1 /*
2  * Copyright © 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "util/register_allocate.h"
25 #include "brw_vec4.h"
26 #include "brw_cfg.h"
27 
28 using namespace brw;
29 
30 namespace brw {
31 
32 static void
assign(unsigned int * reg_hw_locations,backend_reg * reg)33 assign(unsigned int *reg_hw_locations, backend_reg *reg)
34 {
35    if (reg->file == VGRF) {
36       reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE;
37       reg->offset %= REG_SIZE;
38    }
39 }
40 
41 bool
reg_allocate_trivial()42 vec4_visitor::reg_allocate_trivial()
43 {
44    unsigned int hw_reg_mapping[this->alloc.count];
45    bool virtual_grf_used[this->alloc.count];
46    int next;
47 
48    /* Calculate which virtual GRFs are actually in use after whatever
49     * optimization passes have occurred.
50     */
51    for (unsigned i = 0; i < this->alloc.count; i++) {
52       virtual_grf_used[i] = false;
53    }
54 
55    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
56       if (inst->dst.file == VGRF)
57          virtual_grf_used[inst->dst.nr] = true;
58 
59       for (unsigned i = 0; i < 3; i++) {
60 	 if (inst->src[i].file == VGRF)
61             virtual_grf_used[inst->src[i].nr] = true;
62       }
63    }
64 
65    hw_reg_mapping[0] = this->first_non_payload_grf;
66    next = hw_reg_mapping[0] + this->alloc.sizes[0];
67    for (unsigned i = 1; i < this->alloc.count; i++) {
68       if (virtual_grf_used[i]) {
69 	 hw_reg_mapping[i] = next;
70 	 next += this->alloc.sizes[i];
71       }
72    }
73    prog_data->total_grf = next;
74 
75    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
76       assign(hw_reg_mapping, &inst->dst);
77       assign(hw_reg_mapping, &inst->src[0]);
78       assign(hw_reg_mapping, &inst->src[1]);
79       assign(hw_reg_mapping, &inst->src[2]);
80    }
81 
82    if (prog_data->total_grf > max_grf) {
83       fail("Ran out of regs on trivial allocator (%d/%d)\n",
84 	   prog_data->total_grf, max_grf);
85       return false;
86    }
87 
88    return true;
89 }
90 
91 extern "C" void
brw_vec4_alloc_reg_set(struct brw_compiler * compiler)92 brw_vec4_alloc_reg_set(struct brw_compiler *compiler)
93 {
94    int base_reg_count =
95       compiler->devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
96 
97    /* After running split_virtual_grfs(), almost all VGRFs will be of size 1.
98     * SEND-from-GRF sources cannot be split, so we also need classes for each
99     * potential message length.
100     */
101    const int class_count = MAX_VGRF_SIZE;
102    int class_sizes[MAX_VGRF_SIZE];
103 
104    for (int i = 0; i < class_count; i++)
105       class_sizes[i] = i + 1;
106 
107    /* Compute the total number of registers across all classes. */
108    int ra_reg_count = 0;
109    for (int i = 0; i < class_count; i++) {
110       ra_reg_count += base_reg_count - (class_sizes[i] - 1);
111    }
112 
113    ralloc_free(compiler->vec4_reg_set.ra_reg_to_grf);
114    compiler->vec4_reg_set.ra_reg_to_grf = ralloc_array(compiler, uint8_t, ra_reg_count);
115    ralloc_free(compiler->vec4_reg_set.regs);
116    compiler->vec4_reg_set.regs = ra_alloc_reg_set(compiler, ra_reg_count, false);
117    if (compiler->devinfo->gen >= 6)
118       ra_set_allocate_round_robin(compiler->vec4_reg_set.regs);
119    ralloc_free(compiler->vec4_reg_set.classes);
120    compiler->vec4_reg_set.classes = ralloc_array(compiler, int, class_count);
121 
122    /* Now, add the registers to their classes, and add the conflicts
123     * between them and the base GRF registers (and also each other).
124     */
125    int reg = 0;
126    unsigned *q_values[MAX_VGRF_SIZE];
127    for (int i = 0; i < class_count; i++) {
128       int class_reg_count = base_reg_count - (class_sizes[i] - 1);
129       compiler->vec4_reg_set.classes[i] = ra_alloc_reg_class(compiler->vec4_reg_set.regs);
130 
131       q_values[i] = new unsigned[MAX_VGRF_SIZE];
132 
133       for (int j = 0; j < class_reg_count; j++) {
134 	 ra_class_add_reg(compiler->vec4_reg_set.regs, compiler->vec4_reg_set.classes[i], reg);
135 
136 	 compiler->vec4_reg_set.ra_reg_to_grf[reg] = j;
137 
138 	 for (int base_reg = j;
139 	      base_reg < j + class_sizes[i];
140 	      base_reg++) {
141 	    ra_add_reg_conflict(compiler->vec4_reg_set.regs, base_reg, reg);
142 	 }
143 
144 	 reg++;
145       }
146 
147       for (int j = 0; j < class_count; j++) {
148          /* Calculate the q values manually because the algorithm used by
149           * ra_set_finalize() to do it has higher complexity affecting the
150           * start-up time of some applications.  q(i, j) is just the maximum
151           * number of registers from class i a register from class j can
152           * conflict with.
153           */
154          q_values[i][j] = class_sizes[i] + class_sizes[j] - 1;
155       }
156    }
157    assert(reg == ra_reg_count);
158 
159    for (int reg = 0; reg < base_reg_count; reg++)
160       ra_make_reg_conflicts_transitive(compiler->vec4_reg_set.regs, reg);
161 
162    ra_set_finalize(compiler->vec4_reg_set.regs, q_values);
163 
164    for (int i = 0; i < MAX_VGRF_SIZE; i++)
165       delete[] q_values[i];
166 }
167 
168 void
setup_payload_interference(struct ra_graph * g,int first_payload_node,int reg_node_count)169 vec4_visitor::setup_payload_interference(struct ra_graph *g,
170                                          int first_payload_node,
171                                          int reg_node_count)
172 {
173    int payload_node_count = this->first_non_payload_grf;
174 
175    for (int i = 0; i < payload_node_count; i++) {
176       /* Mark each payload reg node as being allocated to its physical register.
177        *
178        * The alternative would be to have per-physical register classes, which
179        * would just be silly.
180        */
181       ra_set_node_reg(g, first_payload_node + i, i);
182 
183       /* For now, just mark each payload node as interfering with every other
184        * node to be allocated.
185        */
186       for (int j = 0; j < reg_node_count; j++) {
187          ra_add_node_interference(g, first_payload_node + i, j);
188       }
189    }
190 }
191 
192 bool
reg_allocate()193 vec4_visitor::reg_allocate()
194 {
195    unsigned int hw_reg_mapping[alloc.count];
196    int payload_reg_count = this->first_non_payload_grf;
197 
198    /* Using the trivial allocator can be useful in debugging undefined
199     * register access as a result of broken optimization passes.
200     */
201    if (0)
202       return reg_allocate_trivial();
203 
204    calculate_live_intervals();
205 
206    int node_count = alloc.count;
207    int first_payload_node = node_count;
208    node_count += payload_reg_count;
209    struct ra_graph *g =
210       ra_alloc_interference_graph(compiler->vec4_reg_set.regs, node_count);
211 
212    for (unsigned i = 0; i < alloc.count; i++) {
213       int size = this->alloc.sizes[i];
214       assert(size >= 1 && size <= MAX_VGRF_SIZE);
215       ra_set_node_class(g, i, compiler->vec4_reg_set.classes[size - 1]);
216 
217       for (unsigned j = 0; j < i; j++) {
218 	 if (virtual_grf_interferes(i, j)) {
219 	    ra_add_node_interference(g, i, j);
220 	 }
221       }
222    }
223 
224    /* Certain instructions can't safely use the same register for their
225     * sources and destination.  Add interference.
226     */
227    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
228       if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) {
229          for (unsigned i = 0; i < 3; i++) {
230             if (inst->src[i].file == VGRF) {
231                ra_add_node_interference(g, inst->dst.nr, inst->src[i].nr);
232             }
233          }
234       }
235    }
236 
237    setup_payload_interference(g, first_payload_node, node_count);
238 
239    if (!ra_allocate(g)) {
240       /* Failed to allocate registers.  Spill a reg, and the caller will
241        * loop back into here to try again.
242        */
243       int reg = choose_spill_reg(g);
244       if (this->no_spills) {
245          fail("Failure to register allocate.  Reduce number of live "
246               "values to avoid this.");
247       } else if (reg == -1) {
248          fail("no register to spill\n");
249       } else {
250          spill_reg(reg);
251       }
252       ralloc_free(g);
253       return false;
254    }
255 
256    /* Get the chosen virtual registers for each node, and map virtual
257     * regs in the register classes back down to real hardware reg
258     * numbers.
259     */
260    prog_data->total_grf = payload_reg_count;
261    for (unsigned i = 0; i < alloc.count; i++) {
262       int reg = ra_get_node_reg(g, i);
263 
264       hw_reg_mapping[i] = compiler->vec4_reg_set.ra_reg_to_grf[reg];
265       prog_data->total_grf = MAX2(prog_data->total_grf,
266 				  hw_reg_mapping[i] + alloc.sizes[i]);
267    }
268 
269    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
270       assign(hw_reg_mapping, &inst->dst);
271       assign(hw_reg_mapping, &inst->src[0]);
272       assign(hw_reg_mapping, &inst->src[1]);
273       assign(hw_reg_mapping, &inst->src[2]);
274    }
275 
276    ralloc_free(g);
277 
278    return true;
279 }
280 
281 /**
282  * When we decide to spill a register, instead of blindly spilling every use,
283  * save unspills when the spill register is used (read) in consecutive
284  * instructions. This can potentially save a bunch of unspills that would
285  * have very little impact in register allocation anyway.
286  *
287  * Notice that we need to account for this behavior when spilling a register
288  * and when evaluating spilling costs. This function is designed so it can
289  * be called from both places and avoid repeating the logic.
290  *
291  *  - When we call this function from spill_reg(), we pass in scratch_reg the
292  *    actual unspill/spill register that we want to reuse in the current
293  *    instruction.
294  *
295  *  - When we call this from evaluate_spill_costs(), we pass the register for
296  *    which we are evaluating spilling costs.
297  *
298  * In either case, we check if the previous instructions read scratch_reg until
299  * we find one that writes to it with a compatible mask or does not read/write
300  * scratch_reg at all.
301  */
302 static bool
can_use_scratch_for_source(const vec4_instruction * inst,unsigned i,unsigned scratch_reg)303 can_use_scratch_for_source(const vec4_instruction *inst, unsigned i,
304                            unsigned scratch_reg)
305 {
306    assert(inst->src[i].file == VGRF);
307    bool prev_inst_read_scratch_reg = false;
308 
309    /* See if any previous source in the same instructions reads scratch_reg */
310    for (unsigned n = 0; n < i; n++) {
311       if (inst->src[n].file == VGRF && inst->src[n].nr == scratch_reg)
312          prev_inst_read_scratch_reg = true;
313    }
314 
315    /* Now check if previous instructions read/write scratch_reg */
316    for (vec4_instruction *prev_inst = (vec4_instruction *) inst->prev;
317         !prev_inst->is_head_sentinel();
318         prev_inst = (vec4_instruction *) prev_inst->prev) {
319 
320       /* If the previous instruction writes to scratch_reg then we can reuse
321        * it if the write is not conditional and the channels we write are
322        * compatible with our read mask
323        */
324       if (prev_inst->dst.file == VGRF && prev_inst->dst.nr == scratch_reg) {
325          return (!prev_inst->predicate || prev_inst->opcode == BRW_OPCODE_SEL) &&
326                 (brw_mask_for_swizzle(inst->src[i].swizzle) &
327                  ~prev_inst->dst.writemask) == 0;
328       }
329 
330       /* Skip scratch read/writes so that instructions generated by spilling
331        * other registers (that won't read/write scratch_reg) do not stop us from
332        * reusing scratch_reg for this instruction.
333        */
334       if (prev_inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_WRITE ||
335           prev_inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_READ)
336          continue;
337 
338       /* If the previous instruction does not write to scratch_reg, then check
339        * if it reads it
340        */
341       int n;
342       for (n = 0; n < 3; n++) {
343          if (prev_inst->src[n].file == VGRF &&
344              prev_inst->src[n].nr == scratch_reg) {
345             prev_inst_read_scratch_reg = true;
346             break;
347          }
348       }
349       if (n == 3) {
350          /* The previous instruction does not read scratch_reg. At this point,
351           * if no previous instruction has read scratch_reg it means that we
352           * will need to unspill it here and we can't reuse it (so we return
353           * false). Otherwise, if we found at least one consecutive instruction
354           * that read scratch_reg, then we know that we got here from
355           * evaluate_spill_costs (since for the spill_reg path any block of
356           * consecutive instructions using scratch_reg must start with a write
357           * to that register, so we would've exited the loop in the check for
358           * the write that we have at the start of this loop), and in that case
359           * it means that we found the point at which the scratch_reg would be
360           * unspilled. Since we always unspill a full vec4, it means that we
361           * have all the channels available and we can just return true to
362           * signal that we can reuse the register in the current instruction
363           * too.
364           */
365          return prev_inst_read_scratch_reg;
366       }
367    }
368 
369    return prev_inst_read_scratch_reg;
370 }
371 
372 static inline float
spill_cost_for_type(enum brw_reg_type type)373 spill_cost_for_type(enum brw_reg_type type)
374 {
375    /* Spilling of a 64-bit register involves emitting 2 32-bit scratch
376     * messages plus the 64b/32b shuffling code.
377     */
378    return type_sz(type) == 8 ? 2.25f : 1.0f;
379 }
380 
381 void
evaluate_spill_costs(float * spill_costs,bool * no_spill)382 vec4_visitor::evaluate_spill_costs(float *spill_costs, bool *no_spill)
383 {
384    float loop_scale = 1.0;
385 
386    unsigned *reg_type_size = (unsigned *)
387       ralloc_size(NULL, this->alloc.count * sizeof(unsigned));
388 
389    for (unsigned i = 0; i < this->alloc.count; i++) {
390       spill_costs[i] = 0.0;
391       no_spill[i] = alloc.sizes[i] != 1 && alloc.sizes[i] != 2;
392       reg_type_size[i] = 0;
393    }
394 
395    /* Calculate costs for spilling nodes.  Call it a cost of 1 per
396     * spill/unspill we'll have to do, and guess that the insides of
397     * loops run 10 times.
398     */
399    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
400       for (unsigned int i = 0; i < 3; i++) {
401          if (inst->src[i].file == VGRF && !no_spill[inst->src[i].nr]) {
402             /* We will only unspill src[i] it it wasn't unspilled for the
403              * previous instruction, in which case we'll just reuse the scratch
404              * reg for this instruction.
405              */
406             if (!can_use_scratch_for_source(inst, i, inst->src[i].nr)) {
407                spill_costs[inst->src[i].nr] +=
408                   loop_scale * spill_cost_for_type(inst->src[i].type);
409                if (inst->src[i].reladdr ||
410                    inst->src[i].offset >= REG_SIZE)
411                   no_spill[inst->src[i].nr] = true;
412 
413                /* We don't support unspills of partial DF reads.
414                 *
415                 * Our 64-bit unspills are implemented with two 32-bit scratch
416                 * messages, each one reading that for both SIMD4x2 threads that
417                 * we need to shuffle into correct 64-bit data. Ensure that we
418                 * are reading data for both threads.
419                 */
420                if (type_sz(inst->src[i].type) == 8 && inst->exec_size != 8)
421                   no_spill[inst->src[i].nr] = true;
422             }
423 
424             /* We can't spill registers that mix 32-bit and 64-bit access (that
425              * contain 64-bit data that is operated on via 32-bit instructions)
426              */
427             unsigned type_size = type_sz(inst->src[i].type);
428             if (reg_type_size[inst->src[i].nr] == 0)
429                reg_type_size[inst->src[i].nr] = type_size;
430             else if (reg_type_size[inst->src[i].nr] != type_size)
431                no_spill[inst->src[i].nr] = true;
432          }
433       }
434 
435       if (inst->dst.file == VGRF && !no_spill[inst->dst.nr]) {
436          spill_costs[inst->dst.nr] +=
437             loop_scale * spill_cost_for_type(inst->dst.type);
438          if (inst->dst.reladdr || inst->dst.offset >= REG_SIZE)
439             no_spill[inst->dst.nr] = true;
440 
441          /* We don't support spills of partial DF writes.
442           *
443           * Our 64-bit spills are implemented with two 32-bit scratch messages,
444           * each one writing that for both SIMD4x2 threads. Ensure that we
445           * are writing data for both threads.
446           */
447          if (type_sz(inst->dst.type) == 8 && inst->exec_size != 8)
448             no_spill[inst->dst.nr] = true;
449 
450          /* We can't spill registers that mix 32-bit and 64-bit access (that
451           * contain 64-bit data that is operated on via 32-bit instructions)
452           */
453          unsigned type_size = type_sz(inst->dst.type);
454          if (reg_type_size[inst->dst.nr] == 0)
455             reg_type_size[inst->dst.nr] = type_size;
456          else if (reg_type_size[inst->dst.nr] != type_size)
457             no_spill[inst->dst.nr] = true;
458       }
459 
460       switch (inst->opcode) {
461 
462       case BRW_OPCODE_DO:
463          loop_scale *= 10;
464          break;
465 
466       case BRW_OPCODE_WHILE:
467          loop_scale /= 10;
468          break;
469 
470       case SHADER_OPCODE_GEN4_SCRATCH_READ:
471       case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
472          for (int i = 0; i < 3; i++) {
473             if (inst->src[i].file == VGRF)
474                no_spill[inst->src[i].nr] = true;
475          }
476          if (inst->dst.file == VGRF)
477             no_spill[inst->dst.nr] = true;
478          break;
479 
480       default:
481          break;
482       }
483    }
484 
485    ralloc_free(reg_type_size);
486 }
487 
488 int
choose_spill_reg(struct ra_graph * g)489 vec4_visitor::choose_spill_reg(struct ra_graph *g)
490 {
491    float spill_costs[this->alloc.count];
492    bool no_spill[this->alloc.count];
493 
494    evaluate_spill_costs(spill_costs, no_spill);
495 
496    for (unsigned i = 0; i < this->alloc.count; i++) {
497       if (!no_spill[i])
498          ra_set_node_spill_cost(g, i, spill_costs[i]);
499    }
500 
501    return ra_get_best_spill_node(g);
502 }
503 
504 void
spill_reg(int spill_reg_nr)505 vec4_visitor::spill_reg(int spill_reg_nr)
506 {
507    assert(alloc.sizes[spill_reg_nr] == 1 || alloc.sizes[spill_reg_nr] == 2);
508    unsigned int spill_offset = last_scratch;
509    last_scratch += alloc.sizes[spill_reg_nr];
510 
511    /* Generate spill/unspill instructions for the objects being spilled. */
512    int scratch_reg = -1;
513    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
514       for (unsigned int i = 0; i < 3; i++) {
515          if (inst->src[i].file == VGRF && inst->src[i].nr == spill_reg_nr) {
516             if (scratch_reg == -1 ||
517                 !can_use_scratch_for_source(inst, i, scratch_reg)) {
518                /* We need to unspill anyway so make sure we read the full vec4
519                 * in any case. This way, the cached register can be reused
520                 * for consecutive instructions that read different channels of
521                 * the same vec4.
522                 */
523                scratch_reg = alloc.allocate(alloc.sizes[spill_reg_nr]);
524                src_reg temp = inst->src[i];
525                temp.nr = scratch_reg;
526                temp.offset = 0;
527                temp.swizzle = BRW_SWIZZLE_XYZW;
528                emit_scratch_read(block, inst,
529                                  dst_reg(temp), inst->src[i], spill_offset);
530                temp.offset = inst->src[i].offset;
531             }
532             assert(scratch_reg != -1);
533             inst->src[i].nr = scratch_reg;
534          }
535       }
536 
537       if (inst->dst.file == VGRF && inst->dst.nr == spill_reg_nr) {
538          emit_scratch_write(block, inst, spill_offset);
539          scratch_reg = inst->dst.nr;
540       }
541    }
542 
543    invalidate_live_intervals();
544 }
545 
546 } /* namespace brw */
547