1 /* 2 * Copyright (C) 2014 The Android Open Source Project 3 * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. Oracle designates this 9 * particular file as subject to the "Classpath" exception as provided 10 * by Oracle in the LICENSE file that accompanied this code. 11 * 12 * This code is distributed in the hope that it will be useful, but WITHOUT 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 * version 2 for more details (a copy is included in the LICENSE file that 16 * accompanied this code). 17 * 18 * You should have received a copy of the GNU General Public License version 19 * 2 along with this work; if not, write to the Free Software Foundation, 20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 21 * 22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 23 * or visit www.oracle.com if you need additional information or have any 24 * questions. 25 */ 26 27 package java.lang; 28 import dalvik.annotation.optimization.CriticalNative; 29 import java.util.Random; 30 31 import sun.misc.FloatConsts; 32 import sun.misc.DoubleConsts; 33 34 /** 35 * The class {@code Math} contains methods for performing basic 36 * numeric operations such as the elementary exponential, logarithm, 37 * square root, and trigonometric functions. 38 * 39 * <p>Unlike some of the numeric methods of class 40 * {@code StrictMath}, all implementations of the equivalent 41 * functions of class {@code Math} are not defined to return the 42 * bit-for-bit same results. This relaxation permits 43 * better-performing implementations where strict reproducibility is 44 * not required. 45 * 46 * <p>By default many of the {@code Math} methods simply call 47 * the equivalent method in {@code StrictMath} for their 48 * implementation. Code generators are encouraged to use 49 * platform-specific native libraries or microprocessor instructions, 50 * where available, to provide higher-performance implementations of 51 * {@code Math} methods. Such higher-performance 52 * implementations still must conform to the specification for 53 * {@code Math}. 54 * 55 * <p>The quality of implementation specifications concern two 56 * properties, accuracy of the returned result and monotonicity of the 57 * method. Accuracy of the floating-point {@code Math} methods is 58 * measured in terms of <i>ulps</i>, units in the last place. For a 59 * given floating-point format, an {@linkplain #ulp(double) ulp} of a 60 * specific real number value is the distance between the two 61 * floating-point values bracketing that numerical value. When 62 * discussing the accuracy of a method as a whole rather than at a 63 * specific argument, the number of ulps cited is for the worst-case 64 * error at any argument. If a method always has an error less than 65 * 0.5 ulps, the method always returns the floating-point number 66 * nearest the exact result; such a method is <i>correctly 67 * rounded</i>. A correctly rounded method is generally the best a 68 * floating-point approximation can be; however, it is impractical for 69 * many floating-point methods to be correctly rounded. Instead, for 70 * the {@code Math} class, a larger error bound of 1 or 2 ulps is 71 * allowed for certain methods. Informally, with a 1 ulp error bound, 72 * when the exact result is a representable number, the exact result 73 * should be returned as the computed result; otherwise, either of the 74 * two floating-point values which bracket the exact result may be 75 * returned. For exact results large in magnitude, one of the 76 * endpoints of the bracket may be infinite. Besides accuracy at 77 * individual arguments, maintaining proper relations between the 78 * method at different arguments is also important. Therefore, most 79 * methods with more than 0.5 ulp errors are required to be 80 * <i>semi-monotonic</i>: whenever the mathematical function is 81 * non-decreasing, so is the floating-point approximation, likewise, 82 * whenever the mathematical function is non-increasing, so is the 83 * floating-point approximation. Not all approximations that have 1 84 * ulp accuracy will automatically meet the monotonicity requirements. 85 * 86 * <p> 87 * The platform uses signed two's complement integer arithmetic with 88 * int and long primitive types. The developer should choose 89 * the primitive type to ensure that arithmetic operations consistently 90 * produce correct results, which in some cases means the operations 91 * will not overflow the range of values of the computation. 92 * The best practice is to choose the primitive type and algorithm to avoid 93 * overflow. In cases where the size is {@code int} or {@code long} and 94 * overflow errors need to be detected, the methods {@code addExact}, 95 * {@code subtractExact}, {@code multiplyExact}, and {@code toIntExact} 96 * throw an {@code ArithmeticException} when the results overflow. 97 * For other arithmetic operations such as divide, absolute value, 98 * increment, decrement, and negation overflow occurs only with 99 * a specific minimum or maximum value and should be checked against 100 * the minimum or maximum as appropriate. 101 * 102 * @author unascribed 103 * @author Joseph D. Darcy 104 * @since JDK1.0 105 */ 106 107 public final class Math { 108 109 // Android-changed: Numerous methods in this class are re-implemented in native for performance. 110 // Those methods are also annotated @CriticalNative. 111 112 /** 113 * Don't let anyone instantiate this class. 114 */ Math()115 private Math() {} 116 117 /** 118 * The {@code double} value that is closer than any other to 119 * <i>e</i>, the base of the natural logarithms. 120 */ 121 public static final double E = 2.7182818284590452354; 122 123 /** 124 * The {@code double} value that is closer than any other to 125 * <i>pi</i>, the ratio of the circumference of a circle to its 126 * diameter. 127 */ 128 public static final double PI = 3.14159265358979323846; 129 130 /** 131 * Returns the trigonometric sine of an angle. Special cases: 132 * <ul><li>If the argument is NaN or an infinity, then the 133 * result is NaN. 134 * <li>If the argument is zero, then the result is a zero with the 135 * same sign as the argument.</ul> 136 * 137 * <p>The computed result must be within 1 ulp of the exact result. 138 * Results must be semi-monotonic. 139 * 140 * @param a an angle, in radians. 141 * @return the sine of the argument. 142 */ 143 @CriticalNative sin(double a)144 public static native double sin(double a); 145 146 /** 147 * Returns the trigonometric cosine of an angle. Special cases: 148 * <ul><li>If the argument is NaN or an infinity, then the 149 * result is NaN.</ul> 150 * 151 * <p>The computed result must be within 1 ulp of the exact result. 152 * Results must be semi-monotonic. 153 * 154 * @param a an angle, in radians. 155 * @return the cosine of the argument. 156 */ 157 @CriticalNative cos(double a)158 public static native double cos(double a); 159 160 /** 161 * Returns the trigonometric tangent of an angle. Special cases: 162 * <ul><li>If the argument is NaN or an infinity, then the result 163 * is NaN. 164 * <li>If the argument is zero, then the result is a zero with the 165 * same sign as the argument.</ul> 166 * 167 * <p>The computed result must be within 1 ulp of the exact result. 168 * Results must be semi-monotonic. 169 * 170 * @param a an angle, in radians. 171 * @return the tangent of the argument. 172 */ 173 @CriticalNative tan(double a)174 public static native double tan(double a); 175 176 /** 177 * Returns the arc sine of a value; the returned angle is in the 178 * range -<i>pi</i>/2 through <i>pi</i>/2. Special cases: 179 * <ul><li>If the argument is NaN or its absolute value is greater 180 * than 1, then the result is NaN. 181 * <li>If the argument is zero, then the result is a zero with the 182 * same sign as the argument.</ul> 183 * 184 * <p>The computed result must be within 1 ulp of the exact result. 185 * Results must be semi-monotonic. 186 * 187 * @param a the value whose arc sine is to be returned. 188 * @return the arc sine of the argument. 189 */ 190 @CriticalNative asin(double a)191 public static native double asin(double a); 192 193 /** 194 * Returns the arc cosine of a value; the returned angle is in the 195 * range 0.0 through <i>pi</i>. Special case: 196 * <ul><li>If the argument is NaN or its absolute value is greater 197 * than 1, then the result is NaN.</ul> 198 * 199 * <p>The computed result must be within 1 ulp of the exact result. 200 * Results must be semi-monotonic. 201 * 202 * @param a the value whose arc cosine is to be returned. 203 * @return the arc cosine of the argument. 204 */ 205 @CriticalNative acos(double a)206 public static native double acos(double a); 207 208 /** 209 * Returns the arc tangent of a value; the returned angle is in the 210 * range -<i>pi</i>/2 through <i>pi</i>/2. Special cases: 211 * <ul><li>If the argument is NaN, then the result is NaN. 212 * <li>If the argument is zero, then the result is a zero with the 213 * same sign as the argument.</ul> 214 * 215 * <p>The computed result must be within 1 ulp of the exact result. 216 * Results must be semi-monotonic. 217 * 218 * @param a the value whose arc tangent is to be returned. 219 * @return the arc tangent of the argument. 220 */ 221 @CriticalNative atan(double a)222 public static native double atan(double a); 223 224 /** 225 * Converts an angle measured in degrees to an approximately 226 * equivalent angle measured in radians. The conversion from 227 * degrees to radians is generally inexact. 228 * 229 * @param angdeg an angle, in degrees 230 * @return the measurement of the angle {@code angdeg} 231 * in radians. 232 * @since 1.2 233 */ toRadians(double angdeg)234 public static double toRadians(double angdeg) { 235 return angdeg / 180.0 * PI; 236 } 237 238 /** 239 * Converts an angle measured in radians to an approximately 240 * equivalent angle measured in degrees. The conversion from 241 * radians to degrees is generally inexact; users should 242 * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly 243 * equal {@code 0.0}. 244 * 245 * @param angrad an angle, in radians 246 * @return the measurement of the angle {@code angrad} 247 * in degrees. 248 * @since 1.2 249 */ toDegrees(double angrad)250 public static double toDegrees(double angrad) { 251 return angrad * 180.0 / PI; 252 } 253 254 /** 255 * Returns Euler's number <i>e</i> raised to the power of a 256 * {@code double} value. Special cases: 257 * <ul><li>If the argument is NaN, the result is NaN. 258 * <li>If the argument is positive infinity, then the result is 259 * positive infinity. 260 * <li>If the argument is negative infinity, then the result is 261 * positive zero.</ul> 262 * 263 * <p>The computed result must be within 1 ulp of the exact result. 264 * Results must be semi-monotonic. 265 * 266 * @param a the exponent to raise <i>e</i> to. 267 * @return the value <i>e</i><sup>{@code a}</sup>, 268 * where <i>e</i> is the base of the natural logarithms. 269 */ 270 @CriticalNative exp(double a)271 public static native double exp(double a); 272 273 /** 274 * Returns the natural logarithm (base <i>e</i>) of a {@code double} 275 * value. Special cases: 276 * <ul><li>If the argument is NaN or less than zero, then the result 277 * is NaN. 278 * <li>If the argument is positive infinity, then the result is 279 * positive infinity. 280 * <li>If the argument is positive zero or negative zero, then the 281 * result is negative infinity.</ul> 282 * 283 * <p>The computed result must be within 1 ulp of the exact result. 284 * Results must be semi-monotonic. 285 * 286 * @param a a value 287 * @return the value ln {@code a}, the natural logarithm of 288 * {@code a}. 289 */ 290 @CriticalNative log(double a)291 public static native double log(double a); 292 293 /** 294 * Returns the base 10 logarithm of a {@code double} value. 295 * Special cases: 296 * 297 * <ul><li>If the argument is NaN or less than zero, then the result 298 * is NaN. 299 * <li>If the argument is positive infinity, then the result is 300 * positive infinity. 301 * <li>If the argument is positive zero or negative zero, then the 302 * result is negative infinity. 303 * <li> If the argument is equal to 10<sup><i>n</i></sup> for 304 * integer <i>n</i>, then the result is <i>n</i>. 305 * </ul> 306 * 307 * <p>The computed result must be within 1 ulp of the exact result. 308 * Results must be semi-monotonic. 309 * 310 * @param a a value 311 * @return the base 10 logarithm of {@code a}. 312 * @since 1.5 313 */ 314 @CriticalNative log10(double a)315 public static native double log10(double a); 316 317 /** 318 * Returns the correctly rounded positive square root of a 319 * {@code double} value. 320 * Special cases: 321 * <ul><li>If the argument is NaN or less than zero, then the result 322 * is NaN. 323 * <li>If the argument is positive infinity, then the result is positive 324 * infinity. 325 * <li>If the argument is positive zero or negative zero, then the 326 * result is the same as the argument.</ul> 327 * Otherwise, the result is the {@code double} value closest to 328 * the true mathematical square root of the argument value. 329 * 330 * @param a a value. 331 * @return the positive square root of {@code a}. 332 * If the argument is NaN or less than zero, the result is NaN. 333 */ 334 @CriticalNative sqrt(double a)335 public static native double sqrt(double a); 336 337 338 /** 339 * Returns the cube root of a {@code double} value. For 340 * positive finite {@code x}, {@code cbrt(-x) == 341 * -cbrt(x)}; that is, the cube root of a negative value is 342 * the negative of the cube root of that value's magnitude. 343 * 344 * Special cases: 345 * 346 * <ul> 347 * 348 * <li>If the argument is NaN, then the result is NaN. 349 * 350 * <li>If the argument is infinite, then the result is an infinity 351 * with the same sign as the argument. 352 * 353 * <li>If the argument is zero, then the result is a zero with the 354 * same sign as the argument. 355 * 356 * </ul> 357 * 358 * <p>The computed result must be within 1 ulp of the exact result. 359 * 360 * @param a a value. 361 * @return the cube root of {@code a}. 362 * @since 1.5 363 */ 364 @CriticalNative cbrt(double a)365 public static native double cbrt(double a); 366 367 /** 368 * Computes the remainder operation on two arguments as prescribed 369 * by the IEEE 754 standard. 370 * The remainder value is mathematically equal to 371 * <code>f1 - f2</code> × <i>n</i>, 372 * where <i>n</i> is the mathematical integer closest to the exact 373 * mathematical value of the quotient {@code f1/f2}, and if two 374 * mathematical integers are equally close to {@code f1/f2}, 375 * then <i>n</i> is the integer that is even. If the remainder is 376 * zero, its sign is the same as the sign of the first argument. 377 * Special cases: 378 * <ul><li>If either argument is NaN, or the first argument is infinite, 379 * or the second argument is positive zero or negative zero, then the 380 * result is NaN. 381 * <li>If the first argument is finite and the second argument is 382 * infinite, then the result is the same as the first argument.</ul> 383 * 384 * @param f1 the dividend. 385 * @param f2 the divisor. 386 * @return the remainder when {@code f1} is divided by 387 * {@code f2}. 388 */ 389 @CriticalNative IEEEremainder(double f1, double f2)390 public static native double IEEEremainder(double f1, double f2); 391 392 /** 393 * Returns the smallest (closest to negative infinity) 394 * {@code double} value that is greater than or equal to the 395 * argument and is equal to a mathematical integer. Special cases: 396 * <ul><li>If the argument value is already equal to a 397 * mathematical integer, then the result is the same as the 398 * argument. <li>If the argument is NaN or an infinity or 399 * positive zero or negative zero, then the result is the same as 400 * the argument. <li>If the argument value is less than zero but 401 * greater than -1.0, then the result is negative zero.</ul> Note 402 * that the value of {@code Math.ceil(x)} is exactly the 403 * value of {@code -Math.floor(-x)}. 404 * 405 * 406 * @param a a value. 407 * @return the smallest (closest to negative infinity) 408 * floating-point value that is greater than or equal to 409 * the argument and is equal to a mathematical integer. 410 */ 411 @CriticalNative ceil(double a)412 public static native double ceil(double a); 413 414 /** 415 * Returns the largest (closest to positive infinity) 416 * {@code double} value that is less than or equal to the 417 * argument and is equal to a mathematical integer. Special cases: 418 * <ul><li>If the argument value is already equal to a 419 * mathematical integer, then the result is the same as the 420 * argument. <li>If the argument is NaN or an infinity or 421 * positive zero or negative zero, then the result is the same as 422 * the argument.</ul> 423 * 424 * @param a a value. 425 * @return the largest (closest to positive infinity) 426 * floating-point value that less than or equal to the argument 427 * and is equal to a mathematical integer. 428 */ 429 @CriticalNative floor(double a)430 public static native double floor(double a); 431 432 /** 433 * Returns the {@code double} value that is closest in value 434 * to the argument and is equal to a mathematical integer. If two 435 * {@code double} values that are mathematical integers are 436 * equally close, the result is the integer value that is 437 * even. Special cases: 438 * <ul><li>If the argument value is already equal to a mathematical 439 * integer, then the result is the same as the argument. 440 * <li>If the argument is NaN or an infinity or positive zero or negative 441 * zero, then the result is the same as the argument.</ul> 442 * 443 * @param a a {@code double} value. 444 * @return the closest floating-point value to {@code a} that is 445 * equal to a mathematical integer. 446 */ 447 @CriticalNative rint(double a)448 public static native double rint(double a); 449 450 /** 451 * Returns the angle <i>theta</i> from the conversion of rectangular 452 * coordinates ({@code x}, {@code y}) to polar 453 * coordinates (r, <i>theta</i>). 454 * This method computes the phase <i>theta</i> by computing an arc tangent 455 * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special 456 * cases: 457 * <ul><li>If either argument is NaN, then the result is NaN. 458 * <li>If the first argument is positive zero and the second argument 459 * is positive, or the first argument is positive and finite and the 460 * second argument is positive infinity, then the result is positive 461 * zero. 462 * <li>If the first argument is negative zero and the second argument 463 * is positive, or the first argument is negative and finite and the 464 * second argument is positive infinity, then the result is negative zero. 465 * <li>If the first argument is positive zero and the second argument 466 * is negative, or the first argument is positive and finite and the 467 * second argument is negative infinity, then the result is the 468 * {@code double} value closest to <i>pi</i>. 469 * <li>If the first argument is negative zero and the second argument 470 * is negative, or the first argument is negative and finite and the 471 * second argument is negative infinity, then the result is the 472 * {@code double} value closest to -<i>pi</i>. 473 * <li>If the first argument is positive and the second argument is 474 * positive zero or negative zero, or the first argument is positive 475 * infinity and the second argument is finite, then the result is the 476 * {@code double} value closest to <i>pi</i>/2. 477 * <li>If the first argument is negative and the second argument is 478 * positive zero or negative zero, or the first argument is negative 479 * infinity and the second argument is finite, then the result is the 480 * {@code double} value closest to -<i>pi</i>/2. 481 * <li>If both arguments are positive infinity, then the result is the 482 * {@code double} value closest to <i>pi</i>/4. 483 * <li>If the first argument is positive infinity and the second argument 484 * is negative infinity, then the result is the {@code double} 485 * value closest to 3*<i>pi</i>/4. 486 * <li>If the first argument is negative infinity and the second argument 487 * is positive infinity, then the result is the {@code double} value 488 * closest to -<i>pi</i>/4. 489 * <li>If both arguments are negative infinity, then the result is the 490 * {@code double} value closest to -3*<i>pi</i>/4.</ul> 491 * 492 * <p>The computed result must be within 2 ulps of the exact result. 493 * Results must be semi-monotonic. 494 * 495 * @param y the ordinate coordinate 496 * @param x the abscissa coordinate 497 * @return the <i>theta</i> component of the point 498 * (<i>r</i>, <i>theta</i>) 499 * in polar coordinates that corresponds to the point 500 * (<i>x</i>, <i>y</i>) in Cartesian coordinates. 501 */ 502 @CriticalNative atan2(double y, double x)503 public static native double atan2(double y, double x); 504 505 /** 506 * Returns the value of the first argument raised to the power of the 507 * second argument. Special cases: 508 * 509 * <ul><li>If the second argument is positive or negative zero, then the 510 * result is 1.0. 511 * <li>If the second argument is 1.0, then the result is the same as the 512 * first argument. 513 * <li>If the second argument is NaN, then the result is NaN. 514 * <li>If the first argument is NaN and the second argument is nonzero, 515 * then the result is NaN. 516 * 517 * <li>If 518 * <ul> 519 * <li>the absolute value of the first argument is greater than 1 520 * and the second argument is positive infinity, or 521 * <li>the absolute value of the first argument is less than 1 and 522 * the second argument is negative infinity, 523 * </ul> 524 * then the result is positive infinity. 525 * 526 * <li>If 527 * <ul> 528 * <li>the absolute value of the first argument is greater than 1 and 529 * the second argument is negative infinity, or 530 * <li>the absolute value of the 531 * first argument is less than 1 and the second argument is positive 532 * infinity, 533 * </ul> 534 * then the result is positive zero. 535 * 536 * <li>If the absolute value of the first argument equals 1 and the 537 * second argument is infinite, then the result is NaN. 538 * 539 * <li>If 540 * <ul> 541 * <li>the first argument is positive zero and the second argument 542 * is greater than zero, or 543 * <li>the first argument is positive infinity and the second 544 * argument is less than zero, 545 * </ul> 546 * then the result is positive zero. 547 * 548 * <li>If 549 * <ul> 550 * <li>the first argument is positive zero and the second argument 551 * is less than zero, or 552 * <li>the first argument is positive infinity and the second 553 * argument is greater than zero, 554 * </ul> 555 * then the result is positive infinity. 556 * 557 * <li>If 558 * <ul> 559 * <li>the first argument is negative zero and the second argument 560 * is greater than zero but not a finite odd integer, or 561 * <li>the first argument is negative infinity and the second 562 * argument is less than zero but not a finite odd integer, 563 * </ul> 564 * then the result is positive zero. 565 * 566 * <li>If 567 * <ul> 568 * <li>the first argument is negative zero and the second argument 569 * is a positive finite odd integer, or 570 * <li>the first argument is negative infinity and the second 571 * argument is a negative finite odd integer, 572 * </ul> 573 * then the result is negative zero. 574 * 575 * <li>If 576 * <ul> 577 * <li>the first argument is negative zero and the second argument 578 * is less than zero but not a finite odd integer, or 579 * <li>the first argument is negative infinity and the second 580 * argument is greater than zero but not a finite odd integer, 581 * </ul> 582 * then the result is positive infinity. 583 * 584 * <li>If 585 * <ul> 586 * <li>the first argument is negative zero and the second argument 587 * is a negative finite odd integer, or 588 * <li>the first argument is negative infinity and the second 589 * argument is a positive finite odd integer, 590 * </ul> 591 * then the result is negative infinity. 592 * 593 * <li>If the first argument is finite and less than zero 594 * <ul> 595 * <li> if the second argument is a finite even integer, the 596 * result is equal to the result of raising the absolute value of 597 * the first argument to the power of the second argument 598 * 599 * <li>if the second argument is a finite odd integer, the result 600 * is equal to the negative of the result of raising the absolute 601 * value of the first argument to the power of the second 602 * argument 603 * 604 * <li>if the second argument is finite and not an integer, then 605 * the result is NaN. 606 * </ul> 607 * 608 * <li>If both arguments are integers, then the result is exactly equal 609 * to the mathematical result of raising the first argument to the power 610 * of the second argument if that result can in fact be represented 611 * exactly as a {@code double} value.</ul> 612 * 613 * <p>(In the foregoing descriptions, a floating-point value is 614 * considered to be an integer if and only if it is finite and a 615 * fixed point of the method {@link #ceil ceil} or, 616 * equivalently, a fixed point of the method {@link #floor 617 * floor}. A value is a fixed point of a one-argument 618 * method if and only if the result of applying the method to the 619 * value is equal to the value.) 620 * 621 * <p>The computed result must be within 1 ulp of the exact result. 622 * Results must be semi-monotonic. 623 * 624 * @param a the base. 625 * @param b the exponent. 626 * @return the value {@code a}<sup>{@code b}</sup>. 627 */ 628 @CriticalNative pow(double a, double b)629 public static native double pow(double a, double b); 630 631 /** 632 * Returns the closest {@code int} to the argument, with ties 633 * rounding to positive infinity. 634 * 635 * <p> 636 * Special cases: 637 * <ul><li>If the argument is NaN, the result is 0. 638 * <li>If the argument is negative infinity or any value less than or 639 * equal to the value of {@code Integer.MIN_VALUE}, the result is 640 * equal to the value of {@code Integer.MIN_VALUE}. 641 * <li>If the argument is positive infinity or any value greater than or 642 * equal to the value of {@code Integer.MAX_VALUE}, the result is 643 * equal to the value of {@code Integer.MAX_VALUE}.</ul> 644 * 645 * @param a a floating-point value to be rounded to an integer. 646 * @return the value of the argument rounded to the nearest 647 * {@code int} value. 648 * @see java.lang.Integer#MAX_VALUE 649 * @see java.lang.Integer#MIN_VALUE 650 */ round(float a)651 public static int round(float a) { 652 int intBits = Float.floatToRawIntBits(a); 653 int biasedExp = (intBits & FloatConsts.EXP_BIT_MASK) 654 >> (FloatConsts.SIGNIFICAND_WIDTH - 1); 655 int shift = (FloatConsts.SIGNIFICAND_WIDTH - 2 656 + FloatConsts.EXP_BIAS) - biasedExp; 657 if ((shift & -32) == 0) { // shift >= 0 && shift < 32 658 // a is a finite number such that pow(2,-32) <= ulp(a) < 1 659 int r = ((intBits & FloatConsts.SIGNIF_BIT_MASK) 660 | (FloatConsts.SIGNIF_BIT_MASK + 1)); 661 if (intBits < 0) { 662 r = -r; 663 } 664 // In the comments below each Java expression evaluates to the value 665 // the corresponding mathematical expression: 666 // (r) evaluates to a / ulp(a) 667 // (r >> shift) evaluates to floor(a * 2) 668 // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2) 669 // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2) 670 return ((r >> shift) + 1) >> 1; 671 } else { 672 // a is either 673 // - a finite number with abs(a) < exp(2,FloatConsts.SIGNIFICAND_WIDTH-32) < 1/2 674 // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer 675 // - an infinity or NaN 676 return (int) a; 677 } 678 } 679 680 /** 681 * Returns the closest {@code long} to the argument, with ties 682 * rounding to positive infinity. 683 * 684 * <p>Special cases: 685 * <ul><li>If the argument is NaN, the result is 0. 686 * <li>If the argument is negative infinity or any value less than or 687 * equal to the value of {@code Long.MIN_VALUE}, the result is 688 * equal to the value of {@code Long.MIN_VALUE}. 689 * <li>If the argument is positive infinity or any value greater than or 690 * equal to the value of {@code Long.MAX_VALUE}, the result is 691 * equal to the value of {@code Long.MAX_VALUE}.</ul> 692 * 693 * @param a a floating-point value to be rounded to a 694 * {@code long}. 695 * @return the value of the argument rounded to the nearest 696 * {@code long} value. 697 * @see java.lang.Long#MAX_VALUE 698 * @see java.lang.Long#MIN_VALUE 699 */ round(double a)700 public static long round(double a) { 701 long longBits = Double.doubleToRawLongBits(a); 702 long biasedExp = (longBits & DoubleConsts.EXP_BIT_MASK) 703 >> (DoubleConsts.SIGNIFICAND_WIDTH - 1); 704 long shift = (DoubleConsts.SIGNIFICAND_WIDTH - 2 705 + DoubleConsts.EXP_BIAS) - biasedExp; 706 if ((shift & -64) == 0) { // shift >= 0 && shift < 64 707 // a is a finite number such that pow(2,-64) <= ulp(a) < 1 708 long r = ((longBits & DoubleConsts.SIGNIF_BIT_MASK) 709 | (DoubleConsts.SIGNIF_BIT_MASK + 1)); 710 if (longBits < 0) { 711 r = -r; 712 } 713 // In the comments below each Java expression evaluates to the value 714 // the corresponding mathematical expression: 715 // (r) evaluates to a / ulp(a) 716 // (r >> shift) evaluates to floor(a * 2) 717 // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2) 718 // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2) 719 return ((r >> shift) + 1) >> 1; 720 } else { 721 // a is either 722 // - a finite number with abs(a) < exp(2,DoubleConsts.SIGNIFICAND_WIDTH-64) < 1/2 723 // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer 724 // - an infinity or NaN 725 return (long) a; 726 } 727 } 728 729 private static final class RandomNumberGeneratorHolder { 730 static final Random randomNumberGenerator = new Random(); 731 } 732 733 /** 734 * Returns a {@code double} value with a positive sign, greater 735 * than or equal to {@code 0.0} and less than {@code 1.0}. 736 * Returned values are chosen pseudorandomly with (approximately) 737 * uniform distribution from that range. 738 * 739 * <p>When this method is first called, it creates a single new 740 * pseudorandom-number generator, exactly as if by the expression 741 * 742 * <blockquote>{@code new java.util.Random()}</blockquote> 743 * 744 * This new pseudorandom-number generator is used thereafter for 745 * all calls to this method and is used nowhere else. 746 * 747 * <p>This method is properly synchronized to allow correct use by 748 * more than one thread. However, if many threads need to generate 749 * pseudorandom numbers at a great rate, it may reduce contention 750 * for each thread to have its own pseudorandom-number generator. 751 * 752 * @return a pseudorandom {@code double} greater than or equal 753 * to {@code 0.0} and less than {@code 1.0}. 754 * @see Random#nextDouble() 755 */ random()756 public static double random() { 757 return RandomNumberGeneratorHolder.randomNumberGenerator.nextDouble(); 758 } 759 760 // Android-added: setRandomSeedInternal(long), called after zygote forks. 761 // This allows different processes to have different random seeds. 762 /** 763 * Set the seed for the pseudo random generator used by {@link #random()} 764 * and {@link #randomIntInternal()}. 765 * 766 * @hide for internal use only. 767 */ setRandomSeedInternal(long seed)768 public static void setRandomSeedInternal(long seed) { 769 RandomNumberGeneratorHolder.randomNumberGenerator.setSeed(seed); 770 } 771 772 // Android-added: randomIntInternal() method: like random() but for int. 773 /** 774 * @hide for internal use only. 775 */ randomIntInternal()776 public static int randomIntInternal() { 777 return RandomNumberGeneratorHolder.randomNumberGenerator.nextInt(); 778 } 779 780 // Android-added: randomLongInternal() method: like random() but for long. 781 /** 782 * @hide for internal use only. 783 */ randomLongInternal()784 public static long randomLongInternal() { 785 return RandomNumberGeneratorHolder.randomNumberGenerator.nextLong(); 786 } 787 788 /** 789 * Returns the sum of its arguments, 790 * throwing an exception if the result overflows an {@code int}. 791 * 792 * @param x the first value 793 * @param y the second value 794 * @return the result 795 * @throws ArithmeticException if the result overflows an int 796 * @since 1.8 797 */ addExact(int x, int y)798 public static int addExact(int x, int y) { 799 int r = x + y; 800 // HD 2-12 Overflow iff both arguments have the opposite sign of the result 801 if (((x ^ r) & (y ^ r)) < 0) { 802 throw new ArithmeticException("integer overflow"); 803 } 804 return r; 805 } 806 807 /** 808 * Returns the sum of its arguments, 809 * throwing an exception if the result overflows a {@code long}. 810 * 811 * @param x the first value 812 * @param y the second value 813 * @return the result 814 * @throws ArithmeticException if the result overflows a long 815 * @since 1.8 816 */ addExact(long x, long y)817 public static long addExact(long x, long y) { 818 long r = x + y; 819 // HD 2-12 Overflow iff both arguments have the opposite sign of the result 820 if (((x ^ r) & (y ^ r)) < 0) { 821 throw new ArithmeticException("long overflow"); 822 } 823 return r; 824 } 825 826 /** 827 * Returns the difference of the arguments, 828 * throwing an exception if the result overflows an {@code int}. 829 * 830 * @param x the first value 831 * @param y the second value to subtract from the first 832 * @return the result 833 * @throws ArithmeticException if the result overflows an int 834 * @since 1.8 835 */ subtractExact(int x, int y)836 public static int subtractExact(int x, int y) { 837 int r = x - y; 838 // HD 2-12 Overflow iff the arguments have different signs and 839 // the sign of the result is different than the sign of x 840 if (((x ^ y) & (x ^ r)) < 0) { 841 throw new ArithmeticException("integer overflow"); 842 } 843 return r; 844 } 845 846 /** 847 * Returns the difference of the arguments, 848 * throwing an exception if the result overflows a {@code long}. 849 * 850 * @param x the first value 851 * @param y the second value to subtract from the first 852 * @return the result 853 * @throws ArithmeticException if the result overflows a long 854 * @since 1.8 855 */ subtractExact(long x, long y)856 public static long subtractExact(long x, long y) { 857 long r = x - y; 858 // HD 2-12 Overflow iff the arguments have different signs and 859 // the sign of the result is different than the sign of x 860 if (((x ^ y) & (x ^ r)) < 0) { 861 throw new ArithmeticException("long overflow"); 862 } 863 return r; 864 } 865 866 /** 867 * Returns the product of the arguments, 868 * throwing an exception if the result overflows an {@code int}. 869 * 870 * @param x the first value 871 * @param y the second value 872 * @return the result 873 * @throws ArithmeticException if the result overflows an int 874 * @since 1.8 875 */ multiplyExact(int x, int y)876 public static int multiplyExact(int x, int y) { 877 long r = (long)x * (long)y; 878 if ((int)r != r) { 879 throw new ArithmeticException("integer overflow"); 880 } 881 return (int)r; 882 } 883 884 /** 885 * Returns the product of the arguments, 886 * throwing an exception if the result overflows a {@code long}. 887 * 888 * @param x the first value 889 * @param y the second value 890 * @return the result 891 * @throws ArithmeticException if the result overflows a long 892 * @since 1.8 893 */ multiplyExact(long x, long y)894 public static long multiplyExact(long x, long y) { 895 long r = x * y; 896 long ax = Math.abs(x); 897 long ay = Math.abs(y); 898 if (((ax | ay) >>> 31 != 0)) { 899 // Some bits greater than 2^31 that might cause overflow 900 // Check the result using the divide operator 901 // and check for the special case of Long.MIN_VALUE * -1 902 if (((y != 0) && (r / y != x)) || 903 (x == Long.MIN_VALUE && y == -1)) { 904 throw new ArithmeticException("long overflow"); 905 } 906 } 907 return r; 908 } 909 910 /** 911 * Returns the argument incremented by one, throwing an exception if the 912 * result overflows an {@code int}. 913 * 914 * @param a the value to increment 915 * @return the result 916 * @throws ArithmeticException if the result overflows an int 917 * @since 1.8 918 */ incrementExact(int a)919 public static int incrementExact(int a) { 920 if (a == Integer.MAX_VALUE) { 921 throw new ArithmeticException("integer overflow"); 922 } 923 924 return a + 1; 925 } 926 927 /** 928 * Returns the argument incremented by one, throwing an exception if the 929 * result overflows a {@code long}. 930 * 931 * @param a the value to increment 932 * @return the result 933 * @throws ArithmeticException if the result overflows a long 934 * @since 1.8 935 */ incrementExact(long a)936 public static long incrementExact(long a) { 937 if (a == Long.MAX_VALUE) { 938 throw new ArithmeticException("long overflow"); 939 } 940 941 return a + 1L; 942 } 943 944 /** 945 * Returns the argument decremented by one, throwing an exception if the 946 * result overflows an {@code int}. 947 * 948 * @param a the value to decrement 949 * @return the result 950 * @throws ArithmeticException if the result overflows an int 951 * @since 1.8 952 */ decrementExact(int a)953 public static int decrementExact(int a) { 954 if (a == Integer.MIN_VALUE) { 955 throw new ArithmeticException("integer overflow"); 956 } 957 958 return a - 1; 959 } 960 961 /** 962 * Returns the argument decremented by one, throwing an exception if the 963 * result overflows a {@code long}. 964 * 965 * @param a the value to decrement 966 * @return the result 967 * @throws ArithmeticException if the result overflows a long 968 * @since 1.8 969 */ decrementExact(long a)970 public static long decrementExact(long a) { 971 if (a == Long.MIN_VALUE) { 972 throw new ArithmeticException("long overflow"); 973 } 974 975 return a - 1L; 976 } 977 978 /** 979 * Returns the negation of the argument, throwing an exception if the 980 * result overflows an {@code int}. 981 * 982 * @param a the value to negate 983 * @return the result 984 * @throws ArithmeticException if the result overflows an int 985 * @since 1.8 986 */ negateExact(int a)987 public static int negateExact(int a) { 988 if (a == Integer.MIN_VALUE) { 989 throw new ArithmeticException("integer overflow"); 990 } 991 992 return -a; 993 } 994 995 /** 996 * Returns the negation of the argument, throwing an exception if the 997 * result overflows a {@code long}. 998 * 999 * @param a the value to negate 1000 * @return the result 1001 * @throws ArithmeticException if the result overflows a long 1002 * @since 1.8 1003 */ negateExact(long a)1004 public static long negateExact(long a) { 1005 if (a == Long.MIN_VALUE) { 1006 throw new ArithmeticException("long overflow"); 1007 } 1008 1009 return -a; 1010 } 1011 1012 /** 1013 * Returns the value of the {@code long} argument; 1014 * throwing an exception if the value overflows an {@code int}. 1015 * 1016 * @param value the long value 1017 * @return the argument as an int 1018 * @throws ArithmeticException if the {@code argument} overflows an int 1019 * @since 1.8 1020 */ toIntExact(long value)1021 public static int toIntExact(long value) { 1022 if ((int)value != value) { 1023 throw new ArithmeticException("integer overflow"); 1024 } 1025 return (int)value; 1026 } 1027 1028 /** 1029 * Returns the largest (closest to positive infinity) 1030 * {@code int} value that is less than or equal to the algebraic quotient. 1031 * There is one special case, if the dividend is the 1032 * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1}, 1033 * then integer overflow occurs and 1034 * the result is equal to the {@code Integer.MIN_VALUE}. 1035 * <p> 1036 * Normal integer division operates under the round to zero rounding mode 1037 * (truncation). This operation instead acts under the round toward 1038 * negative infinity (floor) rounding mode. 1039 * The floor rounding mode gives different results than truncation 1040 * when the exact result is negative. 1041 * <ul> 1042 * <li>If the signs of the arguments are the same, the results of 1043 * {@code floorDiv} and the {@code /} operator are the same. <br> 1044 * For example, {@code floorDiv(4, 3) == 1} and {@code (4 / 3) == 1}.</li> 1045 * <li>If the signs of the arguments are different, the quotient is negative and 1046 * {@code floorDiv} returns the integer less than or equal to the quotient 1047 * and the {@code /} operator returns the integer closest to zero.<br> 1048 * For example, {@code floorDiv(-4, 3) == -2}, 1049 * whereas {@code (-4 / 3) == -1}. 1050 * </li> 1051 * </ul> 1052 * <p> 1053 * 1054 * @param x the dividend 1055 * @param y the divisor 1056 * @return the largest (closest to positive infinity) 1057 * {@code int} value that is less than or equal to the algebraic quotient. 1058 * @throws ArithmeticException if the divisor {@code y} is zero 1059 * @see #floorMod(int, int) 1060 * @see #floor(double) 1061 * @since 1.8 1062 */ floorDiv(int x, int y)1063 public static int floorDiv(int x, int y) { 1064 int r = x / y; 1065 // if the signs are different and modulo not zero, round down 1066 if ((x ^ y) < 0 && (r * y != x)) { 1067 r--; 1068 } 1069 return r; 1070 } 1071 1072 /** 1073 * Returns the largest (closest to positive infinity) 1074 * {@code long} value that is less than or equal to the algebraic quotient. 1075 * There is one special case, if the dividend is the 1076 * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1}, 1077 * then integer overflow occurs and 1078 * the result is equal to the {@code Long.MIN_VALUE}. 1079 * <p> 1080 * Normal integer division operates under the round to zero rounding mode 1081 * (truncation). This operation instead acts under the round toward 1082 * negative infinity (floor) rounding mode. 1083 * The floor rounding mode gives different results than truncation 1084 * when the exact result is negative. 1085 * <p> 1086 * For examples, see {@link #floorDiv(int, int)}. 1087 * 1088 * @param x the dividend 1089 * @param y the divisor 1090 * @return the largest (closest to positive infinity) 1091 * {@code long} value that is less than or equal to the algebraic quotient. 1092 * @throws ArithmeticException if the divisor {@code y} is zero 1093 * @see #floorMod(long, long) 1094 * @see #floor(double) 1095 * @since 1.8 1096 */ floorDiv(long x, long y)1097 public static long floorDiv(long x, long y) { 1098 long r = x / y; 1099 // if the signs are different and modulo not zero, round down 1100 if ((x ^ y) < 0 && (r * y != x)) { 1101 r--; 1102 } 1103 return r; 1104 } 1105 1106 /** 1107 * Returns the floor modulus of the {@code int} arguments. 1108 * <p> 1109 * The floor modulus is {@code x - (floorDiv(x, y) * y)}, 1110 * has the same sign as the divisor {@code y}, and 1111 * is in the range of {@code -abs(y) < r < +abs(y)}. 1112 * 1113 * <p> 1114 * The relationship between {@code floorDiv} and {@code floorMod} is such that: 1115 * <ul> 1116 * <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x} 1117 * </ul> 1118 * <p> 1119 * The difference in values between {@code floorMod} and 1120 * the {@code %} operator is due to the difference between 1121 * {@code floorDiv} that returns the integer less than or equal to the quotient 1122 * and the {@code /} operator that returns the integer closest to zero. 1123 * <p> 1124 * Examples: 1125 * <ul> 1126 * <li>If the signs of the arguments are the same, the results 1127 * of {@code floorMod} and the {@code %} operator are the same. <br> 1128 * <ul> 1129 * <li>{@code floorMod(4, 3) == 1}; and {@code (4 % 3) == 1}</li> 1130 * </ul> 1131 * <li>If the signs of the arguments are different, the results differ from the {@code %} operator.<br> 1132 * <ul> 1133 * <li>{@code floorMod(+4, -3) == -2}; and {@code (+4 % -3) == +1} </li> 1134 * <li>{@code floorMod(-4, +3) == +2}; and {@code (-4 % +3) == -1} </li> 1135 * <li>{@code floorMod(-4, -3) == -1}; and {@code (-4 % -3) == -1 } </li> 1136 * </ul> 1137 * </li> 1138 * </ul> 1139 * <p> 1140 * If the signs of arguments are unknown and a positive modulus 1141 * is needed it can be computed as {@code (floorMod(x, y) + abs(y)) % abs(y)}. 1142 * 1143 * @param x the dividend 1144 * @param y the divisor 1145 * @return the floor modulus {@code x - (floorDiv(x, y) * y)} 1146 * @throws ArithmeticException if the divisor {@code y} is zero 1147 * @see #floorDiv(int, int) 1148 * @since 1.8 1149 */ floorMod(int x, int y)1150 public static int floorMod(int x, int y) { 1151 int r = x - floorDiv(x, y) * y; 1152 return r; 1153 } 1154 1155 /** 1156 * Returns the floor modulus of the {@code long} arguments. 1157 * <p> 1158 * The floor modulus is {@code x - (floorDiv(x, y) * y)}, 1159 * has the same sign as the divisor {@code y}, and 1160 * is in the range of {@code -abs(y) < r < +abs(y)}. 1161 * 1162 * <p> 1163 * The relationship between {@code floorDiv} and {@code floorMod} is such that: 1164 * <ul> 1165 * <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x} 1166 * </ul> 1167 * <p> 1168 * For examples, see {@link #floorMod(int, int)}. 1169 * 1170 * @param x the dividend 1171 * @param y the divisor 1172 * @return the floor modulus {@code x - (floorDiv(x, y) * y)} 1173 * @throws ArithmeticException if the divisor {@code y} is zero 1174 * @see #floorDiv(long, long) 1175 * @since 1.8 1176 */ floorMod(long x, long y)1177 public static long floorMod(long x, long y) { 1178 return x - floorDiv(x, y) * y; 1179 } 1180 1181 /** 1182 * Returns the absolute value of an {@code int} value. 1183 * If the argument is not negative, the argument is returned. 1184 * If the argument is negative, the negation of the argument is returned. 1185 * 1186 * <p>Note that if the argument is equal to the value of 1187 * {@link Integer#MIN_VALUE}, the most negative representable 1188 * {@code int} value, the result is that same value, which is 1189 * negative. 1190 * 1191 * @param a the argument whose absolute value is to be determined 1192 * @return the absolute value of the argument. 1193 */ abs(int a)1194 public static int abs(int a) { 1195 return (a < 0) ? -a : a; 1196 } 1197 1198 /** 1199 * Returns the absolute value of a {@code long} value. 1200 * If the argument is not negative, the argument is returned. 1201 * If the argument is negative, the negation of the argument is returned. 1202 * 1203 * <p>Note that if the argument is equal to the value of 1204 * {@link Long#MIN_VALUE}, the most negative representable 1205 * {@code long} value, the result is that same value, which 1206 * is negative. 1207 * 1208 * @param a the argument whose absolute value is to be determined 1209 * @return the absolute value of the argument. 1210 */ abs(long a)1211 public static long abs(long a) { 1212 return (a < 0) ? -a : a; 1213 } 1214 1215 /** 1216 * Returns the absolute value of a {@code float} value. 1217 * If the argument is not negative, the argument is returned. 1218 * If the argument is negative, the negation of the argument is returned. 1219 * Special cases: 1220 * <ul><li>If the argument is positive zero or negative zero, the 1221 * result is positive zero. 1222 * <li>If the argument is infinite, the result is positive infinity. 1223 * <li>If the argument is NaN, the result is NaN.</ul> 1224 * In other words, the result is the same as the value of the expression: 1225 * <p>{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))} 1226 * 1227 * @param a the argument whose absolute value is to be determined 1228 * @return the absolute value of the argument. 1229 */ abs(float a)1230 public static float abs(float a) { 1231 // Android-changed: Implementation modified to exactly match ART intrinsics behavior. 1232 // Note, as a "quality of implementation", rather than pure "spec compliance", 1233 // we require that Math.abs() clears the sign bit (but changes nothing else) 1234 // for all numbers, including NaN (signaling NaN may become quiet though). 1235 // http://b/30758343 1236 return Float.intBitsToFloat(0x7fffffff & Float.floatToRawIntBits(a)); 1237 } 1238 1239 /** 1240 * Returns the absolute value of a {@code double} value. 1241 * If the argument is not negative, the argument is returned. 1242 * If the argument is negative, the negation of the argument is returned. 1243 * Special cases: 1244 * <ul><li>If the argument is positive zero or negative zero, the result 1245 * is positive zero. 1246 * <li>If the argument is infinite, the result is positive infinity. 1247 * <li>If the argument is NaN, the result is NaN.</ul> 1248 * In other words, the result is the same as the value of the expression: 1249 * <p>{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)} 1250 * 1251 * @param a the argument whose absolute value is to be determined 1252 * @return the absolute value of the argument. 1253 */ abs(double a)1254 public static double abs(double a) { 1255 // Android-changed: Implementation modified to exactly match ART intrinsics behavior. 1256 // Note, as a "quality of implementation", rather than pure "spec compliance", 1257 // we require that Math.abs() clears the sign bit (but changes nothing else) 1258 // for all numbers, including NaN (signaling NaN may become quiet though). 1259 // http://b/30758343 1260 return Double.longBitsToDouble(0x7fffffffffffffffL & Double.doubleToRawLongBits(a)); 1261 } 1262 1263 /** 1264 * Returns the greater of two {@code int} values. That is, the 1265 * result is the argument closer to the value of 1266 * {@link Integer#MAX_VALUE}. If the arguments have the same value, 1267 * the result is that same value. 1268 * 1269 * @param a an argument. 1270 * @param b another argument. 1271 * @return the larger of {@code a} and {@code b}. 1272 */ max(int a, int b)1273 public static int max(int a, int b) { 1274 return (a >= b) ? a : b; 1275 } 1276 1277 /** 1278 * Returns the greater of two {@code long} values. That is, the 1279 * result is the argument closer to the value of 1280 * {@link Long#MAX_VALUE}. If the arguments have the same value, 1281 * the result is that same value. 1282 * 1283 * @param a an argument. 1284 * @param b another argument. 1285 * @return the larger of {@code a} and {@code b}. 1286 */ max(long a, long b)1287 public static long max(long a, long b) { 1288 return (a >= b) ? a : b; 1289 } 1290 1291 // Use raw bit-wise conversions on guaranteed non-NaN arguments. 1292 private static long negativeZeroFloatBits = Float.floatToRawIntBits(-0.0f); 1293 private static long negativeZeroDoubleBits = Double.doubleToRawLongBits(-0.0d); 1294 1295 /** 1296 * Returns the greater of two {@code float} values. That is, 1297 * the result is the argument closer to positive infinity. If the 1298 * arguments have the same value, the result is that same 1299 * value. If either value is NaN, then the result is NaN. Unlike 1300 * the numerical comparison operators, this method considers 1301 * negative zero to be strictly smaller than positive zero. If one 1302 * argument is positive zero and the other negative zero, the 1303 * result is positive zero. 1304 * 1305 * @param a an argument. 1306 * @param b another argument. 1307 * @return the larger of {@code a} and {@code b}. 1308 */ max(float a, float b)1309 public static float max(float a, float b) { 1310 if (a != a) 1311 return a; // a is NaN 1312 if ((a == 0.0f) && 1313 (b == 0.0f) && 1314 (Float.floatToRawIntBits(a) == negativeZeroFloatBits)) { 1315 // Raw conversion ok since NaN can't map to -0.0. 1316 return b; 1317 } 1318 return (a >= b) ? a : b; 1319 } 1320 1321 /** 1322 * Returns the greater of two {@code double} values. That 1323 * is, the result is the argument closer to positive infinity. If 1324 * the arguments have the same value, the result is that same 1325 * value. If either value is NaN, then the result is NaN. Unlike 1326 * the numerical comparison operators, this method considers 1327 * negative zero to be strictly smaller than positive zero. If one 1328 * argument is positive zero and the other negative zero, the 1329 * result is positive zero. 1330 * 1331 * @param a an argument. 1332 * @param b another argument. 1333 * @return the larger of {@code a} and {@code b}. 1334 */ max(double a, double b)1335 public static double max(double a, double b) { 1336 if (a != a) 1337 return a; // a is NaN 1338 if ((a == 0.0d) && 1339 (b == 0.0d) && 1340 (Double.doubleToRawLongBits(a) == negativeZeroDoubleBits)) { 1341 // Raw conversion ok since NaN can't map to -0.0. 1342 return b; 1343 } 1344 return (a >= b) ? a : b; 1345 } 1346 1347 /** 1348 * Returns the smaller of two {@code int} values. That is, 1349 * the result the argument closer to the value of 1350 * {@link Integer#MIN_VALUE}. If the arguments have the same 1351 * value, the result is that same value. 1352 * 1353 * @param a an argument. 1354 * @param b another argument. 1355 * @return the smaller of {@code a} and {@code b}. 1356 */ min(int a, int b)1357 public static int min(int a, int b) { 1358 return (a <= b) ? a : b; 1359 } 1360 1361 /** 1362 * Returns the smaller of two {@code long} values. That is, 1363 * the result is the argument closer to the value of 1364 * {@link Long#MIN_VALUE}. If the arguments have the same 1365 * value, the result is that same value. 1366 * 1367 * @param a an argument. 1368 * @param b another argument. 1369 * @return the smaller of {@code a} and {@code b}. 1370 */ min(long a, long b)1371 public static long min(long a, long b) { 1372 return (a <= b) ? a : b; 1373 } 1374 1375 /** 1376 * Returns the smaller of two {@code float} values. That is, 1377 * the result is the value closer to negative infinity. If the 1378 * arguments have the same value, the result is that same 1379 * value. If either value is NaN, then the result is NaN. Unlike 1380 * the numerical comparison operators, this method considers 1381 * negative zero to be strictly smaller than positive zero. If 1382 * one argument is positive zero and the other is negative zero, 1383 * the result is negative zero. 1384 * 1385 * @param a an argument. 1386 * @param b another argument. 1387 * @return the smaller of {@code a} and {@code b}. 1388 */ min(float a, float b)1389 public static float min(float a, float b) { 1390 if (a != a) 1391 return a; // a is NaN 1392 if ((a == 0.0f) && 1393 (b == 0.0f) && 1394 (Float.floatToRawIntBits(b) == negativeZeroFloatBits)) { 1395 // Raw conversion ok since NaN can't map to -0.0. 1396 return b; 1397 } 1398 return (a <= b) ? a : b; 1399 } 1400 1401 /** 1402 * Returns the smaller of two {@code double} values. That 1403 * is, the result is the value closer to negative infinity. If the 1404 * arguments have the same value, the result is that same 1405 * value. If either value is NaN, then the result is NaN. Unlike 1406 * the numerical comparison operators, this method considers 1407 * negative zero to be strictly smaller than positive zero. If one 1408 * argument is positive zero and the other is negative zero, the 1409 * result is negative zero. 1410 * 1411 * @param a an argument. 1412 * @param b another argument. 1413 * @return the smaller of {@code a} and {@code b}. 1414 */ min(double a, double b)1415 public static double min(double a, double b) { 1416 if (a != a) 1417 return a; // a is NaN 1418 if ((a == 0.0d) && 1419 (b == 0.0d) && 1420 (Double.doubleToRawLongBits(b) == negativeZeroDoubleBits)) { 1421 // Raw conversion ok since NaN can't map to -0.0. 1422 return b; 1423 } 1424 return (a <= b) ? a : b; 1425 } 1426 1427 /** 1428 * Returns the size of an ulp of the argument. An ulp, unit in 1429 * the last place, of a {@code double} value is the positive 1430 * distance between this floating-point value and the {@code 1431 * double} value next larger in magnitude. Note that for non-NaN 1432 * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>. 1433 * 1434 * <p>Special Cases: 1435 * <ul> 1436 * <li> If the argument is NaN, then the result is NaN. 1437 * <li> If the argument is positive or negative infinity, then the 1438 * result is positive infinity. 1439 * <li> If the argument is positive or negative zero, then the result is 1440 * {@code Double.MIN_VALUE}. 1441 * <li> If the argument is ±{@code Double.MAX_VALUE}, then 1442 * the result is equal to 2<sup>971</sup>. 1443 * </ul> 1444 * 1445 * @param d the floating-point value whose ulp is to be returned 1446 * @return the size of an ulp of the argument 1447 * @author Joseph D. Darcy 1448 * @since 1.5 1449 */ ulp(double d)1450 public static double ulp(double d) { 1451 int exp = getExponent(d); 1452 1453 switch(exp) { 1454 case DoubleConsts.MAX_EXPONENT+1: // NaN or infinity 1455 return Math.abs(d); 1456 1457 case DoubleConsts.MIN_EXPONENT-1: // zero or subnormal 1458 return Double.MIN_VALUE; 1459 1460 default: 1461 assert exp <= DoubleConsts.MAX_EXPONENT && exp >= DoubleConsts.MIN_EXPONENT; 1462 1463 // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x)) 1464 exp = exp - (DoubleConsts.SIGNIFICAND_WIDTH-1); 1465 if (exp >= DoubleConsts.MIN_EXPONENT) { 1466 return powerOfTwoD(exp); 1467 } 1468 else { 1469 // return a subnormal result; left shift integer 1470 // representation of Double.MIN_VALUE appropriate 1471 // number of positions 1472 return Double.longBitsToDouble(1L << 1473 (exp - (DoubleConsts.MIN_EXPONENT - (DoubleConsts.SIGNIFICAND_WIDTH-1)) )); 1474 } 1475 } 1476 } 1477 1478 /** 1479 * Returns the size of an ulp of the argument. An ulp, unit in 1480 * the last place, of a {@code float} value is the positive 1481 * distance between this floating-point value and the {@code 1482 * float} value next larger in magnitude. Note that for non-NaN 1483 * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>. 1484 * 1485 * <p>Special Cases: 1486 * <ul> 1487 * <li> If the argument is NaN, then the result is NaN. 1488 * <li> If the argument is positive or negative infinity, then the 1489 * result is positive infinity. 1490 * <li> If the argument is positive or negative zero, then the result is 1491 * {@code Float.MIN_VALUE}. 1492 * <li> If the argument is ±{@code Float.MAX_VALUE}, then 1493 * the result is equal to 2<sup>104</sup>. 1494 * </ul> 1495 * 1496 * @param f the floating-point value whose ulp is to be returned 1497 * @return the size of an ulp of the argument 1498 * @author Joseph D. Darcy 1499 * @since 1.5 1500 */ ulp(float f)1501 public static float ulp(float f) { 1502 int exp = getExponent(f); 1503 1504 switch(exp) { 1505 case FloatConsts.MAX_EXPONENT+1: // NaN or infinity 1506 return Math.abs(f); 1507 1508 case FloatConsts.MIN_EXPONENT-1: // zero or subnormal 1509 return FloatConsts.MIN_VALUE; 1510 1511 default: 1512 assert exp <= FloatConsts.MAX_EXPONENT && exp >= FloatConsts.MIN_EXPONENT; 1513 1514 // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x)) 1515 exp = exp - (FloatConsts.SIGNIFICAND_WIDTH-1); 1516 if (exp >= FloatConsts.MIN_EXPONENT) { 1517 return powerOfTwoF(exp); 1518 } 1519 else { 1520 // return a subnormal result; left shift integer 1521 // representation of FloatConsts.MIN_VALUE appropriate 1522 // number of positions 1523 return Float.intBitsToFloat(1 << 1524 (exp - (FloatConsts.MIN_EXPONENT - (FloatConsts.SIGNIFICAND_WIDTH-1)) )); 1525 } 1526 } 1527 } 1528 1529 /** 1530 * Returns the signum function of the argument; zero if the argument 1531 * is zero, 1.0 if the argument is greater than zero, -1.0 if the 1532 * argument is less than zero. 1533 * 1534 * <p>Special Cases: 1535 * <ul> 1536 * <li> If the argument is NaN, then the result is NaN. 1537 * <li> If the argument is positive zero or negative zero, then the 1538 * result is the same as the argument. 1539 * </ul> 1540 * 1541 * @param d the floating-point value whose signum is to be returned 1542 * @return the signum function of the argument 1543 * @author Joseph D. Darcy 1544 * @since 1.5 1545 */ signum(double d)1546 public static double signum(double d) { 1547 return (d == 0.0 || Double.isNaN(d))?d:copySign(1.0, d); 1548 } 1549 1550 /** 1551 * Returns the signum function of the argument; zero if the argument 1552 * is zero, 1.0f if the argument is greater than zero, -1.0f if the 1553 * argument is less than zero. 1554 * 1555 * <p>Special Cases: 1556 * <ul> 1557 * <li> If the argument is NaN, then the result is NaN. 1558 * <li> If the argument is positive zero or negative zero, then the 1559 * result is the same as the argument. 1560 * </ul> 1561 * 1562 * @param f the floating-point value whose signum is to be returned 1563 * @return the signum function of the argument 1564 * @author Joseph D. Darcy 1565 * @since 1.5 1566 */ signum(float f)1567 public static float signum(float f) { 1568 return (f == 0.0f || Float.isNaN(f))?f:copySign(1.0f, f); 1569 } 1570 1571 /** 1572 * Returns the hyperbolic sine of a {@code double} value. 1573 * The hyperbolic sine of <i>x</i> is defined to be 1574 * (<i>e<sup>x</sup> - e<sup>-x</sup></i>)/2 1575 * where <i>e</i> is {@linkplain Math#E Euler's number}. 1576 * 1577 * <p>Special cases: 1578 * <ul> 1579 * 1580 * <li>If the argument is NaN, then the result is NaN. 1581 * 1582 * <li>If the argument is infinite, then the result is an infinity 1583 * with the same sign as the argument. 1584 * 1585 * <li>If the argument is zero, then the result is a zero with the 1586 * same sign as the argument. 1587 * 1588 * </ul> 1589 * 1590 * <p>The computed result must be within 2.5 ulps of the exact result. 1591 * 1592 * @param x The number whose hyperbolic sine is to be returned. 1593 * @return The hyperbolic sine of {@code x}. 1594 * @since 1.5 1595 */ 1596 @CriticalNative sinh(double x)1597 public static native double sinh(double x); 1598 1599 /** 1600 * Returns the hyperbolic cosine of a {@code double} value. 1601 * The hyperbolic cosine of <i>x</i> is defined to be 1602 * (<i>e<sup>x</sup> + e<sup>-x</sup></i>)/2 1603 * where <i>e</i> is {@linkplain Math#E Euler's number}. 1604 * 1605 * <p>Special cases: 1606 * <ul> 1607 * 1608 * <li>If the argument is NaN, then the result is NaN. 1609 * 1610 * <li>If the argument is infinite, then the result is positive 1611 * infinity. 1612 * 1613 * <li>If the argument is zero, then the result is {@code 1.0}. 1614 * 1615 * </ul> 1616 * 1617 * <p>The computed result must be within 2.5 ulps of the exact result. 1618 * 1619 * @param x The number whose hyperbolic cosine is to be returned. 1620 * @return The hyperbolic cosine of {@code x}. 1621 * @since 1.5 1622 */ 1623 @CriticalNative cosh(double x)1624 public static native double cosh(double x); 1625 1626 /** 1627 * Returns the hyperbolic tangent of a {@code double} value. 1628 * The hyperbolic tangent of <i>x</i> is defined to be 1629 * (<i>e<sup>x</sup> - e<sup>-x</sup></i>)/(<i>e<sup>x</sup> + e<sup>-x</sup></i>), 1630 * in other words, {@linkplain Math#sinh 1631 * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}. Note 1632 * that the absolute value of the exact tanh is always less than 1633 * 1. 1634 * 1635 * <p>Special cases: 1636 * <ul> 1637 * 1638 * <li>If the argument is NaN, then the result is NaN. 1639 * 1640 * <li>If the argument is zero, then the result is a zero with the 1641 * same sign as the argument. 1642 * 1643 * <li>If the argument is positive infinity, then the result is 1644 * {@code +1.0}. 1645 * 1646 * <li>If the argument is negative infinity, then the result is 1647 * {@code -1.0}. 1648 * 1649 * </ul> 1650 * 1651 * <p>The computed result must be within 2.5 ulps of the exact result. 1652 * The result of {@code tanh} for any finite input must have 1653 * an absolute value less than or equal to 1. Note that once the 1654 * exact result of tanh is within 1/2 of an ulp of the limit value 1655 * of ±1, correctly signed ±{@code 1.0} should 1656 * be returned. 1657 * 1658 * @param x The number whose hyperbolic tangent is to be returned. 1659 * @return The hyperbolic tangent of {@code x}. 1660 * @since 1.5 1661 */ 1662 @CriticalNative tanh(double x)1663 public static native double tanh(double x); 1664 1665 /** 1666 * Returns sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>) 1667 * without intermediate overflow or underflow. 1668 * 1669 * <p>Special cases: 1670 * <ul> 1671 * 1672 * <li> If either argument is infinite, then the result 1673 * is positive infinity. 1674 * 1675 * <li> If either argument is NaN and neither argument is infinite, 1676 * then the result is NaN. 1677 * 1678 * </ul> 1679 * 1680 * <p>The computed result must be within 1 ulp of the exact 1681 * result. If one parameter is held constant, the results must be 1682 * semi-monotonic in the other parameter. 1683 * 1684 * @param x a value 1685 * @param y a value 1686 * @return sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>) 1687 * without intermediate overflow or underflow 1688 * @since 1.5 1689 */ 1690 @CriticalNative hypot(double x, double y)1691 public static native double hypot(double x, double y); 1692 1693 /** 1694 * Returns <i>e</i><sup>x</sup> -1. Note that for values of 1695 * <i>x</i> near 0, the exact sum of 1696 * {@code expm1(x)} + 1 is much closer to the true 1697 * result of <i>e</i><sup>x</sup> than {@code exp(x)}. 1698 * 1699 * <p>Special cases: 1700 * <ul> 1701 * <li>If the argument is NaN, the result is NaN. 1702 * 1703 * <li>If the argument is positive infinity, then the result is 1704 * positive infinity. 1705 * 1706 * <li>If the argument is negative infinity, then the result is 1707 * -1.0. 1708 * 1709 * <li>If the argument is zero, then the result is a zero with the 1710 * same sign as the argument. 1711 * 1712 * </ul> 1713 * 1714 * <p>The computed result must be within 1 ulp of the exact result. 1715 * Results must be semi-monotonic. The result of 1716 * {@code expm1} for any finite input must be greater than or 1717 * equal to {@code -1.0}. Note that once the exact result of 1718 * <i>e</i><sup>{@code x}</sup> - 1 is within 1/2 1719 * ulp of the limit value -1, {@code -1.0} should be 1720 * returned. 1721 * 1722 * @param x the exponent to raise <i>e</i> to in the computation of 1723 * <i>e</i><sup>{@code x}</sup> -1. 1724 * @return the value <i>e</i><sup>{@code x}</sup> - 1. 1725 * @since 1.5 1726 */ 1727 @CriticalNative expm1(double x)1728 public static native double expm1(double x); 1729 1730 /** 1731 * Returns the natural logarithm of the sum of the argument and 1. 1732 * Note that for small values {@code x}, the result of 1733 * {@code log1p(x)} is much closer to the true result of ln(1 1734 * + {@code x}) than the floating-point evaluation of 1735 * {@code log(1.0+x)}. 1736 * 1737 * <p>Special cases: 1738 * 1739 * <ul> 1740 * 1741 * <li>If the argument is NaN or less than -1, then the result is 1742 * NaN. 1743 * 1744 * <li>If the argument is positive infinity, then the result is 1745 * positive infinity. 1746 * 1747 * <li>If the argument is negative one, then the result is 1748 * negative infinity. 1749 * 1750 * <li>If the argument is zero, then the result is a zero with the 1751 * same sign as the argument. 1752 * 1753 * </ul> 1754 * 1755 * <p>The computed result must be within 1 ulp of the exact result. 1756 * Results must be semi-monotonic. 1757 * 1758 * @param x a value 1759 * @return the value ln({@code x} + 1), the natural 1760 * log of {@code x} + 1 1761 * @since 1.5 1762 */ 1763 @CriticalNative log1p(double x)1764 public static native double log1p(double x); 1765 1766 /** 1767 * Returns the first floating-point argument with the sign of the 1768 * second floating-point argument. Note that unlike the {@link 1769 * StrictMath#copySign(double, double) StrictMath.copySign} 1770 * method, this method does not require NaN {@code sign} 1771 * arguments to be treated as positive values; implementations are 1772 * permitted to treat some NaN arguments as positive and other NaN 1773 * arguments as negative to allow greater performance. 1774 * 1775 * @param magnitude the parameter providing the magnitude of the result 1776 * @param sign the parameter providing the sign of the result 1777 * @return a value with the magnitude of {@code magnitude} 1778 * and the sign of {@code sign}. 1779 * @since 1.6 1780 */ copySign(double magnitude, double sign)1781 public static double copySign(double magnitude, double sign) { 1782 return Double.longBitsToDouble((Double.doubleToRawLongBits(sign) & 1783 (DoubleConsts.SIGN_BIT_MASK)) | 1784 (Double.doubleToRawLongBits(magnitude) & 1785 (DoubleConsts.EXP_BIT_MASK | 1786 DoubleConsts.SIGNIF_BIT_MASK))); 1787 } 1788 1789 /** 1790 * Returns the first floating-point argument with the sign of the 1791 * second floating-point argument. Note that unlike the {@link 1792 * StrictMath#copySign(float, float) StrictMath.copySign} 1793 * method, this method does not require NaN {@code sign} 1794 * arguments to be treated as positive values; implementations are 1795 * permitted to treat some NaN arguments as positive and other NaN 1796 * arguments as negative to allow greater performance. 1797 * 1798 * @param magnitude the parameter providing the magnitude of the result 1799 * @param sign the parameter providing the sign of the result 1800 * @return a value with the magnitude of {@code magnitude} 1801 * and the sign of {@code sign}. 1802 * @since 1.6 1803 */ copySign(float magnitude, float sign)1804 public static float copySign(float magnitude, float sign) { 1805 return Float.intBitsToFloat((Float.floatToRawIntBits(sign) & 1806 (FloatConsts.SIGN_BIT_MASK)) | 1807 (Float.floatToRawIntBits(magnitude) & 1808 (FloatConsts.EXP_BIT_MASK | 1809 FloatConsts.SIGNIF_BIT_MASK))); 1810 } 1811 1812 /** 1813 * Returns the unbiased exponent used in the representation of a 1814 * {@code float}. Special cases: 1815 * 1816 * <ul> 1817 * <li>If the argument is NaN or infinite, then the result is 1818 * {@link Float#MAX_EXPONENT} + 1. 1819 * <li>If the argument is zero or subnormal, then the result is 1820 * {@link Float#MIN_EXPONENT} -1. 1821 * </ul> 1822 * @param f a {@code float} value 1823 * @return the unbiased exponent of the argument 1824 * @since 1.6 1825 */ getExponent(float f)1826 public static int getExponent(float f) { 1827 /* 1828 * Bitwise convert f to integer, mask out exponent bits, shift 1829 * to the right and then subtract out float's bias adjust to 1830 * get true exponent value 1831 */ 1832 return ((Float.floatToRawIntBits(f) & FloatConsts.EXP_BIT_MASK) >> 1833 (FloatConsts.SIGNIFICAND_WIDTH - 1)) - FloatConsts.EXP_BIAS; 1834 } 1835 1836 /** 1837 * Returns the unbiased exponent used in the representation of a 1838 * {@code double}. Special cases: 1839 * 1840 * <ul> 1841 * <li>If the argument is NaN or infinite, then the result is 1842 * {@link Double#MAX_EXPONENT} + 1. 1843 * <li>If the argument is zero or subnormal, then the result is 1844 * {@link Double#MIN_EXPONENT} -1. 1845 * </ul> 1846 * @param d a {@code double} value 1847 * @return the unbiased exponent of the argument 1848 * @since 1.6 1849 */ getExponent(double d)1850 public static int getExponent(double d) { 1851 /* 1852 * Bitwise convert d to long, mask out exponent bits, shift 1853 * to the right and then subtract out double's bias adjust to 1854 * get true exponent value. 1855 */ 1856 return (int)(((Double.doubleToRawLongBits(d) & DoubleConsts.EXP_BIT_MASK) >> 1857 (DoubleConsts.SIGNIFICAND_WIDTH - 1)) - DoubleConsts.EXP_BIAS); 1858 } 1859 1860 /** 1861 * Returns the floating-point number adjacent to the first 1862 * argument in the direction of the second argument. If both 1863 * arguments compare as equal the second argument is returned. 1864 * 1865 * <p> 1866 * Special cases: 1867 * <ul> 1868 * <li> If either argument is a NaN, then NaN is returned. 1869 * 1870 * <li> If both arguments are signed zeros, {@code direction} 1871 * is returned unchanged (as implied by the requirement of 1872 * returning the second argument if the arguments compare as 1873 * equal). 1874 * 1875 * <li> If {@code start} is 1876 * ±{@link Double#MIN_VALUE} and {@code direction} 1877 * has a value such that the result should have a smaller 1878 * magnitude, then a zero with the same sign as {@code start} 1879 * is returned. 1880 * 1881 * <li> If {@code start} is infinite and 1882 * {@code direction} has a value such that the result should 1883 * have a smaller magnitude, {@link Double#MAX_VALUE} with the 1884 * same sign as {@code start} is returned. 1885 * 1886 * <li> If {@code start} is equal to ± 1887 * {@link Double#MAX_VALUE} and {@code direction} has a 1888 * value such that the result should have a larger magnitude, an 1889 * infinity with same sign as {@code start} is returned. 1890 * </ul> 1891 * 1892 * @param start starting floating-point value 1893 * @param direction value indicating which of 1894 * {@code start}'s neighbors or {@code start} should 1895 * be returned 1896 * @return The floating-point number adjacent to {@code start} in the 1897 * direction of {@code direction}. 1898 * @since 1.6 1899 */ nextAfter(double start, double direction)1900 public static double nextAfter(double start, double direction) { 1901 /* 1902 * The cases: 1903 * 1904 * nextAfter(+infinity, 0) == MAX_VALUE 1905 * nextAfter(+infinity, +infinity) == +infinity 1906 * nextAfter(-infinity, 0) == -MAX_VALUE 1907 * nextAfter(-infinity, -infinity) == -infinity 1908 * 1909 * are naturally handled without any additional testing 1910 */ 1911 1912 // First check for NaN values 1913 if (Double.isNaN(start) || Double.isNaN(direction)) { 1914 // return a NaN derived from the input NaN(s) 1915 return start + direction; 1916 } else if (start == direction) { 1917 return direction; 1918 } else { // start > direction or start < direction 1919 // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0) 1920 // then bitwise convert start to integer. 1921 long transducer = Double.doubleToRawLongBits(start + 0.0d); 1922 1923 /* 1924 * IEEE 754 floating-point numbers are lexicographically 1925 * ordered if treated as signed- magnitude integers . 1926 * Since Java's integers are two's complement, 1927 * incrementing" the two's complement representation of a 1928 * logically negative floating-point value *decrements* 1929 * the signed-magnitude representation. Therefore, when 1930 * the integer representation of a floating-point values 1931 * is less than zero, the adjustment to the representation 1932 * is in the opposite direction than would be expected at 1933 * first . 1934 */ 1935 if (direction > start) { // Calculate next greater value 1936 transducer = transducer + (transducer >= 0L ? 1L:-1L); 1937 } else { // Calculate next lesser value 1938 assert direction < start; 1939 if (transducer > 0L) 1940 --transducer; 1941 else 1942 if (transducer < 0L ) 1943 ++transducer; 1944 /* 1945 * transducer==0, the result is -MIN_VALUE 1946 * 1947 * The transition from zero (implicitly 1948 * positive) to the smallest negative 1949 * signed magnitude value must be done 1950 * explicitly. 1951 */ 1952 else 1953 transducer = DoubleConsts.SIGN_BIT_MASK | 1L; 1954 } 1955 1956 return Double.longBitsToDouble(transducer); 1957 } 1958 } 1959 1960 /** 1961 * Returns the floating-point number adjacent to the first 1962 * argument in the direction of the second argument. If both 1963 * arguments compare as equal a value equivalent to the second argument 1964 * is returned. 1965 * 1966 * <p> 1967 * Special cases: 1968 * <ul> 1969 * <li> If either argument is a NaN, then NaN is returned. 1970 * 1971 * <li> If both arguments are signed zeros, a value equivalent 1972 * to {@code direction} is returned. 1973 * 1974 * <li> If {@code start} is 1975 * ±{@link Float#MIN_VALUE} and {@code direction} 1976 * has a value such that the result should have a smaller 1977 * magnitude, then a zero with the same sign as {@code start} 1978 * is returned. 1979 * 1980 * <li> If {@code start} is infinite and 1981 * {@code direction} has a value such that the result should 1982 * have a smaller magnitude, {@link Float#MAX_VALUE} with the 1983 * same sign as {@code start} is returned. 1984 * 1985 * <li> If {@code start} is equal to ± 1986 * {@link Float#MAX_VALUE} and {@code direction} has a 1987 * value such that the result should have a larger magnitude, an 1988 * infinity with same sign as {@code start} is returned. 1989 * </ul> 1990 * 1991 * @param start starting floating-point value 1992 * @param direction value indicating which of 1993 * {@code start}'s neighbors or {@code start} should 1994 * be returned 1995 * @return The floating-point number adjacent to {@code start} in the 1996 * direction of {@code direction}. 1997 * @since 1.6 1998 */ nextAfter(float start, double direction)1999 public static float nextAfter(float start, double direction) { 2000 /* 2001 * The cases: 2002 * 2003 * nextAfter(+infinity, 0) == MAX_VALUE 2004 * nextAfter(+infinity, +infinity) == +infinity 2005 * nextAfter(-infinity, 0) == -MAX_VALUE 2006 * nextAfter(-infinity, -infinity) == -infinity 2007 * 2008 * are naturally handled without any additional testing 2009 */ 2010 2011 // First check for NaN values 2012 if (Float.isNaN(start) || Double.isNaN(direction)) { 2013 // return a NaN derived from the input NaN(s) 2014 return start + (float)direction; 2015 } else if (start == direction) { 2016 return (float)direction; 2017 } else { // start > direction or start < direction 2018 // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0) 2019 // then bitwise convert start to integer. 2020 int transducer = Float.floatToRawIntBits(start + 0.0f); 2021 2022 /* 2023 * IEEE 754 floating-point numbers are lexicographically 2024 * ordered if treated as signed- magnitude integers . 2025 * Since Java's integers are two's complement, 2026 * incrementing" the two's complement representation of a 2027 * logically negative floating-point value *decrements* 2028 * the signed-magnitude representation. Therefore, when 2029 * the integer representation of a floating-point values 2030 * is less than zero, the adjustment to the representation 2031 * is in the opposite direction than would be expected at 2032 * first. 2033 */ 2034 if (direction > start) {// Calculate next greater value 2035 transducer = transducer + (transducer >= 0 ? 1:-1); 2036 } else { // Calculate next lesser value 2037 assert direction < start; 2038 if (transducer > 0) 2039 --transducer; 2040 else 2041 if (transducer < 0 ) 2042 ++transducer; 2043 /* 2044 * transducer==0, the result is -MIN_VALUE 2045 * 2046 * The transition from zero (implicitly 2047 * positive) to the smallest negative 2048 * signed magnitude value must be done 2049 * explicitly. 2050 */ 2051 else 2052 transducer = FloatConsts.SIGN_BIT_MASK | 1; 2053 } 2054 2055 return Float.intBitsToFloat(transducer); 2056 } 2057 } 2058 2059 /** 2060 * Returns the floating-point value adjacent to {@code d} in 2061 * the direction of positive infinity. This method is 2062 * semantically equivalent to {@code nextAfter(d, 2063 * Double.POSITIVE_INFINITY)}; however, a {@code nextUp} 2064 * implementation may run faster than its equivalent 2065 * {@code nextAfter} call. 2066 * 2067 * <p>Special Cases: 2068 * <ul> 2069 * <li> If the argument is NaN, the result is NaN. 2070 * 2071 * <li> If the argument is positive infinity, the result is 2072 * positive infinity. 2073 * 2074 * <li> If the argument is zero, the result is 2075 * {@link Double#MIN_VALUE} 2076 * 2077 * </ul> 2078 * 2079 * @param d starting floating-point value 2080 * @return The adjacent floating-point value closer to positive 2081 * infinity. 2082 * @since 1.6 2083 */ nextUp(double d)2084 public static double nextUp(double d) { 2085 if( Double.isNaN(d) || d == Double.POSITIVE_INFINITY) 2086 return d; 2087 else { 2088 d += 0.0d; 2089 return Double.longBitsToDouble(Double.doubleToRawLongBits(d) + 2090 ((d >= 0.0d)?+1L:-1L)); 2091 } 2092 } 2093 2094 /** 2095 * Returns the floating-point value adjacent to {@code f} in 2096 * the direction of positive infinity. This method is 2097 * semantically equivalent to {@code nextAfter(f, 2098 * Float.POSITIVE_INFINITY)}; however, a {@code nextUp} 2099 * implementation may run faster than its equivalent 2100 * {@code nextAfter} call. 2101 * 2102 * <p>Special Cases: 2103 * <ul> 2104 * <li> If the argument is NaN, the result is NaN. 2105 * 2106 * <li> If the argument is positive infinity, the result is 2107 * positive infinity. 2108 * 2109 * <li> If the argument is zero, the result is 2110 * {@link Float#MIN_VALUE} 2111 * 2112 * </ul> 2113 * 2114 * @param f starting floating-point value 2115 * @return The adjacent floating-point value closer to positive 2116 * infinity. 2117 * @since 1.6 2118 */ nextUp(float f)2119 public static float nextUp(float f) { 2120 if( Float.isNaN(f) || f == FloatConsts.POSITIVE_INFINITY) 2121 return f; 2122 else { 2123 f += 0.0f; 2124 return Float.intBitsToFloat(Float.floatToRawIntBits(f) + 2125 ((f >= 0.0f)?+1:-1)); 2126 } 2127 } 2128 2129 /** 2130 * Returns the floating-point value adjacent to {@code d} in 2131 * the direction of negative infinity. This method is 2132 * semantically equivalent to {@code nextAfter(d, 2133 * Double.NEGATIVE_INFINITY)}; however, a 2134 * {@code nextDown} implementation may run faster than its 2135 * equivalent {@code nextAfter} call. 2136 * 2137 * <p>Special Cases: 2138 * <ul> 2139 * <li> If the argument is NaN, the result is NaN. 2140 * 2141 * <li> If the argument is negative infinity, the result is 2142 * negative infinity. 2143 * 2144 * <li> If the argument is zero, the result is 2145 * {@code -Double.MIN_VALUE} 2146 * 2147 * </ul> 2148 * 2149 * @param d starting floating-point value 2150 * @return The adjacent floating-point value closer to negative 2151 * infinity. 2152 * @since 1.8 2153 */ nextDown(double d)2154 public static double nextDown(double d) { 2155 if (Double.isNaN(d) || d == Double.NEGATIVE_INFINITY) 2156 return d; 2157 else { 2158 if (d == 0.0) 2159 return -Double.MIN_VALUE; 2160 else 2161 return Double.longBitsToDouble(Double.doubleToRawLongBits(d) + 2162 ((d > 0.0d)?-1L:+1L)); 2163 } 2164 } 2165 2166 /** 2167 * Returns the floating-point value adjacent to {@code f} in 2168 * the direction of negative infinity. This method is 2169 * semantically equivalent to {@code nextAfter(f, 2170 * Float.NEGATIVE_INFINITY)}; however, a 2171 * {@code nextDown} implementation may run faster than its 2172 * equivalent {@code nextAfter} call. 2173 * 2174 * <p>Special Cases: 2175 * <ul> 2176 * <li> If the argument is NaN, the result is NaN. 2177 * 2178 * <li> If the argument is negative infinity, the result is 2179 * negative infinity. 2180 * 2181 * <li> If the argument is zero, the result is 2182 * {@code -Float.MIN_VALUE} 2183 * 2184 * </ul> 2185 * 2186 * @param f starting floating-point value 2187 * @return The adjacent floating-point value closer to negative 2188 * infinity. 2189 * @since 1.8 2190 */ nextDown(float f)2191 public static float nextDown(float f) { 2192 if (Float.isNaN(f) || f == Float.NEGATIVE_INFINITY) 2193 return f; 2194 else { 2195 if (f == 0.0f) 2196 return -Float.MIN_VALUE; 2197 else 2198 return Float.intBitsToFloat(Float.floatToRawIntBits(f) + 2199 ((f > 0.0f)?-1:+1)); 2200 } 2201 } 2202 2203 /** 2204 * Returns {@code d} × 2205 * 2<sup>{@code scaleFactor}</sup> rounded as if performed 2206 * by a single correctly rounded floating-point multiply to a 2207 * member of the double value set. See the Java 2208 * Language Specification for a discussion of floating-point 2209 * value sets. If the exponent of the result is between {@link 2210 * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the 2211 * answer is calculated exactly. If the exponent of the result 2212 * would be larger than {@code Double.MAX_EXPONENT}, an 2213 * infinity is returned. Note that if the result is subnormal, 2214 * precision may be lost; that is, when {@code scalb(x, n)} 2215 * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal 2216 * <i>x</i>. When the result is non-NaN, the result has the same 2217 * sign as {@code d}. 2218 * 2219 * <p>Special cases: 2220 * <ul> 2221 * <li> If the first argument is NaN, NaN is returned. 2222 * <li> If the first argument is infinite, then an infinity of the 2223 * same sign is returned. 2224 * <li> If the first argument is zero, then a zero of the same 2225 * sign is returned. 2226 * </ul> 2227 * 2228 * @param d number to be scaled by a power of two. 2229 * @param scaleFactor power of 2 used to scale {@code d} 2230 * @return {@code d} × 2<sup>{@code scaleFactor}</sup> 2231 * @since 1.6 2232 */ scalb(double d, int scaleFactor)2233 public static double scalb(double d, int scaleFactor) { 2234 /* 2235 * This method does not need to be declared strictfp to 2236 * compute the same correct result on all platforms. When 2237 * scaling up, it does not matter what order the 2238 * multiply-store operations are done; the result will be 2239 * finite or overflow regardless of the operation ordering. 2240 * However, to get the correct result when scaling down, a 2241 * particular ordering must be used. 2242 * 2243 * When scaling down, the multiply-store operations are 2244 * sequenced so that it is not possible for two consecutive 2245 * multiply-stores to return subnormal results. If one 2246 * multiply-store result is subnormal, the next multiply will 2247 * round it away to zero. This is done by first multiplying 2248 * by 2 ^ (scaleFactor % n) and then multiplying several 2249 * times by by 2^n as needed where n is the exponent of number 2250 * that is a covenient power of two. In this way, at most one 2251 * real rounding error occurs. If the double value set is 2252 * being used exclusively, the rounding will occur on a 2253 * multiply. If the double-extended-exponent value set is 2254 * being used, the products will (perhaps) be exact but the 2255 * stores to d are guaranteed to round to the double value 2256 * set. 2257 * 2258 * It is _not_ a valid implementation to first multiply d by 2259 * 2^MIN_EXPONENT and then by 2 ^ (scaleFactor % 2260 * MIN_EXPONENT) since even in a strictfp program double 2261 * rounding on underflow could occur; e.g. if the scaleFactor 2262 * argument was (MIN_EXPONENT - n) and the exponent of d was a 2263 * little less than -(MIN_EXPONENT - n), meaning the final 2264 * result would be subnormal. 2265 * 2266 * Since exact reproducibility of this method can be achieved 2267 * without any undue performance burden, there is no 2268 * compelling reason to allow double rounding on underflow in 2269 * scalb. 2270 */ 2271 2272 // magnitude of a power of two so large that scaling a finite 2273 // nonzero value by it would be guaranteed to over or 2274 // underflow; due to rounding, scaling down takes takes an 2275 // additional power of two which is reflected here 2276 final int MAX_SCALE = DoubleConsts.MAX_EXPONENT + -DoubleConsts.MIN_EXPONENT + 2277 DoubleConsts.SIGNIFICAND_WIDTH + 1; 2278 int exp_adjust = 0; 2279 int scale_increment = 0; 2280 double exp_delta = Double.NaN; 2281 2282 // Make sure scaling factor is in a reasonable range 2283 2284 if(scaleFactor < 0) { 2285 scaleFactor = Math.max(scaleFactor, -MAX_SCALE); 2286 scale_increment = -512; 2287 exp_delta = twoToTheDoubleScaleDown; 2288 } 2289 else { 2290 scaleFactor = Math.min(scaleFactor, MAX_SCALE); 2291 scale_increment = 512; 2292 exp_delta = twoToTheDoubleScaleUp; 2293 } 2294 2295 // Calculate (scaleFactor % +/-512), 512 = 2^9, using 2296 // technique from "Hacker's Delight" section 10-2. 2297 int t = (scaleFactor >> 9-1) >>> 32 - 9; 2298 exp_adjust = ((scaleFactor + t) & (512 -1)) - t; 2299 2300 d *= powerOfTwoD(exp_adjust); 2301 scaleFactor -= exp_adjust; 2302 2303 while(scaleFactor != 0) { 2304 d *= exp_delta; 2305 scaleFactor -= scale_increment; 2306 } 2307 return d; 2308 } 2309 2310 /** 2311 * Returns {@code f} × 2312 * 2<sup>{@code scaleFactor}</sup> rounded as if performed 2313 * by a single correctly rounded floating-point multiply to a 2314 * member of the float value set. See the Java 2315 * Language Specification for a discussion of floating-point 2316 * value sets. If the exponent of the result is between {@link 2317 * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the 2318 * answer is calculated exactly. If the exponent of the result 2319 * would be larger than {@code Float.MAX_EXPONENT}, an 2320 * infinity is returned. Note that if the result is subnormal, 2321 * precision may be lost; that is, when {@code scalb(x, n)} 2322 * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal 2323 * <i>x</i>. When the result is non-NaN, the result has the same 2324 * sign as {@code f}. 2325 * 2326 * <p>Special cases: 2327 * <ul> 2328 * <li> If the first argument is NaN, NaN is returned. 2329 * <li> If the first argument is infinite, then an infinity of the 2330 * same sign is returned. 2331 * <li> If the first argument is zero, then a zero of the same 2332 * sign is returned. 2333 * </ul> 2334 * 2335 * @param f number to be scaled by a power of two. 2336 * @param scaleFactor power of 2 used to scale {@code f} 2337 * @return {@code f} × 2<sup>{@code scaleFactor}</sup> 2338 * @since 1.6 2339 */ scalb(float f, int scaleFactor)2340 public static float scalb(float f, int scaleFactor) { 2341 // magnitude of a power of two so large that scaling a finite 2342 // nonzero value by it would be guaranteed to over or 2343 // underflow; due to rounding, scaling down takes takes an 2344 // additional power of two which is reflected here 2345 final int MAX_SCALE = FloatConsts.MAX_EXPONENT + -FloatConsts.MIN_EXPONENT + 2346 FloatConsts.SIGNIFICAND_WIDTH + 1; 2347 2348 // Make sure scaling factor is in a reasonable range 2349 scaleFactor = Math.max(Math.min(scaleFactor, MAX_SCALE), -MAX_SCALE); 2350 2351 /* 2352 * Since + MAX_SCALE for float fits well within the double 2353 * exponent range and + float -> double conversion is exact 2354 * the multiplication below will be exact. Therefore, the 2355 * rounding that occurs when the double product is cast to 2356 * float will be the correctly rounded float result. Since 2357 * all operations other than the final multiply will be exact, 2358 * it is not necessary to declare this method strictfp. 2359 */ 2360 return (float)((double)f*powerOfTwoD(scaleFactor)); 2361 } 2362 2363 // Constants used in scalb 2364 static double twoToTheDoubleScaleUp = powerOfTwoD(512); 2365 static double twoToTheDoubleScaleDown = powerOfTwoD(-512); 2366 2367 /** 2368 * Returns a floating-point power of two in the normal range. 2369 */ powerOfTwoD(int n)2370 static double powerOfTwoD(int n) { 2371 assert(n >= DoubleConsts.MIN_EXPONENT && n <= DoubleConsts.MAX_EXPONENT); 2372 return Double.longBitsToDouble((((long)n + (long)DoubleConsts.EXP_BIAS) << 2373 (DoubleConsts.SIGNIFICAND_WIDTH-1)) 2374 & DoubleConsts.EXP_BIT_MASK); 2375 } 2376 2377 /** 2378 * Returns a floating-point power of two in the normal range. 2379 */ powerOfTwoF(int n)2380 static float powerOfTwoF(int n) { 2381 assert(n >= FloatConsts.MIN_EXPONENT && n <= FloatConsts.MAX_EXPONENT); 2382 return Float.intBitsToFloat(((n + FloatConsts.EXP_BIAS) << 2383 (FloatConsts.SIGNIFICAND_WIDTH-1)) 2384 & FloatConsts.EXP_BIT_MASK); 2385 } 2386 } 2387