1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2015 Freescale Semiconductor, Inc.
4  *
5  * Author:
6  *	Peng Fan <Peng.Fan@freescale.com>
7  */
8 
9 #include <common.h>
10 #include <div64.h>
11 #include <asm/io.h>
12 #include <linux/errno.h>
13 #include <asm/arch/imx-regs.h>
14 #include <asm/arch/crm_regs.h>
15 #include <asm/arch/clock.h>
16 #include <asm/arch/sys_proto.h>
17 
18 struct mxc_ccm_anatop_reg *ccm_anatop = (struct mxc_ccm_anatop_reg *)
19 					 ANATOP_BASE_ADDR;
20 struct mxc_ccm_reg *ccm_reg = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
21 
22 #ifdef CONFIG_FSL_ESDHC
23 DECLARE_GLOBAL_DATA_PTR;
24 #endif
25 
get_clocks(void)26 int get_clocks(void)
27 {
28 #ifdef CONFIG_FSL_ESDHC
29 #if CONFIG_SYS_FSL_ESDHC_ADDR == USDHC2_BASE_ADDR
30 	gd->arch.sdhc_clk = mxc_get_clock(MXC_ESDHC2_CLK);
31 #elif CONFIG_SYS_FSL_ESDHC_ADDR == USDHC3_BASE_ADDR
32 	gd->arch.sdhc_clk = mxc_get_clock(MXC_ESDHC3_CLK);
33 #else
34 	gd->arch.sdhc_clk = mxc_get_clock(MXC_ESDHC_CLK);
35 #endif
36 #endif
37 	return 0;
38 }
39 
get_ahb_clk(void)40 u32 get_ahb_clk(void)
41 {
42 	return get_root_clk(AHB_CLK_ROOT);
43 }
44 
get_ipg_clk(void)45 static u32 get_ipg_clk(void)
46 {
47 	/*
48 	 * The AHB and IPG are fixed at 2:1 ratio, and synchronized to
49 	 * each other.
50 	 */
51 	return get_ahb_clk() / 2;
52 }
53 
imx_get_uartclk(void)54 u32 imx_get_uartclk(void)
55 {
56 	return get_root_clk(UART1_CLK_ROOT);
57 }
58 
imx_get_fecclk(void)59 u32 imx_get_fecclk(void)
60 {
61 	return get_root_clk(ENET_AXI_CLK_ROOT);
62 }
63 
64 #ifdef CONFIG_MXC_OCOTP
enable_ocotp_clk(unsigned char enable)65 void enable_ocotp_clk(unsigned char enable)
66 {
67 	clock_enable(CCGR_OCOTP, enable);
68 }
69 
enable_thermal_clk(void)70 void enable_thermal_clk(void)
71 {
72 	enable_ocotp_clk(1);
73 }
74 #endif
75 
enable_usboh3_clk(unsigned char enable)76 void enable_usboh3_clk(unsigned char enable)
77 {
78 	u32 target;
79 
80 	if (enable) {
81 		/* disable the clock gate first */
82 		clock_enable(CCGR_USB_HSIC, 0);
83 
84 		/* 120Mhz */
85 		target = CLK_ROOT_ON |
86 			 USB_HSIC_CLK_ROOT_FROM_PLL_SYS_MAIN_480M_CLK |
87 			 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
88 			 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
89 		clock_set_target_val(USB_HSIC_CLK_ROOT, target);
90 
91 		/* enable the clock gate */
92 		clock_enable(CCGR_USB_CTRL, 1);
93 		clock_enable(CCGR_USB_HSIC, 1);
94 		clock_enable(CCGR_USB_PHY1, 1);
95 		clock_enable(CCGR_USB_PHY2, 1);
96 	} else {
97 		clock_enable(CCGR_USB_CTRL, 0);
98 		clock_enable(CCGR_USB_HSIC, 0);
99 		clock_enable(CCGR_USB_PHY1, 0);
100 		clock_enable(CCGR_USB_PHY2, 0);
101 	}
102 }
103 
decode_pll(enum pll_clocks pll,u32 infreq)104 static u32 decode_pll(enum pll_clocks pll, u32 infreq)
105 {
106 	u32 reg, div_sel;
107 	u32 num, denom;
108 
109 	/*
110 	 * Alought there are four choices for the bypass src,
111 	 * we choose OSC_24M which is the default set in ROM.
112 	 */
113 	switch (pll) {
114 	case PLL_CORE:
115 		reg = readl(&ccm_anatop->pll_arm);
116 
117 		if (reg & CCM_ANALOG_PLL_ARM_POWERDOWN_MASK)
118 			return 0;
119 
120 		if (reg & CCM_ANALOG_PLL_ARM_BYPASS_MASK)
121 			return MXC_HCLK;
122 
123 		div_sel = (reg & CCM_ANALOG_PLL_ARM_DIV_SELECT_MASK) >>
124 			   CCM_ANALOG_PLL_ARM_DIV_SELECT_SHIFT;
125 
126 		return (infreq * div_sel) / 2;
127 
128 	case PLL_SYS:
129 		reg = readl(&ccm_anatop->pll_480);
130 
131 		if (reg & CCM_ANALOG_PLL_480_POWERDOWN_MASK)
132 			return 0;
133 
134 		if (reg & CCM_ANALOG_PLL_480_BYPASS_MASK)
135 			return MXC_HCLK;
136 
137 		if (((reg & CCM_ANALOG_PLL_480_DIV_SELECT_MASK) >>
138 			CCM_ANALOG_PLL_480_DIV_SELECT_SHIFT) == 0)
139 			return 480000000u;
140 		else
141 			return 528000000u;
142 
143 	case PLL_ENET:
144 		reg = readl(&ccm_anatop->pll_enet);
145 
146 		if (reg & CCM_ANALOG_PLL_ENET_POWERDOWN_MASK)
147 			return 0;
148 
149 		if (reg & CCM_ANALOG_PLL_ENET_BYPASS_MASK)
150 			return MXC_HCLK;
151 
152 		return 1000000000u;
153 
154 	case PLL_DDR:
155 		reg = readl(&ccm_anatop->pll_ddr);
156 
157 		if (reg & CCM_ANALOG_PLL_DDR_POWERDOWN_MASK)
158 			return 0;
159 
160 		num = ccm_anatop->pll_ddr_num;
161 		denom = ccm_anatop->pll_ddr_denom;
162 
163 		if (reg & CCM_ANALOG_PLL_DDR_BYPASS_MASK)
164 			return MXC_HCLK;
165 
166 		div_sel = (reg & CCM_ANALOG_PLL_DDR_DIV_SELECT_MASK) >>
167 			   CCM_ANALOG_PLL_DDR_DIV_SELECT_SHIFT;
168 
169 		return infreq * (div_sel + num / denom);
170 
171 	case PLL_USB:
172 		return 480000000u;
173 
174 	default:
175 		printf("Unsupported pll clocks %d\n", pll);
176 		break;
177 	}
178 
179 	return 0;
180 }
181 
mxc_get_pll_sys_derive(int derive)182 static u32 mxc_get_pll_sys_derive(int derive)
183 {
184 	u32 freq, div, frac;
185 	u32 reg;
186 
187 	div = 1;
188 	reg = readl(&ccm_anatop->pll_480);
189 	freq = decode_pll(PLL_SYS, MXC_HCLK);
190 
191 	switch (derive) {
192 	case PLL_SYS_MAIN_480M_CLK:
193 		if (reg & CCM_ANALOG_PLL_480_MAIN_DIV1_CLKGATE_MASK)
194 			return 0;
195 		else
196 			return freq;
197 	case PLL_SYS_MAIN_240M_CLK:
198 		if (reg & CCM_ANALOG_PLL_480_MAIN_DIV2_CLKGATE_MASK)
199 			return 0;
200 		else
201 			return freq / 2;
202 	case PLL_SYS_MAIN_120M_CLK:
203 		if (reg & CCM_ANALOG_PLL_480_MAIN_DIV4_CLKGATE_MASK)
204 			return 0;
205 		else
206 			return freq / 4;
207 	case PLL_SYS_PFD0_392M_CLK:
208 		reg = readl(&ccm_anatop->pfd_480a);
209 		if (reg & CCM_ANALOG_PFD_480A_PFD0_DIV1_CLKGATE_MASK)
210 			return 0;
211 		frac = (reg & CCM_ANALOG_PFD_480A_PFD0_FRAC_MASK) >>
212 			CCM_ANALOG_PFD_480A_PFD0_FRAC_SHIFT;
213 		break;
214 	case PLL_SYS_PFD0_196M_CLK:
215 		if (reg & CCM_ANALOG_PLL_480_PFD0_DIV2_CLKGATE_MASK)
216 			return 0;
217 		reg = readl(&ccm_anatop->pfd_480a);
218 		frac = (reg & CCM_ANALOG_PFD_480A_PFD0_FRAC_MASK) >>
219 			CCM_ANALOG_PFD_480A_PFD0_FRAC_SHIFT;
220 		div = 2;
221 		break;
222 	case PLL_SYS_PFD1_332M_CLK:
223 		reg = readl(&ccm_anatop->pfd_480a);
224 		if (reg & CCM_ANALOG_PFD_480A_PFD1_DIV1_CLKGATE_MASK)
225 			return 0;
226 		frac = (reg & CCM_ANALOG_PFD_480A_PFD1_FRAC_MASK) >>
227 			CCM_ANALOG_PFD_480A_PFD1_FRAC_SHIFT;
228 		break;
229 	case PLL_SYS_PFD1_166M_CLK:
230 		if (reg & CCM_ANALOG_PLL_480_PFD1_DIV2_CLKGATE_MASK)
231 			return 0;
232 		reg = readl(&ccm_anatop->pfd_480a);
233 		frac = (reg & CCM_ANALOG_PFD_480A_PFD1_FRAC_MASK) >>
234 			CCM_ANALOG_PFD_480A_PFD1_FRAC_SHIFT;
235 		div = 2;
236 		break;
237 	case PLL_SYS_PFD2_270M_CLK:
238 		reg = readl(&ccm_anatop->pfd_480a);
239 		if (reg & CCM_ANALOG_PFD_480A_PFD2_DIV1_CLKGATE_MASK)
240 			return 0;
241 		frac = (reg & CCM_ANALOG_PFD_480A_PFD2_FRAC_MASK) >>
242 			CCM_ANALOG_PFD_480A_PFD2_FRAC_SHIFT;
243 		break;
244 	case PLL_SYS_PFD2_135M_CLK:
245 		if (reg & CCM_ANALOG_PLL_480_PFD2_DIV2_CLKGATE_MASK)
246 			return 0;
247 		reg = readl(&ccm_anatop->pfd_480a);
248 		frac = (reg & CCM_ANALOG_PFD_480A_PFD2_FRAC_MASK) >>
249 			CCM_ANALOG_PFD_480A_PFD2_FRAC_SHIFT;
250 		div = 2;
251 		break;
252 	case PLL_SYS_PFD3_CLK:
253 		reg = readl(&ccm_anatop->pfd_480a);
254 		if (reg & CCM_ANALOG_PFD_480A_PFD3_DIV1_CLKGATE_MASK)
255 			return 0;
256 		frac = (reg & CCM_ANALOG_PFD_480A_PFD3_FRAC_MASK) >>
257 			CCM_ANALOG_PFD_480A_PFD3_FRAC_SHIFT;
258 		break;
259 	case PLL_SYS_PFD4_CLK:
260 		reg = readl(&ccm_anatop->pfd_480b);
261 		if (reg & CCM_ANALOG_PFD_480B_PFD4_DIV1_CLKGATE_MASK)
262 			return 0;
263 		frac = (reg & CCM_ANALOG_PFD_480B_PFD4_FRAC_MASK) >>
264 			CCM_ANALOG_PFD_480B_PFD4_FRAC_SHIFT;
265 		break;
266 	case PLL_SYS_PFD5_CLK:
267 		reg = readl(&ccm_anatop->pfd_480b);
268 		if (reg & CCM_ANALOG_PFD_480B_PFD5_DIV1_CLKGATE_MASK)
269 			return 0;
270 		frac = (reg & CCM_ANALOG_PFD_480B_PFD5_FRAC_MASK) >>
271 			CCM_ANALOG_PFD_480B_PFD5_FRAC_SHIFT;
272 		break;
273 	case PLL_SYS_PFD6_CLK:
274 		reg = readl(&ccm_anatop->pfd_480b);
275 		if (reg & CCM_ANALOG_PFD_480B_PFD6_DIV1_CLKGATE_MASK)
276 			return 0;
277 		frac = (reg & CCM_ANALOG_PFD_480B_PFD6_FRAC_MASK) >>
278 			CCM_ANALOG_PFD_480B_PFD6_FRAC_SHIFT;
279 		break;
280 	case PLL_SYS_PFD7_CLK:
281 		reg = readl(&ccm_anatop->pfd_480b);
282 		if (reg & CCM_ANALOG_PFD_480B_PFD7_DIV1_CLKGATE_MASK)
283 			return 0;
284 		frac = (reg & CCM_ANALOG_PFD_480B_PFD7_FRAC_MASK) >>
285 			CCM_ANALOG_PFD_480B_PFD7_FRAC_SHIFT;
286 		break;
287 	default:
288 		printf("Error derived pll_sys clock %d\n", derive);
289 		return 0;
290 	}
291 
292 	return ((freq / frac) * 18) / div;
293 }
294 
mxc_get_pll_enet_derive(int derive)295 static u32 mxc_get_pll_enet_derive(int derive)
296 {
297 	u32 freq, reg;
298 
299 	freq = decode_pll(PLL_ENET, MXC_HCLK);
300 	reg = readl(&ccm_anatop->pll_enet);
301 
302 	switch (derive) {
303 	case PLL_ENET_MAIN_500M_CLK:
304 		if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_500MHZ_MASK)
305 			return freq / 2;
306 		break;
307 	case PLL_ENET_MAIN_250M_CLK:
308 		if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_250MHZ_MASK)
309 			return freq / 4;
310 		break;
311 	case PLL_ENET_MAIN_125M_CLK:
312 		if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_125MHZ_MASK)
313 			return freq / 8;
314 		break;
315 	case PLL_ENET_MAIN_100M_CLK:
316 		if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_100MHZ_MASK)
317 			return freq / 10;
318 		break;
319 	case PLL_ENET_MAIN_50M_CLK:
320 		if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_50MHZ_MASK)
321 			return freq / 20;
322 		break;
323 	case PLL_ENET_MAIN_40M_CLK:
324 		if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_40MHZ_MASK)
325 			return freq / 25;
326 		break;
327 	case PLL_ENET_MAIN_25M_CLK:
328 		if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_25MHZ_MASK)
329 			return freq / 40;
330 		break;
331 	default:
332 		printf("Error derived pll_enet clock %d\n", derive);
333 		break;
334 	}
335 
336 	return 0;
337 }
338 
mxc_get_pll_ddr_derive(int derive)339 static u32 mxc_get_pll_ddr_derive(int derive)
340 {
341 	u32 freq, reg;
342 
343 	freq = decode_pll(PLL_DDR, MXC_HCLK);
344 	reg = readl(&ccm_anatop->pll_ddr);
345 
346 	switch (derive) {
347 	case PLL_DRAM_MAIN_1066M_CLK:
348 		return freq;
349 	case PLL_DRAM_MAIN_533M_CLK:
350 		if (reg & CCM_ANALOG_PLL_DDR_DIV2_ENABLE_CLK_MASK)
351 			return freq / 2;
352 		break;
353 	default:
354 		printf("Error derived pll_ddr clock %d\n", derive);
355 		break;
356 	}
357 
358 	return 0;
359 }
360 
mxc_get_pll_derive(enum pll_clocks pll,int derive)361 static u32 mxc_get_pll_derive(enum pll_clocks pll, int derive)
362 {
363 	switch (pll) {
364 	case PLL_SYS:
365 		return mxc_get_pll_sys_derive(derive);
366 	case PLL_ENET:
367 		return mxc_get_pll_enet_derive(derive);
368 	case PLL_DDR:
369 		return mxc_get_pll_ddr_derive(derive);
370 	default:
371 		printf("Error pll.\n");
372 		return 0;
373 	}
374 }
375 
get_root_src_clk(enum clk_root_src root_src)376 static u32 get_root_src_clk(enum clk_root_src root_src)
377 {
378 	switch (root_src) {
379 	case OSC_24M_CLK:
380 		return 24000000u;
381 	case PLL_ARM_MAIN_800M_CLK:
382 		return decode_pll(PLL_CORE, MXC_HCLK);
383 
384 	case PLL_SYS_MAIN_480M_CLK:
385 	case PLL_SYS_MAIN_240M_CLK:
386 	case PLL_SYS_MAIN_120M_CLK:
387 	case PLL_SYS_PFD0_392M_CLK:
388 	case PLL_SYS_PFD0_196M_CLK:
389 	case PLL_SYS_PFD1_332M_CLK:
390 	case PLL_SYS_PFD1_166M_CLK:
391 	case PLL_SYS_PFD2_270M_CLK:
392 	case PLL_SYS_PFD2_135M_CLK:
393 	case PLL_SYS_PFD3_CLK:
394 	case PLL_SYS_PFD4_CLK:
395 	case PLL_SYS_PFD5_CLK:
396 	case PLL_SYS_PFD6_CLK:
397 	case PLL_SYS_PFD7_CLK:
398 		return mxc_get_pll_derive(PLL_SYS, root_src);
399 
400 	case PLL_ENET_MAIN_500M_CLK:
401 	case PLL_ENET_MAIN_250M_CLK:
402 	case PLL_ENET_MAIN_125M_CLK:
403 	case PLL_ENET_MAIN_100M_CLK:
404 	case PLL_ENET_MAIN_50M_CLK:
405 	case PLL_ENET_MAIN_40M_CLK:
406 	case PLL_ENET_MAIN_25M_CLK:
407 		return mxc_get_pll_derive(PLL_ENET, root_src);
408 
409 	case PLL_DRAM_MAIN_1066M_CLK:
410 	case PLL_DRAM_MAIN_533M_CLK:
411 		return mxc_get_pll_derive(PLL_DDR, root_src);
412 
413 	case PLL_AUDIO_MAIN_CLK:
414 		return decode_pll(PLL_AUDIO, MXC_HCLK);
415 	case PLL_VIDEO_MAIN_CLK:
416 		return decode_pll(PLL_VIDEO, MXC_HCLK);
417 
418 	case PLL_USB_MAIN_480M_CLK:
419 		return decode_pll(PLL_USB, MXC_HCLK);
420 
421 	case REF_1M_CLK:
422 		return 1000000;
423 	case OSC_32K_CLK:
424 		return MXC_CLK32;
425 
426 	case EXT_CLK_1:
427 	case EXT_CLK_2:
428 	case EXT_CLK_3:
429 	case EXT_CLK_4:
430 		printf("No EXT CLK supported??\n");
431 		break;
432 	};
433 
434 	return 0;
435 }
436 
get_root_clk(enum clk_root_index clock_id)437 u32 get_root_clk(enum clk_root_index clock_id)
438 {
439 	enum clk_root_src root_src;
440 	u32 post_podf, pre_podf, auto_podf, root_src_clk;
441 	int auto_en;
442 
443 	if (clock_root_enabled(clock_id) <= 0)
444 		return 0;
445 
446 	if (clock_get_prediv(clock_id, &pre_podf) < 0)
447 		return 0;
448 
449 	if (clock_get_postdiv(clock_id, &post_podf) < 0)
450 		return 0;
451 
452 	if (clock_get_autopostdiv(clock_id, &auto_podf, &auto_en) < 0)
453 		return 0;
454 
455 	if (auto_en == 0)
456 		auto_podf = 0;
457 
458 	if (clock_get_src(clock_id, &root_src) < 0)
459 		return 0;
460 
461 	root_src_clk = get_root_src_clk(root_src);
462 
463 	/*
464 	 * bypass clk is ignored.
465 	 */
466 
467 	return root_src_clk / (post_podf + 1) / (pre_podf + 1) /
468 		(auto_podf + 1);
469 }
470 
get_ddrc_clk(void)471 static u32 get_ddrc_clk(void)
472 {
473 	u32 reg, freq;
474 	enum root_post_div post_div;
475 
476 	reg = readl(&ccm_reg->root[DRAM_CLK_ROOT].target_root);
477 	if (reg & CLK_ROOT_MUX_MASK)
478 		/* DRAM_ALT_CLK_ROOT */
479 		freq = get_root_clk(DRAM_ALT_CLK_ROOT);
480 	else
481 		/* PLL_DRAM_MAIN_1066M_CLK */
482 		freq = mxc_get_pll_derive(PLL_DDR, PLL_DRAM_MAIN_1066M_CLK);
483 
484 	post_div = reg & DRAM_CLK_ROOT_POST_DIV_MASK;
485 
486 	return freq / (post_div + 1) / 2;
487 }
488 
mxc_get_clock(enum mxc_clock clk)489 unsigned int mxc_get_clock(enum mxc_clock clk)
490 {
491 	switch (clk) {
492 	case MXC_ARM_CLK:
493 		return get_root_clk(ARM_A7_CLK_ROOT);
494 	case MXC_AXI_CLK:
495 		return get_root_clk(MAIN_AXI_CLK_ROOT);
496 	case MXC_AHB_CLK:
497 		return get_root_clk(AHB_CLK_ROOT);
498 	case MXC_IPG_CLK:
499 		return get_ipg_clk();
500 	case MXC_I2C_CLK:
501 		return get_root_clk(I2C1_CLK_ROOT);
502 	case MXC_UART_CLK:
503 		return get_root_clk(UART1_CLK_ROOT);
504 	case MXC_CSPI_CLK:
505 		return get_root_clk(ECSPI1_CLK_ROOT);
506 	case MXC_DDR_CLK:
507 		return get_ddrc_clk();
508 	case MXC_ESDHC_CLK:
509 		return get_root_clk(USDHC1_CLK_ROOT);
510 	case MXC_ESDHC2_CLK:
511 		return get_root_clk(USDHC2_CLK_ROOT);
512 	case MXC_ESDHC3_CLK:
513 		return get_root_clk(USDHC3_CLK_ROOT);
514 	default:
515 		printf("Unsupported mxc_clock %d\n", clk);
516 		break;
517 	}
518 
519 	return 0;
520 }
521 
522 #ifdef CONFIG_SYS_I2C_MXC
523 /* i2c_num can be 0 - 3 */
enable_i2c_clk(unsigned char enable,unsigned i2c_num)524 int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
525 {
526 	u32 target;
527 
528 	if (i2c_num >= 4)
529 		return -EINVAL;
530 
531 	if (enable) {
532 		clock_enable(CCGR_I2C1 + i2c_num, 0);
533 
534 		/* Set i2c root clock to PLL_SYS_MAIN_120M_CLK */
535 
536 		target = CLK_ROOT_ON |
537 			 I2C1_CLK_ROOT_FROM_PLL_SYS_MAIN_120M_CLK |
538 			 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
539 			 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2);
540 		clock_set_target_val(I2C1_CLK_ROOT + i2c_num, target);
541 
542 		clock_enable(CCGR_I2C1 + i2c_num, 1);
543 	} else {
544 		clock_enable(CCGR_I2C1 + i2c_num, 0);
545 	}
546 
547 	return 0;
548 }
549 #endif
550 
init_clk_esdhc(void)551 static void init_clk_esdhc(void)
552 {
553 	u32 target;
554 
555 	/* disable the clock gate first */
556 	clock_enable(CCGR_USDHC1, 0);
557 	clock_enable(CCGR_USDHC2, 0);
558 	clock_enable(CCGR_USDHC3, 0);
559 
560 	/* 196: 392/2 */
561 	target = CLK_ROOT_ON | USDHC1_CLK_ROOT_FROM_PLL_SYS_PFD0_392M_CLK |
562 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
563 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2);
564 	clock_set_target_val(USDHC1_CLK_ROOT, target);
565 
566 	target = CLK_ROOT_ON | USDHC1_CLK_ROOT_FROM_PLL_SYS_PFD0_392M_CLK |
567 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
568 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2);
569 	clock_set_target_val(USDHC2_CLK_ROOT, target);
570 
571 	target = CLK_ROOT_ON | USDHC1_CLK_ROOT_FROM_PLL_SYS_PFD0_392M_CLK |
572 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
573 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2);
574 	clock_set_target_val(USDHC3_CLK_ROOT, target);
575 
576 	/* enable the clock gate */
577 	clock_enable(CCGR_USDHC1, 1);
578 	clock_enable(CCGR_USDHC2, 1);
579 	clock_enable(CCGR_USDHC3, 1);
580 }
581 
init_clk_uart(void)582 static void init_clk_uart(void)
583 {
584 	u32 target;
585 
586 	/* disable the clock gate first */
587 	clock_enable(CCGR_UART1, 0);
588 	clock_enable(CCGR_UART2, 0);
589 	clock_enable(CCGR_UART3, 0);
590 	clock_enable(CCGR_UART4, 0);
591 	clock_enable(CCGR_UART5, 0);
592 	clock_enable(CCGR_UART6, 0);
593 	clock_enable(CCGR_UART7, 0);
594 
595 	/* 24Mhz */
596 	target = CLK_ROOT_ON | UART1_CLK_ROOT_FROM_OSC_24M_CLK |
597 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
598 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
599 	clock_set_target_val(UART1_CLK_ROOT, target);
600 
601 	target = CLK_ROOT_ON | UART2_CLK_ROOT_FROM_OSC_24M_CLK |
602 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
603 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
604 	clock_set_target_val(UART2_CLK_ROOT, target);
605 
606 	target = CLK_ROOT_ON | UART3_CLK_ROOT_FROM_OSC_24M_CLK |
607 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
608 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
609 	clock_set_target_val(UART3_CLK_ROOT, target);
610 
611 	target = CLK_ROOT_ON | UART4_CLK_ROOT_FROM_OSC_24M_CLK |
612 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
613 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
614 	clock_set_target_val(UART4_CLK_ROOT, target);
615 
616 	target = CLK_ROOT_ON | UART5_CLK_ROOT_FROM_OSC_24M_CLK |
617 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
618 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
619 	clock_set_target_val(UART5_CLK_ROOT, target);
620 
621 	target = CLK_ROOT_ON | UART6_CLK_ROOT_FROM_OSC_24M_CLK |
622 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
623 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
624 	clock_set_target_val(UART6_CLK_ROOT, target);
625 
626 	target = CLK_ROOT_ON | UART7_CLK_ROOT_FROM_OSC_24M_CLK |
627 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
628 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
629 	clock_set_target_val(UART7_CLK_ROOT, target);
630 
631 	/* enable the clock gate */
632 	clock_enable(CCGR_UART1, 1);
633 	clock_enable(CCGR_UART2, 1);
634 	clock_enable(CCGR_UART3, 1);
635 	clock_enable(CCGR_UART4, 1);
636 	clock_enable(CCGR_UART5, 1);
637 	clock_enable(CCGR_UART6, 1);
638 	clock_enable(CCGR_UART7, 1);
639 }
640 
init_clk_weim(void)641 static void init_clk_weim(void)
642 {
643 	u32 target;
644 
645 	/* disable the clock gate first */
646 	clock_enable(CCGR_WEIM, 0);
647 
648 	/* 120Mhz */
649 	target = CLK_ROOT_ON | EIM_CLK_ROOT_FROM_PLL_SYS_MAIN_120M_CLK |
650 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
651 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
652 	clock_set_target_val(EIM_CLK_ROOT, target);
653 
654 	/* enable the clock gate */
655 	clock_enable(CCGR_WEIM, 1);
656 }
657 
init_clk_ecspi(void)658 static void init_clk_ecspi(void)
659 {
660 	u32 target;
661 
662 	/* disable the clock gate first */
663 	clock_enable(CCGR_ECSPI1, 0);
664 	clock_enable(CCGR_ECSPI2, 0);
665 	clock_enable(CCGR_ECSPI3, 0);
666 	clock_enable(CCGR_ECSPI4, 0);
667 
668 	/* 60Mhz: 240/4 */
669 	target = CLK_ROOT_ON | ECSPI1_CLK_ROOT_FROM_PLL_SYS_MAIN_240M_CLK |
670 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
671 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
672 	clock_set_target_val(ECSPI1_CLK_ROOT, target);
673 
674 	target = CLK_ROOT_ON | ECSPI2_CLK_ROOT_FROM_PLL_SYS_MAIN_240M_CLK |
675 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
676 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
677 	clock_set_target_val(ECSPI2_CLK_ROOT, target);
678 
679 	target = CLK_ROOT_ON | ECSPI3_CLK_ROOT_FROM_PLL_SYS_MAIN_240M_CLK |
680 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
681 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
682 	clock_set_target_val(ECSPI3_CLK_ROOT, target);
683 
684 	target = CLK_ROOT_ON | ECSPI4_CLK_ROOT_FROM_PLL_SYS_MAIN_240M_CLK |
685 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
686 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
687 	clock_set_target_val(ECSPI4_CLK_ROOT, target);
688 
689 	/* enable the clock gate */
690 	clock_enable(CCGR_ECSPI1, 1);
691 	clock_enable(CCGR_ECSPI2, 1);
692 	clock_enable(CCGR_ECSPI3, 1);
693 	clock_enable(CCGR_ECSPI4, 1);
694 }
695 
init_clk_wdog(void)696 static void init_clk_wdog(void)
697 {
698 	u32 target;
699 
700 	/* disable the clock gate first */
701 	clock_enable(CCGR_WDOG1, 0);
702 	clock_enable(CCGR_WDOG2, 0);
703 	clock_enable(CCGR_WDOG3, 0);
704 	clock_enable(CCGR_WDOG4, 0);
705 
706 	/* 24Mhz */
707 	target = CLK_ROOT_ON | WDOG_CLK_ROOT_FROM_OSC_24M_CLK |
708 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
709 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
710 	clock_set_target_val(WDOG_CLK_ROOT, target);
711 
712 	/* enable the clock gate */
713 	clock_enable(CCGR_WDOG1, 1);
714 	clock_enable(CCGR_WDOG2, 1);
715 	clock_enable(CCGR_WDOG3, 1);
716 	clock_enable(CCGR_WDOG4, 1);
717 }
718 
719 #ifdef CONFIG_MXC_EPDC
init_clk_epdc(void)720 static void init_clk_epdc(void)
721 {
722 	u32 target;
723 
724 	/* disable the clock gate first */
725 	clock_enable(CCGR_EPDC, 0);
726 
727 	/* 24Mhz */
728 	target = CLK_ROOT_ON | EPDC_PIXEL_CLK_ROOT_FROM_PLL_SYS_MAIN_480M_CLK |
729 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
730 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV12);
731 	clock_set_target_val(EPDC_PIXEL_CLK_ROOT, target);
732 
733 	/* enable the clock gate */
734 	clock_enable(CCGR_EPDC, 1);
735 }
736 #endif
737 
enable_pll_enet(void)738 static int enable_pll_enet(void)
739 {
740 	u32 reg;
741 	s32 timeout = 100000;
742 
743 	reg = readl(&ccm_anatop->pll_enet);
744 	/* If pll_enet powered up, no need to set it again */
745 	if (reg & ANADIG_PLL_ENET_PWDN_MASK) {
746 		reg &= ~ANADIG_PLL_ENET_PWDN_MASK;
747 		writel(reg, &ccm_anatop->pll_enet);
748 
749 		while (timeout--) {
750 			if (readl(&ccm_anatop->pll_enet) & ANADIG_PLL_LOCK)
751 				break;
752 		}
753 
754 		if (timeout <= 0) {
755 			/* If timeout, we set pwdn for pll_enet. */
756 			reg |= ANADIG_PLL_ENET_PWDN_MASK;
757 			return -ETIME;
758 		}
759 	}
760 
761 	/* Clear bypass */
762 	writel(CCM_ANALOG_PLL_ENET_BYPASS_MASK, &ccm_anatop->pll_enet_clr);
763 
764 	writel((CCM_ANALOG_PLL_ENET_ENABLE_CLK_500MHZ_MASK
765 		| CCM_ANALOG_PLL_ENET_ENABLE_CLK_250MHZ_MASK
766 		| CCM_ANALOG_PLL_ENET_ENABLE_CLK_125MHZ_MASK
767 		| CCM_ANALOG_PLL_ENET_ENABLE_CLK_100MHZ_MASK
768 		| CCM_ANALOG_PLL_ENET_ENABLE_CLK_50MHZ_MASK
769 		| CCM_ANALOG_PLL_ENET_ENABLE_CLK_40MHZ_MASK
770 		| CCM_ANALOG_PLL_ENET_ENABLE_CLK_25MHZ_MASK),
771 	       &ccm_anatop->pll_enet_set);
772 
773 	return 0;
774 }
enable_pll_video(u32 pll_div,u32 pll_num,u32 pll_denom,u32 post_div)775 static int enable_pll_video(u32 pll_div, u32 pll_num, u32 pll_denom,
776 	u32 post_div)
777 {
778 	u32 reg = 0;
779 	ulong start;
780 
781 	debug("pll5 div = %d, num = %d, denom = %d\n",
782 		pll_div, pll_num, pll_denom);
783 
784 	/* Power up PLL5 video and disable its output */
785 	writel(CCM_ANALOG_PLL_VIDEO_CLR_ENABLE_CLK_MASK |
786 		CCM_ANALOG_PLL_VIDEO_CLR_POWERDOWN_MASK |
787 		CCM_ANALOG_PLL_VIDEO_CLR_BYPASS_MASK |
788 		CCM_ANALOG_PLL_VIDEO_CLR_DIV_SELECT_MASK |
789 		CCM_ANALOG_PLL_VIDEO_CLR_POST_DIV_SEL_MASK |
790 		CCM_ANALOG_PLL_VIDEO_CLR_TEST_DIV_SELECT_MASK,
791 		&ccm_anatop->pll_video_clr);
792 
793 	/* Set div, num and denom */
794 	switch (post_div) {
795 	case 1:
796 		writel(CCM_ANALOG_PLL_VIDEO_SET_DIV_SELECT(pll_div) |
797 			CCM_ANALOG_PLL_VIDEO_SET_TEST_DIV_SELECT(0x1) |
798 			CCM_ANALOG_PLL_VIDEO_SET_POST_DIV_SEL(0x0),
799 			&ccm_anatop->pll_video_set);
800 		break;
801 	case 2:
802 		writel(CCM_ANALOG_PLL_VIDEO_SET_DIV_SELECT(pll_div) |
803 			CCM_ANALOG_PLL_VIDEO_SET_TEST_DIV_SELECT(0x0) |
804 			CCM_ANALOG_PLL_VIDEO_SET_POST_DIV_SEL(0x0),
805 			&ccm_anatop->pll_video_set);
806 		break;
807 	case 3:
808 		writel(CCM_ANALOG_PLL_VIDEO_SET_DIV_SELECT(pll_div) |
809 			CCM_ANALOG_PLL_VIDEO_SET_TEST_DIV_SELECT(0x0) |
810 			CCM_ANALOG_PLL_VIDEO_SET_POST_DIV_SEL(0x1),
811 			&ccm_anatop->pll_video_set);
812 		break;
813 	case 4:
814 		writel(CCM_ANALOG_PLL_VIDEO_SET_DIV_SELECT(pll_div) |
815 			CCM_ANALOG_PLL_VIDEO_SET_TEST_DIV_SELECT(0x0) |
816 			CCM_ANALOG_PLL_VIDEO_SET_POST_DIV_SEL(0x3),
817 			&ccm_anatop->pll_video_set);
818 		break;
819 	case 0:
820 	default:
821 		writel(CCM_ANALOG_PLL_VIDEO_SET_DIV_SELECT(pll_div) |
822 			CCM_ANALOG_PLL_VIDEO_SET_TEST_DIV_SELECT(0x2) |
823 			CCM_ANALOG_PLL_VIDEO_SET_POST_DIV_SEL(0x0),
824 			&ccm_anatop->pll_video_set);
825 		break;
826 	}
827 
828 	writel(CCM_ANALOG_PLL_VIDEO_NUM_A(pll_num),
829 		&ccm_anatop->pll_video_num);
830 
831 	writel(CCM_ANALOG_PLL_VIDEO_DENOM_B(pll_denom),
832 		&ccm_anatop->pll_video_denom);
833 
834 	/* Wait PLL5 lock */
835 	start = get_timer(0);	/* Get current timestamp */
836 
837 	do {
838 		reg = readl(&ccm_anatop->pll_video);
839 		if (reg & CCM_ANALOG_PLL_VIDEO_LOCK_MASK) {
840 			/* Enable PLL out */
841 			writel(CCM_ANALOG_PLL_VIDEO_CLR_ENABLE_CLK_MASK,
842 					&ccm_anatop->pll_video_set);
843 			return 0;
844 		}
845 	} while (get_timer(0) < (start + 10)); /* Wait 10ms */
846 
847 	printf("Lock PLL5 timeout\n");
848 
849 	return 1;
850 }
851 
set_clk_qspi(void)852 int set_clk_qspi(void)
853 {
854 	u32 target;
855 
856 	/* disable the clock gate first */
857 	clock_enable(CCGR_QSPI, 0);
858 
859 	/* 49M: 392/2/4 */
860 	target = CLK_ROOT_ON | QSPI_CLK_ROOT_FROM_PLL_SYS_PFD4_CLK |
861 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
862 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2);
863 	clock_set_target_val(QSPI_CLK_ROOT, target);
864 
865 	/* enable the clock gate */
866 	clock_enable(CCGR_QSPI, 1);
867 
868 	return 0;
869 }
870 
set_clk_nand(void)871 int set_clk_nand(void)
872 {
873 	u32 target;
874 
875 	/* disable the clock gate first */
876 	clock_enable(CCGR_RAWNAND, 0);
877 
878 	enable_pll_enet();
879 	/* 100: 500/5 */
880 	target = CLK_ROOT_ON | NAND_CLK_ROOT_FROM_PLL_ENET_MAIN_500M_CLK |
881 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
882 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV5);
883 	clock_set_target_val(NAND_CLK_ROOT, target);
884 
885 	/* enable the clock gate */
886 	clock_enable(CCGR_RAWNAND, 1);
887 
888 	return 0;
889 }
890 
mxs_set_lcdclk(uint32_t base_addr,uint32_t freq)891 void mxs_set_lcdclk(uint32_t base_addr, uint32_t freq)
892 {
893 	u32 hck = MXC_HCLK/1000;
894 	u32 min = hck * 27;
895 	u32 max = hck * 54;
896 	u32 temp, best = 0;
897 	u32 i, j, pred = 1, postd = 1;
898 	u32 pll_div, pll_num, pll_denom, post_div = 0;
899 	u32 target;
900 
901 	debug("mxs_set_lcdclk, freq = %d\n", freq);
902 
903 	clock_enable(CCGR_LCDIF, 0);
904 
905 	temp = (freq * 8 * 8);
906 	if (temp < min) {
907 		for (i = 1; i <= 4; i++) {
908 			if ((temp * (1 << i)) > min) {
909 				post_div = i;
910 				freq = (freq * (1 << i));
911 				break;
912 			}
913 		}
914 
915 		if (5 == i) {
916 			printf("Fail to set rate to %dkhz", freq);
917 			return;
918 		}
919 	}
920 
921 	for (i = 1; i <= 8; i++) {
922 		for (j = 1; j <= 8; j++) {
923 			temp = freq * i * j;
924 			if (temp > max || temp < min)
925 				continue;
926 
927 			if (best == 0 || temp < best) {
928 				best = temp;
929 				pred = i;
930 				postd = j;
931 			}
932 		}
933 	}
934 
935 	if (best == 0) {
936 		printf("Fail to set rate to %dkhz", freq);
937 		return;
938 	}
939 
940 	debug("best %d, pred = %d, postd = %d\n", best, pred, postd);
941 
942 	pll_div = best / hck;
943 	pll_denom = 1000000;
944 	pll_num = (best - hck * pll_div) * pll_denom / hck;
945 
946 	if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
947 		return;
948 
949 	target = CLK_ROOT_ON | LCDIF_PIXEL_CLK_ROOT_FROM_PLL_VIDEO_MAIN_CLK |
950 		 CLK_ROOT_PRE_DIV((pred - 1)) | CLK_ROOT_POST_DIV((postd - 1));
951 	clock_set_target_val(LCDIF_PIXEL_CLK_ROOT, target);
952 
953 	clock_enable(CCGR_LCDIF, 1);
954 }
955 
956 #ifdef CONFIG_FEC_MXC
set_clk_enet(enum enet_freq type)957 int set_clk_enet(enum enet_freq type)
958 {
959 	u32 target;
960 	int ret;
961 	u32 enet1_ref, enet2_ref;
962 
963 	/* disable the clock first */
964 	clock_enable(CCGR_ENET1, 0);
965 	clock_enable(CCGR_ENET2, 0);
966 
967 	switch (type) {
968 	case ENET_125MHZ:
969 		enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_125M_CLK;
970 		enet2_ref = ENET2_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_125M_CLK;
971 		break;
972 	case ENET_50MHZ:
973 		enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_50M_CLK;
974 		enet2_ref = ENET2_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_50M_CLK;
975 		break;
976 	case ENET_25MHZ:
977 		enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK;
978 		enet2_ref = ENET2_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK;
979 		break;
980 	default:
981 		return -EINVAL;
982 	}
983 
984 	ret = enable_pll_enet();
985 	if (ret != 0)
986 		return ret;
987 
988 	/* set enet axi clock 196M: 392/2 */
989 	target = CLK_ROOT_ON | ENET_AXI_CLK_ROOT_FROM_PLL_SYS_PFD4_CLK |
990 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
991 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2);
992 	clock_set_target_val(ENET_AXI_CLK_ROOT, target);
993 
994 	target = CLK_ROOT_ON | enet1_ref |
995 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
996 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
997 	clock_set_target_val(ENET1_REF_CLK_ROOT, target);
998 
999 	target = CLK_ROOT_ON | ENET1_TIME_CLK_ROOT_FROM_PLL_ENET_MAIN_100M_CLK |
1000 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
1001 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
1002 	clock_set_target_val(ENET1_TIME_CLK_ROOT, target);
1003 
1004 	target = CLK_ROOT_ON | enet2_ref |
1005 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
1006 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
1007 	clock_set_target_val(ENET2_REF_CLK_ROOT, target);
1008 
1009 	target = CLK_ROOT_ON | ENET2_TIME_CLK_ROOT_FROM_PLL_ENET_MAIN_100M_CLK |
1010 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
1011 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
1012 	clock_set_target_val(ENET2_TIME_CLK_ROOT, target);
1013 
1014 #ifdef CONFIG_FEC_MXC_25M_REF_CLK
1015 	target = CLK_ROOT_ON |
1016 		 ENET_PHY_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK |
1017 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
1018 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
1019 	clock_set_target_val(ENET_PHY_REF_CLK_ROOT, target);
1020 #endif
1021 	/* enable clock */
1022 	clock_enable(CCGR_ENET1, 1);
1023 	clock_enable(CCGR_ENET2, 1);
1024 
1025 	return 0;
1026 }
1027 #endif
1028 
1029 /* Configure PLL/PFD freq */
clock_init(void)1030 void clock_init(void)
1031 {
1032 /* Rom has enabled PLL_ARM, PLL_DDR, PLL_SYS, PLL_ENET
1033  *   In u-boot, we have to:
1034  *   1. Configure PFD3- PFD7 for freq we needed in u-boot
1035  *   2. Set clock root for peripherals (ip channel) used in u-boot but without set rate
1036  *       interface.  The clocks for these peripherals are enabled after this intialization.
1037  *   3. Other peripherals with set clock rate interface does not be set in this function.
1038  */
1039 	u32 reg;
1040 
1041 	/*
1042 	 * Configure PFD4 to 392M
1043 	 * 480M * 18 / 0x16 = 392M
1044 	 */
1045 	reg = readl(&ccm_anatop->pfd_480b);
1046 
1047 	reg &= ~(ANATOP_PFD480B_PFD4_FRAC_MASK |
1048 		 CCM_ANALOG_PFD_480B_PFD4_DIV1_CLKGATE_MASK);
1049 	reg |= ANATOP_PFD480B_PFD4_FRAC_392M_VAL;
1050 
1051 	writel(reg, &ccm_anatop->pfd_480b);
1052 
1053 	init_clk_esdhc();
1054 	init_clk_uart();
1055 	init_clk_weim();
1056 	init_clk_ecspi();
1057 	init_clk_wdog();
1058 #ifdef CONFIG_MXC_EPDC
1059 	init_clk_epdc();
1060 #endif
1061 
1062 	enable_usboh3_clk(1);
1063 
1064 	clock_enable(CCGR_SNVS, 1);
1065 
1066 #ifdef CONFIG_NAND_MXS
1067 	clock_enable(CCGR_RAWNAND, 1);
1068 #endif
1069 
1070 	if (IS_ENABLED(CONFIG_IMX_RDC)) {
1071 		clock_enable(CCGR_RDC, 1);
1072 		clock_enable(CCGR_SEMA1, 1);
1073 		clock_enable(CCGR_SEMA2, 1);
1074 	}
1075 }
1076 
1077 #ifdef CONFIG_SECURE_BOOT
hab_caam_clock_enable(unsigned char enable)1078 void hab_caam_clock_enable(unsigned char enable)
1079 {
1080 	if (enable)
1081 		clock_enable(CCGR_CAAM, 1);
1082 	else
1083 		clock_enable(CCGR_CAAM, 0);
1084 }
1085 #endif
1086 
1087 #ifdef CONFIG_MXC_EPDC
epdc_clock_enable(void)1088 void epdc_clock_enable(void)
1089 {
1090 	clock_enable(CCGR_EPDC, 1);
1091 }
epdc_clock_disable(void)1092 void epdc_clock_disable(void)
1093 {
1094 	clock_enable(CCGR_EPDC, 0);
1095 }
1096 #endif
1097 
1098 #ifndef CONFIG_SPL_BUILD
1099 /*
1100  * Dump some core clockes.
1101  */
do_mx7_showclocks(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])1102 int do_mx7_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
1103 {
1104 	u32 freq;
1105 	freq = decode_pll(PLL_CORE, MXC_HCLK);
1106 	printf("PLL_CORE    %8d MHz\n", freq / 1000000);
1107 	freq = decode_pll(PLL_SYS, MXC_HCLK);
1108 	printf("PLL_SYS    %8d MHz\n", freq / 1000000);
1109 	freq = decode_pll(PLL_ENET, MXC_HCLK);
1110 	printf("PLL_NET    %8d MHz\n", freq / 1000000);
1111 
1112 	printf("\n");
1113 
1114 	printf("IPG        %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
1115 	printf("UART       %8d kHz\n", mxc_get_clock(MXC_UART_CLK) / 1000);
1116 #ifdef CONFIG_MXC_SPI
1117 	printf("CSPI       %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
1118 #endif
1119 	printf("AHB        %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
1120 	printf("AXI        %8d kHz\n", mxc_get_clock(MXC_AXI_CLK) / 1000);
1121 	printf("DDR        %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
1122 	printf("USDHC1     %8d kHz\n", mxc_get_clock(MXC_ESDHC_CLK) / 1000);
1123 	printf("USDHC2     %8d kHz\n", mxc_get_clock(MXC_ESDHC2_CLK) / 1000);
1124 	printf("USDHC3     %8d kHz\n", mxc_get_clock(MXC_ESDHC3_CLK) / 1000);
1125 
1126 	return 0;
1127 }
1128 
1129 U_BOOT_CMD(
1130 	clocks,	CONFIG_SYS_MAXARGS, 1, do_mx7_showclocks,
1131 	"display clocks",
1132 	""
1133 );
1134 #endif
1135