1 //===- LiveInterval.cpp - Live Interval Representation --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveRange and LiveInterval classes.  Given some
11 // numbering of each the machine instructions an interval [i, j) is said to be a
12 // live range for register v if there is no instruction with number j' >= j
13 // such that v is live at j' and there is no instruction with number i' < i such
14 // that v is live at i'. In this implementation ranges can have holes,
15 // i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
16 // individual segment is represented as an instance of LiveRange::Segment,
17 // and the whole range is represented as an instance of LiveRange.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #include "llvm/CodeGen/LiveInterval.h"
22 #include "LiveRangeUtils.h"
23 #include "RegisterCoalescer.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/CodeGen/LiveIntervals.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/SlotIndexes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/Config/llvm-config.h"
37 #include "llvm/MC/LaneBitmask.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstddef>
44 #include <iterator>
45 #include <utility>
46 
47 using namespace llvm;
48 
49 namespace {
50 
51 //===----------------------------------------------------------------------===//
52 // Implementation of various methods necessary for calculation of live ranges.
53 // The implementation of the methods abstracts from the concrete type of the
54 // segment collection.
55 //
56 // Implementation of the class follows the Template design pattern. The base
57 // class contains generic algorithms that call collection-specific methods,
58 // which are provided in concrete subclasses. In order to avoid virtual calls
59 // these methods are provided by means of C++ template instantiation.
60 // The base class calls the methods of the subclass through method impl(),
61 // which casts 'this' pointer to the type of the subclass.
62 //
63 //===----------------------------------------------------------------------===//
64 
65 template <typename ImplT, typename IteratorT, typename CollectionT>
66 class CalcLiveRangeUtilBase {
67 protected:
68   LiveRange *LR;
69 
70 protected:
CalcLiveRangeUtilBase(LiveRange * LR)71   CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {}
72 
73 public:
74   using Segment = LiveRange::Segment;
75   using iterator = IteratorT;
76 
77   /// A counterpart of LiveRange::createDeadDef: Make sure the range has a
78   /// value defined at @p Def.
79   /// If @p ForVNI is null, and there is no value defined at @p Def, a new
80   /// value will be allocated using @p VNInfoAllocator.
81   /// If @p ForVNI is null, the return value is the value defined at @p Def,
82   /// either a pre-existing one, or the one newly created.
83   /// If @p ForVNI is not null, then @p Def should be the location where
84   /// @p ForVNI is defined. If the range does not have a value defined at
85   /// @p Def, the value @p ForVNI will be used instead of allocating a new
86   /// one. If the range already has a value defined at @p Def, it must be
87   /// same as @p ForVNI. In either case, @p ForVNI will be the return value.
createDeadDef(SlotIndex Def,VNInfo::Allocator * VNInfoAllocator,VNInfo * ForVNI)88   VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator *VNInfoAllocator,
89                         VNInfo *ForVNI) {
90     assert(!Def.isDead() && "Cannot define a value at the dead slot");
91     assert((!ForVNI || ForVNI->def == Def) &&
92            "If ForVNI is specified, it must match Def");
93     iterator I = impl().find(Def);
94     if (I == segments().end()) {
95       VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
96       impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI));
97       return VNI;
98     }
99 
100     Segment *S = segmentAt(I);
101     if (SlotIndex::isSameInstr(Def, S->start)) {
102       assert((!ForVNI || ForVNI == S->valno) && "Value number mismatch");
103       assert(S->valno->def == S->start && "Inconsistent existing value def");
104 
105       // It is possible to have both normal and early-clobber defs of the same
106       // register on an instruction. It doesn't make a lot of sense, but it is
107       // possible to specify in inline assembly.
108       //
109       // Just convert everything to early-clobber.
110       Def = std::min(Def, S->start);
111       if (Def != S->start)
112         S->start = S->valno->def = Def;
113       return S->valno;
114     }
115     assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def");
116     VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
117     segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI));
118     return VNI;
119   }
120 
extendInBlock(SlotIndex StartIdx,SlotIndex Use)121   VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) {
122     if (segments().empty())
123       return nullptr;
124     iterator I =
125       impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr));
126     if (I == segments().begin())
127       return nullptr;
128     --I;
129     if (I->end <= StartIdx)
130       return nullptr;
131     if (I->end < Use)
132       extendSegmentEndTo(I, Use);
133     return I->valno;
134   }
135 
extendInBlock(ArrayRef<SlotIndex> Undefs,SlotIndex StartIdx,SlotIndex Use)136   std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs,
137       SlotIndex StartIdx, SlotIndex Use) {
138     if (segments().empty())
139       return std::make_pair(nullptr, false);
140     SlotIndex BeforeUse = Use.getPrevSlot();
141     iterator I = impl().findInsertPos(Segment(BeforeUse, Use, nullptr));
142     if (I == segments().begin())
143       return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
144     --I;
145     if (I->end <= StartIdx)
146       return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
147     if (I->end < Use) {
148       if (LR->isUndefIn(Undefs, I->end, BeforeUse))
149         return std::make_pair(nullptr, true);
150       extendSegmentEndTo(I, Use);
151     }
152     return std::make_pair(I->valno, false);
153   }
154 
155   /// This method is used when we want to extend the segment specified
156   /// by I to end at the specified endpoint. To do this, we should
157   /// merge and eliminate all segments that this will overlap
158   /// with. The iterator is not invalidated.
extendSegmentEndTo(iterator I,SlotIndex NewEnd)159   void extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
160     assert(I != segments().end() && "Not a valid segment!");
161     Segment *S = segmentAt(I);
162     VNInfo *ValNo = I->valno;
163 
164     // Search for the first segment that we can't merge with.
165     iterator MergeTo = std::next(I);
166     for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo)
167       assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
168 
169     // If NewEnd was in the middle of a segment, make sure to get its endpoint.
170     S->end = std::max(NewEnd, std::prev(MergeTo)->end);
171 
172     // If the newly formed segment now touches the segment after it and if they
173     // have the same value number, merge the two segments into one segment.
174     if (MergeTo != segments().end() && MergeTo->start <= I->end &&
175         MergeTo->valno == ValNo) {
176       S->end = MergeTo->end;
177       ++MergeTo;
178     }
179 
180     // Erase any dead segments.
181     segments().erase(std::next(I), MergeTo);
182   }
183 
184   /// This method is used when we want to extend the segment specified
185   /// by I to start at the specified endpoint.  To do this, we should
186   /// merge and eliminate all segments that this will overlap with.
extendSegmentStartTo(iterator I,SlotIndex NewStart)187   iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) {
188     assert(I != segments().end() && "Not a valid segment!");
189     Segment *S = segmentAt(I);
190     VNInfo *ValNo = I->valno;
191 
192     // Search for the first segment that we can't merge with.
193     iterator MergeTo = I;
194     do {
195       if (MergeTo == segments().begin()) {
196         S->start = NewStart;
197         segments().erase(MergeTo, I);
198         return I;
199       }
200       assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
201       --MergeTo;
202     } while (NewStart <= MergeTo->start);
203 
204     // If we start in the middle of another segment, just delete a range and
205     // extend that segment.
206     if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
207       segmentAt(MergeTo)->end = S->end;
208     } else {
209       // Otherwise, extend the segment right after.
210       ++MergeTo;
211       Segment *MergeToSeg = segmentAt(MergeTo);
212       MergeToSeg->start = NewStart;
213       MergeToSeg->end = S->end;
214     }
215 
216     segments().erase(std::next(MergeTo), std::next(I));
217     return MergeTo;
218   }
219 
addSegment(Segment S)220   iterator addSegment(Segment S) {
221     SlotIndex Start = S.start, End = S.end;
222     iterator I = impl().findInsertPos(S);
223 
224     // If the inserted segment starts in the middle or right at the end of
225     // another segment, just extend that segment to contain the segment of S.
226     if (I != segments().begin()) {
227       iterator B = std::prev(I);
228       if (S.valno == B->valno) {
229         if (B->start <= Start && B->end >= Start) {
230           extendSegmentEndTo(B, End);
231           return B;
232         }
233       } else {
234         // Check to make sure that we are not overlapping two live segments with
235         // different valno's.
236         assert(B->end <= Start &&
237                "Cannot overlap two segments with differing ValID's"
238                " (did you def the same reg twice in a MachineInstr?)");
239       }
240     }
241 
242     // Otherwise, if this segment ends in the middle of, or right next
243     // to, another segment, merge it into that segment.
244     if (I != segments().end()) {
245       if (S.valno == I->valno) {
246         if (I->start <= End) {
247           I = extendSegmentStartTo(I, Start);
248 
249           // If S is a complete superset of a segment, we may need to grow its
250           // endpoint as well.
251           if (End > I->end)
252             extendSegmentEndTo(I, End);
253           return I;
254         }
255       } else {
256         // Check to make sure that we are not overlapping two live segments with
257         // different valno's.
258         assert(I->start >= End &&
259                "Cannot overlap two segments with differing ValID's");
260       }
261     }
262 
263     // Otherwise, this is just a new segment that doesn't interact with
264     // anything.
265     // Insert it.
266     return segments().insert(I, S);
267   }
268 
269 private:
impl()270   ImplT &impl() { return *static_cast<ImplT *>(this); }
271 
segments()272   CollectionT &segments() { return impl().segmentsColl(); }
273 
segmentAt(iterator I)274   Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); }
275 };
276 
277 //===----------------------------------------------------------------------===//
278 //   Instantiation of the methods for calculation of live ranges
279 //   based on a segment vector.
280 //===----------------------------------------------------------------------===//
281 
282 class CalcLiveRangeUtilVector;
283 using CalcLiveRangeUtilVectorBase =
284     CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator,
285                           LiveRange::Segments>;
286 
287 class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase {
288 public:
CalcLiveRangeUtilVector(LiveRange * LR)289   CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {}
290 
291 private:
292   friend CalcLiveRangeUtilVectorBase;
293 
segmentsColl()294   LiveRange::Segments &segmentsColl() { return LR->segments; }
295 
insertAtEnd(const Segment & S)296   void insertAtEnd(const Segment &S) { LR->segments.push_back(S); }
297 
find(SlotIndex Pos)298   iterator find(SlotIndex Pos) { return LR->find(Pos); }
299 
findInsertPos(Segment S)300   iterator findInsertPos(Segment S) {
301     return std::upper_bound(LR->begin(), LR->end(), S.start);
302   }
303 };
304 
305 //===----------------------------------------------------------------------===//
306 //   Instantiation of the methods for calculation of live ranges
307 //   based on a segment set.
308 //===----------------------------------------------------------------------===//
309 
310 class CalcLiveRangeUtilSet;
311 using CalcLiveRangeUtilSetBase =
312     CalcLiveRangeUtilBase<CalcLiveRangeUtilSet, LiveRange::SegmentSet::iterator,
313                           LiveRange::SegmentSet>;
314 
315 class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase {
316 public:
CalcLiveRangeUtilSet(LiveRange * LR)317   CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {}
318 
319 private:
320   friend CalcLiveRangeUtilSetBase;
321 
segmentsColl()322   LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; }
323 
insertAtEnd(const Segment & S)324   void insertAtEnd(const Segment &S) {
325     LR->segmentSet->insert(LR->segmentSet->end(), S);
326   }
327 
find(SlotIndex Pos)328   iterator find(SlotIndex Pos) {
329     iterator I =
330         LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr));
331     if (I == LR->segmentSet->begin())
332       return I;
333     iterator PrevI = std::prev(I);
334     if (Pos < (*PrevI).end)
335       return PrevI;
336     return I;
337   }
338 
findInsertPos(Segment S)339   iterator findInsertPos(Segment S) {
340     iterator I = LR->segmentSet->upper_bound(S);
341     if (I != LR->segmentSet->end() && !(S.start < *I))
342       ++I;
343     return I;
344   }
345 };
346 
347 } // end anonymous namespace
348 
349 //===----------------------------------------------------------------------===//
350 //   LiveRange methods
351 //===----------------------------------------------------------------------===//
352 
find(SlotIndex Pos)353 LiveRange::iterator LiveRange::find(SlotIndex Pos) {
354   // This algorithm is basically std::upper_bound.
355   // Unfortunately, std::upper_bound cannot be used with mixed types until we
356   // adopt C++0x. Many libraries can do it, but not all.
357   if (empty() || Pos >= endIndex())
358     return end();
359   iterator I = begin();
360   size_t Len = size();
361   do {
362     size_t Mid = Len >> 1;
363     if (Pos < I[Mid].end) {
364       Len = Mid;
365     } else {
366       I += Mid + 1;
367       Len -= Mid + 1;
368     }
369   } while (Len);
370   return I;
371 }
372 
createDeadDef(SlotIndex Def,VNInfo::Allocator & VNIAlloc)373 VNInfo *LiveRange::createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc) {
374   // Use the segment set, if it is available.
375   if (segmentSet != nullptr)
376     return CalcLiveRangeUtilSet(this).createDeadDef(Def, &VNIAlloc, nullptr);
377   // Otherwise use the segment vector.
378   return CalcLiveRangeUtilVector(this).createDeadDef(Def, &VNIAlloc, nullptr);
379 }
380 
createDeadDef(VNInfo * VNI)381 VNInfo *LiveRange::createDeadDef(VNInfo *VNI) {
382   // Use the segment set, if it is available.
383   if (segmentSet != nullptr)
384     return CalcLiveRangeUtilSet(this).createDeadDef(VNI->def, nullptr, VNI);
385   // Otherwise use the segment vector.
386   return CalcLiveRangeUtilVector(this).createDeadDef(VNI->def, nullptr, VNI);
387 }
388 
389 // overlaps - Return true if the intersection of the two live ranges is
390 // not empty.
391 //
392 // An example for overlaps():
393 //
394 // 0: A = ...
395 // 4: B = ...
396 // 8: C = A + B ;; last use of A
397 //
398 // The live ranges should look like:
399 //
400 // A = [3, 11)
401 // B = [7, x)
402 // C = [11, y)
403 //
404 // A->overlaps(C) should return false since we want to be able to join
405 // A and C.
406 //
overlapsFrom(const LiveRange & other,const_iterator StartPos) const407 bool LiveRange::overlapsFrom(const LiveRange& other,
408                              const_iterator StartPos) const {
409   assert(!empty() && "empty range");
410   const_iterator i = begin();
411   const_iterator ie = end();
412   const_iterator j = StartPos;
413   const_iterator je = other.end();
414 
415   assert((StartPos->start <= i->start || StartPos == other.begin()) &&
416          StartPos != other.end() && "Bogus start position hint!");
417 
418   if (i->start < j->start) {
419     i = std::upper_bound(i, ie, j->start);
420     if (i != begin()) --i;
421   } else if (j->start < i->start) {
422     ++StartPos;
423     if (StartPos != other.end() && StartPos->start <= i->start) {
424       assert(StartPos < other.end() && i < end());
425       j = std::upper_bound(j, je, i->start);
426       if (j != other.begin()) --j;
427     }
428   } else {
429     return true;
430   }
431 
432   if (j == je) return false;
433 
434   while (i != ie) {
435     if (i->start > j->start) {
436       std::swap(i, j);
437       std::swap(ie, je);
438     }
439 
440     if (i->end > j->start)
441       return true;
442     ++i;
443   }
444 
445   return false;
446 }
447 
overlaps(const LiveRange & Other,const CoalescerPair & CP,const SlotIndexes & Indexes) const448 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
449                          const SlotIndexes &Indexes) const {
450   assert(!empty() && "empty range");
451   if (Other.empty())
452     return false;
453 
454   // Use binary searches to find initial positions.
455   const_iterator I = find(Other.beginIndex());
456   const_iterator IE = end();
457   if (I == IE)
458     return false;
459   const_iterator J = Other.find(I->start);
460   const_iterator JE = Other.end();
461   if (J == JE)
462     return false;
463 
464   while (true) {
465     // J has just been advanced to satisfy:
466     assert(J->end >= I->start);
467     // Check for an overlap.
468     if (J->start < I->end) {
469       // I and J are overlapping. Find the later start.
470       SlotIndex Def = std::max(I->start, J->start);
471       // Allow the overlap if Def is a coalescable copy.
472       if (Def.isBlock() ||
473           !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
474         return true;
475     }
476     // Advance the iterator that ends first to check for more overlaps.
477     if (J->end > I->end) {
478       std::swap(I, J);
479       std::swap(IE, JE);
480     }
481     // Advance J until J->end >= I->start.
482     do
483       if (++J == JE)
484         return false;
485     while (J->end < I->start);
486   }
487 }
488 
489 /// overlaps - Return true if the live range overlaps an interval specified
490 /// by [Start, End).
overlaps(SlotIndex Start,SlotIndex End) const491 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
492   assert(Start < End && "Invalid range");
493   const_iterator I = std::lower_bound(begin(), end(), End);
494   return I != begin() && (--I)->end > Start;
495 }
496 
covers(const LiveRange & Other) const497 bool LiveRange::covers(const LiveRange &Other) const {
498   if (empty())
499     return Other.empty();
500 
501   const_iterator I = begin();
502   for (const Segment &O : Other.segments) {
503     I = advanceTo(I, O.start);
504     if (I == end() || I->start > O.start)
505       return false;
506 
507     // Check adjacent live segments and see if we can get behind O.end.
508     while (I->end < O.end) {
509       const_iterator Last = I;
510       // Get next segment and abort if it was not adjacent.
511       ++I;
512       if (I == end() || Last->end != I->start)
513         return false;
514     }
515   }
516   return true;
517 }
518 
519 /// ValNo is dead, remove it.  If it is the largest value number, just nuke it
520 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so
521 /// it can be nuked later.
markValNoForDeletion(VNInfo * ValNo)522 void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
523   if (ValNo->id == getNumValNums()-1) {
524     do {
525       valnos.pop_back();
526     } while (!valnos.empty() && valnos.back()->isUnused());
527   } else {
528     ValNo->markUnused();
529   }
530 }
531 
532 /// RenumberValues - Renumber all values in order of appearance and delete the
533 /// remaining unused values.
RenumberValues()534 void LiveRange::RenumberValues() {
535   SmallPtrSet<VNInfo*, 8> Seen;
536   valnos.clear();
537   for (const Segment &S : segments) {
538     VNInfo *VNI = S.valno;
539     if (!Seen.insert(VNI).second)
540       continue;
541     assert(!VNI->isUnused() && "Unused valno used by live segment");
542     VNI->id = (unsigned)valnos.size();
543     valnos.push_back(VNI);
544   }
545 }
546 
addSegmentToSet(Segment S)547 void LiveRange::addSegmentToSet(Segment S) {
548   CalcLiveRangeUtilSet(this).addSegment(S);
549 }
550 
addSegment(Segment S)551 LiveRange::iterator LiveRange::addSegment(Segment S) {
552   // Use the segment set, if it is available.
553   if (segmentSet != nullptr) {
554     addSegmentToSet(S);
555     return end();
556   }
557   // Otherwise use the segment vector.
558   return CalcLiveRangeUtilVector(this).addSegment(S);
559 }
560 
append(const Segment S)561 void LiveRange::append(const Segment S) {
562   // Check that the segment belongs to the back of the list.
563   assert(segments.empty() || segments.back().end <= S.start);
564   segments.push_back(S);
565 }
566 
extendInBlock(ArrayRef<SlotIndex> Undefs,SlotIndex StartIdx,SlotIndex Kill)567 std::pair<VNInfo*,bool> LiveRange::extendInBlock(ArrayRef<SlotIndex> Undefs,
568     SlotIndex StartIdx, SlotIndex Kill) {
569   // Use the segment set, if it is available.
570   if (segmentSet != nullptr)
571     return CalcLiveRangeUtilSet(this).extendInBlock(Undefs, StartIdx, Kill);
572   // Otherwise use the segment vector.
573   return CalcLiveRangeUtilVector(this).extendInBlock(Undefs, StartIdx, Kill);
574 }
575 
extendInBlock(SlotIndex StartIdx,SlotIndex Kill)576 VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
577   // Use the segment set, if it is available.
578   if (segmentSet != nullptr)
579     return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill);
580   // Otherwise use the segment vector.
581   return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill);
582 }
583 
584 /// Remove the specified segment from this range.  Note that the segment must
585 /// be in a single Segment in its entirety.
removeSegment(SlotIndex Start,SlotIndex End,bool RemoveDeadValNo)586 void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
587                               bool RemoveDeadValNo) {
588   // Find the Segment containing this span.
589   iterator I = find(Start);
590   assert(I != end() && "Segment is not in range!");
591   assert(I->containsInterval(Start, End)
592          && "Segment is not entirely in range!");
593 
594   // If the span we are removing is at the start of the Segment, adjust it.
595   VNInfo *ValNo = I->valno;
596   if (I->start == Start) {
597     if (I->end == End) {
598       if (RemoveDeadValNo) {
599         // Check if val# is dead.
600         bool isDead = true;
601         for (const_iterator II = begin(), EE = end(); II != EE; ++II)
602           if (II != I && II->valno == ValNo) {
603             isDead = false;
604             break;
605           }
606         if (isDead) {
607           // Now that ValNo is dead, remove it.
608           markValNoForDeletion(ValNo);
609         }
610       }
611 
612       segments.erase(I);  // Removed the whole Segment.
613     } else
614       I->start = End;
615     return;
616   }
617 
618   // Otherwise if the span we are removing is at the end of the Segment,
619   // adjust the other way.
620   if (I->end == End) {
621     I->end = Start;
622     return;
623   }
624 
625   // Otherwise, we are splitting the Segment into two pieces.
626   SlotIndex OldEnd = I->end;
627   I->end = Start;   // Trim the old segment.
628 
629   // Insert the new one.
630   segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
631 }
632 
633 /// removeValNo - Remove all the segments defined by the specified value#.
634 /// Also remove the value# from value# list.
removeValNo(VNInfo * ValNo)635 void LiveRange::removeValNo(VNInfo *ValNo) {
636   if (empty()) return;
637   segments.erase(remove_if(*this, [ValNo](const Segment &S) {
638     return S.valno == ValNo;
639   }), end());
640   // Now that ValNo is dead, remove it.
641   markValNoForDeletion(ValNo);
642 }
643 
join(LiveRange & Other,const int * LHSValNoAssignments,const int * RHSValNoAssignments,SmallVectorImpl<VNInfo * > & NewVNInfo)644 void LiveRange::join(LiveRange &Other,
645                      const int *LHSValNoAssignments,
646                      const int *RHSValNoAssignments,
647                      SmallVectorImpl<VNInfo *> &NewVNInfo) {
648   verify();
649 
650   // Determine if any of our values are mapped.  This is uncommon, so we want
651   // to avoid the range scan if not.
652   bool MustMapCurValNos = false;
653   unsigned NumVals = getNumValNums();
654   unsigned NumNewVals = NewVNInfo.size();
655   for (unsigned i = 0; i != NumVals; ++i) {
656     unsigned LHSValID = LHSValNoAssignments[i];
657     if (i != LHSValID ||
658         (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
659       MustMapCurValNos = true;
660       break;
661     }
662   }
663 
664   // If we have to apply a mapping to our base range assignment, rewrite it now.
665   if (MustMapCurValNos && !empty()) {
666     // Map the first live range.
667 
668     iterator OutIt = begin();
669     OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
670     for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
671       VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
672       assert(nextValNo && "Huh?");
673 
674       // If this live range has the same value # as its immediate predecessor,
675       // and if they are neighbors, remove one Segment.  This happens when we
676       // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
677       if (OutIt->valno == nextValNo && OutIt->end == I->start) {
678         OutIt->end = I->end;
679       } else {
680         // Didn't merge. Move OutIt to the next segment,
681         ++OutIt;
682         OutIt->valno = nextValNo;
683         if (OutIt != I) {
684           OutIt->start = I->start;
685           OutIt->end = I->end;
686         }
687       }
688     }
689     // If we merge some segments, chop off the end.
690     ++OutIt;
691     segments.erase(OutIt, end());
692   }
693 
694   // Rewrite Other values before changing the VNInfo ids.
695   // This can leave Other in an invalid state because we're not coalescing
696   // touching segments that now have identical values. That's OK since Other is
697   // not supposed to be valid after calling join();
698   for (Segment &S : Other.segments)
699     S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]];
700 
701   // Update val# info. Renumber them and make sure they all belong to this
702   // LiveRange now. Also remove dead val#'s.
703   unsigned NumValNos = 0;
704   for (unsigned i = 0; i < NumNewVals; ++i) {
705     VNInfo *VNI = NewVNInfo[i];
706     if (VNI) {
707       if (NumValNos >= NumVals)
708         valnos.push_back(VNI);
709       else
710         valnos[NumValNos] = VNI;
711       VNI->id = NumValNos++;  // Renumber val#.
712     }
713   }
714   if (NumNewVals < NumVals)
715     valnos.resize(NumNewVals);  // shrinkify
716 
717   // Okay, now insert the RHS live segments into the LHS.
718   LiveRangeUpdater Updater(this);
719   for (Segment &S : Other.segments)
720     Updater.add(S);
721 }
722 
723 /// Merge all of the segments in RHS into this live range as the specified
724 /// value number.  The segments in RHS are allowed to overlap with segments in
725 /// the current range, but only if the overlapping segments have the
726 /// specified value number.
MergeSegmentsInAsValue(const LiveRange & RHS,VNInfo * LHSValNo)727 void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
728                                        VNInfo *LHSValNo) {
729   LiveRangeUpdater Updater(this);
730   for (const Segment &S : RHS.segments)
731     Updater.add(S.start, S.end, LHSValNo);
732 }
733 
734 /// MergeValueInAsValue - Merge all of the live segments of a specific val#
735 /// in RHS into this live range as the specified value number.
736 /// The segments in RHS are allowed to overlap with segments in the
737 /// current range, it will replace the value numbers of the overlaped
738 /// segments with the specified value number.
MergeValueInAsValue(const LiveRange & RHS,const VNInfo * RHSValNo,VNInfo * LHSValNo)739 void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
740                                     const VNInfo *RHSValNo,
741                                     VNInfo *LHSValNo) {
742   LiveRangeUpdater Updater(this);
743   for (const Segment &S : RHS.segments)
744     if (S.valno == RHSValNo)
745       Updater.add(S.start, S.end, LHSValNo);
746 }
747 
748 /// MergeValueNumberInto - This method is called when two value nubmers
749 /// are found to be equivalent.  This eliminates V1, replacing all
750 /// segments with the V1 value number with the V2 value number.  This can
751 /// cause merging of V1/V2 values numbers and compaction of the value space.
MergeValueNumberInto(VNInfo * V1,VNInfo * V2)752 VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
753   assert(V1 != V2 && "Identical value#'s are always equivalent!");
754 
755   // This code actually merges the (numerically) larger value number into the
756   // smaller value number, which is likely to allow us to compactify the value
757   // space.  The only thing we have to be careful of is to preserve the
758   // instruction that defines the result value.
759 
760   // Make sure V2 is smaller than V1.
761   if (V1->id < V2->id) {
762     V1->copyFrom(*V2);
763     std::swap(V1, V2);
764   }
765 
766   // Merge V1 segments into V2.
767   for (iterator I = begin(); I != end(); ) {
768     iterator S = I++;
769     if (S->valno != V1) continue;  // Not a V1 Segment.
770 
771     // Okay, we found a V1 live range.  If it had a previous, touching, V2 live
772     // range, extend it.
773     if (S != begin()) {
774       iterator Prev = S-1;
775       if (Prev->valno == V2 && Prev->end == S->start) {
776         Prev->end = S->end;
777 
778         // Erase this live-range.
779         segments.erase(S);
780         I = Prev+1;
781         S = Prev;
782       }
783     }
784 
785     // Okay, now we have a V1 or V2 live range that is maximally merged forward.
786     // Ensure that it is a V2 live-range.
787     S->valno = V2;
788 
789     // If we can merge it into later V2 segments, do so now.  We ignore any
790     // following V1 segments, as they will be merged in subsequent iterations
791     // of the loop.
792     if (I != end()) {
793       if (I->start == S->end && I->valno == V2) {
794         S->end = I->end;
795         segments.erase(I);
796         I = S+1;
797       }
798     }
799   }
800 
801   // Now that V1 is dead, remove it.
802   markValNoForDeletion(V1);
803 
804   return V2;
805 }
806 
flushSegmentSet()807 void LiveRange::flushSegmentSet() {
808   assert(segmentSet != nullptr && "segment set must have been created");
809   assert(
810       segments.empty() &&
811       "segment set can be used only initially before switching to the array");
812   segments.append(segmentSet->begin(), segmentSet->end());
813   segmentSet = nullptr;
814   verify();
815 }
816 
isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const817 bool LiveRange::isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const {
818   ArrayRef<SlotIndex>::iterator SlotI = Slots.begin();
819   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
820 
821   // If there are no regmask slots, we have nothing to search.
822   if (SlotI == SlotE)
823     return false;
824 
825   // Start our search at the first segment that ends after the first slot.
826   const_iterator SegmentI = find(*SlotI);
827   const_iterator SegmentE = end();
828 
829   // If there are no segments that end after the first slot, we're done.
830   if (SegmentI == SegmentE)
831     return false;
832 
833   // Look for each slot in the live range.
834   for ( ; SlotI != SlotE; ++SlotI) {
835     // Go to the next segment that ends after the current slot.
836     // The slot may be within a hole in the range.
837     SegmentI = advanceTo(SegmentI, *SlotI);
838     if (SegmentI == SegmentE)
839       return false;
840 
841     // If this segment contains the slot, we're done.
842     if (SegmentI->contains(*SlotI))
843       return true;
844     // Otherwise, look for the next slot.
845   }
846 
847   // We didn't find a segment containing any of the slots.
848   return false;
849 }
850 
freeSubRange(SubRange * S)851 void LiveInterval::freeSubRange(SubRange *S) {
852   S->~SubRange();
853   // Memory was allocated with BumpPtr allocator and is not freed here.
854 }
855 
removeEmptySubRanges()856 void LiveInterval::removeEmptySubRanges() {
857   SubRange **NextPtr = &SubRanges;
858   SubRange *I = *NextPtr;
859   while (I != nullptr) {
860     if (!I->empty()) {
861       NextPtr = &I->Next;
862       I = *NextPtr;
863       continue;
864     }
865     // Skip empty subranges until we find the first nonempty one.
866     do {
867       SubRange *Next = I->Next;
868       freeSubRange(I);
869       I = Next;
870     } while (I != nullptr && I->empty());
871     *NextPtr = I;
872   }
873 }
874 
clearSubRanges()875 void LiveInterval::clearSubRanges() {
876   for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) {
877     Next = I->Next;
878     freeSubRange(I);
879   }
880   SubRanges = nullptr;
881 }
882 
refineSubRanges(BumpPtrAllocator & Allocator,LaneBitmask LaneMask,std::function<void (LiveInterval::SubRange &)> Apply)883 void LiveInterval::refineSubRanges(BumpPtrAllocator &Allocator,
884     LaneBitmask LaneMask, std::function<void(LiveInterval::SubRange&)> Apply) {
885   LaneBitmask ToApply = LaneMask;
886   for (SubRange &SR : subranges()) {
887     LaneBitmask SRMask = SR.LaneMask;
888     LaneBitmask Matching = SRMask & LaneMask;
889     if (Matching.none())
890       continue;
891 
892     SubRange *MatchingRange;
893     if (SRMask == Matching) {
894       // The subrange fits (it does not cover bits outside \p LaneMask).
895       MatchingRange = &SR;
896     } else {
897       // We have to split the subrange into a matching and non-matching part.
898       // Reduce lanemask of existing lane to non-matching part.
899       SR.LaneMask = SRMask & ~Matching;
900       // Create a new subrange for the matching part
901       MatchingRange = createSubRangeFrom(Allocator, Matching, SR);
902     }
903     Apply(*MatchingRange);
904     ToApply &= ~Matching;
905   }
906   // Create a new subrange if there are uncovered bits left.
907   if (ToApply.any()) {
908     SubRange *NewRange = createSubRange(Allocator, ToApply);
909     Apply(*NewRange);
910   }
911 }
912 
getSize() const913 unsigned LiveInterval::getSize() const {
914   unsigned Sum = 0;
915   for (const Segment &S : segments)
916     Sum += S.start.distance(S.end);
917   return Sum;
918 }
919 
computeSubRangeUndefs(SmallVectorImpl<SlotIndex> & Undefs,LaneBitmask LaneMask,const MachineRegisterInfo & MRI,const SlotIndexes & Indexes) const920 void LiveInterval::computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs,
921                                          LaneBitmask LaneMask,
922                                          const MachineRegisterInfo &MRI,
923                                          const SlotIndexes &Indexes) const {
924   assert(TargetRegisterInfo::isVirtualRegister(reg));
925   LaneBitmask VRegMask = MRI.getMaxLaneMaskForVReg(reg);
926   assert((VRegMask & LaneMask).any());
927   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
928   for (const MachineOperand &MO : MRI.def_operands(reg)) {
929     if (!MO.isUndef())
930       continue;
931     unsigned SubReg = MO.getSubReg();
932     assert(SubReg != 0 && "Undef should only be set on subreg defs");
933     LaneBitmask DefMask = TRI.getSubRegIndexLaneMask(SubReg);
934     LaneBitmask UndefMask = VRegMask & ~DefMask;
935     if ((UndefMask & LaneMask).any()) {
936       const MachineInstr &MI = *MO.getParent();
937       bool EarlyClobber = MO.isEarlyClobber();
938       SlotIndex Pos = Indexes.getInstructionIndex(MI).getRegSlot(EarlyClobber);
939       Undefs.push_back(Pos);
940     }
941   }
942 }
943 
operator <<(raw_ostream & OS,const LiveRange::Segment & S)944 raw_ostream& llvm::operator<<(raw_ostream& OS, const LiveRange::Segment &S) {
945   return OS << '[' << S.start << ',' << S.end << ':' << S.valno->id << ')';
946 }
947 
948 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const949 LLVM_DUMP_METHOD void LiveRange::Segment::dump() const {
950   dbgs() << *this << '\n';
951 }
952 #endif
953 
print(raw_ostream & OS) const954 void LiveRange::print(raw_ostream &OS) const {
955   if (empty())
956     OS << "EMPTY";
957   else {
958     for (const Segment &S : segments) {
959       OS << S;
960       assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo");
961     }
962   }
963 
964   // Print value number info.
965   if (getNumValNums()) {
966     OS << "  ";
967     unsigned vnum = 0;
968     for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
969          ++i, ++vnum) {
970       const VNInfo *vni = *i;
971       if (vnum) OS << ' ';
972       OS << vnum << '@';
973       if (vni->isUnused()) {
974         OS << 'x';
975       } else {
976         OS << vni->def;
977         if (vni->isPHIDef())
978           OS << "-phi";
979       }
980     }
981   }
982 }
983 
print(raw_ostream & OS) const984 void LiveInterval::SubRange::print(raw_ostream &OS) const {
985   OS << " L" << PrintLaneMask(LaneMask) << ' '
986      << static_cast<const LiveRange&>(*this);
987 }
988 
print(raw_ostream & OS) const989 void LiveInterval::print(raw_ostream &OS) const {
990   OS << printReg(reg) << ' ';
991   super::print(OS);
992   // Print subranges
993   for (const SubRange &SR : subranges())
994     OS << SR;
995   OS << " weight:" << weight;
996 }
997 
998 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const999 LLVM_DUMP_METHOD void LiveRange::dump() const {
1000   dbgs() << *this << '\n';
1001 }
1002 
dump() const1003 LLVM_DUMP_METHOD void LiveInterval::SubRange::dump() const {
1004   dbgs() << *this << '\n';
1005 }
1006 
dump() const1007 LLVM_DUMP_METHOD void LiveInterval::dump() const {
1008   dbgs() << *this << '\n';
1009 }
1010 #endif
1011 
1012 #ifndef NDEBUG
verify() const1013 void LiveRange::verify() const {
1014   for (const_iterator I = begin(), E = end(); I != E; ++I) {
1015     assert(I->start.isValid());
1016     assert(I->end.isValid());
1017     assert(I->start < I->end);
1018     assert(I->valno != nullptr);
1019     assert(I->valno->id < valnos.size());
1020     assert(I->valno == valnos[I->valno->id]);
1021     if (std::next(I) != E) {
1022       assert(I->end <= std::next(I)->start);
1023       if (I->end == std::next(I)->start)
1024         assert(I->valno != std::next(I)->valno);
1025     }
1026   }
1027 }
1028 
verify(const MachineRegisterInfo * MRI) const1029 void LiveInterval::verify(const MachineRegisterInfo *MRI) const {
1030   super::verify();
1031 
1032   // Make sure SubRanges are fine and LaneMasks are disjunct.
1033   LaneBitmask Mask;
1034   LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg)
1035                                        : LaneBitmask::getAll();
1036   for (const SubRange &SR : subranges()) {
1037     // Subrange lanemask should be disjunct to any previous subrange masks.
1038     assert((Mask & SR.LaneMask).none());
1039     Mask |= SR.LaneMask;
1040 
1041     // subrange mask should not contained in maximum lane mask for the vreg.
1042     assert((Mask & ~MaxMask).none());
1043     // empty subranges must be removed.
1044     assert(!SR.empty());
1045 
1046     SR.verify();
1047     // Main liverange should cover subrange.
1048     assert(covers(SR));
1049   }
1050 }
1051 #endif
1052 
1053 //===----------------------------------------------------------------------===//
1054 //                           LiveRangeUpdater class
1055 //===----------------------------------------------------------------------===//
1056 //
1057 // The LiveRangeUpdater class always maintains these invariants:
1058 //
1059 // - When LastStart is invalid, Spills is empty and the iterators are invalid.
1060 //   This is the initial state, and the state created by flush().
1061 //   In this state, isDirty() returns false.
1062 //
1063 // Otherwise, segments are kept in three separate areas:
1064 //
1065 // 1. [begin; WriteI) at the front of LR.
1066 // 2. [ReadI; end) at the back of LR.
1067 // 3. Spills.
1068 //
1069 // - LR.begin() <= WriteI <= ReadI <= LR.end().
1070 // - Segments in all three areas are fully ordered and coalesced.
1071 // - Segments in area 1 precede and can't coalesce with segments in area 2.
1072 // - Segments in Spills precede and can't coalesce with segments in area 2.
1073 // - No coalescing is possible between segments in Spills and segments in area
1074 //   1, and there are no overlapping segments.
1075 //
1076 // The segments in Spills are not ordered with respect to the segments in area
1077 // 1. They need to be merged.
1078 //
1079 // When they exist, Spills.back().start <= LastStart,
1080 //                 and WriteI[-1].start <= LastStart.
1081 
1082 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const1083 void LiveRangeUpdater::print(raw_ostream &OS) const {
1084   if (!isDirty()) {
1085     if (LR)
1086       OS << "Clean updater: " << *LR << '\n';
1087     else
1088       OS << "Null updater.\n";
1089     return;
1090   }
1091   assert(LR && "Can't have null LR in dirty updater.");
1092   OS << " updater with gap = " << (ReadI - WriteI)
1093      << ", last start = " << LastStart
1094      << ":\n  Area 1:";
1095   for (const auto &S : make_range(LR->begin(), WriteI))
1096     OS << ' ' << S;
1097   OS << "\n  Spills:";
1098   for (unsigned I = 0, E = Spills.size(); I != E; ++I)
1099     OS << ' ' << Spills[I];
1100   OS << "\n  Area 2:";
1101   for (const auto &S : make_range(ReadI, LR->end()))
1102     OS << ' ' << S;
1103   OS << '\n';
1104 }
1105 
dump() const1106 LLVM_DUMP_METHOD void LiveRangeUpdater::dump() const {
1107   print(errs());
1108 }
1109 #endif
1110 
1111 // Determine if A and B should be coalesced.
coalescable(const LiveRange::Segment & A,const LiveRange::Segment & B)1112 static inline bool coalescable(const LiveRange::Segment &A,
1113                                const LiveRange::Segment &B) {
1114   assert(A.start <= B.start && "Unordered live segments.");
1115   if (A.end == B.start)
1116     return A.valno == B.valno;
1117   if (A.end < B.start)
1118     return false;
1119   assert(A.valno == B.valno && "Cannot overlap different values");
1120   return true;
1121 }
1122 
add(LiveRange::Segment Seg)1123 void LiveRangeUpdater::add(LiveRange::Segment Seg) {
1124   assert(LR && "Cannot add to a null destination");
1125 
1126   // Fall back to the regular add method if the live range
1127   // is using the segment set instead of the segment vector.
1128   if (LR->segmentSet != nullptr) {
1129     LR->addSegmentToSet(Seg);
1130     return;
1131   }
1132 
1133   // Flush the state if Start moves backwards.
1134   if (!LastStart.isValid() || LastStart > Seg.start) {
1135     if (isDirty())
1136       flush();
1137     // This brings us to an uninitialized state. Reinitialize.
1138     assert(Spills.empty() && "Leftover spilled segments");
1139     WriteI = ReadI = LR->begin();
1140   }
1141 
1142   // Remember start for next time.
1143   LastStart = Seg.start;
1144 
1145   // Advance ReadI until it ends after Seg.start.
1146   LiveRange::iterator E = LR->end();
1147   if (ReadI != E && ReadI->end <= Seg.start) {
1148     // First try to close the gap between WriteI and ReadI with spills.
1149     if (ReadI != WriteI)
1150       mergeSpills();
1151     // Then advance ReadI.
1152     if (ReadI == WriteI)
1153       ReadI = WriteI = LR->find(Seg.start);
1154     else
1155       while (ReadI != E && ReadI->end <= Seg.start)
1156         *WriteI++ = *ReadI++;
1157   }
1158 
1159   assert(ReadI == E || ReadI->end > Seg.start);
1160 
1161   // Check if the ReadI segment begins early.
1162   if (ReadI != E && ReadI->start <= Seg.start) {
1163     assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
1164     // Bail if Seg is completely contained in ReadI.
1165     if (ReadI->end >= Seg.end)
1166       return;
1167     // Coalesce into Seg.
1168     Seg.start = ReadI->start;
1169     ++ReadI;
1170   }
1171 
1172   // Coalesce as much as possible from ReadI into Seg.
1173   while (ReadI != E && coalescable(Seg, *ReadI)) {
1174     Seg.end = std::max(Seg.end, ReadI->end);
1175     ++ReadI;
1176   }
1177 
1178   // Try coalescing Spills.back() into Seg.
1179   if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
1180     Seg.start = Spills.back().start;
1181     Seg.end = std::max(Spills.back().end, Seg.end);
1182     Spills.pop_back();
1183   }
1184 
1185   // Try coalescing Seg into WriteI[-1].
1186   if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
1187     WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
1188     return;
1189   }
1190 
1191   // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
1192   if (WriteI != ReadI) {
1193     *WriteI++ = Seg;
1194     return;
1195   }
1196 
1197   // Finally, append to LR or Spills.
1198   if (WriteI == E) {
1199     LR->segments.push_back(Seg);
1200     WriteI = ReadI = LR->end();
1201   } else
1202     Spills.push_back(Seg);
1203 }
1204 
1205 // Merge as many spilled segments as possible into the gap between WriteI
1206 // and ReadI. Advance WriteI to reflect the inserted instructions.
mergeSpills()1207 void LiveRangeUpdater::mergeSpills() {
1208   // Perform a backwards merge of Spills and [SpillI;WriteI).
1209   size_t GapSize = ReadI - WriteI;
1210   size_t NumMoved = std::min(Spills.size(), GapSize);
1211   LiveRange::iterator Src = WriteI;
1212   LiveRange::iterator Dst = Src + NumMoved;
1213   LiveRange::iterator SpillSrc = Spills.end();
1214   LiveRange::iterator B = LR->begin();
1215 
1216   // This is the new WriteI position after merging spills.
1217   WriteI = Dst;
1218 
1219   // Now merge Src and Spills backwards.
1220   while (Src != Dst) {
1221     if (Src != B && Src[-1].start > SpillSrc[-1].start)
1222       *--Dst = *--Src;
1223     else
1224       *--Dst = *--SpillSrc;
1225   }
1226   assert(NumMoved == size_t(Spills.end() - SpillSrc));
1227   Spills.erase(SpillSrc, Spills.end());
1228 }
1229 
flush()1230 void LiveRangeUpdater::flush() {
1231   if (!isDirty())
1232     return;
1233   // Clear the dirty state.
1234   LastStart = SlotIndex();
1235 
1236   assert(LR && "Cannot add to a null destination");
1237 
1238   // Nothing to merge?
1239   if (Spills.empty()) {
1240     LR->segments.erase(WriteI, ReadI);
1241     LR->verify();
1242     return;
1243   }
1244 
1245   // Resize the WriteI - ReadI gap to match Spills.
1246   size_t GapSize = ReadI - WriteI;
1247   if (GapSize < Spills.size()) {
1248     // The gap is too small. Make some room.
1249     size_t WritePos = WriteI - LR->begin();
1250     LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
1251     // This also invalidated ReadI, but it is recomputed below.
1252     WriteI = LR->begin() + WritePos;
1253   } else {
1254     // Shrink the gap if necessary.
1255     LR->segments.erase(WriteI + Spills.size(), ReadI);
1256   }
1257   ReadI = WriteI + Spills.size();
1258   mergeSpills();
1259   LR->verify();
1260 }
1261 
Classify(const LiveRange & LR)1262 unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange &LR) {
1263   // Create initial equivalence classes.
1264   EqClass.clear();
1265   EqClass.grow(LR.getNumValNums());
1266 
1267   const VNInfo *used = nullptr, *unused = nullptr;
1268 
1269   // Determine connections.
1270   for (const VNInfo *VNI : LR.valnos) {
1271     // Group all unused values into one class.
1272     if (VNI->isUnused()) {
1273       if (unused)
1274         EqClass.join(unused->id, VNI->id);
1275       unused = VNI;
1276       continue;
1277     }
1278     used = VNI;
1279     if (VNI->isPHIDef()) {
1280       const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
1281       assert(MBB && "Phi-def has no defining MBB");
1282       // Connect to values live out of predecessors.
1283       for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
1284            PE = MBB->pred_end(); PI != PE; ++PI)
1285         if (const VNInfo *PVNI = LR.getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
1286           EqClass.join(VNI->id, PVNI->id);
1287     } else {
1288       // Normal value defined by an instruction. Check for two-addr redef.
1289       // FIXME: This could be coincidental. Should we really check for a tied
1290       // operand constraint?
1291       // Note that VNI->def may be a use slot for an early clobber def.
1292       if (const VNInfo *UVNI = LR.getVNInfoBefore(VNI->def))
1293         EqClass.join(VNI->id, UVNI->id);
1294     }
1295   }
1296 
1297   // Lump all the unused values in with the last used value.
1298   if (used && unused)
1299     EqClass.join(used->id, unused->id);
1300 
1301   EqClass.compress();
1302   return EqClass.getNumClasses();
1303 }
1304 
Distribute(LiveInterval & LI,LiveInterval * LIV[],MachineRegisterInfo & MRI)1305 void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[],
1306                                           MachineRegisterInfo &MRI) {
1307   // Rewrite instructions.
1308   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
1309        RE = MRI.reg_end(); RI != RE;) {
1310     MachineOperand &MO = *RI;
1311     MachineInstr *MI = RI->getParent();
1312     ++RI;
1313     // DBG_VALUE instructions don't have slot indexes, so get the index of the
1314     // instruction before them.
1315     // Normally, DBG_VALUE instructions are removed before this function is
1316     // called, but it is not a requirement.
1317     SlotIndex Idx;
1318     if (MI->isDebugValue())
1319       Idx = LIS.getSlotIndexes()->getIndexBefore(*MI);
1320     else
1321       Idx = LIS.getInstructionIndex(*MI);
1322     LiveQueryResult LRQ = LI.Query(Idx);
1323     const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
1324     // In the case of an <undef> use that isn't tied to any def, VNI will be
1325     // NULL. If the use is tied to a def, VNI will be the defined value.
1326     if (!VNI)
1327       continue;
1328     if (unsigned EqClass = getEqClass(VNI))
1329       MO.setReg(LIV[EqClass-1]->reg);
1330   }
1331 
1332   // Distribute subregister liveranges.
1333   if (LI.hasSubRanges()) {
1334     unsigned NumComponents = EqClass.getNumClasses();
1335     SmallVector<unsigned, 8> VNIMapping;
1336     SmallVector<LiveInterval::SubRange*, 8> SubRanges;
1337     BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1338     for (LiveInterval::SubRange &SR : LI.subranges()) {
1339       // Create new subranges in the split intervals and construct a mapping
1340       // for the VNInfos in the subrange.
1341       unsigned NumValNos = SR.valnos.size();
1342       VNIMapping.clear();
1343       VNIMapping.reserve(NumValNos);
1344       SubRanges.clear();
1345       SubRanges.resize(NumComponents-1, nullptr);
1346       for (unsigned I = 0; I < NumValNos; ++I) {
1347         const VNInfo &VNI = *SR.valnos[I];
1348         unsigned ComponentNum;
1349         if (VNI.isUnused()) {
1350           ComponentNum = 0;
1351         } else {
1352           const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def);
1353           assert(MainRangeVNI != nullptr
1354                  && "SubRange def must have corresponding main range def");
1355           ComponentNum = getEqClass(MainRangeVNI);
1356           if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) {
1357             SubRanges[ComponentNum-1]
1358               = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask);
1359           }
1360         }
1361         VNIMapping.push_back(ComponentNum);
1362       }
1363       DistributeRange(SR, SubRanges.data(), VNIMapping);
1364     }
1365     LI.removeEmptySubRanges();
1366   }
1367 
1368   // Distribute main liverange.
1369   DistributeRange(LI, LIV, EqClass);
1370 }
1371