1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2008-2014 Freescale Semiconductor, Inc.
4  *
5  * Based on CAAM driver in drivers/crypto/caam in Linux
6  */
7 
8 #include <common.h>
9 #include <malloc.h>
10 #include "fsl_sec.h"
11 #include "jr.h"
12 #include "jobdesc.h"
13 #include "desc_constr.h"
14 #ifdef CONFIG_FSL_CORENET
15 #include <asm/fsl_pamu.h>
16 #endif
17 
18 #define CIRC_CNT(head, tail, size)	(((head) - (tail)) & (size - 1))
19 #define CIRC_SPACE(head, tail, size)	CIRC_CNT((tail), (head) + 1, (size))
20 
21 uint32_t sec_offset[CONFIG_SYS_FSL_MAX_NUM_OF_SEC] = {
22 	0,
23 #if defined(CONFIG_ARCH_C29X)
24 	CONFIG_SYS_FSL_SEC_IDX_OFFSET,
25 	2 * CONFIG_SYS_FSL_SEC_IDX_OFFSET
26 #endif
27 };
28 
29 #define SEC_ADDR(idx)	\
30 	((CONFIG_SYS_FSL_SEC_ADDR + sec_offset[idx]))
31 
32 #define SEC_JR0_ADDR(idx)	\
33 	(SEC_ADDR(idx) +	\
34 	 (CONFIG_SYS_FSL_JR0_OFFSET - CONFIG_SYS_FSL_SEC_OFFSET))
35 
36 struct jobring jr0[CONFIG_SYS_FSL_MAX_NUM_OF_SEC];
37 
start_jr0(uint8_t sec_idx)38 static inline void start_jr0(uint8_t sec_idx)
39 {
40 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
41 	u32 ctpr_ms = sec_in32(&sec->ctpr_ms);
42 	u32 scfgr = sec_in32(&sec->scfgr);
43 
44 	if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_INCL) {
45 		/* VIRT_EN_INCL = 1 & VIRT_EN_POR = 1 or
46 		 * VIRT_EN_INCL = 1 & VIRT_EN_POR = 0 & SEC_SCFGR_VIRT_EN = 1
47 		 */
48 		if ((ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) ||
49 		    (scfgr & SEC_SCFGR_VIRT_EN))
50 			sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0);
51 	} else {
52 		/* VIRT_EN_INCL = 0 && VIRT_EN_POR_VALUE = 1 */
53 		if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR)
54 			sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0);
55 	}
56 }
57 
jr_reset_liodn(uint8_t sec_idx)58 static inline void jr_reset_liodn(uint8_t sec_idx)
59 {
60 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
61 	sec_out32(&sec->jrliodnr[0].ls, 0);
62 }
63 
jr_disable_irq(uint8_t sec_idx)64 static inline void jr_disable_irq(uint8_t sec_idx)
65 {
66 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
67 	uint32_t jrcfg = sec_in32(&regs->jrcfg1);
68 
69 	jrcfg = jrcfg | JR_INTMASK;
70 
71 	sec_out32(&regs->jrcfg1, jrcfg);
72 }
73 
jr_initregs(uint8_t sec_idx)74 static void jr_initregs(uint8_t sec_idx)
75 {
76 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
77 	struct jobring *jr = &jr0[sec_idx];
78 	phys_addr_t ip_base = virt_to_phys((void *)jr->input_ring);
79 	phys_addr_t op_base = virt_to_phys((void *)jr->output_ring);
80 
81 #ifdef CONFIG_PHYS_64BIT
82 	sec_out32(&regs->irba_h, ip_base >> 32);
83 #else
84 	sec_out32(&regs->irba_h, 0x0);
85 #endif
86 	sec_out32(&regs->irba_l, (uint32_t)ip_base);
87 #ifdef CONFIG_PHYS_64BIT
88 	sec_out32(&regs->orba_h, op_base >> 32);
89 #else
90 	sec_out32(&regs->orba_h, 0x0);
91 #endif
92 	sec_out32(&regs->orba_l, (uint32_t)op_base);
93 	sec_out32(&regs->ors, JR_SIZE);
94 	sec_out32(&regs->irs, JR_SIZE);
95 
96 	if (!jr->irq)
97 		jr_disable_irq(sec_idx);
98 }
99 
jr_init(uint8_t sec_idx)100 static int jr_init(uint8_t sec_idx)
101 {
102 	struct jobring *jr = &jr0[sec_idx];
103 
104 	memset(jr, 0, sizeof(struct jobring));
105 
106 	jr->jq_id = DEFAULT_JR_ID;
107 	jr->irq = DEFAULT_IRQ;
108 
109 #ifdef CONFIG_FSL_CORENET
110 	jr->liodn = DEFAULT_JR_LIODN;
111 #endif
112 	jr->size = JR_SIZE;
113 	jr->input_ring = (dma_addr_t *)memalign(ARCH_DMA_MINALIGN,
114 				JR_SIZE * sizeof(dma_addr_t));
115 	if (!jr->input_ring)
116 		return -1;
117 
118 	jr->op_size = roundup(JR_SIZE * sizeof(struct op_ring),
119 			      ARCH_DMA_MINALIGN);
120 	jr->output_ring =
121 	    (struct op_ring *)memalign(ARCH_DMA_MINALIGN, jr->op_size);
122 	if (!jr->output_ring)
123 		return -1;
124 
125 	memset(jr->input_ring, 0, JR_SIZE * sizeof(dma_addr_t));
126 	memset(jr->output_ring, 0, jr->op_size);
127 
128 	start_jr0(sec_idx);
129 
130 	jr_initregs(sec_idx);
131 
132 	return 0;
133 }
134 
jr_sw_cleanup(uint8_t sec_idx)135 static int jr_sw_cleanup(uint8_t sec_idx)
136 {
137 	struct jobring *jr = &jr0[sec_idx];
138 
139 	jr->head = 0;
140 	jr->tail = 0;
141 	jr->read_idx = 0;
142 	jr->write_idx = 0;
143 	memset(jr->info, 0, sizeof(jr->info));
144 	memset(jr->input_ring, 0, jr->size * sizeof(dma_addr_t));
145 	memset(jr->output_ring, 0, jr->size * sizeof(struct op_ring));
146 
147 	return 0;
148 }
149 
jr_hw_reset(uint8_t sec_idx)150 static int jr_hw_reset(uint8_t sec_idx)
151 {
152 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
153 	uint32_t timeout = 100000;
154 	uint32_t jrint, jrcr;
155 
156 	sec_out32(&regs->jrcr, JRCR_RESET);
157 	do {
158 		jrint = sec_in32(&regs->jrint);
159 	} while (((jrint & JRINT_ERR_HALT_MASK) ==
160 		  JRINT_ERR_HALT_INPROGRESS) && --timeout);
161 
162 	jrint = sec_in32(&regs->jrint);
163 	if (((jrint & JRINT_ERR_HALT_MASK) !=
164 	     JRINT_ERR_HALT_INPROGRESS) && timeout == 0)
165 		return -1;
166 
167 	timeout = 100000;
168 	sec_out32(&regs->jrcr, JRCR_RESET);
169 	do {
170 		jrcr = sec_in32(&regs->jrcr);
171 	} while ((jrcr & JRCR_RESET) && --timeout);
172 
173 	if (timeout == 0)
174 		return -1;
175 
176 	return 0;
177 }
178 
179 /* -1 --- error, can't enqueue -- no space available */
jr_enqueue(uint32_t * desc_addr,void (* callback)(uint32_t status,void * arg),void * arg,uint8_t sec_idx)180 static int jr_enqueue(uint32_t *desc_addr,
181 	       void (*callback)(uint32_t status, void *arg),
182 	       void *arg, uint8_t sec_idx)
183 {
184 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
185 	struct jobring *jr = &jr0[sec_idx];
186 	int head = jr->head;
187 	uint32_t desc_word;
188 	int length = desc_len(desc_addr);
189 	int i;
190 #ifdef CONFIG_PHYS_64BIT
191 	uint32_t *addr_hi, *addr_lo;
192 #endif
193 
194 	/* The descriptor must be submitted to SEC block as per endianness
195 	 * of the SEC Block.
196 	 * So, if the endianness of Core and SEC block is different, each word
197 	 * of the descriptor will be byte-swapped.
198 	 */
199 	for (i = 0; i < length; i++) {
200 		desc_word = desc_addr[i];
201 		sec_out32((uint32_t *)&desc_addr[i], desc_word);
202 	}
203 
204 	phys_addr_t desc_phys_addr = virt_to_phys(desc_addr);
205 
206 	jr->info[head].desc_phys_addr = desc_phys_addr;
207 	jr->info[head].callback = (void *)callback;
208 	jr->info[head].arg = arg;
209 	jr->info[head].op_done = 0;
210 
211 	unsigned long start = (unsigned long)&jr->info[head] &
212 					~(ARCH_DMA_MINALIGN - 1);
213 	unsigned long end = ALIGN((unsigned long)&jr->info[head] +
214 				  sizeof(struct jr_info), ARCH_DMA_MINALIGN);
215 	flush_dcache_range(start, end);
216 
217 #ifdef CONFIG_PHYS_64BIT
218 	/* Write the 64 bit Descriptor address on Input Ring.
219 	 * The 32 bit hign and low part of the address will
220 	 * depend on endianness of SEC block.
221 	 */
222 #ifdef CONFIG_SYS_FSL_SEC_LE
223 	addr_lo = (uint32_t *)(&jr->input_ring[head]);
224 	addr_hi = (uint32_t *)(&jr->input_ring[head]) + 1;
225 #elif defined(CONFIG_SYS_FSL_SEC_BE)
226 	addr_hi = (uint32_t *)(&jr->input_ring[head]);
227 	addr_lo = (uint32_t *)(&jr->input_ring[head]) + 1;
228 #endif /* ifdef CONFIG_SYS_FSL_SEC_LE */
229 
230 	sec_out32(addr_hi, (uint32_t)(desc_phys_addr >> 32));
231 	sec_out32(addr_lo, (uint32_t)(desc_phys_addr));
232 
233 #else
234 	/* Write the 32 bit Descriptor address on Input Ring. */
235 	sec_out32(&jr->input_ring[head], desc_phys_addr);
236 #endif /* ifdef CONFIG_PHYS_64BIT */
237 
238 	start = (unsigned long)&jr->input_ring[head] & ~(ARCH_DMA_MINALIGN - 1);
239 	end = ALIGN((unsigned long)&jr->input_ring[head] +
240 		     sizeof(dma_addr_t), ARCH_DMA_MINALIGN);
241 	flush_dcache_range(start, end);
242 
243 	jr->head = (head + 1) & (jr->size - 1);
244 
245 	/* Invalidate output ring */
246 	start = (unsigned long)jr->output_ring &
247 					~(ARCH_DMA_MINALIGN - 1);
248 	end = ALIGN((unsigned long)jr->output_ring + jr->op_size,
249 		    ARCH_DMA_MINALIGN);
250 	invalidate_dcache_range(start, end);
251 
252 	sec_out32(&regs->irja, 1);
253 
254 	return 0;
255 }
256 
jr_dequeue(int sec_idx)257 static int jr_dequeue(int sec_idx)
258 {
259 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
260 	struct jobring *jr = &jr0[sec_idx];
261 	int head = jr->head;
262 	int tail = jr->tail;
263 	int idx, i, found;
264 	void (*callback)(uint32_t status, void *arg);
265 	void *arg = NULL;
266 #ifdef CONFIG_PHYS_64BIT
267 	uint32_t *addr_hi, *addr_lo;
268 #else
269 	uint32_t *addr;
270 #endif
271 
272 	while (sec_in32(&regs->orsf) && CIRC_CNT(jr->head, jr->tail,
273 						 jr->size)) {
274 
275 		found = 0;
276 
277 		phys_addr_t op_desc;
278 	#ifdef CONFIG_PHYS_64BIT
279 		/* Read the 64 bit Descriptor address from Output Ring.
280 		 * The 32 bit hign and low part of the address will
281 		 * depend on endianness of SEC block.
282 		 */
283 	#ifdef CONFIG_SYS_FSL_SEC_LE
284 		addr_lo = (uint32_t *)(&jr->output_ring[jr->tail].desc);
285 		addr_hi = (uint32_t *)(&jr->output_ring[jr->tail].desc) + 1;
286 	#elif defined(CONFIG_SYS_FSL_SEC_BE)
287 		addr_hi = (uint32_t *)(&jr->output_ring[jr->tail].desc);
288 		addr_lo = (uint32_t *)(&jr->output_ring[jr->tail].desc) + 1;
289 	#endif /* ifdef CONFIG_SYS_FSL_SEC_LE */
290 
291 		op_desc = ((u64)sec_in32(addr_hi) << 32) |
292 			  ((u64)sec_in32(addr_lo));
293 
294 	#else
295 		/* Read the 32 bit Descriptor address from Output Ring. */
296 		addr = (uint32_t *)&jr->output_ring[jr->tail].desc;
297 		op_desc = sec_in32(addr);
298 	#endif /* ifdef CONFIG_PHYS_64BIT */
299 
300 		uint32_t status = sec_in32(&jr->output_ring[jr->tail].status);
301 
302 		for (i = 0; CIRC_CNT(head, tail + i, jr->size) >= 1; i++) {
303 			idx = (tail + i) & (jr->size - 1);
304 			if (op_desc == jr->info[idx].desc_phys_addr) {
305 				found = 1;
306 				break;
307 			}
308 		}
309 
310 		/* Error condition if match not found */
311 		if (!found)
312 			return -1;
313 
314 		jr->info[idx].op_done = 1;
315 		callback = (void *)jr->info[idx].callback;
316 		arg = jr->info[idx].arg;
317 
318 		/* When the job on tail idx gets done, increment
319 		 * tail till the point where job completed out of oredr has
320 		 * been taken into account
321 		 */
322 		if (idx == tail)
323 			do {
324 				tail = (tail + 1) & (jr->size - 1);
325 			} while (jr->info[tail].op_done);
326 
327 		jr->tail = tail;
328 		jr->read_idx = (jr->read_idx + 1) & (jr->size - 1);
329 
330 		sec_out32(&regs->orjr, 1);
331 		jr->info[idx].op_done = 0;
332 
333 		callback(status, arg);
334 	}
335 
336 	return 0;
337 }
338 
desc_done(uint32_t status,void * arg)339 static void desc_done(uint32_t status, void *arg)
340 {
341 	struct result *x = arg;
342 	x->status = status;
343 #ifndef CONFIG_SPL_BUILD
344 	caam_jr_strstatus(status);
345 #endif
346 	x->done = 1;
347 }
348 
run_descriptor_jr_idx(uint32_t * desc,uint8_t sec_idx)349 static inline int run_descriptor_jr_idx(uint32_t *desc, uint8_t sec_idx)
350 {
351 	unsigned long long timeval = get_ticks();
352 	unsigned long long timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT);
353 	struct result op;
354 	int ret = 0;
355 
356 	memset(&op, 0, sizeof(op));
357 
358 	ret = jr_enqueue(desc, desc_done, &op, sec_idx);
359 	if (ret) {
360 		debug("Error in SEC enq\n");
361 		ret = JQ_ENQ_ERR;
362 		goto out;
363 	}
364 
365 	timeval = get_ticks();
366 	timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT);
367 	while (op.done != 1) {
368 		ret = jr_dequeue(sec_idx);
369 		if (ret) {
370 			debug("Error in SEC deq\n");
371 			ret = JQ_DEQ_ERR;
372 			goto out;
373 		}
374 
375 		if ((get_ticks() - timeval) > timeout) {
376 			debug("SEC Dequeue timed out\n");
377 			ret = JQ_DEQ_TO_ERR;
378 			goto out;
379 		}
380 	}
381 
382 	if (op.status) {
383 		debug("Error %x\n", op.status);
384 		ret = op.status;
385 	}
386 out:
387 	return ret;
388 }
389 
run_descriptor_jr(uint32_t * desc)390 int run_descriptor_jr(uint32_t *desc)
391 {
392 	return run_descriptor_jr_idx(desc, 0);
393 }
394 
jr_reset_sec(uint8_t sec_idx)395 static inline int jr_reset_sec(uint8_t sec_idx)
396 {
397 	if (jr_hw_reset(sec_idx) < 0)
398 		return -1;
399 
400 	/* Clean up the jobring structure maintained by software */
401 	jr_sw_cleanup(sec_idx);
402 
403 	return 0;
404 }
405 
jr_reset(void)406 int jr_reset(void)
407 {
408 	return jr_reset_sec(0);
409 }
410 
sec_reset_idx(uint8_t sec_idx)411 static inline int sec_reset_idx(uint8_t sec_idx)
412 {
413 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
414 	uint32_t mcfgr = sec_in32(&sec->mcfgr);
415 	uint32_t timeout = 100000;
416 
417 	mcfgr |= MCFGR_SWRST;
418 	sec_out32(&sec->mcfgr, mcfgr);
419 
420 	mcfgr |= MCFGR_DMA_RST;
421 	sec_out32(&sec->mcfgr, mcfgr);
422 	do {
423 		mcfgr = sec_in32(&sec->mcfgr);
424 	} while ((mcfgr & MCFGR_DMA_RST) == MCFGR_DMA_RST && --timeout);
425 
426 	if (timeout == 0)
427 		return -1;
428 
429 	timeout = 100000;
430 	do {
431 		mcfgr = sec_in32(&sec->mcfgr);
432 	} while ((mcfgr & MCFGR_SWRST) == MCFGR_SWRST && --timeout);
433 
434 	if (timeout == 0)
435 		return -1;
436 
437 	return 0;
438 }
sec_reset(void)439 int sec_reset(void)
440 {
441 	return sec_reset_idx(0);
442 }
443 #ifndef CONFIG_SPL_BUILD
instantiate_rng(uint8_t sec_idx)444 static int instantiate_rng(uint8_t sec_idx)
445 {
446 	u32 *desc;
447 	u32 rdsta_val;
448 	int ret = 0, sh_idx, size;
449 	ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
450 	struct rng4tst __iomem *rng =
451 			(struct rng4tst __iomem *)&sec->rng;
452 
453 	desc = memalign(ARCH_DMA_MINALIGN, sizeof(uint32_t) * 6);
454 	if (!desc) {
455 		printf("cannot allocate RNG init descriptor memory\n");
456 		return -1;
457 	}
458 
459 	for (sh_idx = 0; sh_idx < RNG4_MAX_HANDLES; sh_idx++) {
460 		/*
461 		 * If the corresponding bit is set, this state handle
462 		 * was initialized by somebody else, so it's left alone.
463 		 */
464 		rdsta_val = sec_in32(&rng->rdsta) & RNG_STATE_HANDLE_MASK;
465 		if (rdsta_val & (1 << sh_idx))
466 			continue;
467 
468 		inline_cnstr_jobdesc_rng_instantiation(desc, sh_idx);
469 		size = roundup(sizeof(uint32_t) * 6, ARCH_DMA_MINALIGN);
470 		flush_dcache_range((unsigned long)desc,
471 				   (unsigned long)desc + size);
472 
473 		ret = run_descriptor_jr_idx(desc, sec_idx);
474 
475 		if (ret)
476 			printf("RNG: Instantiation failed with error 0x%x\n",
477 			       ret);
478 
479 		rdsta_val = sec_in32(&rng->rdsta) & RNG_STATE_HANDLE_MASK;
480 		if (!(rdsta_val & (1 << sh_idx))) {
481 			free(desc);
482 			return -1;
483 		}
484 
485 		memset(desc, 0, sizeof(uint32_t) * 6);
486 	}
487 
488 	free(desc);
489 
490 	return ret;
491 }
492 
get_rng_vid(uint8_t sec_idx)493 static u8 get_rng_vid(uint8_t sec_idx)
494 {
495 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
496 	u32 cha_vid = sec_in32(&sec->chavid_ls);
497 
498 	return (cha_vid & SEC_CHAVID_RNG_LS_MASK) >> SEC_CHAVID_LS_RNG_SHIFT;
499 }
500 
501 /*
502  * By default, the TRNG runs for 200 clocks per sample;
503  * 1200 clocks per sample generates better entropy.
504  */
kick_trng(int ent_delay,uint8_t sec_idx)505 static void kick_trng(int ent_delay, uint8_t sec_idx)
506 {
507 	ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
508 	struct rng4tst __iomem *rng =
509 			(struct rng4tst __iomem *)&sec->rng;
510 	u32 val;
511 
512 	/* put RNG4 into program mode */
513 	sec_setbits32(&rng->rtmctl, RTMCTL_PRGM);
514 	/* rtsdctl bits 0-15 contain "Entropy Delay, which defines the
515 	 * length (in system clocks) of each Entropy sample taken
516 	 * */
517 	val = sec_in32(&rng->rtsdctl);
518 	val = (val & ~RTSDCTL_ENT_DLY_MASK) |
519 	      (ent_delay << RTSDCTL_ENT_DLY_SHIFT);
520 	sec_out32(&rng->rtsdctl, val);
521 	/* min. freq. count, equal to 1/4 of the entropy sample length */
522 	sec_out32(&rng->rtfreqmin, ent_delay >> 2);
523 	/* disable maximum frequency count */
524 	sec_out32(&rng->rtfreqmax, RTFRQMAX_DISABLE);
525 	/*
526 	 * select raw sampling in both entropy shifter
527 	 * and statistical checker
528 	 */
529 	sec_setbits32(&rng->rtmctl, RTMCTL_SAMP_MODE_RAW_ES_SC);
530 	/* put RNG4 into run mode */
531 	sec_clrbits32(&rng->rtmctl, RTMCTL_PRGM);
532 }
533 
rng_init(uint8_t sec_idx)534 static int rng_init(uint8_t sec_idx)
535 {
536 	int ret, ent_delay = RTSDCTL_ENT_DLY_MIN;
537 	ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
538 	struct rng4tst __iomem *rng =
539 			(struct rng4tst __iomem *)&sec->rng;
540 	u32 inst_handles;
541 
542 	do {
543 		inst_handles = sec_in32(&rng->rdsta) & RNG_STATE_HANDLE_MASK;
544 
545 		/*
546 		 * If either of the SH's were instantiated by somebody else
547 		 * then it is assumed that the entropy
548 		 * parameters are properly set and thus the function
549 		 * setting these (kick_trng(...)) is skipped.
550 		 * Also, if a handle was instantiated, do not change
551 		 * the TRNG parameters.
552 		 */
553 		if (!inst_handles) {
554 			kick_trng(ent_delay, sec_idx);
555 			ent_delay += 400;
556 		}
557 		/*
558 		 * if instantiate_rng(...) fails, the loop will rerun
559 		 * and the kick_trng(...) function will modfiy the
560 		 * upper and lower limits of the entropy sampling
561 		 * interval, leading to a sucessful initialization of
562 		 * the RNG.
563 		 */
564 		ret = instantiate_rng(sec_idx);
565 	} while ((ret == -1) && (ent_delay < RTSDCTL_ENT_DLY_MAX));
566 	if (ret) {
567 		printf("RNG: Failed to instantiate RNG\n");
568 		return ret;
569 	}
570 
571 	 /* Enable RDB bit so that RNG works faster */
572 	sec_setbits32(&sec->scfgr, SEC_SCFGR_RDBENABLE);
573 
574 	return ret;
575 }
576 #endif
sec_init_idx(uint8_t sec_idx)577 int sec_init_idx(uint8_t sec_idx)
578 {
579 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
580 	uint32_t mcr = sec_in32(&sec->mcfgr);
581 	uint32_t jrown_ns;
582 	int i;
583 	int ret = 0;
584 
585 #ifdef CONFIG_FSL_CORENET
586 	uint32_t liodnr;
587 	uint32_t liodn_ns;
588 	uint32_t liodn_s;
589 #endif
590 
591 	if (!(sec_idx < CONFIG_SYS_FSL_MAX_NUM_OF_SEC)) {
592 		printf("SEC initialization failed\n");
593 		return -1;
594 	}
595 
596 	/*
597 	 * Modifying CAAM Read/Write Attributes
598 	 * For LS2080A
599 	 * For AXI Write - Cacheable, Write Back, Write allocate
600 	 * For AXI Read - Cacheable, Read allocate
601 	 * Only For LS2080a, to solve CAAM coherency issues
602 	 */
603 #ifdef CONFIG_ARCH_LS2080A
604 	mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0xb << MCFGR_AWCACHE_SHIFT);
605 	mcr = (mcr & ~MCFGR_ARCACHE_MASK) | (0x6 << MCFGR_ARCACHE_SHIFT);
606 #else
607 	mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0x2 << MCFGR_AWCACHE_SHIFT);
608 #endif
609 
610 #ifdef CONFIG_PHYS_64BIT
611 	mcr |= (1 << MCFGR_PS_SHIFT);
612 #endif
613 	sec_out32(&sec->mcfgr, mcr);
614 
615 #ifdef CONFIG_FSL_CORENET
616 #ifdef CONFIG_SPL_BUILD
617 	/*
618 	 * For SPL Build, Set the Liodns in SEC JR0 for
619 	 * creating PAMU entries corresponding to these.
620 	 * For normal build, these are set in set_liodns().
621 	 */
622 	liodn_ns = CONFIG_SPL_JR0_LIODN_NS & JRNSLIODN_MASK;
623 	liodn_s = CONFIG_SPL_JR0_LIODN_S & JRSLIODN_MASK;
624 
625 	liodnr = sec_in32(&sec->jrliodnr[0].ls) &
626 		 ~(JRNSLIODN_MASK | JRSLIODN_MASK);
627 	liodnr = liodnr |
628 		 (liodn_ns << JRNSLIODN_SHIFT) |
629 		 (liodn_s << JRSLIODN_SHIFT);
630 	sec_out32(&sec->jrliodnr[0].ls, liodnr);
631 #else
632 	liodnr = sec_in32(&sec->jrliodnr[0].ls);
633 	liodn_ns = (liodnr & JRNSLIODN_MASK) >> JRNSLIODN_SHIFT;
634 	liodn_s = (liodnr & JRSLIODN_MASK) >> JRSLIODN_SHIFT;
635 #endif
636 #endif
637 
638 	/* Set ownership of job rings to non-TrustZone mode by default */
639 	for (i = 0; i < ARRAY_SIZE(sec->jrliodnr); i++) {
640 		jrown_ns = sec_in32(&sec->jrliodnr[i].ms);
641 		jrown_ns |= JROWN_NS | JRMID_NS;
642 		sec_out32(&sec->jrliodnr[i].ms, jrown_ns);
643 	}
644 
645 	ret = jr_init(sec_idx);
646 	if (ret < 0) {
647 		printf("SEC initialization failed\n");
648 		return -1;
649 	}
650 
651 #ifdef CONFIG_FSL_CORENET
652 	ret = sec_config_pamu_table(liodn_ns, liodn_s);
653 	if (ret < 0)
654 		return -1;
655 
656 	pamu_enable();
657 #endif
658 #ifndef CONFIG_SPL_BUILD
659 	if (get_rng_vid(sec_idx) >= 4) {
660 		if (rng_init(sec_idx) < 0) {
661 			printf("SEC%u: RNG instantiation failed\n", sec_idx);
662 			return -1;
663 		}
664 		printf("SEC%u: RNG instantiated\n", sec_idx);
665 	}
666 #endif
667 	return ret;
668 }
669 
sec_init(void)670 int sec_init(void)
671 {
672 	return sec_init_idx(0);
673 }
674