1 /*
2  * Copyright © 2016 Red Hat.
3  * Copyright © 2016 Bas Nieuwenhuizen
4  *
5  * based in part on anv driver which is:
6  * Copyright © 2015 Intel Corporation
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the "Software"),
10  * to deal in the Software without restriction, including without limitation
11  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12  * and/or sell copies of the Software, and to permit persons to whom the
13  * Software is furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the next
16  * paragraph) shall be included in all copies or substantial portions of the
17  * Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25  * IN THE SOFTWARE.
26  */
27 
28 #include "util/mesa-sha1.h"
29 #include "util/u_atomic.h"
30 #include "radv_debug.h"
31 #include "radv_private.h"
32 #include "radv_shader.h"
33 #include "nir/nir.h"
34 #include "nir/nir_builder.h"
35 #include "spirv/nir_spirv.h"
36 
37 #include <llvm-c/Core.h>
38 #include <llvm-c/TargetMachine.h>
39 
40 #include "sid.h"
41 #include "gfx9d.h"
42 #include "ac_binary.h"
43 #include "ac_llvm_util.h"
44 #include "ac_nir_to_llvm.h"
45 #include "vk_format.h"
46 #include "util/debug.h"
47 #include "ac_exp_param.h"
48 
49 #include "util/string_buffer.h"
50 
51 static const struct nir_shader_compiler_options nir_options = {
52 	.vertex_id_zero_based = true,
53 	.lower_scmp = true,
54 	.lower_flrp32 = true,
55 	.lower_flrp64 = true,
56 	.lower_fsat = true,
57 	.lower_fdiv = true,
58 	.lower_sub = true,
59 	.lower_pack_snorm_2x16 = true,
60 	.lower_pack_snorm_4x8 = true,
61 	.lower_pack_unorm_2x16 = true,
62 	.lower_pack_unorm_4x8 = true,
63 	.lower_unpack_snorm_2x16 = true,
64 	.lower_unpack_snorm_4x8 = true,
65 	.lower_unpack_unorm_2x16 = true,
66 	.lower_unpack_unorm_4x8 = true,
67 	.lower_extract_byte = true,
68 	.lower_extract_word = true,
69 	.lower_ffma = true,
70 	.max_unroll_iterations = 32
71 };
72 
radv_CreateShaderModule(VkDevice _device,const VkShaderModuleCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkShaderModule * pShaderModule)73 VkResult radv_CreateShaderModule(
74 	VkDevice                                    _device,
75 	const VkShaderModuleCreateInfo*             pCreateInfo,
76 	const VkAllocationCallbacks*                pAllocator,
77 	VkShaderModule*                             pShaderModule)
78 {
79 	RADV_FROM_HANDLE(radv_device, device, _device);
80 	struct radv_shader_module *module;
81 
82 	assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
83 	assert(pCreateInfo->flags == 0);
84 
85 	module = vk_alloc2(&device->alloc, pAllocator,
86 			     sizeof(*module) + pCreateInfo->codeSize, 8,
87 			     VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
88 	if (module == NULL)
89 		return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
90 
91 	module->nir = NULL;
92 	module->size = pCreateInfo->codeSize;
93 	memcpy(module->data, pCreateInfo->pCode, module->size);
94 
95 	_mesa_sha1_compute(module->data, module->size, module->sha1);
96 
97 	*pShaderModule = radv_shader_module_to_handle(module);
98 
99 	return VK_SUCCESS;
100 }
101 
radv_DestroyShaderModule(VkDevice _device,VkShaderModule _module,const VkAllocationCallbacks * pAllocator)102 void radv_DestroyShaderModule(
103 	VkDevice                                    _device,
104 	VkShaderModule                              _module,
105 	const VkAllocationCallbacks*                pAllocator)
106 {
107 	RADV_FROM_HANDLE(radv_device, device, _device);
108 	RADV_FROM_HANDLE(radv_shader_module, module, _module);
109 
110 	if (!module)
111 		return;
112 
113 	vk_free2(&device->alloc, pAllocator, module);
114 }
115 
116 bool
radv_lower_indirect_derefs(struct nir_shader * nir,struct radv_physical_device * device)117 radv_lower_indirect_derefs(struct nir_shader *nir,
118                            struct radv_physical_device *device)
119 {
120 	/* While it would be nice not to have this flag, we are constrained
121 	 * by the reality that LLVM 5.0 doesn't have working VGPR indexing
122 	 * on GFX9.
123 	 */
124 	bool llvm_has_working_vgpr_indexing =
125 		device->rad_info.chip_class <= VI;
126 
127 	/* TODO: Indirect indexing of GS inputs is unimplemented.
128 	 *
129 	 * TCS and TES load inputs directly from LDS or offchip memory, so
130 	 * indirect indexing is trivial.
131 	 */
132 	nir_variable_mode indirect_mask = 0;
133 	if (nir->info.stage == MESA_SHADER_GEOMETRY ||
134 	    (nir->info.stage != MESA_SHADER_TESS_CTRL &&
135 	     nir->info.stage != MESA_SHADER_TESS_EVAL &&
136 	     !llvm_has_working_vgpr_indexing)) {
137 		indirect_mask |= nir_var_shader_in;
138 	}
139 	if (!llvm_has_working_vgpr_indexing &&
140 	    nir->info.stage != MESA_SHADER_TESS_CTRL)
141 		indirect_mask |= nir_var_shader_out;
142 
143 	/* TODO: We shouldn't need to do this, however LLVM isn't currently
144 	 * smart enough to handle indirects without causing excess spilling
145 	 * causing the gpu to hang.
146 	 *
147 	 * See the following thread for more details of the problem:
148 	 * https://lists.freedesktop.org/archives/mesa-dev/2017-July/162106.html
149 	 */
150 	indirect_mask |= nir_var_local;
151 
152 	return nir_lower_indirect_derefs(nir, indirect_mask);
153 }
154 
155 void
radv_optimize_nir(struct nir_shader * shader)156 radv_optimize_nir(struct nir_shader *shader)
157 {
158         bool progress;
159 
160         do {
161                 progress = false;
162 
163                 NIR_PASS_V(shader, nir_lower_vars_to_ssa);
164 		NIR_PASS_V(shader, nir_lower_64bit_pack);
165                 NIR_PASS_V(shader, nir_lower_alu_to_scalar);
166                 NIR_PASS_V(shader, nir_lower_phis_to_scalar);
167 
168                 NIR_PASS(progress, shader, nir_copy_prop);
169                 NIR_PASS(progress, shader, nir_opt_remove_phis);
170                 NIR_PASS(progress, shader, nir_opt_dce);
171                 if (nir_opt_trivial_continues(shader)) {
172                         progress = true;
173                         NIR_PASS(progress, shader, nir_copy_prop);
174 			NIR_PASS(progress, shader, nir_opt_remove_phis);
175                         NIR_PASS(progress, shader, nir_opt_dce);
176                 }
177                 NIR_PASS(progress, shader, nir_opt_if);
178                 NIR_PASS(progress, shader, nir_opt_dead_cf);
179                 NIR_PASS(progress, shader, nir_opt_cse);
180                 NIR_PASS(progress, shader, nir_opt_peephole_select, 8);
181                 NIR_PASS(progress, shader, nir_opt_algebraic);
182                 NIR_PASS(progress, shader, nir_opt_constant_folding);
183                 NIR_PASS(progress, shader, nir_opt_undef);
184                 NIR_PASS(progress, shader, nir_opt_conditional_discard);
185                 if (shader->options->max_unroll_iterations) {
186                         NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
187                 }
188         } while (progress);
189 }
190 
191 nir_shader *
radv_shader_compile_to_nir(struct radv_device * device,struct radv_shader_module * module,const char * entrypoint_name,gl_shader_stage stage,const VkSpecializationInfo * spec_info)192 radv_shader_compile_to_nir(struct radv_device *device,
193 			   struct radv_shader_module *module,
194 			   const char *entrypoint_name,
195 			   gl_shader_stage stage,
196 			   const VkSpecializationInfo *spec_info)
197 {
198 	if (strcmp(entrypoint_name, "main") != 0) {
199 		radv_finishme("Multiple shaders per module not really supported");
200 	}
201 
202 	nir_shader *nir;
203 	nir_function *entry_point;
204 	if (module->nir) {
205 		/* Some things such as our meta clear/blit code will give us a NIR
206 		 * shader directly.  In that case, we just ignore the SPIR-V entirely
207 		 * and just use the NIR shader */
208 		nir = module->nir;
209 		nir->options = &nir_options;
210 		nir_validate_shader(nir);
211 
212 		assert(exec_list_length(&nir->functions) == 1);
213 		struct exec_node *node = exec_list_get_head(&nir->functions);
214 		entry_point = exec_node_data(nir_function, node, node);
215 	} else {
216 		uint32_t *spirv = (uint32_t *) module->data;
217 		assert(module->size % 4 == 0);
218 
219 		if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV)
220 			radv_print_spirv(spirv, module->size, stderr);
221 
222 		uint32_t num_spec_entries = 0;
223 		struct nir_spirv_specialization *spec_entries = NULL;
224 		if (spec_info && spec_info->mapEntryCount > 0) {
225 			num_spec_entries = spec_info->mapEntryCount;
226 			spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
227 			for (uint32_t i = 0; i < num_spec_entries; i++) {
228 				VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
229 				const void *data = spec_info->pData + entry.offset;
230 				assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
231 
232 				spec_entries[i].id = spec_info->pMapEntries[i].constantID;
233 				if (spec_info->dataSize == 8)
234 					spec_entries[i].data64 = *(const uint64_t *)data;
235 				else
236 					spec_entries[i].data32 = *(const uint32_t *)data;
237 			}
238 		}
239 		const struct spirv_to_nir_options spirv_options = {
240 			.caps = {
241 				.draw_parameters = true,
242 				.float64 = true,
243 				.image_read_without_format = true,
244 				.image_write_without_format = true,
245 				.tessellation = true,
246 				.int64 = true,
247 				.multiview = true,
248 				.variable_pointers = true,
249 			},
250 		};
251 		entry_point = spirv_to_nir(spirv, module->size / 4,
252 					   spec_entries, num_spec_entries,
253 					   stage, entrypoint_name,
254 					   &spirv_options, &nir_options);
255 		nir = entry_point->shader;
256 		assert(nir->info.stage == stage);
257 		nir_validate_shader(nir);
258 
259 		free(spec_entries);
260 
261 		/* We have to lower away local constant initializers right before we
262 		 * inline functions.  That way they get properly initialized at the top
263 		 * of the function and not at the top of its caller.
264 		 */
265 		NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
266 		NIR_PASS_V(nir, nir_lower_returns);
267 		NIR_PASS_V(nir, nir_inline_functions);
268 
269 		/* Pick off the single entrypoint that we want */
270 		foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
271 			if (func != entry_point)
272 				exec_node_remove(&func->node);
273 		}
274 		assert(exec_list_length(&nir->functions) == 1);
275 		entry_point->name = ralloc_strdup(entry_point, "main");
276 
277 		NIR_PASS_V(nir, nir_remove_dead_variables,
278 		           nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
279 
280 		/* Now that we've deleted all but the main function, we can go ahead and
281 		 * lower the rest of the constant initializers.
282 		 */
283 		NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
284 		NIR_PASS_V(nir, nir_lower_system_values);
285 		NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
286 	}
287 
288 	/* Vulkan uses the separate-shader linking model */
289 	nir->info.separate_shader = true;
290 
291 	nir_shader_gather_info(nir, entry_point->impl);
292 
293 	static const nir_lower_tex_options tex_options = {
294 	  .lower_txp = ~0,
295 	};
296 
297 	nir_lower_tex(nir, &tex_options);
298 
299 	nir_lower_vars_to_ssa(nir);
300 	nir_lower_var_copies(nir);
301 	nir_lower_global_vars_to_local(nir);
302 	nir_remove_dead_variables(nir, nir_var_local);
303 	radv_lower_indirect_derefs(nir, device->physical_device);
304 	radv_optimize_nir(nir);
305 
306 	return nir;
307 }
308 
309 void *
radv_alloc_shader_memory(struct radv_device * device,struct radv_shader_variant * shader)310 radv_alloc_shader_memory(struct radv_device *device,
311 			 struct radv_shader_variant *shader)
312 {
313 	mtx_lock(&device->shader_slab_mutex);
314 	list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
315 		uint64_t offset = 0;
316 		list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
317 			if (s->bo_offset - offset >= shader->code_size) {
318 				shader->bo = slab->bo;
319 				shader->bo_offset = offset;
320 				list_addtail(&shader->slab_list, &s->slab_list);
321 				mtx_unlock(&device->shader_slab_mutex);
322 				return slab->ptr + offset;
323 			}
324 			offset = align_u64(s->bo_offset + s->code_size, 256);
325 		}
326 		if (slab->size - offset >= shader->code_size) {
327 			shader->bo = slab->bo;
328 			shader->bo_offset = offset;
329 			list_addtail(&shader->slab_list, &slab->shaders);
330 			mtx_unlock(&device->shader_slab_mutex);
331 			return slab->ptr + offset;
332 		}
333 	}
334 
335 	mtx_unlock(&device->shader_slab_mutex);
336 	struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));
337 
338 	slab->size = 256 * 1024;
339 	slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
340 	                                     RADEON_DOMAIN_VRAM,
341 					     RADEON_FLAG_NO_INTERPROCESS_SHARING |
342 					     device->physical_device->cpdma_prefetch_writes_memory ?
343 					             0 : RADEON_FLAG_READ_ONLY);
344 	slab->ptr = (char*)device->ws->buffer_map(slab->bo);
345 	list_inithead(&slab->shaders);
346 
347 	mtx_lock(&device->shader_slab_mutex);
348 	list_add(&slab->slabs, &device->shader_slabs);
349 
350 	shader->bo = slab->bo;
351 	shader->bo_offset = 0;
352 	list_add(&shader->slab_list, &slab->shaders);
353 	mtx_unlock(&device->shader_slab_mutex);
354 	return slab->ptr;
355 }
356 
357 void
radv_destroy_shader_slabs(struct radv_device * device)358 radv_destroy_shader_slabs(struct radv_device *device)
359 {
360 	list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
361 		device->ws->buffer_destroy(slab->bo);
362 		free(slab);
363 	}
364 	mtx_destroy(&device->shader_slab_mutex);
365 }
366 
367 static void
radv_fill_shader_variant(struct radv_device * device,struct radv_shader_variant * variant,struct ac_shader_binary * binary,gl_shader_stage stage)368 radv_fill_shader_variant(struct radv_device *device,
369 			 struct radv_shader_variant *variant,
370 			 struct ac_shader_binary *binary,
371 			 gl_shader_stage stage)
372 {
373 	bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
374 	unsigned vgpr_comp_cnt = 0;
375 
376 	if (scratch_enabled && !device->llvm_supports_spill)
377 		radv_finishme("shader scratch support only available with LLVM 4.0");
378 
379 	variant->code_size = binary->code_size;
380 	variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
381 			S_00B12C_SCRATCH_EN(scratch_enabled);
382 
383 	variant->rsrc1 =  S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
384 		S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
385 		S_00B848_DX10_CLAMP(1) |
386 		S_00B848_FLOAT_MODE(variant->config.float_mode);
387 
388 	switch (stage) {
389 	case MESA_SHADER_TESS_EVAL:
390 		vgpr_comp_cnt = 3;
391 		variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
392 		break;
393 	case MESA_SHADER_TESS_CTRL:
394 		if (device->physical_device->rad_info.chip_class >= GFX9)
395 			vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
396 		else
397 			variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
398 		break;
399 	case MESA_SHADER_VERTEX:
400 	case MESA_SHADER_GEOMETRY:
401 		vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
402 		break;
403 	case MESA_SHADER_FRAGMENT:
404 		break;
405 	case MESA_SHADER_COMPUTE: {
406 		struct ac_shader_info *info = &variant->info.info;
407 		variant->rsrc2 |=
408 			S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) |
409 			S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) |
410 			S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) |
411 			S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2 :
412 						info->cs.uses_thread_id[1] ? 1 : 0) |
413 			S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) |
414 			S_00B84C_LDS_SIZE(variant->config.lds_size);
415 		break;
416 	}
417 	default:
418 		unreachable("unsupported shader type");
419 		break;
420 	}
421 
422 	if (device->physical_device->rad_info.chip_class >= GFX9 &&
423 	    stage == MESA_SHADER_GEOMETRY) {
424 		struct ac_shader_info *info = &variant->info.info;
425 		unsigned es_type = variant->info.gs.es_type;
426 		unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
427 
428 		if (es_type == MESA_SHADER_VERTEX) {
429 			es_vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
430 		} else if (es_type == MESA_SHADER_TESS_EVAL) {
431 			es_vgpr_comp_cnt = 3;
432 		} else {
433 			unreachable("invalid shader ES type");
434 		}
435 
436 		/* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
437 		 * VGPR[0:4] are always loaded.
438 		 */
439 		if (info->uses_invocation_id)
440 			gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
441 		else if (info->uses_prim_id)
442 			gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
443 		else if (variant->info.gs.vertices_in >= 3)
444 			gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
445 		else
446 			gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
447 
448 		variant->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
449 		variant->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
450 		                  S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL);
451 	} else if (device->physical_device->rad_info.chip_class >= GFX9 &&
452 	    stage == MESA_SHADER_TESS_CTRL)
453 		variant->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
454 	else
455 		variant->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
456 
457 	void *ptr = radv_alloc_shader_memory(device, variant);
458 	memcpy(ptr, binary->code, binary->code_size);
459 }
460 
461 static struct radv_shader_variant *
shader_variant_create(struct radv_device * device,struct radv_shader_module * module,struct nir_shader * const * shaders,int shader_count,gl_shader_stage stage,struct ac_nir_compiler_options * options,bool gs_copy_shader,void ** code_out,unsigned * code_size_out)462 shader_variant_create(struct radv_device *device,
463 		      struct radv_shader_module *module,
464 		      struct nir_shader * const *shaders,
465 		      int shader_count,
466 		      gl_shader_stage stage,
467 		      struct ac_nir_compiler_options *options,
468 		      bool gs_copy_shader,
469 		      void **code_out,
470 		      unsigned *code_size_out)
471 {
472 	enum radeon_family chip_family = device->physical_device->rad_info.family;
473 	bool dump_shaders = radv_can_dump_shader(device, module);
474 	enum ac_target_machine_options tm_options = 0;
475 	struct radv_shader_variant *variant;
476 	struct ac_shader_binary binary;
477 	LLVMTargetMachineRef tm;
478 
479 	variant = calloc(1, sizeof(struct radv_shader_variant));
480 	if (!variant)
481 		return NULL;
482 
483 	options->family = chip_family;
484 	options->chip_class = device->physical_device->rad_info.chip_class;
485 	options->dump_preoptir = radv_can_dump_shader(device, module) &&
486 				 device->instance->debug_flags & RADV_DEBUG_PREOPTIR;
487 
488 	if (options->supports_spill)
489 		tm_options |= AC_TM_SUPPORTS_SPILL;
490 	if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
491 		tm_options |= AC_TM_SISCHED;
492 	tm = ac_create_target_machine(chip_family, tm_options);
493 
494 	if (gs_copy_shader) {
495 		assert(shader_count == 1);
496 		ac_create_gs_copy_shader(tm, *shaders, &binary, &variant->config,
497 					 &variant->info, options, dump_shaders);
498 	} else {
499 		ac_compile_nir_shader(tm, &binary, &variant->config,
500 				      &variant->info, shaders, shader_count, options,
501 				      dump_shaders);
502 	}
503 
504 	LLVMDisposeTargetMachine(tm);
505 
506 	radv_fill_shader_variant(device, variant, &binary, stage);
507 
508 	if (code_out) {
509 		*code_out = binary.code;
510 		*code_size_out = binary.code_size;
511 	} else
512 		free(binary.code);
513 	free(binary.config);
514 	free(binary.rodata);
515 	free(binary.global_symbol_offsets);
516 	free(binary.relocs);
517 	variant->ref_count = 1;
518 
519 	if (device->keep_shader_info) {
520 		variant->disasm_string = binary.disasm_string;
521 		if (!gs_copy_shader && !module->nir) {
522 			variant->nir = *shaders;
523 			variant->spirv = (uint32_t *)module->data;
524 			variant->spirv_size = module->size;
525 		}
526 	} else {
527 		free(binary.disasm_string);
528 	}
529 
530 	return variant;
531 }
532 
533 struct radv_shader_variant *
radv_shader_variant_create(struct radv_device * device,struct radv_shader_module * module,struct nir_shader * const * shaders,int shader_count,struct radv_pipeline_layout * layout,const struct ac_shader_variant_key * key,void ** code_out,unsigned * code_size_out)534 radv_shader_variant_create(struct radv_device *device,
535 			   struct radv_shader_module *module,
536 			   struct nir_shader *const *shaders,
537 			   int shader_count,
538 			   struct radv_pipeline_layout *layout,
539 			   const struct ac_shader_variant_key *key,
540 			   void **code_out,
541 			   unsigned *code_size_out)
542 {
543 	struct ac_nir_compiler_options options = {0};
544 
545 	options.layout = layout;
546 	if (key)
547 		options.key = *key;
548 
549 	options.unsafe_math = !!(device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH);
550 	options.supports_spill = device->llvm_supports_spill;
551 
552 	return shader_variant_create(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage,
553 				     &options, false, code_out, code_size_out);
554 }
555 
556 struct radv_shader_variant *
radv_create_gs_copy_shader(struct radv_device * device,struct nir_shader * shader,void ** code_out,unsigned * code_size_out,bool multiview)557 radv_create_gs_copy_shader(struct radv_device *device,
558 			   struct nir_shader *shader,
559 			   void **code_out,
560 			   unsigned *code_size_out,
561 			   bool multiview)
562 {
563 	struct ac_nir_compiler_options options = {0};
564 
565 	options.key.has_multiview_view_index = multiview;
566 
567 	return shader_variant_create(device, NULL, &shader, 1, MESA_SHADER_VERTEX,
568 				     &options, true, code_out, code_size_out);
569 }
570 
571 void
radv_shader_variant_destroy(struct radv_device * device,struct radv_shader_variant * variant)572 radv_shader_variant_destroy(struct radv_device *device,
573 			    struct radv_shader_variant *variant)
574 {
575 	if (!p_atomic_dec_zero(&variant->ref_count))
576 		return;
577 
578 	mtx_lock(&device->shader_slab_mutex);
579 	list_del(&variant->slab_list);
580 	mtx_unlock(&device->shader_slab_mutex);
581 
582 	ralloc_free(variant->nir);
583 	free(variant->disasm_string);
584 	free(variant);
585 }
586 
587 const char *
radv_get_shader_name(struct radv_shader_variant * var,gl_shader_stage stage)588 radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage)
589 {
590 	switch (stage) {
591 	case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS";
592 	case MESA_SHADER_GEOMETRY: return "Geometry Shader";
593 	case MESA_SHADER_FRAGMENT: return "Pixel Shader";
594 	case MESA_SHADER_COMPUTE: return "Compute Shader";
595 	case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader";
596 	case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS";
597 	default:
598 		return "Unknown shader";
599 	};
600 }
601 
602 static uint32_t
get_total_sgprs(struct radv_device * device)603 get_total_sgprs(struct radv_device *device)
604 {
605 	if (device->physical_device->rad_info.chip_class >= VI)
606 		return 800;
607 	else
608 		return 512;
609 }
610 
611 static void
generate_shader_stats(struct radv_device * device,struct radv_shader_variant * variant,gl_shader_stage stage,struct _mesa_string_buffer * buf)612 generate_shader_stats(struct radv_device *device,
613 		      struct radv_shader_variant *variant,
614 		      gl_shader_stage stage,
615 		      struct _mesa_string_buffer *buf)
616 {
617 	unsigned lds_increment = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
618 	struct ac_shader_config *conf;
619 	unsigned max_simd_waves;
620 	unsigned lds_per_wave = 0;
621 
622 	switch (device->physical_device->rad_info.family) {
623 	/* These always have 8 waves: */
624 	case CHIP_POLARIS10:
625 	case CHIP_POLARIS11:
626 	case CHIP_POLARIS12:
627 		max_simd_waves = 8;
628 		break;
629 	default:
630 		max_simd_waves = 10;
631 	}
632 
633 	conf = &variant->config;
634 
635 	if (stage == MESA_SHADER_FRAGMENT) {
636 		lds_per_wave = conf->lds_size * lds_increment +
637 			       align(variant->info.fs.num_interp * 48,
638 				     lds_increment);
639 	}
640 
641 	if (conf->num_sgprs)
642 		max_simd_waves = MIN2(max_simd_waves, get_total_sgprs(device) / conf->num_sgprs);
643 
644 	if (conf->num_vgprs)
645 		max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
646 
647 	/* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
648 	 * that PS can use.
649 	 */
650 	if (lds_per_wave)
651 		max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
652 
653 	if (stage == MESA_SHADER_FRAGMENT) {
654 		_mesa_string_buffer_printf(buf, "*** SHADER CONFIG ***\n"
655 					   "SPI_PS_INPUT_ADDR = 0x%04x\n"
656 					   "SPI_PS_INPUT_ENA  = 0x%04x\n",
657 					   conf->spi_ps_input_addr, conf->spi_ps_input_ena);
658 	}
659 
660 	_mesa_string_buffer_printf(buf, "*** SHADER STATS ***\n"
661 				   "SGPRS: %d\n"
662 				   "VGPRS: %d\n"
663 				   "Spilled SGPRs: %d\n"
664 				   "Spilled VGPRs: %d\n"
665 				   "Code Size: %d bytes\n"
666 				   "LDS: %d blocks\n"
667 				   "Scratch: %d bytes per wave\n"
668 				   "Max Waves: %d\n"
669 				   "********************\n\n\n",
670 				   conf->num_sgprs, conf->num_vgprs,
671 				   conf->spilled_sgprs, conf->spilled_vgprs, variant->code_size,
672 				   conf->lds_size, conf->scratch_bytes_per_wave,
673 				   max_simd_waves);
674 }
675 
676 void
radv_shader_dump_stats(struct radv_device * device,struct radv_shader_variant * variant,gl_shader_stage stage,FILE * file)677 radv_shader_dump_stats(struct radv_device *device,
678 		       struct radv_shader_variant *variant,
679 		       gl_shader_stage stage,
680 		       FILE *file)
681 {
682 	struct _mesa_string_buffer *buf = _mesa_string_buffer_create(NULL, 256);
683 
684 	generate_shader_stats(device, variant, stage, buf);
685 
686 	fprintf(file, "\n%s:\n", radv_get_shader_name(variant, stage));
687 	fprintf(file, "%s", buf->buf);
688 
689 	_mesa_string_buffer_destroy(buf);
690 }
691 
692 VkResult
radv_GetShaderInfoAMD(VkDevice _device,VkPipeline _pipeline,VkShaderStageFlagBits shaderStage,VkShaderInfoTypeAMD infoType,size_t * pInfoSize,void * pInfo)693 radv_GetShaderInfoAMD(VkDevice _device,
694 		      VkPipeline _pipeline,
695 		      VkShaderStageFlagBits shaderStage,
696 		      VkShaderInfoTypeAMD infoType,
697 		      size_t* pInfoSize,
698 		      void* pInfo)
699 {
700 	RADV_FROM_HANDLE(radv_device, device, _device);
701 	RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
702 	gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage);
703 	struct radv_shader_variant *variant = pipeline->shaders[stage];
704 	struct _mesa_string_buffer *buf;
705 	VkResult result = VK_SUCCESS;
706 
707 	/* Spec doesn't indicate what to do if the stage is invalid, so just
708 	 * return no info for this. */
709 	if (!variant)
710 		return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
711 
712 	switch (infoType) {
713 	case VK_SHADER_INFO_TYPE_STATISTICS_AMD:
714 		if (!pInfo) {
715 			*pInfoSize = sizeof(VkShaderStatisticsInfoAMD);
716 		} else {
717 			unsigned lds_multiplier = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
718 			struct ac_shader_config *conf = &variant->config;
719 
720 			VkShaderStatisticsInfoAMD statistics = {};
721 			statistics.shaderStageMask = shaderStage;
722 			statistics.numPhysicalVgprs = 256;
723 			statistics.numPhysicalSgprs = get_total_sgprs(device);
724 			statistics.numAvailableSgprs = statistics.numPhysicalSgprs;
725 
726 			if (stage == MESA_SHADER_COMPUTE) {
727 				unsigned *local_size = variant->nir->info.cs.local_size;
728 				unsigned workgroup_size = local_size[0] * local_size[1] * local_size[2];
729 
730 				statistics.numAvailableVgprs = statistics.numPhysicalVgprs /
731 							       ceil(workgroup_size / statistics.numPhysicalVgprs);
732 
733 				statistics.computeWorkGroupSize[0] = local_size[0];
734 				statistics.computeWorkGroupSize[1] = local_size[1];
735 				statistics.computeWorkGroupSize[2] = local_size[2];
736 			} else {
737 				statistics.numAvailableVgprs = statistics.numPhysicalVgprs;
738 			}
739 
740 			statistics.resourceUsage.numUsedVgprs = conf->num_vgprs;
741 			statistics.resourceUsage.numUsedSgprs = conf->num_sgprs;
742 			statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768;
743 			statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier;
744 			statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave;
745 
746 			size_t size = *pInfoSize;
747 			*pInfoSize = sizeof(statistics);
748 
749 			memcpy(pInfo, &statistics, MIN2(size, *pInfoSize));
750 
751 			if (size < *pInfoSize)
752 				result = VK_INCOMPLETE;
753 		}
754 
755 		break;
756 	case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD:
757 		buf = _mesa_string_buffer_create(NULL, 1024);
758 
759 		_mesa_string_buffer_printf(buf, "%s:\n", radv_get_shader_name(variant, stage));
760 		_mesa_string_buffer_printf(buf, "%s\n\n", variant->disasm_string);
761 		generate_shader_stats(device, variant, stage, buf);
762 
763 		/* Need to include the null terminator. */
764 		size_t length = buf->length + 1;
765 
766 		if (!pInfo) {
767 			*pInfoSize = length;
768 		} else {
769 			size_t size = *pInfoSize;
770 			*pInfoSize = length;
771 
772 			memcpy(pInfo, buf->buf, MIN2(size, length));
773 
774 			if (size < length)
775 				result = VK_INCOMPLETE;
776 		}
777 
778 		_mesa_string_buffer_destroy(buf);
779 		break;
780 	default:
781 		/* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */
782 		result = VK_ERROR_FEATURE_NOT_PRESENT;
783 		break;
784 	}
785 
786 	return result;
787 }
788