1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 
product_extra(const MatrixType & m)12 template<typename MatrixType> void product_extra(const MatrixType& m)
13 {
14   typedef typename MatrixType::Index Index;
15   typedef typename MatrixType::Scalar Scalar;
16   typedef Matrix<Scalar, 1, Dynamic> RowVectorType;
17   typedef Matrix<Scalar, Dynamic, 1> ColVectorType;
18   typedef Matrix<Scalar, Dynamic, Dynamic,
19                          MatrixType::Flags&RowMajorBit> OtherMajorMatrixType;
20 
21   Index rows = m.rows();
22   Index cols = m.cols();
23 
24   MatrixType m1 = MatrixType::Random(rows, cols),
25              m2 = MatrixType::Random(rows, cols),
26              m3(rows, cols),
27              mzero = MatrixType::Zero(rows, cols),
28              identity = MatrixType::Identity(rows, rows),
29              square = MatrixType::Random(rows, rows),
30              res = MatrixType::Random(rows, rows),
31              square2 = MatrixType::Random(cols, cols),
32              res2 = MatrixType::Random(cols, cols);
33   RowVectorType v1 = RowVectorType::Random(rows), vrres(rows);
34   ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
35   OtherMajorMatrixType tm1 = m1;
36 
37   Scalar s1 = internal::random<Scalar>(),
38          s2 = internal::random<Scalar>(),
39          s3 = internal::random<Scalar>();
40 
41   VERIFY_IS_APPROX(m3.noalias() = m1 * m2.adjoint(),                 m1 * m2.adjoint().eval());
42   VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * square.adjoint(),   m1.adjoint().eval() * square.adjoint().eval());
43   VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * m2,                 m1.adjoint().eval() * m2);
44   VERIFY_IS_APPROX(m3.noalias() = (s1 * m1.adjoint()) * m2,          (s1 * m1.adjoint()).eval() * m2);
45   VERIFY_IS_APPROX(m3.noalias() = ((s1 * m1).adjoint()) * m2,        (numext::conj(s1) * m1.adjoint()).eval() * m2);
46   VERIFY_IS_APPROX(m3.noalias() = (- m1.adjoint() * s1) * (s3 * m2), (- m1.adjoint()  * s1).eval() * (s3 * m2).eval());
47   VERIFY_IS_APPROX(m3.noalias() = (s2 * m1.adjoint() * s1) * m2,     (s2 * m1.adjoint()  * s1).eval() * m2);
48   VERIFY_IS_APPROX(m3.noalias() = (-m1*s2) * s1*m2.adjoint(),        (-m1*s2).eval() * (s1*m2.adjoint()).eval());
49 
50   // a very tricky case where a scale factor has to be automatically conjugated:
51   VERIFY_IS_APPROX( m1.adjoint() * (s1*m2).conjugate(), (m1.adjoint()).eval() * ((s1*m2).conjugate()).eval());
52 
53 
54   // test all possible conjugate combinations for the four matrix-vector product cases:
55 
56   VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2),
57                    (-m1.conjugate()*s2).eval() * (s1 * vc2).eval());
58   VERIFY_IS_APPROX((-m1 * s2) * (s1 * vc2.conjugate()),
59                    (-m1*s2).eval() * (s1 * vc2.conjugate()).eval());
60   VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2.conjugate()),
61                    (-m1.conjugate()*s2).eval() * (s1 * vc2.conjugate()).eval());
62 
63   VERIFY_IS_APPROX((s1 * vc2.transpose()) * (-m1.adjoint() * s2),
64                    (s1 * vc2.transpose()).eval() * (-m1.adjoint()*s2).eval());
65   VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.transpose() * s2),
66                    (s1 * vc2.adjoint()).eval() * (-m1.transpose()*s2).eval());
67   VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.adjoint() * s2),
68                    (s1 * vc2.adjoint()).eval() * (-m1.adjoint()*s2).eval());
69 
70   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.transpose()),
71                    (-m1.adjoint()*s2).eval() * (s1 * v1.transpose()).eval());
72   VERIFY_IS_APPROX((-m1.transpose() * s2) * (s1 * v1.adjoint()),
73                    (-m1.transpose()*s2).eval() * (s1 * v1.adjoint()).eval());
74   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()),
75                    (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval());
76 
77   VERIFY_IS_APPROX((s1 * v1) * (-m1.conjugate() * s2),
78                    (s1 * v1).eval() * (-m1.conjugate()*s2).eval());
79   VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1 * s2),
80                    (s1 * v1.conjugate()).eval() * (-m1*s2).eval());
81   VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1.conjugate() * s2),
82                    (s1 * v1.conjugate()).eval() * (-m1.conjugate()*s2).eval());
83 
84   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()),
85                    (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval());
86 
87   // test the vector-matrix product with non aligned starts
88   Index i = internal::random<Index>(0,m1.rows()-2);
89   Index j = internal::random<Index>(0,m1.cols()-2);
90   Index r = internal::random<Index>(1,m1.rows()-i);
91   Index c = internal::random<Index>(1,m1.cols()-j);
92   Index i2 = internal::random<Index>(0,m1.rows()-1);
93   Index j2 = internal::random<Index>(0,m1.cols()-1);
94 
95   VERIFY_IS_APPROX(m1.col(j2).adjoint() * m1.block(0,j,m1.rows(),c), m1.col(j2).adjoint().eval() * m1.block(0,j,m1.rows(),c).eval());
96   VERIFY_IS_APPROX(m1.block(i,0,r,m1.cols()) * m1.row(i2).adjoint(), m1.block(i,0,r,m1.cols()).eval() * m1.row(i2).adjoint().eval());
97 
98   // regression test
99   MatrixType tmp = m1 * m1.adjoint() * s1;
100   VERIFY_IS_APPROX(tmp, m1 * m1.adjoint() * s1);
101 
102   // regression test for bug 1343, assignment to arrays
103   Array<Scalar,Dynamic,1> a1 = m1 * vc2;
104   VERIFY_IS_APPROX(a1.matrix(),m1*vc2);
105   Array<Scalar,Dynamic,1> a2 = s1 * (m1 * vc2);
106   VERIFY_IS_APPROX(a2.matrix(),s1*m1*vc2);
107   Array<Scalar,1,Dynamic> a3 = v1 * m1;
108   VERIFY_IS_APPROX(a3.matrix(),v1*m1);
109   Array<Scalar,Dynamic,Dynamic> a4 = m1 * m2.adjoint();
110   VERIFY_IS_APPROX(a4.matrix(),m1*m2.adjoint());
111 }
112 
113 // Regression test for bug reported at http://forum.kde.org/viewtopic.php?f=74&t=96947
mat_mat_scalar_scalar_product()114 void mat_mat_scalar_scalar_product()
115 {
116   Eigen::Matrix2Xd dNdxy(2, 3);
117   dNdxy << -0.5, 0.5, 0,
118            -0.3, 0, 0.3;
119   double det = 6.0, wt = 0.5;
120   VERIFY_IS_APPROX(dNdxy.transpose()*dNdxy*det*wt, det*wt*dNdxy.transpose()*dNdxy);
121 }
122 
123 template <typename MatrixType>
zero_sized_objects(const MatrixType & m)124 void zero_sized_objects(const MatrixType& m)
125 {
126   typedef typename MatrixType::Scalar Scalar;
127   const int PacketSize  = internal::packet_traits<Scalar>::size;
128   const int PacketSize1 = PacketSize>1 ?  PacketSize-1 : 1;
129   Index rows = m.rows();
130   Index cols = m.cols();
131 
132   {
133     MatrixType res, a(rows,0), b(0,cols);
134     VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(rows,cols) );
135     VERIFY_IS_APPROX( (res=a*a.transpose()), MatrixType::Zero(rows,rows) );
136     VERIFY_IS_APPROX( (res=b.transpose()*b), MatrixType::Zero(cols,cols) );
137     VERIFY_IS_APPROX( (res=b.transpose()*a.transpose()), MatrixType::Zero(cols,rows) );
138   }
139 
140   {
141     MatrixType res, a(rows,cols), b(cols,0);
142     res = a*b;
143     VERIFY(res.rows()==rows && res.cols()==0);
144     b.resize(0,rows);
145     res = b*a;
146     VERIFY(res.rows()==0 && res.cols()==cols);
147   }
148 
149   {
150     Matrix<Scalar,PacketSize,0> a;
151     Matrix<Scalar,0,1> b;
152     Matrix<Scalar,PacketSize,1> res;
153     VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize,1) );
154     VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize,1) );
155   }
156 
157   {
158     Matrix<Scalar,PacketSize1,0> a;
159     Matrix<Scalar,0,1> b;
160     Matrix<Scalar,PacketSize1,1> res;
161     VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize1,1) );
162     VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize1,1) );
163   }
164 
165   {
166     Matrix<Scalar,PacketSize,Dynamic> a(PacketSize,0);
167     Matrix<Scalar,Dynamic,1> b(0,1);
168     Matrix<Scalar,PacketSize,1> res;
169     VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize,1) );
170     VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize,1) );
171   }
172 
173   {
174     Matrix<Scalar,PacketSize1,Dynamic> a(PacketSize1,0);
175     Matrix<Scalar,Dynamic,1> b(0,1);
176     Matrix<Scalar,PacketSize1,1> res;
177     VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize1,1) );
178     VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize1,1) );
179   }
180 }
181 
182 template<int>
bug_127()183 void bug_127()
184 {
185   // Bug 127
186   //
187   // a product of the form lhs*rhs with
188   //
189   // lhs:
190   // rows = 1, cols = 4
191   // RowsAtCompileTime = 1, ColsAtCompileTime = -1
192   // MaxRowsAtCompileTime = 1, MaxColsAtCompileTime = 5
193   //
194   // rhs:
195   // rows = 4, cols = 0
196   // RowsAtCompileTime = -1, ColsAtCompileTime = -1
197   // MaxRowsAtCompileTime = 5, MaxColsAtCompileTime = 1
198   //
199   // was failing on a runtime assertion, because it had been mis-compiled as a dot product because Product.h was using the
200   // max-sizes to detect size 1 indicating vectors, and that didn't account for 0-sized object with max-size 1.
201 
202   Matrix<float,1,Dynamic,RowMajor,1,5> a(1,4);
203   Matrix<float,Dynamic,Dynamic,ColMajor,5,1> b(4,0);
204   a*b;
205 }
206 
bug_817()207 template<int> void bug_817()
208 {
209   ArrayXXf B = ArrayXXf::Random(10,10), C;
210   VectorXf x = VectorXf::Random(10);
211   C = (x.transpose()*B.matrix());
212   B = (x.transpose()*B.matrix());
213   VERIFY_IS_APPROX(B,C);
214 }
215 
216 template<int>
unaligned_objects()217 void unaligned_objects()
218 {
219   // Regression test for the bug reported here:
220   // http://forum.kde.org/viewtopic.php?f=74&t=107541
221   // Recall the matrix*vector kernel avoid unaligned loads by loading two packets and then reassemble then.
222   // There was a mistake in the computation of the valid range for fully unaligned objects: in some rare cases,
223   // memory was read outside the allocated matrix memory. Though the values were not used, this might raise segfault.
224   for(int m=450;m<460;++m)
225   {
226     for(int n=8;n<12;++n)
227     {
228       MatrixXf M(m, n);
229       VectorXf v1(n), r1(500);
230       RowVectorXf v2(m), r2(16);
231 
232       M.setRandom();
233       v1.setRandom();
234       v2.setRandom();
235       for(int o=0; o<4; ++o)
236       {
237         r1.segment(o,m).noalias() = M * v1;
238         VERIFY_IS_APPROX(r1.segment(o,m), M * MatrixXf(v1));
239         r2.segment(o,n).noalias() = v2 * M;
240         VERIFY_IS_APPROX(r2.segment(o,n), MatrixXf(v2) * M);
241       }
242     }
243   }
244 }
245 
246 template<typename T>
247 EIGEN_DONT_INLINE
test_compute_block_size(Index m,Index n,Index k)248 Index test_compute_block_size(Index m, Index n, Index k)
249 {
250   Index mc(m), nc(n), kc(k);
251   internal::computeProductBlockingSizes<T,T>(kc, mc, nc);
252   return kc+mc+nc;
253 }
254 
255 template<typename T>
compute_block_size()256 Index compute_block_size()
257 {
258   Index ret = 0;
259   ret += test_compute_block_size<T>(0,1,1);
260   ret += test_compute_block_size<T>(1,0,1);
261   ret += test_compute_block_size<T>(1,1,0);
262   ret += test_compute_block_size<T>(0,0,1);
263   ret += test_compute_block_size<T>(0,1,0);
264   ret += test_compute_block_size<T>(1,0,0);
265   ret += test_compute_block_size<T>(0,0,0);
266   return ret;
267 }
268 
269 template<typename>
aliasing_with_resize()270 void aliasing_with_resize()
271 {
272   Index m = internal::random<Index>(10,50);
273   Index n = internal::random<Index>(10,50);
274   MatrixXd A, B, C(m,n), D(m,m);
275   VectorXd a, b, c(n);
276   C.setRandom();
277   D.setRandom();
278   c.setRandom();
279   double s = internal::random<double>(1,10);
280 
281   A = C;
282   B = A * A.transpose();
283   A = A * A.transpose();
284   VERIFY_IS_APPROX(A,B);
285 
286   A = C;
287   B = (A * A.transpose())/s;
288   A = (A * A.transpose())/s;
289   VERIFY_IS_APPROX(A,B);
290 
291   A = C;
292   B = (A * A.transpose()) + D;
293   A = (A * A.transpose()) + D;
294   VERIFY_IS_APPROX(A,B);
295 
296   A = C;
297   B = D + (A * A.transpose());
298   A = D + (A * A.transpose());
299   VERIFY_IS_APPROX(A,B);
300 
301   A = C;
302   B = s * (A * A.transpose());
303   A = s * (A * A.transpose());
304   VERIFY_IS_APPROX(A,B);
305 
306   A = C;
307   a = c;
308   b = (A * a)/s;
309   a = (A * a)/s;
310   VERIFY_IS_APPROX(a,b);
311 }
312 
313 template<int>
bug_1308()314 void bug_1308()
315 {
316   int n = 10;
317   MatrixXd r(n,n);
318   VectorXd v = VectorXd::Random(n);
319   r = v * RowVectorXd::Ones(n);
320   VERIFY_IS_APPROX(r, v.rowwise().replicate(n));
321   r = VectorXd::Ones(n) * v.transpose();
322   VERIFY_IS_APPROX(r, v.rowwise().replicate(n).transpose());
323 
324   Matrix4d ones44 = Matrix4d::Ones();
325   Matrix4d m44 = Matrix4d::Ones() * Matrix4d::Ones();
326   VERIFY_IS_APPROX(m44,Matrix4d::Constant(4));
327   VERIFY_IS_APPROX(m44.noalias()=ones44*Matrix4d::Ones(), Matrix4d::Constant(4));
328   VERIFY_IS_APPROX(m44.noalias()=ones44.transpose()*Matrix4d::Ones(), Matrix4d::Constant(4));
329   VERIFY_IS_APPROX(m44.noalias()=Matrix4d::Ones()*ones44, Matrix4d::Constant(4));
330   VERIFY_IS_APPROX(m44.noalias()=Matrix4d::Ones()*ones44.transpose(), Matrix4d::Constant(4));
331 
332   typedef Matrix<double,4,4,RowMajor> RMatrix4d;
333   RMatrix4d r44 = Matrix4d::Ones() * Matrix4d::Ones();
334   VERIFY_IS_APPROX(r44,Matrix4d::Constant(4));
335   VERIFY_IS_APPROX(r44.noalias()=ones44*Matrix4d::Ones(), Matrix4d::Constant(4));
336   VERIFY_IS_APPROX(r44.noalias()=ones44.transpose()*Matrix4d::Ones(), Matrix4d::Constant(4));
337   VERIFY_IS_APPROX(r44.noalias()=Matrix4d::Ones()*ones44, Matrix4d::Constant(4));
338   VERIFY_IS_APPROX(r44.noalias()=Matrix4d::Ones()*ones44.transpose(), Matrix4d::Constant(4));
339   VERIFY_IS_APPROX(r44.noalias()=ones44*RMatrix4d::Ones(), Matrix4d::Constant(4));
340   VERIFY_IS_APPROX(r44.noalias()=ones44.transpose()*RMatrix4d::Ones(), Matrix4d::Constant(4));
341   VERIFY_IS_APPROX(r44.noalias()=RMatrix4d::Ones()*ones44, Matrix4d::Constant(4));
342   VERIFY_IS_APPROX(r44.noalias()=RMatrix4d::Ones()*ones44.transpose(), Matrix4d::Constant(4));
343 
344 //   RowVector4d r4;
345   m44.setOnes();
346   r44.setZero();
347   VERIFY_IS_APPROX(r44.noalias() += m44.row(0).transpose() * RowVector4d::Ones(), ones44);
348   r44.setZero();
349   VERIFY_IS_APPROX(r44.noalias() += m44.col(0) * RowVector4d::Ones(), ones44);
350   r44.setZero();
351   VERIFY_IS_APPROX(r44.noalias() += Vector4d::Ones() * m44.row(0), ones44);
352   r44.setZero();
353   VERIFY_IS_APPROX(r44.noalias() += Vector4d::Ones() * m44.col(0).transpose(), ones44);
354 }
355 
test_product_extra()356 void test_product_extra()
357 {
358   for(int i = 0; i < g_repeat; i++) {
359     CALL_SUBTEST_1( product_extra(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
360     CALL_SUBTEST_2( product_extra(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
361     CALL_SUBTEST_2( mat_mat_scalar_scalar_product() );
362     CALL_SUBTEST_3( product_extra(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
363     CALL_SUBTEST_4( product_extra(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
364     CALL_SUBTEST_1( zero_sized_objects(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
365   }
366   CALL_SUBTEST_5( bug_127<0>() );
367   CALL_SUBTEST_5( bug_817<0>() );
368   CALL_SUBTEST_5( bug_1308<0>() );
369   CALL_SUBTEST_6( unaligned_objects<0>() );
370   CALL_SUBTEST_7( compute_block_size<float>() );
371   CALL_SUBTEST_7( compute_block_size<double>() );
372   CALL_SUBTEST_7( compute_block_size<std::complex<double> >() );
373   CALL_SUBTEST_8( aliasing_with_resize<void>() );
374 
375 }
376