFraction
642         "   ldr r0, [sp, #" MO_PARAM5 " + 8]\n"     // &inputIndex
643         "   str r7, [r0]\n"                         // inputIndex
644         "   ldr r0, [sp, #" MO_PARAM5 " + 4]\n"     // out
645         "   sub r8, r0\n"                           // curOut - out
646         "   asr r8, #2\n"                           // new outputIndex
647         "   ldr r0, [sp, #" MO_PARAM5 " + 0]\n"     // &outputIndex
648         "   str r8, [r0]\n"                         // save outputIndex
649 
650         "   ldmfd   sp!, {r4, r5, r6, r7, r8, r9, r10, r11, pc}\n"
651     );
652 }
653 
654 /*******************************************************************
655 *
656 *   AsmStereo16Loop
657 *   asm optimized stereo loop version; one loop is 2 frames
658 *   Input:
659 *       in : pointer on input samples
660 *       maxOutPt : pointer on first not filled
661 *       maxInIdx : index on first not used
662 *       outputIndex : pointer on current output index
663 *       out : pointer on output buffer
664 *       inputIndex : pointer on current input index
665 *       vl, vr : left and right gain
666 *       phaseFraction : pointer on current phase fraction
667 *       phaseIncrement
668 *   Ouput:
669 *       outputIndex :
670 *       out : updated buffer
671 *       inputIndex : index of next to use
672 *       phaseFraction : phase fraction for next interpolation
673 *
674 *******************************************************************/
675 __attribute__((noinline))
AsmStereo16Loop(int16_t * in,int32_t * maxOutPt,int32_t maxInIdx,size_t & outputIndex,int32_t * out,size_t & inputIndex,int32_t vl,int32_t vr,uint32_t & phaseFraction,uint32_t phaseIncrement)676 void AudioResamplerOrder1::AsmStereo16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
677             size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
678             uint32_t &phaseFraction, uint32_t phaseIncrement)
679 {
680     (void)maxOutPt; // remove unused parameter warnings
681     (void)maxInIdx;
682     (void)outputIndex;
683     (void)out;
684     (void)inputIndex;
685     (void)vl;
686     (void)vr;
687     (void)phaseFraction;
688     (void)phaseIncrement;
689     (void)in;
690 #define ST_PARAM5    "40"     // offset of parameter 5 (outputIndex)
691     asm(
692         "stmfd  sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, lr}\n"
693         // get parameters
694         "   ldr r6, [sp, #" ST_PARAM5 " + 20]\n"    // &phaseFraction
695         "   ldr r6, [r6]\n"                         // phaseFraction
696         "   ldr r7, [sp, #" ST_PARAM5 " + 8]\n"     // &inputIndex
697         "   ldr r7, [r7]\n"                         // inputIndex
698         "   ldr r8, [sp, #" ST_PARAM5 " + 4]\n"     // out
699         "   ldr r0, [sp, #" ST_PARAM5 " + 0]\n"     // &outputIndex
700         "   ldr r0, [r0]\n"                         // outputIndex
701         "   add r8, r8, r0, asl #2\n"               // curOut
702         "   ldr r9, [sp, #" ST_PARAM5 " + 24]\n"    // phaseIncrement
703         "   ldr r10, [sp, #" ST_PARAM5 " + 12]\n"   // vl
704         "   ldr r11, [sp, #" ST_PARAM5 " + 16]\n"   // vr
705 
706         // r0 pin, x0, Samp
707 
708         // r1 in
709         // r2 maxOutPt
710         // r3 maxInIdx
711 
712         // r4 x1, i1, i3, out1
713         // r5 out0
714 
715         // r6 frac
716         // r7 inputIndex
717         // r8 curOut
718 
719         // r9 inc
720         // r10 vl
721         // r11 vr
722 
723         // r12 temporary
724         // r13 sp
725         // r14
726 
727         "3:\n"
728         "   cmp r8, r2\n"                   // curOut - maxCurOut
729         "   bcs 4f\n"
730 
731 #define ST_ONE_FRAME \
732     "   bic r6, r6, #0xC0000000\n"      /* phaseFraction & ... */\
733 \
734     "   add r0, r1, r7, asl #2\n"       /* in + 2*inputIndex */\
735 \
736     "   ldrsh r4, [r0]\n"               /* in[2*inputIndex] */\
737     "   ldr r5, [r8]\n"                 /* out[outputIndex] */\
738     "   ldrsh r12, [r0, #-4]\n"         /* in[2*inputIndex-2] */\
739     "   sub r4, r4, r12\n"              /* in[2*InputIndex] - in[2*InputIndex-2] */\
740     "   mov r4, r4, lsl #2\n"           /* <<2 */\
741     "   smulwt r4, r4, r6\n"            /* (x1-x0)*.. */\
742     "   add r12, r12, r4\n"             /* x0 - (..) */\
743     "   mla r5, r12, r10, r5\n"         /* vl*interp + out[] */\
744     "   ldr r4, [r8, #4]\n"             /* out[outputIndex+1] */\
745     "   str r5, [r8], #4\n"             /* out[outputIndex++] = ... */\
746 \
747     "   ldrsh r12, [r0, #+2]\n"         /* in[2*inputIndex+1] */\
748     "   ldrsh r0, [r0, #-2]\n"          /* in[2*inputIndex-1] */\
749     "   sub r12, r12, r0\n"             /* in[2*InputIndex] - in[2*InputIndex-2] */\
750     "   mov r12, r12, lsl #2\n"         /* <<2 */\
751     "   smulwt r12, r12, r6\n"          /* (x1-x0)*.. */\
752     "   add r12, r0, r12\n"             /* x0 - (..) */\
753     "   mla r4, r12, r11, r4\n"         /* vr*interp + out[] */\
754     "   str r4, [r8], #4\n"             /* out[outputIndex++] = ... */\
755 \
756     "   add r6, r6, r9\n"               /* phaseFraction + phaseIncrement */\
757     "   add r7, r7, r6, lsr #30\n"      /* inputIndex + phaseFraction>>30 */
758 
759     ST_ONE_FRAME    // frame 1
760     ST_ONE_FRAME    // frame 1
761 
762         "   cmp r7, r3\n"                       // inputIndex - maxInIdx
763         "   bcc 3b\n"
764         "4:\n"
765 
766         "   bic r6, r6, #0xC0000000\n"              // phaseFraction & ...
767         // save modified values
768         "   ldr r0, [sp, #" ST_PARAM5 " + 20]\n"    // &phaseFraction
769         "   str r6, [r0]\n"                         // phaseFraction
770         "   ldr r0, [sp, #" ST_PARAM5 " + 8]\n"     // &inputIndex
771         "   str r7, [r0]\n"                         // inputIndex
772         "   ldr r0, [sp, #" ST_PARAM5 " + 4]\n"     // out
773         "   sub r8, r0\n"                           // curOut - out
774         "   asr r8, #2\n"                           // new outputIndex
775         "   ldr r0, [sp, #" ST_PARAM5 " + 0]\n"     // &outputIndex
776         "   str r8, [r0]\n"                         // save outputIndex
777 
778         "   ldmfd   sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, pc}\n"
779     );
780 }
781 
782 #endif  // ASM_ARM_RESAMP1
783 
784 
785 // ----------------------------------------------------------------------------
786 
787 } // namespace android
788