1 //===-- llvm/Operator.h - Operator utility subclass -------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines various classes for working with Instructions and
11 // ConstantExprs.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_IR_OPERATOR_H
16 #define LLVM_IR_OPERATOR_H
17 
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Instruction.h"
22 #include "llvm/IR/Type.h"
23 
24 namespace llvm {
25 
26 class GetElementPtrInst;
27 class BinaryOperator;
28 class ConstantExpr;
29 
30 /// This is a utility class that provides an abstraction for the common
31 /// functionality between Instructions and ConstantExprs.
32 class Operator : public User {
33 private:
34   // The Operator class is intended to be used as a utility, and is never itself
35   // instantiated.
36   void *operator new(size_t, unsigned) = delete;
37   void *operator new(size_t s) = delete;
38   Operator() = delete;
39 
40 protected:
41   // NOTE: Cannot use = delete because it's not legal to delete
42   // an overridden method that's not deleted in the base class. Cannot leave
43   // this unimplemented because that leads to an ODR-violation.
44   ~Operator() override;
45 
46 public:
47   /// Return the opcode for this Instruction or ConstantExpr.
getOpcode()48   unsigned getOpcode() const {
49     if (const Instruction *I = dyn_cast<Instruction>(this))
50       return I->getOpcode();
51     return cast<ConstantExpr>(this)->getOpcode();
52   }
53 
54   /// If V is an Instruction or ConstantExpr, return its opcode.
55   /// Otherwise return UserOp1.
getOpcode(const Value * V)56   static unsigned getOpcode(const Value *V) {
57     if (const Instruction *I = dyn_cast<Instruction>(V))
58       return I->getOpcode();
59     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
60       return CE->getOpcode();
61     return Instruction::UserOp1;
62   }
63 
classof(const Instruction *)64   static inline bool classof(const Instruction *) { return true; }
classof(const ConstantExpr *)65   static inline bool classof(const ConstantExpr *) { return true; }
classof(const Value * V)66   static inline bool classof(const Value *V) {
67     return isa<Instruction>(V) || isa<ConstantExpr>(V);
68   }
69 };
70 
71 /// Utility class for integer arithmetic operators which may exhibit overflow -
72 /// Add, Sub, and Mul. It does not include SDiv, despite that operator having
73 /// the potential for overflow.
74 class OverflowingBinaryOperator : public Operator {
75 public:
76   enum {
77     NoUnsignedWrap = (1 << 0),
78     NoSignedWrap   = (1 << 1)
79   };
80 
81 private:
82   friend class Instruction;
83   friend class ConstantExpr;
setHasNoUnsignedWrap(bool B)84   void setHasNoUnsignedWrap(bool B) {
85     SubclassOptionalData =
86       (SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap);
87   }
setHasNoSignedWrap(bool B)88   void setHasNoSignedWrap(bool B) {
89     SubclassOptionalData =
90       (SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap);
91   }
92 
93 public:
94   /// Test whether this operation is known to never
95   /// undergo unsigned overflow, aka the nuw property.
hasNoUnsignedWrap()96   bool hasNoUnsignedWrap() const {
97     return SubclassOptionalData & NoUnsignedWrap;
98   }
99 
100   /// Test whether this operation is known to never
101   /// undergo signed overflow, aka the nsw property.
hasNoSignedWrap()102   bool hasNoSignedWrap() const {
103     return (SubclassOptionalData & NoSignedWrap) != 0;
104   }
105 
classof(const Instruction * I)106   static inline bool classof(const Instruction *I) {
107     return I->getOpcode() == Instruction::Add ||
108            I->getOpcode() == Instruction::Sub ||
109            I->getOpcode() == Instruction::Mul ||
110            I->getOpcode() == Instruction::Shl;
111   }
classof(const ConstantExpr * CE)112   static inline bool classof(const ConstantExpr *CE) {
113     return CE->getOpcode() == Instruction::Add ||
114            CE->getOpcode() == Instruction::Sub ||
115            CE->getOpcode() == Instruction::Mul ||
116            CE->getOpcode() == Instruction::Shl;
117   }
classof(const Value * V)118   static inline bool classof(const Value *V) {
119     return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
120            (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
121   }
122 };
123 
124 /// A udiv or sdiv instruction, which can be marked as "exact",
125 /// indicating that no bits are destroyed.
126 class PossiblyExactOperator : public Operator {
127 public:
128   enum {
129     IsExact = (1 << 0)
130   };
131 
132 private:
133   friend class Instruction;
134   friend class ConstantExpr;
setIsExact(bool B)135   void setIsExact(bool B) {
136     SubclassOptionalData = (SubclassOptionalData & ~IsExact) | (B * IsExact);
137   }
138 
139 public:
140   /// Test whether this division is known to be exact, with zero remainder.
isExact()141   bool isExact() const {
142     return SubclassOptionalData & IsExact;
143   }
144 
isPossiblyExactOpcode(unsigned OpC)145   static bool isPossiblyExactOpcode(unsigned OpC) {
146     return OpC == Instruction::SDiv ||
147            OpC == Instruction::UDiv ||
148            OpC == Instruction::AShr ||
149            OpC == Instruction::LShr;
150   }
classof(const ConstantExpr * CE)151   static inline bool classof(const ConstantExpr *CE) {
152     return isPossiblyExactOpcode(CE->getOpcode());
153   }
classof(const Instruction * I)154   static inline bool classof(const Instruction *I) {
155     return isPossiblyExactOpcode(I->getOpcode());
156   }
classof(const Value * V)157   static inline bool classof(const Value *V) {
158     return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
159            (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
160   }
161 };
162 
163 /// Convenience struct for specifying and reasoning about fast-math flags.
164 class FastMathFlags {
165 private:
166   friend class FPMathOperator;
167   unsigned Flags;
FastMathFlags(unsigned F)168   FastMathFlags(unsigned F) : Flags(F) { }
169 
170 public:
171   enum {
172     UnsafeAlgebra   = (1 << 0),
173     NoNaNs          = (1 << 1),
174     NoInfs          = (1 << 2),
175     NoSignedZeros   = (1 << 3),
176     AllowReciprocal = (1 << 4)
177   };
178 
FastMathFlags()179   FastMathFlags() : Flags(0)
180   { }
181 
182   /// Whether any flag is set
any()183   bool any() const { return Flags != 0; }
184 
185   /// Set all the flags to false
clear()186   void clear() { Flags = 0; }
187 
188   /// Flag queries
noNaNs()189   bool noNaNs() const          { return 0 != (Flags & NoNaNs); }
noInfs()190   bool noInfs() const          { return 0 != (Flags & NoInfs); }
noSignedZeros()191   bool noSignedZeros() const   { return 0 != (Flags & NoSignedZeros); }
allowReciprocal()192   bool allowReciprocal() const { return 0 != (Flags & AllowReciprocal); }
unsafeAlgebra()193   bool unsafeAlgebra() const   { return 0 != (Flags & UnsafeAlgebra); }
194 
195   /// Flag setters
setNoNaNs()196   void setNoNaNs()          { Flags |= NoNaNs; }
setNoInfs()197   void setNoInfs()          { Flags |= NoInfs; }
setNoSignedZeros()198   void setNoSignedZeros()   { Flags |= NoSignedZeros; }
setAllowReciprocal()199   void setAllowReciprocal() { Flags |= AllowReciprocal; }
setUnsafeAlgebra()200   void setUnsafeAlgebra() {
201     Flags |= UnsafeAlgebra;
202     setNoNaNs();
203     setNoInfs();
204     setNoSignedZeros();
205     setAllowReciprocal();
206   }
207 
208   void operator&=(const FastMathFlags &OtherFlags) {
209     Flags &= OtherFlags.Flags;
210   }
211 };
212 
213 
214 /// Utility class for floating point operations which can have
215 /// information about relaxed accuracy requirements attached to them.
216 class FPMathOperator : public Operator {
217 private:
218   friend class Instruction;
219 
setHasUnsafeAlgebra(bool B)220   void setHasUnsafeAlgebra(bool B) {
221     SubclassOptionalData =
222       (SubclassOptionalData & ~FastMathFlags::UnsafeAlgebra) |
223       (B * FastMathFlags::UnsafeAlgebra);
224 
225     // Unsafe algebra implies all the others
226     if (B) {
227       setHasNoNaNs(true);
228       setHasNoInfs(true);
229       setHasNoSignedZeros(true);
230       setHasAllowReciprocal(true);
231     }
232   }
setHasNoNaNs(bool B)233   void setHasNoNaNs(bool B) {
234     SubclassOptionalData =
235       (SubclassOptionalData & ~FastMathFlags::NoNaNs) |
236       (B * FastMathFlags::NoNaNs);
237   }
setHasNoInfs(bool B)238   void setHasNoInfs(bool B) {
239     SubclassOptionalData =
240       (SubclassOptionalData & ~FastMathFlags::NoInfs) |
241       (B * FastMathFlags::NoInfs);
242   }
setHasNoSignedZeros(bool B)243   void setHasNoSignedZeros(bool B) {
244     SubclassOptionalData =
245       (SubclassOptionalData & ~FastMathFlags::NoSignedZeros) |
246       (B * FastMathFlags::NoSignedZeros);
247   }
setHasAllowReciprocal(bool B)248   void setHasAllowReciprocal(bool B) {
249     SubclassOptionalData =
250       (SubclassOptionalData & ~FastMathFlags::AllowReciprocal) |
251       (B * FastMathFlags::AllowReciprocal);
252   }
253 
254   /// Convenience function for setting multiple fast-math flags.
255   /// FMF is a mask of the bits to set.
setFastMathFlags(FastMathFlags FMF)256   void setFastMathFlags(FastMathFlags FMF) {
257     SubclassOptionalData |= FMF.Flags;
258   }
259 
260   /// Convenience function for copying all fast-math flags.
261   /// All values in FMF are transferred to this operator.
copyFastMathFlags(FastMathFlags FMF)262   void copyFastMathFlags(FastMathFlags FMF) {
263     SubclassOptionalData = FMF.Flags;
264   }
265 
266 public:
267   /// Test whether this operation is permitted to be
268   /// algebraically transformed, aka the 'A' fast-math property.
hasUnsafeAlgebra()269   bool hasUnsafeAlgebra() const {
270     return (SubclassOptionalData & FastMathFlags::UnsafeAlgebra) != 0;
271   }
272 
273   /// Test whether this operation's arguments and results are to be
274   /// treated as non-NaN, aka the 'N' fast-math property.
hasNoNaNs()275   bool hasNoNaNs() const {
276     return (SubclassOptionalData & FastMathFlags::NoNaNs) != 0;
277   }
278 
279   /// Test whether this operation's arguments and results are to be
280   /// treated as NoN-Inf, aka the 'I' fast-math property.
hasNoInfs()281   bool hasNoInfs() const {
282     return (SubclassOptionalData & FastMathFlags::NoInfs) != 0;
283   }
284 
285   /// Test whether this operation can treat the sign of zero
286   /// as insignificant, aka the 'S' fast-math property.
hasNoSignedZeros()287   bool hasNoSignedZeros() const {
288     return (SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0;
289   }
290 
291   /// Test whether this operation is permitted to use
292   /// reciprocal instead of division, aka the 'R' fast-math property.
hasAllowReciprocal()293   bool hasAllowReciprocal() const {
294     return (SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0;
295   }
296 
297   /// Convenience function for getting all the fast-math flags
getFastMathFlags()298   FastMathFlags getFastMathFlags() const {
299     return FastMathFlags(SubclassOptionalData);
300   }
301 
302   /// \brief Get the maximum error permitted by this operation in ULPs.  An
303   /// accuracy of 0.0 means that the operation should be performed with the
304   /// default precision.
305   float getFPAccuracy() const;
306 
classof(const Instruction * I)307   static inline bool classof(const Instruction *I) {
308     return I->getType()->isFPOrFPVectorTy() ||
309       I->getOpcode() == Instruction::FCmp;
310   }
classof(const Value * V)311   static inline bool classof(const Value *V) {
312     return isa<Instruction>(V) && classof(cast<Instruction>(V));
313   }
314 };
315 
316 
317 /// A helper template for defining operators for individual opcodes.
318 template<typename SuperClass, unsigned Opc>
319 class ConcreteOperator : public SuperClass {
320 public:
classof(const Instruction * I)321   static inline bool classof(const Instruction *I) {
322     return I->getOpcode() == Opc;
323   }
classof(const ConstantExpr * CE)324   static inline bool classof(const ConstantExpr *CE) {
325     return CE->getOpcode() == Opc;
326   }
classof(const Value * V)327   static inline bool classof(const Value *V) {
328     return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
329            (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
330   }
331 };
332 
333 class AddOperator
334   : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Add> {
335 };
336 class SubOperator
337   : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Sub> {
338 };
339 class MulOperator
340   : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Mul> {
341 };
342 class ShlOperator
343   : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Shl> {
344 };
345 
346 
347 class SDivOperator
348   : public ConcreteOperator<PossiblyExactOperator, Instruction::SDiv> {
349 };
350 class UDivOperator
351   : public ConcreteOperator<PossiblyExactOperator, Instruction::UDiv> {
352 };
353 class AShrOperator
354   : public ConcreteOperator<PossiblyExactOperator, Instruction::AShr> {
355 };
356 class LShrOperator
357   : public ConcreteOperator<PossiblyExactOperator, Instruction::LShr> {
358 };
359 
360 
361 class ZExtOperator : public ConcreteOperator<Operator, Instruction::ZExt> {};
362 
363 
364 class GEPOperator
365   : public ConcreteOperator<Operator, Instruction::GetElementPtr> {
366   enum {
367     IsInBounds = (1 << 0)
368   };
369 
370   friend class GetElementPtrInst;
371   friend class ConstantExpr;
setIsInBounds(bool B)372   void setIsInBounds(bool B) {
373     SubclassOptionalData =
374       (SubclassOptionalData & ~IsInBounds) | (B * IsInBounds);
375   }
376 
377 public:
378   /// Test whether this is an inbounds GEP, as defined by LangRef.html.
isInBounds()379   bool isInBounds() const {
380     return SubclassOptionalData & IsInBounds;
381   }
382 
idx_begin()383   inline op_iterator       idx_begin()       { return op_begin()+1; }
idx_begin()384   inline const_op_iterator idx_begin() const { return op_begin()+1; }
idx_end()385   inline op_iterator       idx_end()         { return op_end(); }
idx_end()386   inline const_op_iterator idx_end()   const { return op_end(); }
387 
getPointerOperand()388   Value *getPointerOperand() {
389     return getOperand(0);
390   }
getPointerOperand()391   const Value *getPointerOperand() const {
392     return getOperand(0);
393   }
getPointerOperandIndex()394   static unsigned getPointerOperandIndex() {
395     return 0U;                      // get index for modifying correct operand
396   }
397 
398   /// Method to return the pointer operand as a PointerType.
getPointerOperandType()399   Type *getPointerOperandType() const {
400     return getPointerOperand()->getType();
401   }
402 
403   Type *getSourceElementType() const;
404   Type *getResultElementType() const;
405 
406   /// Method to return the address space of the pointer operand.
getPointerAddressSpace()407   unsigned getPointerAddressSpace() const {
408     return getPointerOperandType()->getPointerAddressSpace();
409   }
410 
getNumIndices()411   unsigned getNumIndices() const {  // Note: always non-negative
412     return getNumOperands() - 1;
413   }
414 
hasIndices()415   bool hasIndices() const {
416     return getNumOperands() > 1;
417   }
418 
419   /// Return true if all of the indices of this GEP are zeros.
420   /// If so, the result pointer and the first operand have the same
421   /// value, just potentially different types.
hasAllZeroIndices()422   bool hasAllZeroIndices() const {
423     for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
424       if (ConstantInt *C = dyn_cast<ConstantInt>(I))
425         if (C->isZero())
426           continue;
427       return false;
428     }
429     return true;
430   }
431 
432   /// Return true if all of the indices of this GEP are constant integers.
433   /// If so, the result pointer and the first operand have
434   /// a constant offset between them.
hasAllConstantIndices()435   bool hasAllConstantIndices() const {
436     for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
437       if (!isa<ConstantInt>(I))
438         return false;
439     }
440     return true;
441   }
442 
443   /// \brief Accumulate the constant address offset of this GEP if possible.
444   ///
445   /// This routine accepts an APInt into which it will accumulate the constant
446   /// offset of this GEP if the GEP is in fact constant. If the GEP is not
447   /// all-constant, it returns false and the value of the offset APInt is
448   /// undefined (it is *not* preserved!). The APInt passed into this routine
449   /// must be at exactly as wide as the IntPtr type for the address space of the
450   /// base GEP pointer.
451   bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
452 };
453 
454 class PtrToIntOperator
455     : public ConcreteOperator<Operator, Instruction::PtrToInt> {
456   friend class PtrToInt;
457   friend class ConstantExpr;
458 
459 public:
getPointerOperand()460   Value *getPointerOperand() {
461     return getOperand(0);
462   }
getPointerOperand()463   const Value *getPointerOperand() const {
464     return getOperand(0);
465   }
getPointerOperandIndex()466   static unsigned getPointerOperandIndex() {
467     return 0U;                      // get index for modifying correct operand
468   }
469 
470   /// Method to return the pointer operand as a PointerType.
getPointerOperandType()471   Type *getPointerOperandType() const {
472     return getPointerOperand()->getType();
473   }
474 
475   /// Method to return the address space of the pointer operand.
getPointerAddressSpace()476   unsigned getPointerAddressSpace() const {
477     return cast<PointerType>(getPointerOperandType())->getAddressSpace();
478   }
479 };
480 
481 class BitCastOperator
482     : public ConcreteOperator<Operator, Instruction::BitCast> {
483   friend class BitCastInst;
484   friend class ConstantExpr;
485 
486 public:
getSrcTy()487   Type *getSrcTy() const {
488     return getOperand(0)->getType();
489   }
490 
getDestTy()491   Type *getDestTy() const {
492     return getType();
493   }
494 };
495 
496 } // End llvm namespace
497 
498 #endif
499