1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 #include <memory.h>
12 #include <math.h>
13 #include <time.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <assert.h>
17 
18 #include "av1/encoder/ransac.h"
19 #include "av1/encoder/mathutils.h"
20 #include "av1/encoder/random.h"
21 
22 #define MAX_MINPTS 4
23 #define MAX_DEGENERATE_ITER 10
24 #define MINPTS_MULTIPLIER 5
25 
26 #define INLIER_THRESHOLD 1.25
27 #define MIN_TRIALS 20
28 
29 ////////////////////////////////////////////////////////////////////////////////
30 // ransac
31 typedef int (*IsDegenerateFunc)(double *p);
32 typedef void (*NormalizeFunc)(double *p, int np, double *T);
33 typedef void (*DenormalizeFunc)(double *params, double *T1, double *T2);
34 typedef int (*FindTransformationFunc)(int points, double *points1,
35                                       double *points2, double *params);
36 typedef void (*ProjectPointsDoubleFunc)(double *mat, double *points,
37                                         double *proj, const int n,
38                                         const int stride_points,
39                                         const int stride_proj);
40 
project_points_double_translation(double * mat,double * points,double * proj,const int n,const int stride_points,const int stride_proj)41 static void project_points_double_translation(double *mat, double *points,
42                                               double *proj, const int n,
43                                               const int stride_points,
44                                               const int stride_proj) {
45   int i;
46   for (i = 0; i < n; ++i) {
47     const double x = *(points++), y = *(points++);
48     *(proj++) = x + mat[0];
49     *(proj++) = y + mat[1];
50     points += stride_points - 2;
51     proj += stride_proj - 2;
52   }
53 }
54 
project_points_double_rotzoom(double * mat,double * points,double * proj,const int n,const int stride_points,const int stride_proj)55 static void project_points_double_rotzoom(double *mat, double *points,
56                                           double *proj, const int n,
57                                           const int stride_points,
58                                           const int stride_proj) {
59   int i;
60   for (i = 0; i < n; ++i) {
61     const double x = *(points++), y = *(points++);
62     *(proj++) = mat[2] * x + mat[3] * y + mat[0];
63     *(proj++) = -mat[3] * x + mat[2] * y + mat[1];
64     points += stride_points - 2;
65     proj += stride_proj - 2;
66   }
67 }
68 
project_points_double_affine(double * mat,double * points,double * proj,const int n,const int stride_points,const int stride_proj)69 static void project_points_double_affine(double *mat, double *points,
70                                          double *proj, const int n,
71                                          const int stride_points,
72                                          const int stride_proj) {
73   int i;
74   for (i = 0; i < n; ++i) {
75     const double x = *(points++), y = *(points++);
76     *(proj++) = mat[2] * x + mat[3] * y + mat[0];
77     *(proj++) = mat[4] * x + mat[5] * y + mat[1];
78     points += stride_points - 2;
79     proj += stride_proj - 2;
80   }
81 }
82 
normalize_homography(double * pts,int n,double * T)83 static void normalize_homography(double *pts, int n, double *T) {
84   double *p = pts;
85   double mean[2] = { 0, 0 };
86   double msqe = 0;
87   double scale;
88   int i;
89 
90   assert(n > 0);
91   for (i = 0; i < n; ++i, p += 2) {
92     mean[0] += p[0];
93     mean[1] += p[1];
94   }
95   mean[0] /= n;
96   mean[1] /= n;
97   for (p = pts, i = 0; i < n; ++i, p += 2) {
98     p[0] -= mean[0];
99     p[1] -= mean[1];
100     msqe += sqrt(p[0] * p[0] + p[1] * p[1]);
101   }
102   msqe /= n;
103   scale = (msqe == 0 ? 1.0 : sqrt(2) / msqe);
104   T[0] = scale;
105   T[1] = 0;
106   T[2] = -scale * mean[0];
107   T[3] = 0;
108   T[4] = scale;
109   T[5] = -scale * mean[1];
110   T[6] = 0;
111   T[7] = 0;
112   T[8] = 1;
113   for (p = pts, i = 0; i < n; ++i, p += 2) {
114     p[0] *= scale;
115     p[1] *= scale;
116   }
117 }
118 
invnormalize_mat(double * T,double * iT)119 static void invnormalize_mat(double *T, double *iT) {
120   double is = 1.0 / T[0];
121   double m0 = -T[2] * is;
122   double m1 = -T[5] * is;
123   iT[0] = is;
124   iT[1] = 0;
125   iT[2] = m0;
126   iT[3] = 0;
127   iT[4] = is;
128   iT[5] = m1;
129   iT[6] = 0;
130   iT[7] = 0;
131   iT[8] = 1;
132 }
133 
denormalize_homography(double * params,double * T1,double * T2)134 static void denormalize_homography(double *params, double *T1, double *T2) {
135   double iT2[9];
136   double params2[9];
137   invnormalize_mat(T2, iT2);
138   multiply_mat(params, T1, params2, 3, 3, 3);
139   multiply_mat(iT2, params2, params, 3, 3, 3);
140 }
141 
denormalize_affine_reorder(double * params,double * T1,double * T2)142 static void denormalize_affine_reorder(double *params, double *T1, double *T2) {
143   double params_denorm[MAX_PARAMDIM];
144   params_denorm[0] = params[0];
145   params_denorm[1] = params[1];
146   params_denorm[2] = params[4];
147   params_denorm[3] = params[2];
148   params_denorm[4] = params[3];
149   params_denorm[5] = params[5];
150   params_denorm[6] = params_denorm[7] = 0;
151   params_denorm[8] = 1;
152   denormalize_homography(params_denorm, T1, T2);
153   params[0] = params_denorm[2];
154   params[1] = params_denorm[5];
155   params[2] = params_denorm[0];
156   params[3] = params_denorm[1];
157   params[4] = params_denorm[3];
158   params[5] = params_denorm[4];
159   params[6] = params[7] = 0;
160 }
161 
denormalize_rotzoom_reorder(double * params,double * T1,double * T2)162 static void denormalize_rotzoom_reorder(double *params, double *T1,
163                                         double *T2) {
164   double params_denorm[MAX_PARAMDIM];
165   params_denorm[0] = params[0];
166   params_denorm[1] = params[1];
167   params_denorm[2] = params[2];
168   params_denorm[3] = -params[1];
169   params_denorm[4] = params[0];
170   params_denorm[5] = params[3];
171   params_denorm[6] = params_denorm[7] = 0;
172   params_denorm[8] = 1;
173   denormalize_homography(params_denorm, T1, T2);
174   params[0] = params_denorm[2];
175   params[1] = params_denorm[5];
176   params[2] = params_denorm[0];
177   params[3] = params_denorm[1];
178   params[4] = -params[3];
179   params[5] = params[2];
180   params[6] = params[7] = 0;
181 }
182 
denormalize_translation_reorder(double * params,double * T1,double * T2)183 static void denormalize_translation_reorder(double *params, double *T1,
184                                             double *T2) {
185   double params_denorm[MAX_PARAMDIM];
186   params_denorm[0] = 1;
187   params_denorm[1] = 0;
188   params_denorm[2] = params[0];
189   params_denorm[3] = 0;
190   params_denorm[4] = 1;
191   params_denorm[5] = params[1];
192   params_denorm[6] = params_denorm[7] = 0;
193   params_denorm[8] = 1;
194   denormalize_homography(params_denorm, T1, T2);
195   params[0] = params_denorm[2];
196   params[1] = params_denorm[5];
197   params[2] = params[5] = 1;
198   params[3] = params[4] = 0;
199   params[6] = params[7] = 0;
200 }
201 
find_translation(int np,double * pts1,double * pts2,double * mat)202 static int find_translation(int np, double *pts1, double *pts2, double *mat) {
203   int i;
204   double sx, sy, dx, dy;
205   double sumx, sumy;
206 
207   double T1[9], T2[9];
208   normalize_homography(pts1, np, T1);
209   normalize_homography(pts2, np, T2);
210 
211   sumx = 0;
212   sumy = 0;
213   for (i = 0; i < np; ++i) {
214     dx = *(pts2++);
215     dy = *(pts2++);
216     sx = *(pts1++);
217     sy = *(pts1++);
218 
219     sumx += dx - sx;
220     sumy += dy - sy;
221   }
222   mat[0] = sumx / np;
223   mat[1] = sumy / np;
224   denormalize_translation_reorder(mat, T1, T2);
225   return 0;
226 }
227 
find_rotzoom(int np,double * pts1,double * pts2,double * mat)228 static int find_rotzoom(int np, double *pts1, double *pts2, double *mat) {
229   const int np2 = np * 2;
230   double *a = (double *)aom_malloc(sizeof(*a) * (np2 * 5 + 20));
231   double *b = a + np2 * 4;
232   double *temp = b + np2;
233   int i;
234   double sx, sy, dx, dy;
235 
236   double T1[9], T2[9];
237   normalize_homography(pts1, np, T1);
238   normalize_homography(pts2, np, T2);
239 
240   for (i = 0; i < np; ++i) {
241     dx = *(pts2++);
242     dy = *(pts2++);
243     sx = *(pts1++);
244     sy = *(pts1++);
245 
246     a[i * 2 * 4 + 0] = sx;
247     a[i * 2 * 4 + 1] = sy;
248     a[i * 2 * 4 + 2] = 1;
249     a[i * 2 * 4 + 3] = 0;
250     a[(i * 2 + 1) * 4 + 0] = sy;
251     a[(i * 2 + 1) * 4 + 1] = -sx;
252     a[(i * 2 + 1) * 4 + 2] = 0;
253     a[(i * 2 + 1) * 4 + 3] = 1;
254 
255     b[2 * i] = dx;
256     b[2 * i + 1] = dy;
257   }
258   if (!least_squares(4, a, np2, 4, b, temp, mat)) {
259     aom_free(a);
260     return 1;
261   }
262   denormalize_rotzoom_reorder(mat, T1, T2);
263   aom_free(a);
264   return 0;
265 }
266 
find_affine(int np,double * pts1,double * pts2,double * mat)267 static int find_affine(int np, double *pts1, double *pts2, double *mat) {
268   const int np2 = np * 2;
269   double *a = (double *)aom_malloc(sizeof(*a) * (np2 * 7 + 42));
270   double *b = a + np2 * 6;
271   double *temp = b + np2;
272   int i;
273   double sx, sy, dx, dy;
274 
275   double T1[9], T2[9];
276   normalize_homography(pts1, np, T1);
277   normalize_homography(pts2, np, T2);
278 
279   for (i = 0; i < np; ++i) {
280     dx = *(pts2++);
281     dy = *(pts2++);
282     sx = *(pts1++);
283     sy = *(pts1++);
284 
285     a[i * 2 * 6 + 0] = sx;
286     a[i * 2 * 6 + 1] = sy;
287     a[i * 2 * 6 + 2] = 0;
288     a[i * 2 * 6 + 3] = 0;
289     a[i * 2 * 6 + 4] = 1;
290     a[i * 2 * 6 + 5] = 0;
291     a[(i * 2 + 1) * 6 + 0] = 0;
292     a[(i * 2 + 1) * 6 + 1] = 0;
293     a[(i * 2 + 1) * 6 + 2] = sx;
294     a[(i * 2 + 1) * 6 + 3] = sy;
295     a[(i * 2 + 1) * 6 + 4] = 0;
296     a[(i * 2 + 1) * 6 + 5] = 1;
297 
298     b[2 * i] = dx;
299     b[2 * i + 1] = dy;
300   }
301   if (!least_squares(6, a, np2, 6, b, temp, mat)) {
302     aom_free(a);
303     return 1;
304   }
305   denormalize_affine_reorder(mat, T1, T2);
306   aom_free(a);
307   return 0;
308 }
309 
get_rand_indices(int npoints,int minpts,int * indices,unsigned int * seed)310 static int get_rand_indices(int npoints, int minpts, int *indices,
311                             unsigned int *seed) {
312   int i, j;
313   int ptr = lcg_rand16(seed) % npoints;
314   if (minpts > npoints) return 0;
315   indices[0] = ptr;
316   ptr = (ptr == npoints - 1 ? 0 : ptr + 1);
317   i = 1;
318   while (i < minpts) {
319     int index = lcg_rand16(seed) % npoints;
320     while (index) {
321       ptr = (ptr == npoints - 1 ? 0 : ptr + 1);
322       for (j = 0; j < i; ++j) {
323         if (indices[j] == ptr) break;
324       }
325       if (j == i) index--;
326     }
327     indices[i++] = ptr;
328   }
329   return 1;
330 }
331 
332 typedef struct {
333   int num_inliers;
334   double variance;
335   int *inlier_indices;
336 } RANSAC_MOTION;
337 
338 // Return -1 if 'a' is a better motion, 1 if 'b' is better, 0 otherwise.
compare_motions(const void * arg_a,const void * arg_b)339 static int compare_motions(const void *arg_a, const void *arg_b) {
340   const RANSAC_MOTION *motion_a = (RANSAC_MOTION *)arg_a;
341   const RANSAC_MOTION *motion_b = (RANSAC_MOTION *)arg_b;
342 
343   if (motion_a->num_inliers > motion_b->num_inliers) return -1;
344   if (motion_a->num_inliers < motion_b->num_inliers) return 1;
345   if (motion_a->variance < motion_b->variance) return -1;
346   if (motion_a->variance > motion_b->variance) return 1;
347   return 0;
348 }
349 
is_better_motion(const RANSAC_MOTION * motion_a,const RANSAC_MOTION * motion_b)350 static int is_better_motion(const RANSAC_MOTION *motion_a,
351                             const RANSAC_MOTION *motion_b) {
352   return compare_motions(motion_a, motion_b) < 0;
353 }
354 
copy_points_at_indices(double * dest,const double * src,const int * indices,int num_points)355 static void copy_points_at_indices(double *dest, const double *src,
356                                    const int *indices, int num_points) {
357   for (int i = 0; i < num_points; ++i) {
358     const int index = indices[i];
359     dest[i * 2] = src[index * 2];
360     dest[i * 2 + 1] = src[index * 2 + 1];
361   }
362 }
363 
364 static const double kInfiniteVariance = 1e12;
365 
clear_motion(RANSAC_MOTION * motion,int num_points)366 static void clear_motion(RANSAC_MOTION *motion, int num_points) {
367   motion->num_inliers = 0;
368   motion->variance = kInfiniteVariance;
369   memset(motion->inlier_indices, 0,
370          sizeof(*motion->inlier_indices * num_points));
371 }
372 
ransac(const int * matched_points,int npoints,int * num_inliers_by_motion,double * params_by_motion,int num_desired_motions,const int minpts,IsDegenerateFunc is_degenerate,FindTransformationFunc find_transformation,ProjectPointsDoubleFunc projectpoints)373 static int ransac(const int *matched_points, int npoints,
374                   int *num_inliers_by_motion, double *params_by_motion,
375                   int num_desired_motions, const int minpts,
376                   IsDegenerateFunc is_degenerate,
377                   FindTransformationFunc find_transformation,
378                   ProjectPointsDoubleFunc projectpoints) {
379   int trial_count = 0;
380   int i = 0;
381   int ret_val = 0;
382 
383   unsigned int seed = (unsigned int)npoints;
384 
385   int indices[MAX_MINPTS] = { 0 };
386 
387   double *points1, *points2;
388   double *corners1, *corners2;
389   double *image1_coord;
390 
391   // Store information for the num_desired_motions best transformations found
392   // and the worst motion among them, as well as the motion currently under
393   // consideration.
394   RANSAC_MOTION *motions, *worst_kept_motion = NULL;
395   RANSAC_MOTION current_motion;
396 
397   // Store the parameters and the indices of the inlier points for the motion
398   // currently under consideration.
399   double params_this_motion[MAX_PARAMDIM];
400 
401   double *cnp1, *cnp2;
402 
403   for (i = 0; i < num_desired_motions; ++i) {
404     num_inliers_by_motion[i] = 0;
405   }
406   if (npoints < minpts * MINPTS_MULTIPLIER || npoints == 0) {
407     return 1;
408   }
409 
410   points1 = (double *)aom_malloc(sizeof(*points1) * npoints * 2);
411   points2 = (double *)aom_malloc(sizeof(*points2) * npoints * 2);
412   corners1 = (double *)aom_malloc(sizeof(*corners1) * npoints * 2);
413   corners2 = (double *)aom_malloc(sizeof(*corners2) * npoints * 2);
414   image1_coord = (double *)aom_malloc(sizeof(*image1_coord) * npoints * 2);
415 
416   motions =
417       (RANSAC_MOTION *)aom_malloc(sizeof(RANSAC_MOTION) * num_desired_motions);
418   for (i = 0; i < num_desired_motions; ++i) {
419     motions[i].inlier_indices =
420         (int *)aom_malloc(sizeof(*motions->inlier_indices) * npoints);
421     clear_motion(motions + i, npoints);
422   }
423   current_motion.inlier_indices =
424       (int *)aom_malloc(sizeof(*current_motion.inlier_indices) * npoints);
425   clear_motion(&current_motion, npoints);
426 
427   worst_kept_motion = motions;
428 
429   if (!(points1 && points2 && corners1 && corners2 && image1_coord && motions &&
430         current_motion.inlier_indices)) {
431     ret_val = 1;
432     goto finish_ransac;
433   }
434 
435   cnp1 = corners1;
436   cnp2 = corners2;
437   for (i = 0; i < npoints; ++i) {
438     *(cnp1++) = *(matched_points++);
439     *(cnp1++) = *(matched_points++);
440     *(cnp2++) = *(matched_points++);
441     *(cnp2++) = *(matched_points++);
442   }
443 
444   while (MIN_TRIALS > trial_count) {
445     double sum_distance = 0.0;
446     double sum_distance_squared = 0.0;
447 
448     clear_motion(&current_motion, npoints);
449 
450     int degenerate = 1;
451     int num_degenerate_iter = 0;
452 
453     while (degenerate) {
454       num_degenerate_iter++;
455       if (!get_rand_indices(npoints, minpts, indices, &seed)) {
456         ret_val = 1;
457         goto finish_ransac;
458       }
459 
460       copy_points_at_indices(points1, corners1, indices, minpts);
461       copy_points_at_indices(points2, corners2, indices, minpts);
462 
463       degenerate = is_degenerate(points1);
464       if (num_degenerate_iter > MAX_DEGENERATE_ITER) {
465         ret_val = 1;
466         goto finish_ransac;
467       }
468     }
469 
470     if (find_transformation(minpts, points1, points2, params_this_motion)) {
471       trial_count++;
472       continue;
473     }
474 
475     projectpoints(params_this_motion, corners1, image1_coord, npoints, 2, 2);
476 
477     for (i = 0; i < npoints; ++i) {
478       double dx = image1_coord[i * 2] - corners2[i * 2];
479       double dy = image1_coord[i * 2 + 1] - corners2[i * 2 + 1];
480       double distance = sqrt(dx * dx + dy * dy);
481 
482       if (distance < INLIER_THRESHOLD) {
483         current_motion.inlier_indices[current_motion.num_inliers++] = i;
484         sum_distance += distance;
485         sum_distance_squared += distance * distance;
486       }
487     }
488 
489     if (current_motion.num_inliers >= worst_kept_motion->num_inliers &&
490         current_motion.num_inliers > 1) {
491       double mean_distance;
492       mean_distance = sum_distance / ((double)current_motion.num_inliers);
493       current_motion.variance =
494           sum_distance_squared / ((double)current_motion.num_inliers - 1.0) -
495           mean_distance * mean_distance * ((double)current_motion.num_inliers) /
496               ((double)current_motion.num_inliers - 1.0);
497       if (is_better_motion(&current_motion, worst_kept_motion)) {
498         // This motion is better than the worst currently kept motion. Remember
499         // the inlier points and variance. The parameters for each kept motion
500         // will be recomputed later using only the inliers.
501         worst_kept_motion->num_inliers = current_motion.num_inliers;
502         worst_kept_motion->variance = current_motion.variance;
503         memcpy(worst_kept_motion->inlier_indices, current_motion.inlier_indices,
504                sizeof(*current_motion.inlier_indices) * npoints);
505         assert(npoints > 0);
506         // Determine the new worst kept motion and its num_inliers and variance.
507         for (i = 0; i < num_desired_motions; ++i) {
508           if (is_better_motion(worst_kept_motion, &motions[i])) {
509             worst_kept_motion = &motions[i];
510           }
511         }
512       }
513     }
514     trial_count++;
515   }
516 
517   // Sort the motions, best first.
518   qsort(motions, num_desired_motions, sizeof(RANSAC_MOTION), compare_motions);
519 
520   // Recompute the motions using only the inliers.
521   for (i = 0; i < num_desired_motions; ++i) {
522     if (motions[i].num_inliers >= minpts) {
523       copy_points_at_indices(points1, corners1, motions[i].inlier_indices,
524                              motions[i].num_inliers);
525       copy_points_at_indices(points2, corners2, motions[i].inlier_indices,
526                              motions[i].num_inliers);
527 
528       find_transformation(motions[i].num_inliers, points1, points2,
529                           params_by_motion + (MAX_PARAMDIM - 1) * i);
530     }
531     num_inliers_by_motion[i] = motions[i].num_inliers;
532   }
533 
534 finish_ransac:
535   aom_free(points1);
536   aom_free(points2);
537   aom_free(corners1);
538   aom_free(corners2);
539   aom_free(image1_coord);
540   aom_free(current_motion.inlier_indices);
541   for (i = 0; i < num_desired_motions; ++i) {
542     aom_free(motions[i].inlier_indices);
543   }
544   aom_free(motions);
545 
546   return ret_val;
547 }
548 
ransac_double_prec(const double * matched_points,int npoints,int * num_inliers_by_motion,double * params_by_motion,int num_desired_motions,const int minpts,IsDegenerateFunc is_degenerate,FindTransformationFunc find_transformation,ProjectPointsDoubleFunc projectpoints)549 static int ransac_double_prec(const double *matched_points, int npoints,
550                               int *num_inliers_by_motion,
551                               double *params_by_motion, int num_desired_motions,
552                               const int minpts, IsDegenerateFunc is_degenerate,
553                               FindTransformationFunc find_transformation,
554                               ProjectPointsDoubleFunc projectpoints) {
555   int trial_count = 0;
556   int i = 0;
557   int ret_val = 0;
558 
559   unsigned int seed = (unsigned int)npoints;
560 
561   int indices[MAX_MINPTS] = { 0 };
562 
563   double *points1, *points2;
564   double *corners1, *corners2;
565   double *image1_coord;
566 
567   // Store information for the num_desired_motions best transformations found
568   // and the worst motion among them, as well as the motion currently under
569   // consideration.
570   RANSAC_MOTION *motions, *worst_kept_motion = NULL;
571   RANSAC_MOTION current_motion;
572 
573   // Store the parameters and the indices of the inlier points for the motion
574   // currently under consideration.
575   double params_this_motion[MAX_PARAMDIM];
576 
577   double *cnp1, *cnp2;
578 
579   for (i = 0; i < num_desired_motions; ++i) {
580     num_inliers_by_motion[i] = 0;
581   }
582   if (npoints < minpts * MINPTS_MULTIPLIER || npoints == 0) {
583     return 1;
584   }
585 
586   points1 = (double *)aom_malloc(sizeof(*points1) * npoints * 2);
587   points2 = (double *)aom_malloc(sizeof(*points2) * npoints * 2);
588   corners1 = (double *)aom_malloc(sizeof(*corners1) * npoints * 2);
589   corners2 = (double *)aom_malloc(sizeof(*corners2) * npoints * 2);
590   image1_coord = (double *)aom_malloc(sizeof(*image1_coord) * npoints * 2);
591 
592   motions =
593       (RANSAC_MOTION *)aom_malloc(sizeof(RANSAC_MOTION) * num_desired_motions);
594   for (i = 0; i < num_desired_motions; ++i) {
595     motions[i].inlier_indices =
596         (int *)aom_malloc(sizeof(*motions->inlier_indices) * npoints);
597     clear_motion(motions + i, npoints);
598   }
599   current_motion.inlier_indices =
600       (int *)aom_malloc(sizeof(*current_motion.inlier_indices) * npoints);
601   clear_motion(&current_motion, npoints);
602 
603   worst_kept_motion = motions;
604 
605   if (!(points1 && points2 && corners1 && corners2 && image1_coord && motions &&
606         current_motion.inlier_indices)) {
607     ret_val = 1;
608     goto finish_ransac;
609   }
610 
611   cnp1 = corners1;
612   cnp2 = corners2;
613   for (i = 0; i < npoints; ++i) {
614     *(cnp1++) = *(matched_points++);
615     *(cnp1++) = *(matched_points++);
616     *(cnp2++) = *(matched_points++);
617     *(cnp2++) = *(matched_points++);
618   }
619 
620   while (MIN_TRIALS > trial_count) {
621     double sum_distance = 0.0;
622     double sum_distance_squared = 0.0;
623 
624     clear_motion(&current_motion, npoints);
625 
626     int degenerate = 1;
627     int num_degenerate_iter = 0;
628 
629     while (degenerate) {
630       num_degenerate_iter++;
631       if (!get_rand_indices(npoints, minpts, indices, &seed)) {
632         ret_val = 1;
633         goto finish_ransac;
634       }
635 
636       copy_points_at_indices(points1, corners1, indices, minpts);
637       copy_points_at_indices(points2, corners2, indices, minpts);
638 
639       degenerate = is_degenerate(points1);
640       if (num_degenerate_iter > MAX_DEGENERATE_ITER) {
641         ret_val = 1;
642         goto finish_ransac;
643       }
644     }
645 
646     if (find_transformation(minpts, points1, points2, params_this_motion)) {
647       trial_count++;
648       continue;
649     }
650 
651     projectpoints(params_this_motion, corners1, image1_coord, npoints, 2, 2);
652 
653     for (i = 0; i < npoints; ++i) {
654       double dx = image1_coord[i * 2] - corners2[i * 2];
655       double dy = image1_coord[i * 2 + 1] - corners2[i * 2 + 1];
656       double distance = sqrt(dx * dx + dy * dy);
657 
658       if (distance < INLIER_THRESHOLD) {
659         current_motion.inlier_indices[current_motion.num_inliers++] = i;
660         sum_distance += distance;
661         sum_distance_squared += distance * distance;
662       }
663     }
664 
665     if (current_motion.num_inliers >= worst_kept_motion->num_inliers &&
666         current_motion.num_inliers > 1) {
667       double mean_distance;
668       mean_distance = sum_distance / ((double)current_motion.num_inliers);
669       current_motion.variance =
670           sum_distance_squared / ((double)current_motion.num_inliers - 1.0) -
671           mean_distance * mean_distance * ((double)current_motion.num_inliers) /
672               ((double)current_motion.num_inliers - 1.0);
673       if (is_better_motion(&current_motion, worst_kept_motion)) {
674         // This motion is better than the worst currently kept motion. Remember
675         // the inlier points and variance. The parameters for each kept motion
676         // will be recomputed later using only the inliers.
677         worst_kept_motion->num_inliers = current_motion.num_inliers;
678         worst_kept_motion->variance = current_motion.variance;
679         memcpy(worst_kept_motion->inlier_indices, current_motion.inlier_indices,
680                sizeof(*current_motion.inlier_indices) * npoints);
681         assert(npoints > 0);
682         // Determine the new worst kept motion and its num_inliers and variance.
683         for (i = 0; i < num_desired_motions; ++i) {
684           if (is_better_motion(worst_kept_motion, &motions[i])) {
685             worst_kept_motion = &motions[i];
686           }
687         }
688       }
689     }
690     trial_count++;
691   }
692 
693   // Sort the motions, best first.
694   qsort(motions, num_desired_motions, sizeof(RANSAC_MOTION), compare_motions);
695 
696   // Recompute the motions using only the inliers.
697   for (i = 0; i < num_desired_motions; ++i) {
698     if (motions[i].num_inliers >= minpts) {
699       copy_points_at_indices(points1, corners1, motions[i].inlier_indices,
700                              motions[i].num_inliers);
701       copy_points_at_indices(points2, corners2, motions[i].inlier_indices,
702                              motions[i].num_inliers);
703 
704       find_transformation(motions[i].num_inliers, points1, points2,
705                           params_by_motion + (MAX_PARAMDIM - 1) * i);
706     }
707     num_inliers_by_motion[i] = motions[i].num_inliers;
708   }
709 
710 finish_ransac:
711   aom_free(points1);
712   aom_free(points2);
713   aom_free(corners1);
714   aom_free(corners2);
715   aom_free(image1_coord);
716   aom_free(current_motion.inlier_indices);
717   for (i = 0; i < num_desired_motions; ++i) {
718     aom_free(motions[i].inlier_indices);
719   }
720   aom_free(motions);
721 
722   return ret_val;
723 }
724 
is_collinear3(double * p1,double * p2,double * p3)725 static int is_collinear3(double *p1, double *p2, double *p3) {
726   static const double collinear_eps = 1e-3;
727   const double v =
728       (p2[0] - p1[0]) * (p3[1] - p1[1]) - (p2[1] - p1[1]) * (p3[0] - p1[0]);
729   return fabs(v) < collinear_eps;
730 }
731 
is_degenerate_translation(double * p)732 static int is_degenerate_translation(double *p) {
733   return (p[0] - p[2]) * (p[0] - p[2]) + (p[1] - p[3]) * (p[1] - p[3]) <= 2;
734 }
735 
is_degenerate_affine(double * p)736 static int is_degenerate_affine(double *p) {
737   return is_collinear3(p, p + 2, p + 4);
738 }
739 
ransac_translation(int * matched_points,int npoints,int * num_inliers_by_motion,double * params_by_motion,int num_desired_motions)740 int ransac_translation(int *matched_points, int npoints,
741                        int *num_inliers_by_motion, double *params_by_motion,
742                        int num_desired_motions) {
743   return ransac(matched_points, npoints, num_inliers_by_motion,
744                 params_by_motion, num_desired_motions, 3,
745                 is_degenerate_translation, find_translation,
746                 project_points_double_translation);
747 }
748 
ransac_rotzoom(int * matched_points,int npoints,int * num_inliers_by_motion,double * params_by_motion,int num_desired_motions)749 int ransac_rotzoom(int *matched_points, int npoints, int *num_inliers_by_motion,
750                    double *params_by_motion, int num_desired_motions) {
751   return ransac(matched_points, npoints, num_inliers_by_motion,
752                 params_by_motion, num_desired_motions, 3, is_degenerate_affine,
753                 find_rotzoom, project_points_double_rotzoom);
754 }
755 
ransac_affine(int * matched_points,int npoints,int * num_inliers_by_motion,double * params_by_motion,int num_desired_motions)756 int ransac_affine(int *matched_points, int npoints, int *num_inliers_by_motion,
757                   double *params_by_motion, int num_desired_motions) {
758   return ransac(matched_points, npoints, num_inliers_by_motion,
759                 params_by_motion, num_desired_motions, 3, is_degenerate_affine,
760                 find_affine, project_points_double_affine);
761 }
762 
ransac_translation_double_prec(double * matched_points,int npoints,int * num_inliers_by_motion,double * params_by_motion,int num_desired_motions)763 int ransac_translation_double_prec(double *matched_points, int npoints,
764                                    int *num_inliers_by_motion,
765                                    double *params_by_motion,
766                                    int num_desired_motions) {
767   return ransac_double_prec(matched_points, npoints, num_inliers_by_motion,
768                             params_by_motion, num_desired_motions, 3,
769                             is_degenerate_translation, find_translation,
770                             project_points_double_translation);
771 }
772 
ransac_rotzoom_double_prec(double * matched_points,int npoints,int * num_inliers_by_motion,double * params_by_motion,int num_desired_motions)773 int ransac_rotzoom_double_prec(double *matched_points, int npoints,
774                                int *num_inliers_by_motion,
775                                double *params_by_motion,
776                                int num_desired_motions) {
777   return ransac_double_prec(matched_points, npoints, num_inliers_by_motion,
778                             params_by_motion, num_desired_motions, 3,
779                             is_degenerate_affine, find_rotzoom,
780                             project_points_double_rotzoom);
781 }
782 
ransac_affine_double_prec(double * matched_points,int npoints,int * num_inliers_by_motion,double * params_by_motion,int num_desired_motions)783 int ransac_affine_double_prec(double *matched_points, int npoints,
784                               int *num_inliers_by_motion,
785                               double *params_by_motion,
786                               int num_desired_motions) {
787   return ransac_double_prec(matched_points, npoints, num_inliers_by_motion,
788                             params_by_motion, num_desired_motions, 3,
789                             is_degenerate_affine, find_affine,
790                             project_points_double_affine);
791 }
792