1 //===------- llvm/CodeGen/ScheduleDAG.h - Common Base Class------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the ScheduleDAG class, which is used as the common
11 // base class for instruction schedulers.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CODEGEN_SCHEDULEDAG_H
16 #define LLVM_CODEGEN_SCHEDULEDAG_H
17 
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/Target/TargetMachine.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/GraphTraits.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/PointerIntPair.h"
25 
26 namespace llvm {
27   class AliasAnalysis;
28   class SUnit;
29   class MachineConstantPool;
30   class MachineFunction;
31   class MachineRegisterInfo;
32   class MachineInstr;
33   class TargetRegisterInfo;
34   class ScheduleDAG;
35   class SDNode;
36   class TargetInstrInfo;
37   class MCInstrDesc;
38   class TargetMachine;
39   class TargetRegisterClass;
40   template<class Graph> class GraphWriter;
41 
42   /// SDep - Scheduling dependency. This represents one direction of an
43   /// edge in the scheduling DAG.
44   class SDep {
45   public:
46     /// Kind - These are the different kinds of scheduling dependencies.
47     enum Kind {
48       Data,        ///< Regular data dependence (aka true-dependence).
49       Anti,        ///< A register anti-dependedence (aka WAR).
50       Output,      ///< A register output-dependence (aka WAW).
51       Order        ///< Any other ordering dependency.
52     };
53 
54   private:
55     /// Dep - A pointer to the depending/depended-on SUnit, and an enum
56     /// indicating the kind of the dependency.
57     PointerIntPair<SUnit *, 2, Kind> Dep;
58 
59     /// Contents - A union discriminated by the dependence kind.
60     union {
61       /// Reg - For Data, Anti, and Output dependencies, the associated
62       /// register. For Data dependencies that don't currently have a register
63       /// assigned, this is set to zero.
64       unsigned Reg;
65 
66       /// Order - Additional information about Order dependencies.
67       struct {
68         /// isNormalMemory - True if both sides of the dependence
69         /// access memory in non-volatile and fully modeled ways.
70         bool isNormalMemory : 1;
71 
72         /// isMustAlias - True if both sides of the dependence are known to
73         /// access the same memory.
74         bool isMustAlias : 1;
75 
76         /// isArtificial - True if this is an artificial dependency, meaning
77         /// it is not necessary for program correctness, and may be safely
78         /// deleted if necessary.
79         bool isArtificial : 1;
80       } Order;
81     } Contents;
82 
83     /// Latency - The time associated with this edge. Often this is just
84     /// the value of the Latency field of the predecessor, however advanced
85     /// models may provide additional information about specific edges.
86     unsigned Latency;
87 
88   public:
89     /// SDep - Construct a null SDep. This is only for use by container
90     /// classes which require default constructors. SUnits may not
91     /// have null SDep edges.
SDep()92     SDep() : Dep(0, Data) {}
93 
94     /// SDep - Construct an SDep with the specified values.
95     SDep(SUnit *S, Kind kind, unsigned latency = 1, unsigned Reg = 0,
96          bool isNormalMemory = false, bool isMustAlias = false,
97          bool isArtificial = false)
Dep(S,kind)98       : Dep(S, kind), Contents(), Latency(latency) {
99       switch (kind) {
100       case Anti:
101       case Output:
102         assert(Reg != 0 &&
103                "SDep::Anti and SDep::Output must use a non-zero Reg!");
104         // fall through
105       case Data:
106         assert(!isMustAlias && "isMustAlias only applies with SDep::Order!");
107         assert(!isArtificial && "isArtificial only applies with SDep::Order!");
108         Contents.Reg = Reg;
109         break;
110       case Order:
111         assert(Reg == 0 && "Reg given for non-register dependence!");
112         Contents.Order.isNormalMemory = isNormalMemory;
113         Contents.Order.isMustAlias = isMustAlias;
114         Contents.Order.isArtificial = isArtificial;
115         break;
116       }
117     }
118 
119     bool operator==(const SDep &Other) const {
120       if (Dep != Other.Dep || Latency != Other.Latency) return false;
121       switch (Dep.getInt()) {
122       case Data:
123       case Anti:
124       case Output:
125         return Contents.Reg == Other.Contents.Reg;
126       case Order:
127         return Contents.Order.isNormalMemory ==
128                  Other.Contents.Order.isNormalMemory &&
129                Contents.Order.isMustAlias == Other.Contents.Order.isMustAlias &&
130                Contents.Order.isArtificial == Other.Contents.Order.isArtificial;
131       }
132       assert(0 && "Invalid dependency kind!");
133       return false;
134     }
135 
136     bool operator!=(const SDep &Other) const {
137       return !operator==(Other);
138     }
139 
140     /// getLatency - Return the latency value for this edge, which roughly
141     /// means the minimum number of cycles that must elapse between the
142     /// predecessor and the successor, given that they have this edge
143     /// between them.
getLatency()144     unsigned getLatency() const {
145       return Latency;
146     }
147 
148     /// setLatency - Set the latency for this edge.
setLatency(unsigned Lat)149     void setLatency(unsigned Lat) {
150       Latency = Lat;
151     }
152 
153     //// getSUnit - Return the SUnit to which this edge points.
getSUnit()154     SUnit *getSUnit() const {
155       return Dep.getPointer();
156     }
157 
158     //// setSUnit - Assign the SUnit to which this edge points.
setSUnit(SUnit * SU)159     void setSUnit(SUnit *SU) {
160       Dep.setPointer(SU);
161     }
162 
163     /// getKind - Return an enum value representing the kind of the dependence.
getKind()164     Kind getKind() const {
165       return Dep.getInt();
166     }
167 
168     /// isCtrl - Shorthand for getKind() != SDep::Data.
isCtrl()169     bool isCtrl() const {
170       return getKind() != Data;
171     }
172 
173     /// isNormalMemory - Test if this is an Order dependence between two
174     /// memory accesses where both sides of the dependence access memory
175     /// in non-volatile and fully modeled ways.
isNormalMemory()176     bool isNormalMemory() const {
177       return getKind() == Order && Contents.Order.isNormalMemory;
178     }
179 
180     /// isMustAlias - Test if this is an Order dependence that is marked
181     /// as "must alias", meaning that the SUnits at either end of the edge
182     /// have a memory dependence on a known memory location.
isMustAlias()183     bool isMustAlias() const {
184       return getKind() == Order && Contents.Order.isMustAlias;
185     }
186 
187     /// isArtificial - Test if this is an Order dependence that is marked
188     /// as "artificial", meaning it isn't necessary for correctness.
isArtificial()189     bool isArtificial() const {
190       return getKind() == Order && Contents.Order.isArtificial;
191     }
192 
193     /// isAssignedRegDep - Test if this is a Data dependence that is
194     /// associated with a register.
isAssignedRegDep()195     bool isAssignedRegDep() const {
196       return getKind() == Data && Contents.Reg != 0;
197     }
198 
199     /// getReg - Return the register associated with this edge. This is
200     /// only valid on Data, Anti, and Output edges. On Data edges, this
201     /// value may be zero, meaning there is no associated register.
getReg()202     unsigned getReg() const {
203       assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
204              "getReg called on non-register dependence edge!");
205       return Contents.Reg;
206     }
207 
208     /// setReg - Assign the associated register for this edge. This is
209     /// only valid on Data, Anti, and Output edges. On Anti and Output
210     /// edges, this value must not be zero. On Data edges, the value may
211     /// be zero, which would mean that no specific register is associated
212     /// with this edge.
setReg(unsigned Reg)213     void setReg(unsigned Reg) {
214       assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
215              "setReg called on non-register dependence edge!");
216       assert((getKind() != Anti || Reg != 0) &&
217              "SDep::Anti edge cannot use the zero register!");
218       assert((getKind() != Output || Reg != 0) &&
219              "SDep::Output edge cannot use the zero register!");
220       Contents.Reg = Reg;
221     }
222   };
223 
224   template <>
225   struct isPodLike<SDep> { static const bool value = true; };
226 
227   /// SUnit - Scheduling unit. This is a node in the scheduling DAG.
228   class SUnit {
229   private:
230     SDNode *Node;                       // Representative node.
231     MachineInstr *Instr;                // Alternatively, a MachineInstr.
232   public:
233     SUnit *OrigNode;                    // If not this, the node from which
234                                         // this node was cloned.
235 
236     // Preds/Succs - The SUnits before/after us in the graph.
237     SmallVector<SDep, 4> Preds;  // All sunit predecessors.
238     SmallVector<SDep, 4> Succs;  // All sunit successors.
239 
240     typedef SmallVector<SDep, 4>::iterator pred_iterator;
241     typedef SmallVector<SDep, 4>::iterator succ_iterator;
242     typedef SmallVector<SDep, 4>::const_iterator const_pred_iterator;
243     typedef SmallVector<SDep, 4>::const_iterator const_succ_iterator;
244 
245     unsigned NodeNum;                   // Entry # of node in the node vector.
246     unsigned NodeQueueId;               // Queue id of node.
247     unsigned NumPreds;                  // # of SDep::Data preds.
248     unsigned NumSuccs;                  // # of SDep::Data sucss.
249     unsigned NumPredsLeft;              // # of preds not scheduled.
250     unsigned NumSuccsLeft;              // # of succs not scheduled.
251     unsigned short NumRegDefsLeft;      // # of reg defs with no scheduled use.
252     unsigned short Latency;             // Node latency.
253     bool isVRegCycle      : 1;          // May use and def the same vreg.
254     bool isCall           : 1;          // Is a function call.
255     bool isCallOp         : 1;          // Is a function call operand.
256     bool isTwoAddress     : 1;          // Is a two-address instruction.
257     bool isCommutable     : 1;          // Is a commutable instruction.
258     bool hasPhysRegDefs   : 1;          // Has physreg defs that are being used.
259     bool hasPhysRegClobbers : 1;        // Has any physreg defs, used or not.
260     bool isPending        : 1;          // True once pending.
261     bool isAvailable      : 1;          // True once available.
262     bool isScheduled      : 1;          // True once scheduled.
263     bool isScheduleHigh   : 1;          // True if preferable to schedule high.
264     bool isScheduleLow    : 1;          // True if preferable to schedule low.
265     bool isCloned         : 1;          // True if this node has been cloned.
266     Sched::Preference SchedulingPref;   // Scheduling preference.
267 
268   private:
269     bool isDepthCurrent   : 1;          // True if Depth is current.
270     bool isHeightCurrent  : 1;          // True if Height is current.
271     unsigned Depth;                     // Node depth.
272     unsigned Height;                    // Node height.
273   public:
274     const TargetRegisterClass *CopyDstRC; // Is a special copy node if not null.
275     const TargetRegisterClass *CopySrcRC;
276 
277     /// SUnit - Construct an SUnit for pre-regalloc scheduling to represent
278     /// an SDNode and any nodes flagged to it.
279     SUnit(SDNode *node, unsigned nodenum)
280       : Node(node), Instr(0), OrigNode(0), NodeNum(nodenum),
281         NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
282         NumSuccsLeft(0), NumRegDefsLeft(0), Latency(0),
283         isVRegCycle(false), isCall(false), isCallOp(false), isTwoAddress(false),
284         isCommutable(false), hasPhysRegDefs(false), hasPhysRegClobbers(false),
285         isPending(false), isAvailable(false), isScheduled(false),
286         isScheduleHigh(false), isScheduleLow(false), isCloned(false),
287         SchedulingPref(Sched::None),
288         isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
289         CopyDstRC(NULL), CopySrcRC(NULL) {}
290 
291     /// SUnit - Construct an SUnit for post-regalloc scheduling to represent
292     /// a MachineInstr.
293     SUnit(MachineInstr *instr, unsigned nodenum)
294       : Node(0), Instr(instr), OrigNode(0), NodeNum(nodenum),
295         NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
296         NumSuccsLeft(0), NumRegDefsLeft(0), Latency(0),
297         isVRegCycle(false), isCall(false), isCallOp(false), isTwoAddress(false),
298         isCommutable(false), hasPhysRegDefs(false), hasPhysRegClobbers(false),
299         isPending(false), isAvailable(false), isScheduled(false),
300         isScheduleHigh(false), isScheduleLow(false), isCloned(false),
301         SchedulingPref(Sched::None),
302         isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
303         CopyDstRC(NULL), CopySrcRC(NULL) {}
304 
305     /// SUnit - Construct a placeholder SUnit.
306     SUnit()
307       : Node(0), Instr(0), OrigNode(0), NodeNum(~0u),
308         NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
309         NumSuccsLeft(0), NumRegDefsLeft(0), Latency(0),
310         isVRegCycle(false), isCall(false), isCallOp(false), isTwoAddress(false),
311         isCommutable(false), hasPhysRegDefs(false), hasPhysRegClobbers(false),
312         isPending(false), isAvailable(false), isScheduled(false),
313         isScheduleHigh(false), isScheduleLow(false), isCloned(false),
314         SchedulingPref(Sched::None),
315         isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
316         CopyDstRC(NULL), CopySrcRC(NULL) {}
317 
318     /// setNode - Assign the representative SDNode for this SUnit.
319     /// This may be used during pre-regalloc scheduling.
320     void setNode(SDNode *N) {
321       assert(!Instr && "Setting SDNode of SUnit with MachineInstr!");
322       Node = N;
323     }
324 
325     /// getNode - Return the representative SDNode for this SUnit.
326     /// This may be used during pre-regalloc scheduling.
327     SDNode *getNode() const {
328       assert(!Instr && "Reading SDNode of SUnit with MachineInstr!");
329       return Node;
330     }
331 
332     /// isInstr - Return true if this SUnit refers to a machine instruction as
333     /// opposed to an SDNode.
334     bool isInstr() const { return Instr; }
335 
336     /// setInstr - Assign the instruction for the SUnit.
337     /// This may be used during post-regalloc scheduling.
338     void setInstr(MachineInstr *MI) {
339       assert(!Node && "Setting MachineInstr of SUnit with SDNode!");
340       Instr = MI;
341     }
342 
343     /// getInstr - Return the representative MachineInstr for this SUnit.
344     /// This may be used during post-regalloc scheduling.
345     MachineInstr *getInstr() const {
346       assert(!Node && "Reading MachineInstr of SUnit with SDNode!");
347       return Instr;
348     }
349 
350     /// addPred - This adds the specified edge as a pred of the current node if
351     /// not already.  It also adds the current node as a successor of the
352     /// specified node.
353     bool addPred(const SDep &D);
354 
355     /// removePred - This removes the specified edge as a pred of the current
356     /// node if it exists.  It also removes the current node as a successor of
357     /// the specified node.
358     void removePred(const SDep &D);
359 
360     /// getDepth - Return the depth of this node, which is the length of the
361     /// maximum path up to any node which has no predecessors.
362     unsigned getDepth() const {
363       if (!isDepthCurrent)
364         const_cast<SUnit *>(this)->ComputeDepth();
365       return Depth;
366     }
367 
368     /// getHeight - Return the height of this node, which is the length of the
369     /// maximum path down to any node which has no successors.
370     unsigned getHeight() const {
371       if (!isHeightCurrent)
372         const_cast<SUnit *>(this)->ComputeHeight();
373       return Height;
374     }
375 
376     /// setDepthToAtLeast - If NewDepth is greater than this node's
377     /// depth value, set it to be the new depth value. This also
378     /// recursively marks successor nodes dirty.
379     void setDepthToAtLeast(unsigned NewDepth);
380 
381     /// setDepthToAtLeast - If NewDepth is greater than this node's
382     /// depth value, set it to be the new height value. This also
383     /// recursively marks predecessor nodes dirty.
384     void setHeightToAtLeast(unsigned NewHeight);
385 
386     /// setDepthDirty - Set a flag in this node to indicate that its
387     /// stored Depth value will require recomputation the next time
388     /// getDepth() is called.
389     void setDepthDirty();
390 
391     /// setHeightDirty - Set a flag in this node to indicate that its
392     /// stored Height value will require recomputation the next time
393     /// getHeight() is called.
394     void setHeightDirty();
395 
396     /// isPred - Test if node N is a predecessor of this node.
397     bool isPred(SUnit *N) {
398       for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
399         if (Preds[i].getSUnit() == N)
400           return true;
401       return false;
402     }
403 
404     /// isSucc - Test if node N is a successor of this node.
405     bool isSucc(SUnit *N) {
406       for (unsigned i = 0, e = (unsigned)Succs.size(); i != e; ++i)
407         if (Succs[i].getSUnit() == N)
408           return true;
409       return false;
410     }
411 
412     void dump(const ScheduleDAG *G) const;
413     void dumpAll(const ScheduleDAG *G) const;
414     void print(raw_ostream &O, const ScheduleDAG *G) const;
415 
416   private:
417     void ComputeDepth();
418     void ComputeHeight();
419   };
420 
421   //===--------------------------------------------------------------------===//
422   /// SchedulingPriorityQueue - This interface is used to plug different
423   /// priorities computation algorithms into the list scheduler. It implements
424   /// the interface of a standard priority queue, where nodes are inserted in
425   /// arbitrary order and returned in priority order.  The computation of the
426   /// priority and the representation of the queue are totally up to the
427   /// implementation to decide.
428   ///
429   class SchedulingPriorityQueue {
430     unsigned CurCycle;
431     bool HasReadyFilter;
432   public:
433     SchedulingPriorityQueue(bool rf = false):
434       CurCycle(0), HasReadyFilter(rf) {}
435     virtual ~SchedulingPriorityQueue() {}
436 
437     virtual bool isBottomUp() const = 0;
438 
439     virtual void initNodes(std::vector<SUnit> &SUnits) = 0;
440     virtual void addNode(const SUnit *SU) = 0;
441     virtual void updateNode(const SUnit *SU) = 0;
442     virtual void releaseState() = 0;
443 
444     virtual bool empty() const = 0;
445 
446     bool hasReadyFilter() const { return HasReadyFilter; }
447 
448     virtual bool tracksRegPressure() const { return false; }
449 
450     virtual bool isReady(SUnit *) const {
451       assert(!HasReadyFilter && "The ready filter must override isReady()");
452       return true;
453     }
454     virtual void push(SUnit *U) = 0;
455 
456     void push_all(const std::vector<SUnit *> &Nodes) {
457       for (std::vector<SUnit *>::const_iterator I = Nodes.begin(),
458            E = Nodes.end(); I != E; ++I)
459         push(*I);
460     }
461 
462     virtual SUnit *pop() = 0;
463 
464     virtual void remove(SUnit *SU) = 0;
465 
466     virtual void dump(ScheduleDAG *) const {}
467 
468     /// ScheduledNode - As each node is scheduled, this method is invoked.  This
469     /// allows the priority function to adjust the priority of related
470     /// unscheduled nodes, for example.
471     ///
472     virtual void ScheduledNode(SUnit *) {}
473 
474     virtual void UnscheduledNode(SUnit *) {}
475 
476     void setCurCycle(unsigned Cycle) {
477       CurCycle = Cycle;
478     }
479 
480     unsigned getCurCycle() const {
481       return CurCycle;
482     }
483   };
484 
485   class ScheduleDAG {
486   public:
487     MachineBasicBlock *BB;          // The block in which to insert instructions
488     MachineBasicBlock::iterator InsertPos;// The position to insert instructions
489     const TargetMachine &TM;              // Target processor
490     const TargetInstrInfo *TII;           // Target instruction information
491     const TargetRegisterInfo *TRI;        // Target processor register info
492     MachineFunction &MF;                  // Machine function
493     MachineRegisterInfo &MRI;             // Virtual/real register map
494     std::vector<SUnit*> Sequence;         // The schedule. Null SUnit*'s
495                                           // represent noop instructions.
496     std::vector<SUnit> SUnits;            // The scheduling units.
497     SUnit EntrySU;                        // Special node for the region entry.
498     SUnit ExitSU;                         // Special node for the region exit.
499 
500 #ifdef NDEBUG
501     static const bool StressSched = false;
502 #else
503     bool StressSched;
504 #endif
505 
506     explicit ScheduleDAG(MachineFunction &mf);
507 
508     virtual ~ScheduleDAG();
509 
510     /// getInstrDesc - Return the MCInstrDesc of this SUnit.
511     /// Return NULL for SDNodes without a machine opcode.
512     const MCInstrDesc *getInstrDesc(const SUnit *SU) const {
513       if (SU->isInstr()) return &SU->getInstr()->getDesc();
514       return getNodeDesc(SU->getNode());
515     }
516 
517     /// viewGraph - Pop up a GraphViz/gv window with the ScheduleDAG rendered
518     /// using 'dot'.
519     ///
520     void viewGraph();
521 
522     /// EmitSchedule - Insert MachineInstrs into the MachineBasicBlock
523     /// according to the order specified in Sequence.
524     ///
525     virtual MachineBasicBlock *EmitSchedule() = 0;
526 
527     void dumpSchedule() const;
528 
529     virtual void dumpNode(const SUnit *SU) const = 0;
530 
531     /// getGraphNodeLabel - Return a label for an SUnit node in a visualization
532     /// of the ScheduleDAG.
533     virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0;
534 
535     /// addCustomGraphFeatures - Add custom features for a visualization of
536     /// the ScheduleDAG.
537     virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {}
538 
539 #ifndef NDEBUG
540     /// VerifySchedule - Verify that all SUnits were scheduled and that
541     /// their state is consistent.
542     void VerifySchedule(bool isBottomUp);
543 #endif
544 
545   protected:
546     /// Run - perform scheduling.
547     ///
548     void Run(MachineBasicBlock *bb, MachineBasicBlock::iterator insertPos);
549 
550     /// BuildSchedGraph - Build SUnits and set up their Preds and Succs
551     /// to form the scheduling dependency graph.
552     ///
553     virtual void BuildSchedGraph(AliasAnalysis *AA) = 0;
554 
555     /// ComputeLatency - Compute node latency.
556     ///
557     virtual void ComputeLatency(SUnit *SU) = 0;
558 
559     /// ComputeOperandLatency - Override dependence edge latency using
560     /// operand use/def information
561     ///
562     virtual void ComputeOperandLatency(SUnit *, SUnit *,
563                                        SDep&) const { }
564 
565     /// Schedule - Order nodes according to selected style, filling
566     /// in the Sequence member.
567     ///
568     virtual void Schedule() = 0;
569 
570     /// ForceUnitLatencies - Return true if all scheduling edges should be given
571     /// a latency value of one.  The default is to return false; schedulers may
572     /// override this as needed.
573     virtual bool ForceUnitLatencies() const { return false; }
574 
575     /// EmitNoop - Emit a noop instruction.
576     ///
577     void EmitNoop();
578 
579     void EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap);
580 
581   private:
582     // Return the MCInstrDesc of this SDNode or NULL.
583     const MCInstrDesc *getNodeDesc(const SDNode *Node) const;
584   };
585 
586   class SUnitIterator : public std::iterator<std::forward_iterator_tag,
587                                              SUnit, ptrdiff_t> {
588     SUnit *Node;
589     unsigned Operand;
590 
591     SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}
592   public:
593     bool operator==(const SUnitIterator& x) const {
594       return Operand == x.Operand;
595     }
596     bool operator!=(const SUnitIterator& x) const { return !operator==(x); }
597 
598     const SUnitIterator &operator=(const SUnitIterator &I) {
599       assert(I.Node==Node && "Cannot assign iterators to two different nodes!");
600       Operand = I.Operand;
601       return *this;
602     }
603 
604     pointer operator*() const {
605       return Node->Preds[Operand].getSUnit();
606     }
607     pointer operator->() const { return operator*(); }
608 
609     SUnitIterator& operator++() {                // Preincrement
610       ++Operand;
611       return *this;
612     }
613     SUnitIterator operator++(int) { // Postincrement
614       SUnitIterator tmp = *this; ++*this; return tmp;
615     }
616 
617     static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
618     static SUnitIterator end  (SUnit *N) {
619       return SUnitIterator(N, (unsigned)N->Preds.size());
620     }
621 
622     unsigned getOperand() const { return Operand; }
623     const SUnit *getNode() const { return Node; }
624     /// isCtrlDep - Test if this is not an SDep::Data dependence.
625     bool isCtrlDep() const {
626       return getSDep().isCtrl();
627     }
628     bool isArtificialDep() const {
629       return getSDep().isArtificial();
630     }
631     const SDep &getSDep() const {
632       return Node->Preds[Operand];
633     }
634   };
635 
636   template <> struct GraphTraits<SUnit*> {
637     typedef SUnit NodeType;
638     typedef SUnitIterator ChildIteratorType;
639     static inline NodeType *getEntryNode(SUnit *N) { return N; }
640     static inline ChildIteratorType child_begin(NodeType *N) {
641       return SUnitIterator::begin(N);
642     }
643     static inline ChildIteratorType child_end(NodeType *N) {
644       return SUnitIterator::end(N);
645     }
646   };
647 
648   template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
649     typedef std::vector<SUnit>::iterator nodes_iterator;
650     static nodes_iterator nodes_begin(ScheduleDAG *G) {
651       return G->SUnits.begin();
652     }
653     static nodes_iterator nodes_end(ScheduleDAG *G) {
654       return G->SUnits.end();
655     }
656   };
657 
658   /// ScheduleDAGTopologicalSort is a class that computes a topological
659   /// ordering for SUnits and provides methods for dynamically updating
660   /// the ordering as new edges are added.
661   ///
662   /// This allows a very fast implementation of IsReachable, for example.
663   ///
664   class ScheduleDAGTopologicalSort {
665     /// SUnits - A reference to the ScheduleDAG's SUnits.
666     std::vector<SUnit> &SUnits;
667 
668     /// Index2Node - Maps topological index to the node number.
669     std::vector<int> Index2Node;
670     /// Node2Index - Maps the node number to its topological index.
671     std::vector<int> Node2Index;
672     /// Visited - a set of nodes visited during a DFS traversal.
673     BitVector Visited;
674 
675     /// DFS - make a DFS traversal and mark all nodes affected by the
676     /// edge insertion. These nodes will later get new topological indexes
677     /// by means of the Shift method.
678     void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
679 
680     /// Shift - reassign topological indexes for the nodes in the DAG
681     /// to preserve the topological ordering.
682     void Shift(BitVector& Visited, int LowerBound, int UpperBound);
683 
684     /// Allocate - assign the topological index to the node n.
685     void Allocate(int n, int index);
686 
687   public:
688     explicit ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits);
689 
690     /// InitDAGTopologicalSorting - create the initial topological
691     /// ordering from the DAG to be scheduled.
692     void InitDAGTopologicalSorting();
693 
694     /// IsReachable - Checks if SU is reachable from TargetSU.
695     bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
696 
697     /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU
698     /// will create a cycle.
699     bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
700 
701     /// AddPred - Updates the topological ordering to accommodate an edge
702     /// to be added from SUnit X to SUnit Y.
703     void AddPred(SUnit *Y, SUnit *X);
704 
705     /// RemovePred - Updates the topological ordering to accommodate an
706     /// an edge to be removed from the specified node N from the predecessors
707     /// of the current node M.
708     void RemovePred(SUnit *M, SUnit *N);
709 
710     typedef std::vector<int>::iterator iterator;
711     typedef std::vector<int>::const_iterator const_iterator;
712     iterator begin() { return Index2Node.begin(); }
713     const_iterator begin() const { return Index2Node.begin(); }
714     iterator end() { return Index2Node.end(); }
715     const_iterator end() const { return Index2Node.end(); }
716 
717     typedef std::vector<int>::reverse_iterator reverse_iterator;
718     typedef std::vector<int>::const_reverse_iterator const_reverse_iterator;
719     reverse_iterator rbegin() { return Index2Node.rbegin(); }
720     const_reverse_iterator rbegin() const { return Index2Node.rbegin(); }
721     reverse_iterator rend() { return Index2Node.rend(); }
722     const_reverse_iterator rend() const { return Index2Node.rend(); }
723   };
724 }
725 
726 #endif
727