1 /*
2  * Copyright 2013 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors: Marek Olšák <maraeo@gmail.com>
24  *
25  */
26 
27 #include "r600_pipe_common.h"
28 #include "r600_cs.h"
29 #include "tgsi/tgsi_parse.h"
30 #include "util/list.h"
31 #include "util/u_draw_quad.h"
32 #include "util/u_memory.h"
33 #include "util/u_format_s3tc.h"
34 #include "util/u_upload_mgr.h"
35 #include "util/os_time.h"
36 #include "vl/vl_decoder.h"
37 #include "vl/vl_video_buffer.h"
38 #include "radeon_video.h"
39 #include <inttypes.h>
40 #include <sys/utsname.h>
41 
42 #ifndef HAVE_LLVM
43 #define HAVE_LLVM 0
44 #endif
45 
46 #if HAVE_LLVM
47 #include <llvm-c/TargetMachine.h>
48 #endif
49 
50 #ifndef MESA_LLVM_VERSION_PATCH
51 #define MESA_LLVM_VERSION_PATCH 0
52 #endif
53 
54 struct r600_multi_fence {
55 	struct pipe_reference reference;
56 	struct pipe_fence_handle *gfx;
57 	struct pipe_fence_handle *sdma;
58 
59 	/* If the context wasn't flushed at fence creation, this is non-NULL. */
60 	struct {
61 		struct r600_common_context *ctx;
62 		unsigned ib_index;
63 	} gfx_unflushed;
64 };
65 
66 /*
67  * shader binary helpers.
68  */
radeon_shader_binary_init(struct ac_shader_binary * b)69 void radeon_shader_binary_init(struct ac_shader_binary *b)
70 {
71 	memset(b, 0, sizeof(*b));
72 }
73 
radeon_shader_binary_clean(struct ac_shader_binary * b)74 void radeon_shader_binary_clean(struct ac_shader_binary *b)
75 {
76 	if (!b)
77 		return;
78 	FREE(b->code);
79 	FREE(b->config);
80 	FREE(b->rodata);
81 	FREE(b->global_symbol_offsets);
82 	FREE(b->relocs);
83 	FREE(b->disasm_string);
84 	FREE(b->llvm_ir_string);
85 }
86 
87 /*
88  * pipe_context
89  */
90 
91 /**
92  * Write an EOP event.
93  *
94  * \param event		EVENT_TYPE_*
95  * \param event_flags	Optional cache flush flags (TC)
96  * \param data_sel	1 = fence, 3 = timestamp
97  * \param buf		Buffer
98  * \param va		GPU address
99  * \param old_value	Previous fence value (for a bug workaround)
100  * \param new_value	Fence value to write for this event.
101  */
r600_gfx_write_event_eop(struct r600_common_context * ctx,unsigned event,unsigned event_flags,unsigned data_sel,struct r600_resource * buf,uint64_t va,uint32_t new_fence,unsigned query_type)102 void r600_gfx_write_event_eop(struct r600_common_context *ctx,
103 			      unsigned event, unsigned event_flags,
104 			      unsigned data_sel,
105 			      struct r600_resource *buf, uint64_t va,
106 			      uint32_t new_fence, unsigned query_type)
107 {
108 	struct radeon_winsys_cs *cs = ctx->gfx.cs;
109 	unsigned op = EVENT_TYPE(event) |
110 		      EVENT_INDEX(5) |
111 		      event_flags;
112 	unsigned sel = EOP_DATA_SEL(data_sel);
113 
114 	radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
115 	radeon_emit(cs, op);
116 	radeon_emit(cs, va);
117 	radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
118 	radeon_emit(cs, new_fence); /* immediate data */
119 	radeon_emit(cs, 0); /* unused */
120 
121 	if (buf)
122 		r600_emit_reloc(ctx, &ctx->gfx, buf, RADEON_USAGE_WRITE,
123 				RADEON_PRIO_QUERY);
124 }
125 
r600_gfx_write_fence_dwords(struct r600_common_screen * screen)126 unsigned r600_gfx_write_fence_dwords(struct r600_common_screen *screen)
127 {
128 	unsigned dwords = 6;
129 
130 	if (!screen->info.has_virtual_memory)
131 		dwords += 2;
132 
133 	return dwords;
134 }
135 
r600_gfx_wait_fence(struct r600_common_context * ctx,uint64_t va,uint32_t ref,uint32_t mask)136 void r600_gfx_wait_fence(struct r600_common_context *ctx,
137 			 uint64_t va, uint32_t ref, uint32_t mask)
138 {
139 	struct radeon_winsys_cs *cs = ctx->gfx.cs;
140 
141 	radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0));
142 	radeon_emit(cs, WAIT_REG_MEM_EQUAL | WAIT_REG_MEM_MEM_SPACE(1));
143 	radeon_emit(cs, va);
144 	radeon_emit(cs, va >> 32);
145 	radeon_emit(cs, ref); /* reference value */
146 	radeon_emit(cs, mask); /* mask */
147 	radeon_emit(cs, 4); /* poll interval */
148 }
149 
r600_draw_rectangle(struct blitter_context * blitter,void * vertex_elements_cso,blitter_get_vs_func get_vs,int x1,int y1,int x2,int y2,float depth,unsigned num_instances,enum blitter_attrib_type type,const union blitter_attrib * attrib)150 void r600_draw_rectangle(struct blitter_context *blitter,
151 			 void *vertex_elements_cso,
152 			 blitter_get_vs_func get_vs,
153 			 int x1, int y1, int x2, int y2,
154 			 float depth, unsigned num_instances,
155 			 enum blitter_attrib_type type,
156 			 const union blitter_attrib *attrib)
157 {
158 	struct r600_common_context *rctx =
159 		(struct r600_common_context*)util_blitter_get_pipe(blitter);
160 	struct pipe_viewport_state viewport;
161 	struct pipe_resource *buf = NULL;
162 	unsigned offset = 0;
163 	float *vb;
164 
165 	rctx->b.bind_vertex_elements_state(&rctx->b, vertex_elements_cso);
166 	rctx->b.bind_vs_state(&rctx->b, get_vs(blitter));
167 
168 	/* Some operations (like color resolve on r6xx) don't work
169 	 * with the conventional primitive types.
170 	 * One that works is PT_RECTLIST, which we use here. */
171 
172 	/* setup viewport */
173 	viewport.scale[0] = 1.0f;
174 	viewport.scale[1] = 1.0f;
175 	viewport.scale[2] = 1.0f;
176 	viewport.translate[0] = 0.0f;
177 	viewport.translate[1] = 0.0f;
178 	viewport.translate[2] = 0.0f;
179 	rctx->b.set_viewport_states(&rctx->b, 0, 1, &viewport);
180 
181 	/* Upload vertices. The hw rectangle has only 3 vertices,
182 	 * The 4th one is derived from the first 3.
183 	 * The vertex specification should match u_blitter's vertex element state. */
184 	u_upload_alloc(rctx->b.stream_uploader, 0, sizeof(float) * 24,
185 		       rctx->screen->info.tcc_cache_line_size,
186                        &offset, &buf, (void**)&vb);
187 	if (!buf)
188 		return;
189 
190 	vb[0] = x1;
191 	vb[1] = y1;
192 	vb[2] = depth;
193 	vb[3] = 1;
194 
195 	vb[8] = x1;
196 	vb[9] = y2;
197 	vb[10] = depth;
198 	vb[11] = 1;
199 
200 	vb[16] = x2;
201 	vb[17] = y1;
202 	vb[18] = depth;
203 	vb[19] = 1;
204 
205 	switch (type) {
206 	case UTIL_BLITTER_ATTRIB_COLOR:
207 		memcpy(vb+4, attrib->color, sizeof(float)*4);
208 		memcpy(vb+12, attrib->color, sizeof(float)*4);
209 		memcpy(vb+20, attrib->color, sizeof(float)*4);
210 		break;
211 	case UTIL_BLITTER_ATTRIB_TEXCOORD_XYZW:
212 	case UTIL_BLITTER_ATTRIB_TEXCOORD_XY:
213 		vb[6] = vb[14] = vb[22] = attrib->texcoord.z;
214 		vb[7] = vb[15] = vb[23] = attrib->texcoord.w;
215 		/* fall through */
216 		vb[4] = attrib->texcoord.x1;
217 		vb[5] = attrib->texcoord.y1;
218 		vb[12] = attrib->texcoord.x1;
219 		vb[13] = attrib->texcoord.y2;
220 		vb[20] = attrib->texcoord.x2;
221 		vb[21] = attrib->texcoord.y1;
222 		break;
223 	default:; /* Nothing to do. */
224 	}
225 
226 	/* draw */
227 	struct pipe_vertex_buffer vbuffer = {};
228 	vbuffer.buffer.resource = buf;
229 	vbuffer.stride = 2 * 4 * sizeof(float); /* vertex size */
230 	vbuffer.buffer_offset = offset;
231 
232 	rctx->b.set_vertex_buffers(&rctx->b, blitter->vb_slot, 1, &vbuffer);
233 	util_draw_arrays_instanced(&rctx->b, R600_PRIM_RECTANGLE_LIST, 0, 3,
234 				   0, num_instances);
235 	pipe_resource_reference(&buf, NULL);
236 }
237 
r600_dma_emit_wait_idle(struct r600_common_context * rctx)238 static void r600_dma_emit_wait_idle(struct r600_common_context *rctx)
239 {
240 	struct radeon_winsys_cs *cs = rctx->dma.cs;
241 
242 	if (rctx->chip_class >= EVERGREEN)
243 		radeon_emit(cs, 0xf0000000); /* NOP */
244 	else {
245 		/* TODO: R600-R700 should use the FENCE packet.
246 		 * CS checker support is required. */
247 	}
248 }
249 
r600_need_dma_space(struct r600_common_context * ctx,unsigned num_dw,struct r600_resource * dst,struct r600_resource * src)250 void r600_need_dma_space(struct r600_common_context *ctx, unsigned num_dw,
251                          struct r600_resource *dst, struct r600_resource *src)
252 {
253 	uint64_t vram = ctx->dma.cs->used_vram;
254 	uint64_t gtt = ctx->dma.cs->used_gart;
255 
256 	if (dst) {
257 		vram += dst->vram_usage;
258 		gtt += dst->gart_usage;
259 	}
260 	if (src) {
261 		vram += src->vram_usage;
262 		gtt += src->gart_usage;
263 	}
264 
265 	/* Flush the GFX IB if DMA depends on it. */
266 	if (radeon_emitted(ctx->gfx.cs, ctx->initial_gfx_cs_size) &&
267 	    ((dst &&
268 	      ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs, dst->buf,
269 					       RADEON_USAGE_READWRITE)) ||
270 	     (src &&
271 	      ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs, src->buf,
272 					       RADEON_USAGE_WRITE))))
273 		ctx->gfx.flush(ctx, PIPE_FLUSH_ASYNC, NULL);
274 
275 	/* Flush if there's not enough space, or if the memory usage per IB
276 	 * is too large.
277 	 *
278 	 * IBs using too little memory are limited by the IB submission overhead.
279 	 * IBs using too much memory are limited by the kernel/TTM overhead.
280 	 * Too long IBs create CPU-GPU pipeline bubbles and add latency.
281 	 *
282 	 * This heuristic makes sure that DMA requests are executed
283 	 * very soon after the call is made and lowers memory usage.
284 	 * It improves texture upload performance by keeping the DMA
285 	 * engine busy while uploads are being submitted.
286 	 */
287 	num_dw++; /* for emit_wait_idle below */
288 	if (!ctx->ws->cs_check_space(ctx->dma.cs, num_dw) ||
289 	    ctx->dma.cs->used_vram + ctx->dma.cs->used_gart > 64 * 1024 * 1024 ||
290 	    !radeon_cs_memory_below_limit(ctx->screen, ctx->dma.cs, vram, gtt)) {
291 		ctx->dma.flush(ctx, PIPE_FLUSH_ASYNC, NULL);
292 		assert((num_dw + ctx->dma.cs->current.cdw) <= ctx->dma.cs->current.max_dw);
293 	}
294 
295 	/* Wait for idle if either buffer has been used in the IB before to
296 	 * prevent read-after-write hazards.
297 	 */
298 	if ((dst &&
299 	     ctx->ws->cs_is_buffer_referenced(ctx->dma.cs, dst->buf,
300 					      RADEON_USAGE_READWRITE)) ||
301 	    (src &&
302 	     ctx->ws->cs_is_buffer_referenced(ctx->dma.cs, src->buf,
303 					      RADEON_USAGE_WRITE)))
304 		r600_dma_emit_wait_idle(ctx);
305 
306 	/* If GPUVM is not supported, the CS checker needs 2 entries
307 	 * in the buffer list per packet, which has to be done manually.
308 	 */
309 	if (ctx->screen->info.has_virtual_memory) {
310 		if (dst)
311 			radeon_add_to_buffer_list(ctx, &ctx->dma, dst,
312 						  RADEON_USAGE_WRITE,
313 						  RADEON_PRIO_SDMA_BUFFER);
314 		if (src)
315 			radeon_add_to_buffer_list(ctx, &ctx->dma, src,
316 						  RADEON_USAGE_READ,
317 						  RADEON_PRIO_SDMA_BUFFER);
318 	}
319 
320 	/* this function is called before all DMA calls, so increment this. */
321 	ctx->num_dma_calls++;
322 }
323 
r600_preflush_suspend_features(struct r600_common_context * ctx)324 void r600_preflush_suspend_features(struct r600_common_context *ctx)
325 {
326 	/* suspend queries */
327 	if (!LIST_IS_EMPTY(&ctx->active_queries))
328 		r600_suspend_queries(ctx);
329 
330 	ctx->streamout.suspended = false;
331 	if (ctx->streamout.begin_emitted) {
332 		r600_emit_streamout_end(ctx);
333 		ctx->streamout.suspended = true;
334 	}
335 }
336 
r600_postflush_resume_features(struct r600_common_context * ctx)337 void r600_postflush_resume_features(struct r600_common_context *ctx)
338 {
339 	if (ctx->streamout.suspended) {
340 		ctx->streamout.append_bitmask = ctx->streamout.enabled_mask;
341 		r600_streamout_buffers_dirty(ctx);
342 	}
343 
344 	/* resume queries */
345 	if (!LIST_IS_EMPTY(&ctx->active_queries))
346 		r600_resume_queries(ctx);
347 }
348 
r600_add_fence_dependency(struct r600_common_context * rctx,struct pipe_fence_handle * fence)349 static void r600_add_fence_dependency(struct r600_common_context *rctx,
350 				      struct pipe_fence_handle *fence)
351 {
352 	struct radeon_winsys *ws = rctx->ws;
353 
354 	if (rctx->dma.cs)
355 		ws->cs_add_fence_dependency(rctx->dma.cs, fence);
356 	ws->cs_add_fence_dependency(rctx->gfx.cs, fence);
357 }
358 
r600_fence_server_sync(struct pipe_context * ctx,struct pipe_fence_handle * fence)359 static void r600_fence_server_sync(struct pipe_context *ctx,
360 				   struct pipe_fence_handle *fence)
361 {
362 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
363 	struct r600_multi_fence *rfence = (struct r600_multi_fence *)fence;
364 
365 	/* Only amdgpu needs to handle fence dependencies (for fence imports).
366 	 * radeon synchronizes all rings by default and will not implement
367 	 * fence imports.
368 	 */
369 	if (rctx->screen->info.drm_major == 2)
370 		return;
371 
372 	/* Only imported fences need to be handled by fence_server_sync,
373 	 * because the winsys handles synchronizations automatically for BOs
374 	 * within the process.
375 	 *
376 	 * Simply skip unflushed fences here, and the winsys will drop no-op
377 	 * dependencies (i.e. dependencies within the same ring).
378 	 */
379 	if (rfence->gfx_unflushed.ctx)
380 		return;
381 
382 	/* All unflushed commands will not start execution before
383 	 * this fence dependency is signalled.
384 	 *
385 	 * Should we flush the context to allow more GPU parallelism?
386 	 */
387 	if (rfence->sdma)
388 		r600_add_fence_dependency(rctx, rfence->sdma);
389 	if (rfence->gfx)
390 		r600_add_fence_dependency(rctx, rfence->gfx);
391 }
392 
r600_flush_from_st(struct pipe_context * ctx,struct pipe_fence_handle ** fence,unsigned flags)393 static void r600_flush_from_st(struct pipe_context *ctx,
394 			       struct pipe_fence_handle **fence,
395 			       unsigned flags)
396 {
397 	struct pipe_screen *screen = ctx->screen;
398 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
399 	struct radeon_winsys *ws = rctx->ws;
400 	struct pipe_fence_handle *gfx_fence = NULL;
401 	struct pipe_fence_handle *sdma_fence = NULL;
402 	bool deferred_fence = false;
403 	unsigned rflags = PIPE_FLUSH_ASYNC;
404 
405 	if (flags & PIPE_FLUSH_END_OF_FRAME)
406 		rflags |= PIPE_FLUSH_END_OF_FRAME;
407 
408 	/* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */
409 	if (rctx->dma.cs)
410 		rctx->dma.flush(rctx, rflags, fence ? &sdma_fence : NULL);
411 
412 	if (!radeon_emitted(rctx->gfx.cs, rctx->initial_gfx_cs_size)) {
413 		if (fence)
414 			ws->fence_reference(&gfx_fence, rctx->last_gfx_fence);
415 		if (!(flags & PIPE_FLUSH_DEFERRED))
416 			ws->cs_sync_flush(rctx->gfx.cs);
417 	} else {
418 		/* Instead of flushing, create a deferred fence. Constraints:
419 		 * - The state tracker must allow a deferred flush.
420 		 * - The state tracker must request a fence.
421 		 * Thread safety in fence_finish must be ensured by the state tracker.
422 		 */
423 		if (flags & PIPE_FLUSH_DEFERRED && fence) {
424 			gfx_fence = rctx->ws->cs_get_next_fence(rctx->gfx.cs);
425 			deferred_fence = true;
426 		} else {
427 			rctx->gfx.flush(rctx, rflags, fence ? &gfx_fence : NULL);
428 		}
429 	}
430 
431 	/* Both engines can signal out of order, so we need to keep both fences. */
432 	if (fence) {
433 		struct r600_multi_fence *multi_fence =
434 			CALLOC_STRUCT(r600_multi_fence);
435 		if (!multi_fence) {
436 			ws->fence_reference(&sdma_fence, NULL);
437 			ws->fence_reference(&gfx_fence, NULL);
438 			goto finish;
439 		}
440 
441 		multi_fence->reference.count = 1;
442 		/* If both fences are NULL, fence_finish will always return true. */
443 		multi_fence->gfx = gfx_fence;
444 		multi_fence->sdma = sdma_fence;
445 
446 		if (deferred_fence) {
447 			multi_fence->gfx_unflushed.ctx = rctx;
448 			multi_fence->gfx_unflushed.ib_index = rctx->num_gfx_cs_flushes;
449 		}
450 
451 		screen->fence_reference(screen, fence, NULL);
452 		*fence = (struct pipe_fence_handle*)multi_fence;
453 	}
454 finish:
455 	if (!(flags & PIPE_FLUSH_DEFERRED)) {
456 		if (rctx->dma.cs)
457 			ws->cs_sync_flush(rctx->dma.cs);
458 		ws->cs_sync_flush(rctx->gfx.cs);
459 	}
460 }
461 
r600_flush_dma_ring(void * ctx,unsigned flags,struct pipe_fence_handle ** fence)462 static void r600_flush_dma_ring(void *ctx, unsigned flags,
463 				struct pipe_fence_handle **fence)
464 {
465 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
466 	struct radeon_winsys_cs *cs = rctx->dma.cs;
467 	struct radeon_saved_cs saved;
468 	bool check_vm =
469 		(rctx->screen->debug_flags & DBG_CHECK_VM) &&
470 		rctx->check_vm_faults;
471 
472 	if (!radeon_emitted(cs, 0)) {
473 		if (fence)
474 			rctx->ws->fence_reference(fence, rctx->last_sdma_fence);
475 		return;
476 	}
477 
478 	if (check_vm)
479 		radeon_save_cs(rctx->ws, cs, &saved, true);
480 
481 	rctx->ws->cs_flush(cs, flags, &rctx->last_sdma_fence);
482 	if (fence)
483 		rctx->ws->fence_reference(fence, rctx->last_sdma_fence);
484 
485 	if (check_vm) {
486 		/* Use conservative timeout 800ms, after which we won't wait any
487 		 * longer and assume the GPU is hung.
488 		 */
489 		rctx->ws->fence_wait(rctx->ws, rctx->last_sdma_fence, 800*1000*1000);
490 
491 		rctx->check_vm_faults(rctx, &saved, RING_DMA);
492 		radeon_clear_saved_cs(&saved);
493 	}
494 }
495 
496 /**
497  * Store a linearized copy of all chunks of \p cs together with the buffer
498  * list in \p saved.
499  */
radeon_save_cs(struct radeon_winsys * ws,struct radeon_winsys_cs * cs,struct radeon_saved_cs * saved,bool get_buffer_list)500 void radeon_save_cs(struct radeon_winsys *ws, struct radeon_winsys_cs *cs,
501 		    struct radeon_saved_cs *saved, bool get_buffer_list)
502 {
503 	uint32_t *buf;
504 	unsigned i;
505 
506 	/* Save the IB chunks. */
507 	saved->num_dw = cs->prev_dw + cs->current.cdw;
508 	saved->ib = MALLOC(4 * saved->num_dw);
509 	if (!saved->ib)
510 		goto oom;
511 
512 	buf = saved->ib;
513 	for (i = 0; i < cs->num_prev; ++i) {
514 		memcpy(buf, cs->prev[i].buf, cs->prev[i].cdw * 4);
515 		buf += cs->prev[i].cdw;
516 	}
517 	memcpy(buf, cs->current.buf, cs->current.cdw * 4);
518 
519 	if (!get_buffer_list)
520 		return;
521 
522 	/* Save the buffer list. */
523 	saved->bo_count = ws->cs_get_buffer_list(cs, NULL);
524 	saved->bo_list = CALLOC(saved->bo_count,
525 				sizeof(saved->bo_list[0]));
526 	if (!saved->bo_list) {
527 		FREE(saved->ib);
528 		goto oom;
529 	}
530 	ws->cs_get_buffer_list(cs, saved->bo_list);
531 
532 	return;
533 
534 oom:
535 	fprintf(stderr, "%s: out of memory\n", __func__);
536 	memset(saved, 0, sizeof(*saved));
537 }
538 
radeon_clear_saved_cs(struct radeon_saved_cs * saved)539 void radeon_clear_saved_cs(struct radeon_saved_cs *saved)
540 {
541 	FREE(saved->ib);
542 	FREE(saved->bo_list);
543 
544 	memset(saved, 0, sizeof(*saved));
545 }
546 
r600_get_reset_status(struct pipe_context * ctx)547 static enum pipe_reset_status r600_get_reset_status(struct pipe_context *ctx)
548 {
549 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
550 	unsigned latest = rctx->ws->query_value(rctx->ws,
551 						RADEON_GPU_RESET_COUNTER);
552 
553 	if (rctx->gpu_reset_counter == latest)
554 		return PIPE_NO_RESET;
555 
556 	rctx->gpu_reset_counter = latest;
557 	return PIPE_UNKNOWN_CONTEXT_RESET;
558 }
559 
r600_set_debug_callback(struct pipe_context * ctx,const struct pipe_debug_callback * cb)560 static void r600_set_debug_callback(struct pipe_context *ctx,
561 				    const struct pipe_debug_callback *cb)
562 {
563 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
564 
565 	if (cb)
566 		rctx->debug = *cb;
567 	else
568 		memset(&rctx->debug, 0, sizeof(rctx->debug));
569 }
570 
r600_set_device_reset_callback(struct pipe_context * ctx,const struct pipe_device_reset_callback * cb)571 static void r600_set_device_reset_callback(struct pipe_context *ctx,
572 					   const struct pipe_device_reset_callback *cb)
573 {
574 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
575 
576 	if (cb)
577 		rctx->device_reset_callback = *cb;
578 	else
579 		memset(&rctx->device_reset_callback, 0,
580 		       sizeof(rctx->device_reset_callback));
581 }
582 
r600_check_device_reset(struct r600_common_context * rctx)583 bool r600_check_device_reset(struct r600_common_context *rctx)
584 {
585 	enum pipe_reset_status status;
586 
587 	if (!rctx->device_reset_callback.reset)
588 		return false;
589 
590 	if (!rctx->b.get_device_reset_status)
591 		return false;
592 
593 	status = rctx->b.get_device_reset_status(&rctx->b);
594 	if (status == PIPE_NO_RESET)
595 		return false;
596 
597 	rctx->device_reset_callback.reset(rctx->device_reset_callback.data, status);
598 	return true;
599 }
600 
r600_dma_clear_buffer_fallback(struct pipe_context * ctx,struct pipe_resource * dst,uint64_t offset,uint64_t size,unsigned value)601 static void r600_dma_clear_buffer_fallback(struct pipe_context *ctx,
602 					   struct pipe_resource *dst,
603 					   uint64_t offset, uint64_t size,
604 					   unsigned value)
605 {
606 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
607 
608 	rctx->clear_buffer(ctx, dst, offset, size, value, R600_COHERENCY_NONE);
609 }
610 
r600_resource_commit(struct pipe_context * pctx,struct pipe_resource * resource,unsigned level,struct pipe_box * box,bool commit)611 static bool r600_resource_commit(struct pipe_context *pctx,
612 				 struct pipe_resource *resource,
613 				 unsigned level, struct pipe_box *box,
614 				 bool commit)
615 {
616 	struct r600_common_context *ctx = (struct r600_common_context *)pctx;
617 	struct r600_resource *res = r600_resource(resource);
618 
619 	/*
620 	 * Since buffer commitment changes cannot be pipelined, we need to
621 	 * (a) flush any pending commands that refer to the buffer we're about
622 	 *     to change, and
623 	 * (b) wait for threaded submit to finish, including those that were
624 	 *     triggered by some other, earlier operation.
625 	 */
626 	if (radeon_emitted(ctx->gfx.cs, ctx->initial_gfx_cs_size) &&
627 	    ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs,
628 					     res->buf, RADEON_USAGE_READWRITE)) {
629 		ctx->gfx.flush(ctx, PIPE_FLUSH_ASYNC, NULL);
630 	}
631 	if (radeon_emitted(ctx->dma.cs, 0) &&
632 	    ctx->ws->cs_is_buffer_referenced(ctx->dma.cs,
633 					     res->buf, RADEON_USAGE_READWRITE)) {
634 		ctx->dma.flush(ctx, PIPE_FLUSH_ASYNC, NULL);
635 	}
636 
637 	ctx->ws->cs_sync_flush(ctx->dma.cs);
638 	ctx->ws->cs_sync_flush(ctx->gfx.cs);
639 
640 	assert(resource->target == PIPE_BUFFER);
641 
642 	return ctx->ws->buffer_commit(res->buf, box->x, box->width, commit);
643 }
644 
r600_common_context_init(struct r600_common_context * rctx,struct r600_common_screen * rscreen,unsigned context_flags)645 bool r600_common_context_init(struct r600_common_context *rctx,
646 			      struct r600_common_screen *rscreen,
647 			      unsigned context_flags)
648 {
649 	slab_create_child(&rctx->pool_transfers, &rscreen->pool_transfers);
650 	slab_create_child(&rctx->pool_transfers_unsync, &rscreen->pool_transfers);
651 
652 	rctx->screen = rscreen;
653 	rctx->ws = rscreen->ws;
654 	rctx->family = rscreen->family;
655 	rctx->chip_class = rscreen->chip_class;
656 
657 	rctx->b.invalidate_resource = r600_invalidate_resource;
658 	rctx->b.resource_commit = r600_resource_commit;
659 	rctx->b.transfer_map = u_transfer_map_vtbl;
660 	rctx->b.transfer_flush_region = u_transfer_flush_region_vtbl;
661 	rctx->b.transfer_unmap = u_transfer_unmap_vtbl;
662 	rctx->b.texture_subdata = u_default_texture_subdata;
663 	rctx->b.flush = r600_flush_from_st;
664 	rctx->b.set_debug_callback = r600_set_debug_callback;
665 	rctx->b.fence_server_sync = r600_fence_server_sync;
666 	rctx->dma_clear_buffer = r600_dma_clear_buffer_fallback;
667 
668 	/* evergreen_compute.c has a special codepath for global buffers.
669 	 * Everything else can use the direct path.
670 	 */
671 	if ((rscreen->chip_class == EVERGREEN || rscreen->chip_class == CAYMAN) &&
672 	    (context_flags & PIPE_CONTEXT_COMPUTE_ONLY))
673 		rctx->b.buffer_subdata = u_default_buffer_subdata;
674 	else
675 		rctx->b.buffer_subdata = r600_buffer_subdata;
676 
677 	if (rscreen->info.drm_major == 2 && rscreen->info.drm_minor >= 43) {
678 		rctx->b.get_device_reset_status = r600_get_reset_status;
679 		rctx->gpu_reset_counter =
680 			rctx->ws->query_value(rctx->ws,
681 					      RADEON_GPU_RESET_COUNTER);
682 	}
683 
684 	rctx->b.set_device_reset_callback = r600_set_device_reset_callback;
685 
686 	r600_init_context_texture_functions(rctx);
687 	r600_init_viewport_functions(rctx);
688 	r600_streamout_init(rctx);
689 	r600_query_init(rctx);
690 	cayman_init_msaa(&rctx->b);
691 
692 	rctx->allocator_zeroed_memory =
693 		u_suballocator_create(&rctx->b, rscreen->info.gart_page_size,
694 				      0, PIPE_USAGE_DEFAULT, 0, true);
695 	if (!rctx->allocator_zeroed_memory)
696 		return false;
697 
698 	rctx->b.stream_uploader = u_upload_create(&rctx->b, 1024 * 1024,
699 						  0, PIPE_USAGE_STREAM, 0);
700 	if (!rctx->b.stream_uploader)
701 		return false;
702 
703 	rctx->b.const_uploader = u_upload_create(&rctx->b, 128 * 1024,
704 						 0, PIPE_USAGE_DEFAULT, 0);
705 	if (!rctx->b.const_uploader)
706 		return false;
707 
708 	rctx->ctx = rctx->ws->ctx_create(rctx->ws);
709 	if (!rctx->ctx)
710 		return false;
711 
712 	if (rscreen->info.num_sdma_rings && !(rscreen->debug_flags & DBG_NO_ASYNC_DMA)) {
713 		rctx->dma.cs = rctx->ws->cs_create(rctx->ctx, RING_DMA,
714 						   r600_flush_dma_ring,
715 						   rctx);
716 		rctx->dma.flush = r600_flush_dma_ring;
717 	}
718 
719 	return true;
720 }
721 
r600_common_context_cleanup(struct r600_common_context * rctx)722 void r600_common_context_cleanup(struct r600_common_context *rctx)
723 {
724 	if (rctx->query_result_shader)
725 		rctx->b.delete_compute_state(&rctx->b, rctx->query_result_shader);
726 
727 	if (rctx->gfx.cs)
728 		rctx->ws->cs_destroy(rctx->gfx.cs);
729 	if (rctx->dma.cs)
730 		rctx->ws->cs_destroy(rctx->dma.cs);
731 	if (rctx->ctx)
732 		rctx->ws->ctx_destroy(rctx->ctx);
733 
734 	if (rctx->b.stream_uploader)
735 		u_upload_destroy(rctx->b.stream_uploader);
736 	if (rctx->b.const_uploader)
737 		u_upload_destroy(rctx->b.const_uploader);
738 
739 	slab_destroy_child(&rctx->pool_transfers);
740 	slab_destroy_child(&rctx->pool_transfers_unsync);
741 
742 	if (rctx->allocator_zeroed_memory) {
743 		u_suballocator_destroy(rctx->allocator_zeroed_memory);
744 	}
745 	rctx->ws->fence_reference(&rctx->last_gfx_fence, NULL);
746 	rctx->ws->fence_reference(&rctx->last_sdma_fence, NULL);
747 	r600_resource_reference(&rctx->eop_bug_scratch, NULL);
748 }
749 
750 /*
751  * pipe_screen
752  */
753 
754 static const struct debug_named_value common_debug_options[] = {
755 	/* logging */
756 	{ "tex", DBG_TEX, "Print texture info" },
757 	{ "nir", DBG_NIR, "Enable experimental NIR shaders" },
758 	{ "compute", DBG_COMPUTE, "Print compute info" },
759 	{ "vm", DBG_VM, "Print virtual addresses when creating resources" },
760 	{ "info", DBG_INFO, "Print driver information" },
761 
762 	/* shaders */
763 	{ "fs", DBG_FS, "Print fetch shaders" },
764 	{ "vs", DBG_VS, "Print vertex shaders" },
765 	{ "gs", DBG_GS, "Print geometry shaders" },
766 	{ "ps", DBG_PS, "Print pixel shaders" },
767 	{ "cs", DBG_CS, "Print compute shaders" },
768 	{ "tcs", DBG_TCS, "Print tessellation control shaders" },
769 	{ "tes", DBG_TES, "Print tessellation evaluation shaders" },
770 	{ "noir", DBG_NO_IR, "Don't print the LLVM IR"},
771 	{ "notgsi", DBG_NO_TGSI, "Don't print the TGSI"},
772 	{ "noasm", DBG_NO_ASM, "Don't print disassembled shaders"},
773 	{ "preoptir", DBG_PREOPT_IR, "Print the LLVM IR before initial optimizations" },
774 	{ "checkir", DBG_CHECK_IR, "Enable additional sanity checks on shader IR" },
775 	{ "nooptvariant", DBG_NO_OPT_VARIANT, "Disable compiling optimized shader variants." },
776 
777 	{ "testdma", DBG_TEST_DMA, "Invoke SDMA tests and exit." },
778 	{ "testvmfaultcp", DBG_TEST_VMFAULT_CP, "Invoke a CP VM fault test and exit." },
779 	{ "testvmfaultsdma", DBG_TEST_VMFAULT_SDMA, "Invoke a SDMA VM fault test and exit." },
780 	{ "testvmfaultshader", DBG_TEST_VMFAULT_SHADER, "Invoke a shader VM fault test and exit." },
781 
782 	/* features */
783 	{ "nodma", DBG_NO_ASYNC_DMA, "Disable asynchronous DMA" },
784 	{ "nohyperz", DBG_NO_HYPERZ, "Disable Hyper-Z" },
785 	/* GL uses the word INVALIDATE, gallium uses the word DISCARD */
786 	{ "noinvalrange", DBG_NO_DISCARD_RANGE, "Disable handling of INVALIDATE_RANGE map flags" },
787 	{ "no2d", DBG_NO_2D_TILING, "Disable 2D tiling" },
788 	{ "notiling", DBG_NO_TILING, "Disable tiling" },
789 	{ "switch_on_eop", DBG_SWITCH_ON_EOP, "Program WD/IA to switch on end-of-packet." },
790 	{ "forcedma", DBG_FORCE_DMA, "Use asynchronous DMA for all operations when possible." },
791 	{ "precompile", DBG_PRECOMPILE, "Compile one shader variant at shader creation." },
792 	{ "nowc", DBG_NO_WC, "Disable GTT write combining" },
793 	{ "check_vm", DBG_CHECK_VM, "Check VM faults and dump debug info." },
794 	{ "unsafemath", DBG_UNSAFE_MATH, "Enable unsafe math shader optimizations" },
795 
796 	DEBUG_NAMED_VALUE_END /* must be last */
797 };
798 
r600_get_vendor(struct pipe_screen * pscreen)799 static const char* r600_get_vendor(struct pipe_screen* pscreen)
800 {
801 	return "X.Org";
802 }
803 
r600_get_device_vendor(struct pipe_screen * pscreen)804 static const char* r600_get_device_vendor(struct pipe_screen* pscreen)
805 {
806 	return "AMD";
807 }
808 
r600_get_marketing_name(struct radeon_winsys * ws)809 static const char *r600_get_marketing_name(struct radeon_winsys *ws)
810 {
811 	if (!ws->get_chip_name)
812 		return NULL;
813 	return ws->get_chip_name(ws);
814 }
815 
r600_get_family_name(const struct r600_common_screen * rscreen)816 static const char *r600_get_family_name(const struct r600_common_screen *rscreen)
817 {
818 	switch (rscreen->info.family) {
819 	case CHIP_R600: return "AMD R600";
820 	case CHIP_RV610: return "AMD RV610";
821 	case CHIP_RV630: return "AMD RV630";
822 	case CHIP_RV670: return "AMD RV670";
823 	case CHIP_RV620: return "AMD RV620";
824 	case CHIP_RV635: return "AMD RV635";
825 	case CHIP_RS780: return "AMD RS780";
826 	case CHIP_RS880: return "AMD RS880";
827 	case CHIP_RV770: return "AMD RV770";
828 	case CHIP_RV730: return "AMD RV730";
829 	case CHIP_RV710: return "AMD RV710";
830 	case CHIP_RV740: return "AMD RV740";
831 	case CHIP_CEDAR: return "AMD CEDAR";
832 	case CHIP_REDWOOD: return "AMD REDWOOD";
833 	case CHIP_JUNIPER: return "AMD JUNIPER";
834 	case CHIP_CYPRESS: return "AMD CYPRESS";
835 	case CHIP_HEMLOCK: return "AMD HEMLOCK";
836 	case CHIP_PALM: return "AMD PALM";
837 	case CHIP_SUMO: return "AMD SUMO";
838 	case CHIP_SUMO2: return "AMD SUMO2";
839 	case CHIP_BARTS: return "AMD BARTS";
840 	case CHIP_TURKS: return "AMD TURKS";
841 	case CHIP_CAICOS: return "AMD CAICOS";
842 	case CHIP_CAYMAN: return "AMD CAYMAN";
843 	case CHIP_ARUBA: return "AMD ARUBA";
844 	default: return "AMD unknown";
845 	}
846 }
847 
r600_disk_cache_create(struct r600_common_screen * rscreen)848 static void r600_disk_cache_create(struct r600_common_screen *rscreen)
849 {
850 	/* Don't use the cache if shader dumping is enabled. */
851 	if (rscreen->debug_flags & DBG_ALL_SHADERS)
852 		return;
853 
854 	uint32_t mesa_timestamp;
855 	if (disk_cache_get_function_timestamp(r600_disk_cache_create,
856 					      &mesa_timestamp)) {
857 		char *timestamp_str;
858 		int res = -1;
859 
860 		res = asprintf(&timestamp_str, "%u",mesa_timestamp);
861 		if (res != -1) {
862 			/* These flags affect shader compilation. */
863 			uint64_t shader_debug_flags =
864 				rscreen->debug_flags &
865 				(DBG_FS_CORRECT_DERIVS_AFTER_KILL |
866 				 DBG_UNSAFE_MATH);
867 
868 			rscreen->disk_shader_cache =
869 				disk_cache_create(r600_get_family_name(rscreen),
870 						  timestamp_str,
871 						  shader_debug_flags);
872 			free(timestamp_str);
873 		}
874 	}
875 }
876 
r600_get_disk_shader_cache(struct pipe_screen * pscreen)877 static struct disk_cache *r600_get_disk_shader_cache(struct pipe_screen *pscreen)
878 {
879 	struct r600_common_screen *rscreen = (struct r600_common_screen*)pscreen;
880 	return rscreen->disk_shader_cache;
881 }
882 
r600_get_name(struct pipe_screen * pscreen)883 static const char* r600_get_name(struct pipe_screen* pscreen)
884 {
885 	struct r600_common_screen *rscreen = (struct r600_common_screen*)pscreen;
886 
887 	return rscreen->renderer_string;
888 }
889 
r600_get_paramf(struct pipe_screen * pscreen,enum pipe_capf param)890 static float r600_get_paramf(struct pipe_screen* pscreen,
891 			     enum pipe_capf param)
892 {
893 	struct r600_common_screen *rscreen = (struct r600_common_screen *)pscreen;
894 
895 	switch (param) {
896 	case PIPE_CAPF_MAX_LINE_WIDTH:
897 	case PIPE_CAPF_MAX_LINE_WIDTH_AA:
898 	case PIPE_CAPF_MAX_POINT_WIDTH:
899 	case PIPE_CAPF_MAX_POINT_WIDTH_AA:
900 		if (rscreen->family >= CHIP_CEDAR)
901 			return 16384.0f;
902 		else
903 			return 8192.0f;
904 	case PIPE_CAPF_MAX_TEXTURE_ANISOTROPY:
905 		return 16.0f;
906 	case PIPE_CAPF_MAX_TEXTURE_LOD_BIAS:
907 		return 16.0f;
908 	case PIPE_CAPF_GUARD_BAND_LEFT:
909 	case PIPE_CAPF_GUARD_BAND_TOP:
910 	case PIPE_CAPF_GUARD_BAND_RIGHT:
911 	case PIPE_CAPF_GUARD_BAND_BOTTOM:
912 		return 0.0f;
913 	}
914 	return 0.0f;
915 }
916 
r600_get_video_param(struct pipe_screen * screen,enum pipe_video_profile profile,enum pipe_video_entrypoint entrypoint,enum pipe_video_cap param)917 static int r600_get_video_param(struct pipe_screen *screen,
918 				enum pipe_video_profile profile,
919 				enum pipe_video_entrypoint entrypoint,
920 				enum pipe_video_cap param)
921 {
922 	switch (param) {
923 	case PIPE_VIDEO_CAP_SUPPORTED:
924 		return vl_profile_supported(screen, profile, entrypoint);
925 	case PIPE_VIDEO_CAP_NPOT_TEXTURES:
926 		return 1;
927 	case PIPE_VIDEO_CAP_MAX_WIDTH:
928 	case PIPE_VIDEO_CAP_MAX_HEIGHT:
929 		return vl_video_buffer_max_size(screen);
930 	case PIPE_VIDEO_CAP_PREFERED_FORMAT:
931 		return PIPE_FORMAT_NV12;
932 	case PIPE_VIDEO_CAP_PREFERS_INTERLACED:
933 		return false;
934 	case PIPE_VIDEO_CAP_SUPPORTS_INTERLACED:
935 		return false;
936 	case PIPE_VIDEO_CAP_SUPPORTS_PROGRESSIVE:
937 		return true;
938 	case PIPE_VIDEO_CAP_MAX_LEVEL:
939 		return vl_level_supported(screen, profile);
940 	default:
941 		return 0;
942 	}
943 }
944 
r600_get_llvm_processor_name(enum radeon_family family)945 const char *r600_get_llvm_processor_name(enum radeon_family family)
946 {
947 	switch (family) {
948 	case CHIP_R600:
949 	case CHIP_RV630:
950 	case CHIP_RV635:
951 	case CHIP_RV670:
952 		return "r600";
953 	case CHIP_RV610:
954 	case CHIP_RV620:
955 	case CHIP_RS780:
956 	case CHIP_RS880:
957 		return "rs880";
958 	case CHIP_RV710:
959 		return "rv710";
960 	case CHIP_RV730:
961 		return "rv730";
962 	case CHIP_RV740:
963 	case CHIP_RV770:
964 		return "rv770";
965 	case CHIP_PALM:
966 	case CHIP_CEDAR:
967 		return "cedar";
968 	case CHIP_SUMO:
969 	case CHIP_SUMO2:
970 		return "sumo";
971 	case CHIP_REDWOOD:
972 		return "redwood";
973 	case CHIP_JUNIPER:
974 		return "juniper";
975 	case CHIP_HEMLOCK:
976 	case CHIP_CYPRESS:
977 		return "cypress";
978 	case CHIP_BARTS:
979 		return "barts";
980 	case CHIP_TURKS:
981 		return "turks";
982 	case CHIP_CAICOS:
983 		return "caicos";
984 	case CHIP_CAYMAN:
985         case CHIP_ARUBA:
986 		return "cayman";
987 
988 	default:
989 		return "";
990 	}
991 }
992 
get_max_threads_per_block(struct r600_common_screen * screen,enum pipe_shader_ir ir_type)993 static unsigned get_max_threads_per_block(struct r600_common_screen *screen,
994 					  enum pipe_shader_ir ir_type)
995 {
996 	if (ir_type != PIPE_SHADER_IR_TGSI)
997 		return 256;
998 	if (screen->chip_class >= EVERGREEN)
999 		return 2048;
1000 	return 256;
1001 }
1002 
r600_get_compute_param(struct pipe_screen * screen,enum pipe_shader_ir ir_type,enum pipe_compute_cap param,void * ret)1003 static int r600_get_compute_param(struct pipe_screen *screen,
1004         enum pipe_shader_ir ir_type,
1005         enum pipe_compute_cap param,
1006         void *ret)
1007 {
1008 	struct r600_common_screen *rscreen = (struct r600_common_screen *)screen;
1009 
1010 	//TODO: select these params by asic
1011 	switch (param) {
1012 	case PIPE_COMPUTE_CAP_IR_TARGET: {
1013 		const char *gpu;
1014 		const char *triple = "r600--";
1015 		gpu = r600_get_llvm_processor_name(rscreen->family);
1016 		if (ret) {
1017 			sprintf(ret, "%s-%s", gpu, triple);
1018 		}
1019 		/* +2 for dash and terminating NIL byte */
1020 		return (strlen(triple) + strlen(gpu) + 2) * sizeof(char);
1021 	}
1022 	case PIPE_COMPUTE_CAP_GRID_DIMENSION:
1023 		if (ret) {
1024 			uint64_t *grid_dimension = ret;
1025 			grid_dimension[0] = 3;
1026 		}
1027 		return 1 * sizeof(uint64_t);
1028 
1029 	case PIPE_COMPUTE_CAP_MAX_GRID_SIZE:
1030 		if (ret) {
1031 			uint64_t *grid_size = ret;
1032 			grid_size[0] = 65535;
1033 			grid_size[1] = 65535;
1034 			grid_size[2] = 65535;
1035 		}
1036 		return 3 * sizeof(uint64_t) ;
1037 
1038 	case PIPE_COMPUTE_CAP_MAX_BLOCK_SIZE:
1039 		if (ret) {
1040 			uint64_t *block_size = ret;
1041 			unsigned threads_per_block = get_max_threads_per_block(rscreen, ir_type);
1042 			block_size[0] = threads_per_block;
1043 			block_size[1] = threads_per_block;
1044 			block_size[2] = threads_per_block;
1045 		}
1046 		return 3 * sizeof(uint64_t);
1047 
1048 	case PIPE_COMPUTE_CAP_MAX_THREADS_PER_BLOCK:
1049 		if (ret) {
1050 			uint64_t *max_threads_per_block = ret;
1051 			*max_threads_per_block = get_max_threads_per_block(rscreen, ir_type);
1052 		}
1053 		return sizeof(uint64_t);
1054 	case PIPE_COMPUTE_CAP_ADDRESS_BITS:
1055 		if (ret) {
1056 			uint32_t *address_bits = ret;
1057 			address_bits[0] = 32;
1058 		}
1059 		return 1 * sizeof(uint32_t);
1060 
1061 	case PIPE_COMPUTE_CAP_MAX_GLOBAL_SIZE:
1062 		if (ret) {
1063 			uint64_t *max_global_size = ret;
1064 			uint64_t max_mem_alloc_size;
1065 
1066 			r600_get_compute_param(screen, ir_type,
1067 				PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE,
1068 				&max_mem_alloc_size);
1069 
1070 			/* In OpenCL, the MAX_MEM_ALLOC_SIZE must be at least
1071 			 * 1/4 of the MAX_GLOBAL_SIZE.  Since the
1072 			 * MAX_MEM_ALLOC_SIZE is fixed for older kernels,
1073 			 * make sure we never report more than
1074 			 * 4 * MAX_MEM_ALLOC_SIZE.
1075 			 */
1076 			*max_global_size = MIN2(4 * max_mem_alloc_size,
1077 						MAX2(rscreen->info.gart_size,
1078 						     rscreen->info.vram_size));
1079 		}
1080 		return sizeof(uint64_t);
1081 
1082 	case PIPE_COMPUTE_CAP_MAX_LOCAL_SIZE:
1083 		if (ret) {
1084 			uint64_t *max_local_size = ret;
1085 			/* Value reported by the closed source driver. */
1086 			*max_local_size = 32768;
1087 		}
1088 		return sizeof(uint64_t);
1089 
1090 	case PIPE_COMPUTE_CAP_MAX_INPUT_SIZE:
1091 		if (ret) {
1092 			uint64_t *max_input_size = ret;
1093 			/* Value reported by the closed source driver. */
1094 			*max_input_size = 1024;
1095 		}
1096 		return sizeof(uint64_t);
1097 
1098 	case PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE:
1099 		if (ret) {
1100 			uint64_t *max_mem_alloc_size = ret;
1101 
1102 			*max_mem_alloc_size = rscreen->info.max_alloc_size;
1103 		}
1104 		return sizeof(uint64_t);
1105 
1106 	case PIPE_COMPUTE_CAP_MAX_CLOCK_FREQUENCY:
1107 		if (ret) {
1108 			uint32_t *max_clock_frequency = ret;
1109 			*max_clock_frequency = rscreen->info.max_shader_clock;
1110 		}
1111 		return sizeof(uint32_t);
1112 
1113 	case PIPE_COMPUTE_CAP_MAX_COMPUTE_UNITS:
1114 		if (ret) {
1115 			uint32_t *max_compute_units = ret;
1116 			*max_compute_units = rscreen->info.num_good_compute_units;
1117 		}
1118 		return sizeof(uint32_t);
1119 
1120 	case PIPE_COMPUTE_CAP_IMAGES_SUPPORTED:
1121 		if (ret) {
1122 			uint32_t *images_supported = ret;
1123 			*images_supported = 0;
1124 		}
1125 		return sizeof(uint32_t);
1126 	case PIPE_COMPUTE_CAP_MAX_PRIVATE_SIZE:
1127 		break; /* unused */
1128 	case PIPE_COMPUTE_CAP_SUBGROUP_SIZE:
1129 		if (ret) {
1130 			uint32_t *subgroup_size = ret;
1131 			*subgroup_size = r600_wavefront_size(rscreen->family);
1132 		}
1133 		return sizeof(uint32_t);
1134 	case PIPE_COMPUTE_CAP_MAX_VARIABLE_THREADS_PER_BLOCK:
1135 		if (ret) {
1136 			uint64_t *max_variable_threads_per_block = ret;
1137 			*max_variable_threads_per_block = 0;
1138 		}
1139 		return sizeof(uint64_t);
1140 	}
1141 
1142         fprintf(stderr, "unknown PIPE_COMPUTE_CAP %d\n", param);
1143         return 0;
1144 }
1145 
r600_get_timestamp(struct pipe_screen * screen)1146 static uint64_t r600_get_timestamp(struct pipe_screen *screen)
1147 {
1148 	struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
1149 
1150 	return 1000000 * rscreen->ws->query_value(rscreen->ws, RADEON_TIMESTAMP) /
1151 			rscreen->info.clock_crystal_freq;
1152 }
1153 
r600_fence_reference(struct pipe_screen * screen,struct pipe_fence_handle ** dst,struct pipe_fence_handle * src)1154 static void r600_fence_reference(struct pipe_screen *screen,
1155 				 struct pipe_fence_handle **dst,
1156 				 struct pipe_fence_handle *src)
1157 {
1158 	struct radeon_winsys *ws = ((struct r600_common_screen*)screen)->ws;
1159 	struct r600_multi_fence **rdst = (struct r600_multi_fence **)dst;
1160 	struct r600_multi_fence *rsrc = (struct r600_multi_fence *)src;
1161 
1162 	if (pipe_reference(&(*rdst)->reference, &rsrc->reference)) {
1163 		ws->fence_reference(&(*rdst)->gfx, NULL);
1164 		ws->fence_reference(&(*rdst)->sdma, NULL);
1165 		FREE(*rdst);
1166 	}
1167         *rdst = rsrc;
1168 }
1169 
r600_fence_finish(struct pipe_screen * screen,struct pipe_context * ctx,struct pipe_fence_handle * fence,uint64_t timeout)1170 static boolean r600_fence_finish(struct pipe_screen *screen,
1171 				 struct pipe_context *ctx,
1172 				 struct pipe_fence_handle *fence,
1173 				 uint64_t timeout)
1174 {
1175 	struct radeon_winsys *rws = ((struct r600_common_screen*)screen)->ws;
1176 	struct r600_multi_fence *rfence = (struct r600_multi_fence *)fence;
1177 	struct r600_common_context *rctx;
1178 	int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
1179 
1180 	ctx = threaded_context_unwrap_sync(ctx);
1181 	rctx = ctx ? (struct r600_common_context*)ctx : NULL;
1182 
1183 	if (rfence->sdma) {
1184 		if (!rws->fence_wait(rws, rfence->sdma, timeout))
1185 			return false;
1186 
1187 		/* Recompute the timeout after waiting. */
1188 		if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
1189 			int64_t time = os_time_get_nano();
1190 			timeout = abs_timeout > time ? abs_timeout - time : 0;
1191 		}
1192 	}
1193 
1194 	if (!rfence->gfx)
1195 		return true;
1196 
1197 	/* Flush the gfx IB if it hasn't been flushed yet. */
1198 	if (rctx &&
1199 	    rfence->gfx_unflushed.ctx == rctx &&
1200 	    rfence->gfx_unflushed.ib_index == rctx->num_gfx_cs_flushes) {
1201 		rctx->gfx.flush(rctx, timeout ? 0 : PIPE_FLUSH_ASYNC, NULL);
1202 		rfence->gfx_unflushed.ctx = NULL;
1203 
1204 		if (!timeout)
1205 			return false;
1206 
1207 		/* Recompute the timeout after all that. */
1208 		if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
1209 			int64_t time = os_time_get_nano();
1210 			timeout = abs_timeout > time ? abs_timeout - time : 0;
1211 		}
1212 	}
1213 
1214 	return rws->fence_wait(rws, rfence->gfx, timeout);
1215 }
1216 
r600_query_memory_info(struct pipe_screen * screen,struct pipe_memory_info * info)1217 static void r600_query_memory_info(struct pipe_screen *screen,
1218 				   struct pipe_memory_info *info)
1219 {
1220 	struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
1221 	struct radeon_winsys *ws = rscreen->ws;
1222 	unsigned vram_usage, gtt_usage;
1223 
1224 	info->total_device_memory = rscreen->info.vram_size / 1024;
1225 	info->total_staging_memory = rscreen->info.gart_size / 1024;
1226 
1227 	/* The real TTM memory usage is somewhat random, because:
1228 	 *
1229 	 * 1) TTM delays freeing memory, because it can only free it after
1230 	 *    fences expire.
1231 	 *
1232 	 * 2) The memory usage can be really low if big VRAM evictions are
1233 	 *    taking place, but the real usage is well above the size of VRAM.
1234 	 *
1235 	 * Instead, return statistics of this process.
1236 	 */
1237 	vram_usage = ws->query_value(ws, RADEON_REQUESTED_VRAM_MEMORY) / 1024;
1238 	gtt_usage =  ws->query_value(ws, RADEON_REQUESTED_GTT_MEMORY) / 1024;
1239 
1240 	info->avail_device_memory =
1241 		vram_usage <= info->total_device_memory ?
1242 				info->total_device_memory - vram_usage : 0;
1243 	info->avail_staging_memory =
1244 		gtt_usage <= info->total_staging_memory ?
1245 				info->total_staging_memory - gtt_usage : 0;
1246 
1247 	info->device_memory_evicted =
1248 		ws->query_value(ws, RADEON_NUM_BYTES_MOVED) / 1024;
1249 
1250 	if (rscreen->info.drm_major == 3 && rscreen->info.drm_minor >= 4)
1251 		info->nr_device_memory_evictions =
1252 			ws->query_value(ws, RADEON_NUM_EVICTIONS);
1253 	else
1254 		/* Just return the number of evicted 64KB pages. */
1255 		info->nr_device_memory_evictions = info->device_memory_evicted / 64;
1256 }
1257 
r600_resource_create_common(struct pipe_screen * screen,const struct pipe_resource * templ)1258 struct pipe_resource *r600_resource_create_common(struct pipe_screen *screen,
1259 						  const struct pipe_resource *templ)
1260 {
1261 	if (templ->target == PIPE_BUFFER) {
1262 		return r600_buffer_create(screen, templ, 256);
1263 	} else {
1264 		return r600_texture_create(screen, templ);
1265 	}
1266 }
1267 
r600_common_screen_init(struct r600_common_screen * rscreen,struct radeon_winsys * ws)1268 bool r600_common_screen_init(struct r600_common_screen *rscreen,
1269 			     struct radeon_winsys *ws)
1270 {
1271 	char family_name[32] = {}, llvm_string[32] = {}, kernel_version[128] = {};
1272 	struct utsname uname_data;
1273 	const char *chip_name;
1274 
1275 	ws->query_info(ws, &rscreen->info);
1276 	rscreen->ws = ws;
1277 
1278 	if ((chip_name = r600_get_marketing_name(ws)))
1279 		snprintf(family_name, sizeof(family_name), "%s / ",
1280 			 r600_get_family_name(rscreen) + 4);
1281 	else
1282 		chip_name = r600_get_family_name(rscreen);
1283 
1284 	if (uname(&uname_data) == 0)
1285 		snprintf(kernel_version, sizeof(kernel_version),
1286 			 " / %s", uname_data.release);
1287 
1288 	if (HAVE_LLVM > 0) {
1289 		snprintf(llvm_string, sizeof(llvm_string),
1290 			 ", LLVM %i.%i.%i", (HAVE_LLVM >> 8) & 0xff,
1291 			 HAVE_LLVM & 0xff, MESA_LLVM_VERSION_PATCH);
1292 	}
1293 
1294 	snprintf(rscreen->renderer_string, sizeof(rscreen->renderer_string),
1295 		 "%s (%sDRM %i.%i.%i%s%s)",
1296 		 chip_name, family_name, rscreen->info.drm_major,
1297 		 rscreen->info.drm_minor, rscreen->info.drm_patchlevel,
1298 		 kernel_version, llvm_string);
1299 
1300 	rscreen->b.get_name = r600_get_name;
1301 	rscreen->b.get_vendor = r600_get_vendor;
1302 	rscreen->b.get_device_vendor = r600_get_device_vendor;
1303 	rscreen->b.get_disk_shader_cache = r600_get_disk_shader_cache;
1304 	rscreen->b.get_compute_param = r600_get_compute_param;
1305 	rscreen->b.get_paramf = r600_get_paramf;
1306 	rscreen->b.get_timestamp = r600_get_timestamp;
1307 	rscreen->b.fence_finish = r600_fence_finish;
1308 	rscreen->b.fence_reference = r600_fence_reference;
1309 	rscreen->b.resource_destroy = u_resource_destroy_vtbl;
1310 	rscreen->b.resource_from_user_memory = r600_buffer_from_user_memory;
1311 	rscreen->b.query_memory_info = r600_query_memory_info;
1312 
1313 	if (rscreen->info.has_hw_decode) {
1314 		rscreen->b.get_video_param = rvid_get_video_param;
1315 		rscreen->b.is_video_format_supported = rvid_is_format_supported;
1316 	} else {
1317 		rscreen->b.get_video_param = r600_get_video_param;
1318 		rscreen->b.is_video_format_supported = vl_video_buffer_is_format_supported;
1319 	}
1320 
1321 	r600_init_screen_texture_functions(rscreen);
1322 	r600_init_screen_query_functions(rscreen);
1323 
1324 	rscreen->family = rscreen->info.family;
1325 	rscreen->chip_class = rscreen->info.chip_class;
1326 	rscreen->debug_flags |= debug_get_flags_option("R600_DEBUG", common_debug_options, 0);
1327 
1328 	r600_disk_cache_create(rscreen);
1329 
1330 	slab_create_parent(&rscreen->pool_transfers, sizeof(struct r600_transfer), 64);
1331 
1332 	rscreen->force_aniso = MIN2(16, debug_get_num_option("R600_TEX_ANISO", -1));
1333 	if (rscreen->force_aniso >= 0) {
1334 		printf("radeon: Forcing anisotropy filter to %ix\n",
1335 		       /* round down to a power of two */
1336 		       1 << util_logbase2(rscreen->force_aniso));
1337 	}
1338 
1339 	(void) mtx_init(&rscreen->aux_context_lock, mtx_plain);
1340 	(void) mtx_init(&rscreen->gpu_load_mutex, mtx_plain);
1341 
1342 	if (rscreen->debug_flags & DBG_INFO) {
1343 		printf("pci (domain:bus:dev.func): %04x:%02x:%02x.%x\n",
1344 		       rscreen->info.pci_domain, rscreen->info.pci_bus,
1345 		       rscreen->info.pci_dev, rscreen->info.pci_func);
1346 		printf("pci_id = 0x%x\n", rscreen->info.pci_id);
1347 		printf("family = %i (%s)\n", rscreen->info.family,
1348 		       r600_get_family_name(rscreen));
1349 		printf("chip_class = %i\n", rscreen->info.chip_class);
1350 		printf("pte_fragment_size = %u\n", rscreen->info.pte_fragment_size);
1351 		printf("gart_page_size = %u\n", rscreen->info.gart_page_size);
1352 		printf("gart_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.gart_size, 1024*1024));
1353 		printf("vram_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.vram_size, 1024*1024));
1354 		printf("vram_vis_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.vram_vis_size, 1024*1024));
1355 		printf("max_alloc_size = %i MB\n",
1356 		       (int)DIV_ROUND_UP(rscreen->info.max_alloc_size, 1024*1024));
1357 		printf("min_alloc_size = %u\n", rscreen->info.min_alloc_size);
1358 		printf("has_dedicated_vram = %u\n", rscreen->info.has_dedicated_vram);
1359 		printf("has_virtual_memory = %i\n", rscreen->info.has_virtual_memory);
1360 		printf("gfx_ib_pad_with_type2 = %i\n", rscreen->info.gfx_ib_pad_with_type2);
1361 		printf("has_hw_decode = %u\n", rscreen->info.has_hw_decode);
1362 		printf("num_sdma_rings = %i\n", rscreen->info.num_sdma_rings);
1363 		printf("num_compute_rings = %u\n", rscreen->info.num_compute_rings);
1364 		printf("uvd_fw_version = %u\n", rscreen->info.uvd_fw_version);
1365 		printf("vce_fw_version = %u\n", rscreen->info.vce_fw_version);
1366 		printf("me_fw_version = %i\n", rscreen->info.me_fw_version);
1367 		printf("pfp_fw_version = %i\n", rscreen->info.pfp_fw_version);
1368 		printf("ce_fw_version = %i\n", rscreen->info.ce_fw_version);
1369 		printf("vce_harvest_config = %i\n", rscreen->info.vce_harvest_config);
1370 		printf("clock_crystal_freq = %i\n", rscreen->info.clock_crystal_freq);
1371 		printf("tcc_cache_line_size = %u\n", rscreen->info.tcc_cache_line_size);
1372 		printf("drm = %i.%i.%i\n", rscreen->info.drm_major,
1373 		       rscreen->info.drm_minor, rscreen->info.drm_patchlevel);
1374 		printf("has_userptr = %i\n", rscreen->info.has_userptr);
1375 		printf("has_syncobj = %u\n", rscreen->info.has_syncobj);
1376 
1377 		printf("r600_max_quad_pipes = %i\n", rscreen->info.r600_max_quad_pipes);
1378 		printf("max_shader_clock = %i\n", rscreen->info.max_shader_clock);
1379 		printf("num_good_compute_units = %i\n", rscreen->info.num_good_compute_units);
1380 		printf("max_se = %i\n", rscreen->info.max_se);
1381 		printf("max_sh_per_se = %i\n", rscreen->info.max_sh_per_se);
1382 
1383 		printf("r600_gb_backend_map = %i\n", rscreen->info.r600_gb_backend_map);
1384 		printf("r600_gb_backend_map_valid = %i\n", rscreen->info.r600_gb_backend_map_valid);
1385 		printf("r600_num_banks = %i\n", rscreen->info.r600_num_banks);
1386 		printf("num_render_backends = %i\n", rscreen->info.num_render_backends);
1387 		printf("num_tile_pipes = %i\n", rscreen->info.num_tile_pipes);
1388 		printf("pipe_interleave_bytes = %i\n", rscreen->info.pipe_interleave_bytes);
1389 		printf("enabled_rb_mask = 0x%x\n", rscreen->info.enabled_rb_mask);
1390 		printf("max_alignment = %u\n", (unsigned)rscreen->info.max_alignment);
1391 	}
1392 	return true;
1393 }
1394 
r600_destroy_common_screen(struct r600_common_screen * rscreen)1395 void r600_destroy_common_screen(struct r600_common_screen *rscreen)
1396 {
1397 	r600_perfcounters_destroy(rscreen);
1398 	r600_gpu_load_kill_thread(rscreen);
1399 
1400 	mtx_destroy(&rscreen->gpu_load_mutex);
1401 	mtx_destroy(&rscreen->aux_context_lock);
1402 	rscreen->aux_context->destroy(rscreen->aux_context);
1403 
1404 	slab_destroy_parent(&rscreen->pool_transfers);
1405 
1406 	disk_cache_destroy(rscreen->disk_shader_cache);
1407 	rscreen->ws->destroy(rscreen->ws);
1408 	FREE(rscreen);
1409 }
1410 
r600_can_dump_shader(struct r600_common_screen * rscreen,unsigned processor)1411 bool r600_can_dump_shader(struct r600_common_screen *rscreen,
1412 			  unsigned processor)
1413 {
1414 	return rscreen->debug_flags & (1 << processor);
1415 }
1416 
r600_extra_shader_checks(struct r600_common_screen * rscreen,unsigned processor)1417 bool r600_extra_shader_checks(struct r600_common_screen *rscreen, unsigned processor)
1418 {
1419 	return (rscreen->debug_flags & DBG_CHECK_IR) ||
1420 	       r600_can_dump_shader(rscreen, processor);
1421 }
1422 
r600_screen_clear_buffer(struct r600_common_screen * rscreen,struct pipe_resource * dst,uint64_t offset,uint64_t size,unsigned value)1423 void r600_screen_clear_buffer(struct r600_common_screen *rscreen, struct pipe_resource *dst,
1424 			      uint64_t offset, uint64_t size, unsigned value)
1425 {
1426 	struct r600_common_context *rctx = (struct r600_common_context*)rscreen->aux_context;
1427 
1428 	mtx_lock(&rscreen->aux_context_lock);
1429 	rctx->dma_clear_buffer(&rctx->b, dst, offset, size, value);
1430 	rscreen->aux_context->flush(rscreen->aux_context, NULL, 0);
1431 	mtx_unlock(&rscreen->aux_context_lock);
1432 }
1433