1 // Copyright 2015 The Gemmlowp Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 // multi_thread_gemm.h: Multi-threaded GEMM entry point.
16 // Readers note: To understand this file, it is useful to first
17 // read and understand the much simpler single_thread_gemm.h.
18 
19 #ifndef GEMMLOWP_INTERNAL_MULTI_THREAD_GEMM_H_
20 #define GEMMLOWP_INTERNAL_MULTI_THREAD_GEMM_H_
21 
22 #include <vector>
23 
24 #include "single_thread_gemm.h"
25 
26 namespace gemmlowp {
27 
28 // On X86 and ARM platforms we enable a busy-wait spinlock before waiting on a
29 // pthread conditional variable. In order to implement that correctly we need
30 // to put some explicit memory load/store barriers.
31 
32 #if defined(GEMMLOWP_ALLOW_INLINE_ASM) && !defined(GEMMLOWP_NO_BUSYWAIT) && \
33     (defined(GEMMLOWP_ARM) || defined(GEMMLOWP_X86))
34 
35 #define GEMMLOWP_USE_BUSYWAIT
36 
37 const int kMaxBusyWaitNOPs = 32 * 1000 * 1000;
38 
39 #define GEMMLOWP_NOP "nop\n"
40 
41 #define GEMMLOWP_STRING_CONCAT_4(X) X X X X
42 #define GEMMLOWP_NOP4 GEMMLOWP_STRING_CONCAT_4(GEMMLOWP_NOP)
43 #define GEMMLOWP_NOP16 GEMMLOWP_STRING_CONCAT_4(GEMMLOWP_NOP4)
44 #define GEMMLOWP_NOP64 GEMMLOWP_STRING_CONCAT_4(GEMMLOWP_NOP16)
45 
Do256NOPs()46 inline int Do256NOPs() {
47   asm volatile(GEMMLOWP_NOP64);
48   return 64;
49 }
50 
51 #undef GEMMLOWP_STRING_CONCAT_4
52 #undef GEMMLOWP_NOP256
53 #undef GEMMLOWP_NOP64
54 #undef GEMMLOWP_NOP16
55 #undef GEMMLOWP_NOP4
56 #undef GEMMLOWP_NOP
57 
WriteBarrier()58 inline void WriteBarrier() {
59 #if defined(_MSC_VER)
60   MemoryBarrier();
61 #elif defined(GEMMLOWP_ARM_32)
62   asm volatile("" ::: "memory");
63 #elif defined(GEMMLOWP_ARM_64)
64   asm volatile("dmb ishst" ::: "memory");
65 #elif defined(GEMMLOWP_X86)
66   asm volatile("sfence" ::: "memory");
67 #else
68 #error "Unsupported architecture for WriteBarrier."
69 #endif
70 }
71 
ReadBarrier()72 inline void ReadBarrier() {
73 #if defined(_MSC_VER)
74   MemoryBarrier();
75 #elif defined(GEMMLOWP_ARM_32)
76   asm volatile("" ::: "memory");
77 #elif defined(GEMMLOWP_ARM_64)
78   asm volatile("dmb ishld" ::: "memory");
79 #elif defined(GEMMLOWP_X86)
80   asm volatile("lfence" ::: "memory");
81 #else
82 #error "Unsupported architecture for ReadBarrier."
83 #endif
84 }
85 
86 #endif
87 
88 // Waits until *var != initial_value.
89 //
90 // Returns the new value of *var. The guarantee here is that
91 // the return value is different from initial_value, and that that
92 // new value has been taken by *var at some point during the
93 // execution of this function. There is no guarantee that this is
94 // still the value of *var when this function returns, since *var is
95 // not assumed to be guarded by any lock.
96 //
97 // First does some busy-waiting for a fixed number of no-op cycles,
98 // then falls back to passive waiting for the given condvar, guarded
99 // by the given mutex.
100 //
101 // The idea of doing some initial busy-waiting is to help get
102 // better and more consistent multithreading benefits for small GEMM sizes.
103 // Busy-waiting help ensuring that if we need to wake up soon after having
104 // started waiting, then we can wake up quickly (as opposed to, say,
105 // having to wait to be scheduled again by the OS). On the other hand,
106 // we must still eventually revert to passive waiting for longer waits
107 // (e.g. worker threads having finished a GEMM and waiting until the next GEMM)
108 // so as to avoid permanently spinning.
109 //
110 template <typename T>
WaitForVariableChange(volatile T * var,T initial_value,pthread_cond_t * cond,pthread_mutex_t * mutex)111 T WaitForVariableChange(volatile T* var, T initial_value, pthread_cond_t* cond,
112                         pthread_mutex_t* mutex) {
113 #ifdef GEMMLOWP_USE_BUSYWAIT
114   // If we are on a platform that supports it, spin for some time.
115   {
116     int nops = 0;
117     // First, trivial case where the variable already changed value.
118     T new_value = *var;
119     if (new_value != initial_value) {
120       ReadBarrier();
121       return new_value;
122     }
123     // Then try busy-waiting.
124     while (nops < kMaxBusyWaitNOPs) {
125       nops += Do256NOPs();
126       new_value = *var;
127       if (new_value != initial_value) {
128         ReadBarrier();
129         return new_value;
130       }
131     }
132   }
133 #endif
134 
135   // Finally, do real passive waiting.
136   pthread_mutex_lock(mutex);
137   T new_value = *var;
138   if (new_value == initial_value) {
139     pthread_cond_wait(cond, mutex);
140     new_value = *var;
141     assert(new_value != initial_value);
142   }
143   pthread_mutex_unlock(mutex);
144   return new_value;
145 }
146 
147 // A BlockingCounter lets one thread to wait for N events to occur.
148 // This is how the master thread waits for all the worker threads
149 // to have finished working.
150 class BlockingCounter {
151  public:
BlockingCounter()152   BlockingCounter() : count_(0), initial_count_(0) {
153     pthread_cond_init(&cond_, nullptr);
154     pthread_mutex_init(&mutex_, nullptr);
155   }
156 
~BlockingCounter()157   ~BlockingCounter() {
158     pthread_cond_destroy(&cond_);
159     pthread_mutex_destroy(&mutex_);
160   }
161 
162   // Sets/resets the counter; initial_count is the number of
163   // decrementing events that the Wait() call will be waiting for.
Reset(std::size_t initial_count)164   void Reset(std::size_t initial_count) {
165     pthread_mutex_lock(&mutex_);
166     assert(count_ == 0);
167     initial_count_ = initial_count;
168     count_ = initial_count_;
169     pthread_mutex_unlock(&mutex_);
170   }
171 
172   // Decrements the counter; if the counter hits zero, signals
173   // the thread that was waiting for that, and returns true.
174   // Otherwise (if the decremented count is still nonzero),
175   // returns false.
DecrementCount()176   bool DecrementCount() {
177     pthread_mutex_lock(&mutex_);
178     assert(count_ > 0);
179     count_--;
180 #ifdef GEMMLOWP_USE_BUSYWAIT
181     WriteBarrier();
182 #endif
183     if (count_ == 0) {
184       pthread_cond_signal(&cond_);
185     }
186     bool retval = count_ == 0;
187     pthread_mutex_unlock(&mutex_);
188     return retval;
189   }
190 
191   // Waits for the N other threads (N having been set by Reset())
192   // to hit the BlockingCounter.
Wait()193   void Wait() {
194     ScopedProfilingLabel label("BlockingCounter::Wait");
195     while (count_) {
196 #ifdef GEMMLOWP_USE_BUSYWAIT
197       ReadBarrier();
198 #else
199       // This is likely unnecessary, but is kept to ensure regressions are not
200       // introduced.
201 #ifndef _WIN32
202       asm volatile("" ::: "memory");
203 #endif
204 #endif
205       const std::size_t count_value = count_;
206       if (count_value) {
207         WaitForVariableChange(&count_, count_value, &cond_, &mutex_);
208       }
209     }
210   }
211 
212  private:
213   pthread_cond_t cond_;
214   pthread_mutex_t mutex_;
215   std::size_t count_;
216   std::size_t initial_count_;
217 };
218 
219 // A workload for a worker.
220 struct Task {
TaskTask221   Task() : local_allocator(nullptr) {}
~TaskTask222   virtual ~Task() {}
223   virtual void Run() = 0;
224   Allocator* local_allocator;
225 };
226 
227 // A worker thread.
228 class Worker {
229  public:
230   enum class State {
231     ThreadStartup,  // The initial state before the thread main loop runs.
232     Ready,          // Is not working, has not yet received new work to do.
233     HasWork,        // Has work to do.
234     ExitAsSoonAsPossible  // Should exit at earliest convenience.
235   };
236 
Worker(BlockingCounter * counter_to_decrement_when_ready)237   explicit Worker(BlockingCounter* counter_to_decrement_when_ready)
238       : task_(nullptr),
239         state_(State::ThreadStartup),
240         counter_to_decrement_when_ready_(counter_to_decrement_when_ready) {
241     pthread_cond_init(&state_cond_, nullptr);
242     pthread_mutex_init(&state_mutex_, nullptr);
243     pthread_create(&thread_, nullptr, ThreadFunc, this);
244   }
245 
~Worker()246   ~Worker() {
247     ChangeState(State::ExitAsSoonAsPossible);
248     pthread_join(thread_, nullptr);
249     pthread_cond_destroy(&state_cond_);
250     pthread_mutex_destroy(&state_mutex_);
251   }
252 
253   // Changes State; may be called from either the worker thread
254   // or the master thread; however, not all state transitions are legal,
255   // which is guarded by assertions.
ChangeState(State new_state)256   void ChangeState(State new_state) {
257     ScopedProfilingLabel label("Worker::ChangeState");
258     pthread_mutex_lock(&state_mutex_);
259     assert(new_state != state_);
260     switch (state_) {
261       case State::ThreadStartup:
262         assert(new_state == State::Ready);
263         break;
264       case State::Ready:
265         assert(new_state == State::HasWork ||
266                new_state == State::ExitAsSoonAsPossible);
267         break;
268       case State::HasWork:
269         assert(new_state == State::Ready ||
270                new_state == State::ExitAsSoonAsPossible);
271         break;
272       default:
273         abort();
274     }
275     state_ = new_state;
276     pthread_cond_signal(&state_cond_);
277     if (state_ == State::Ready) {
278       counter_to_decrement_when_ready_->DecrementCount();
279     }
280     pthread_mutex_unlock(&state_mutex_);
281   }
282 
283   // Thread entry point.
ThreadFunc()284   void ThreadFunc() {
285     ScopedProfilingLabel label("Worker::ThreadFunc");
286     RegisterCurrentThreadForProfiling();
287 
288     ChangeState(State::Ready);
289 
290     // Thread main loop
291     while (true) {
292       // Get a state to act on
293       // In the 'Ready' state, we have nothing to do but to wait until
294       // we switch to another state.
295       State state_to_act_upon = WaitForVariableChange(
296           &state_, State::Ready, &state_cond_, &state_mutex_);
297 
298       // We now have a state to act on, so act.
299       switch (state_to_act_upon) {
300         case State::HasWork:
301           // Got work to do! So do it, and then revert to 'Ready' state.
302           assert(task_);
303           task_->Run();
304           task_ = nullptr;
305           ChangeState(State::Ready);
306           break;
307         case State::ExitAsSoonAsPossible:
308           return;
309         default:
310           abort();
311       }
312     }
313   }
314 
ThreadFunc(void * arg)315   static void* ThreadFunc(void* arg) {
316     static_cast<Worker*>(arg)->ThreadFunc();
317     return nullptr;
318   }
319 
320   // Called by the master thead to give this worker work to do.
321   // It is only legal to call this if the worker
StartWork(Task * task)322   void StartWork(Task* task) {
323     assert(!task_);
324     task->local_allocator = &local_allocator_;
325     task_ = task;
326 #ifdef GEMMLOWP_USE_BUSYWAIT
327     WriteBarrier();
328 #endif
329     assert(state_ == State::Ready);
330     ChangeState(State::HasWork);
331   }
332 
333  private:
334   // The underlying thread.
335   pthread_t thread_;
336 
337   // The task to be worked on.
338   Task* task_;
339 
340   // The condition variable and mutex guarding state changes.
341   pthread_cond_t state_cond_;
342   pthread_mutex_t state_mutex_;
343 
344   // The state enum tells if we're currently working, waiting for work, etc.
345   State state_;
346 
347   // Each thread had a local allocator so they can allocate temporary
348   // buffers without blocking each other.
349   Allocator local_allocator_;
350 
351   // pointer to the master's thread BlockingCounter object, to notify the
352   // master thread of when this worker switches to the 'Ready' state.
353   BlockingCounter* const counter_to_decrement_when_ready_;
354 };
355 
356 // A very simple pool of workers, that only allows the very
357 // specific parallelization pattern that we use here:
358 // a fixed number of workers can be given work, and one then
359 // waits for all of them to finish.
360 //
361 // See MultiThreadGemmContextBase for how other WorkersPool implementations can
362 // be used. Note that in those implementations, StartWorker can be free to
363 // ignore the <index> value; that is, the caller of WorkersPool does not rely on
364 // <index> to order tasks with equal <index>.
365 class WorkersPool {
366  public:
WorkersPool()367   WorkersPool() {}
368 
~WorkersPool()369   ~WorkersPool() {
370     for (auto w : workers_) {
371       delete w;
372     }
373   }
374 
Execute(const std::vector<Task * > & tasks)375   void Execute(const std::vector<Task*>& tasks) {
376     assert(tasks.size() >= 1);
377     // One of the tasks will be run on the current thread.
378     std::size_t workers_count = tasks.size() - 1;
379     CreateWorkers(workers_count);
380     assert(workers_count <= workers_.size());
381     counter_to_decrement_when_ready_.Reset(workers_count);
382     int n = 0;
383     std::for_each(tasks.begin(), --tasks.end(),
384                   [this, &n](Task* task) { workers_[n++]->StartWork(task); });
385     // Execute the remaining workload immediately on the current thread.
386     Task* task = tasks.back();
387     task->local_allocator = &main_thread_task_allocator_;
388     task->Run();
389     // Wait for the workers submitted above to finish.
390     counter_to_decrement_when_ready_.Wait();
391     // Cleanup tasks (best to do this from the same thread that allocated
392     // the memory).
393     std::for_each(tasks.begin(), tasks.end(), [](Task* task) { delete task; });
394   }
395 
396  private:
397   // Ensures that the pool has at least the given count of workers.
398   // If any new worker has to be created, this function waits for it to
399   // be ready.
CreateWorkers(std::size_t workers_count)400   void CreateWorkers(std::size_t workers_count) {
401     if (workers_.size() >= workers_count) {
402       return;
403     }
404     counter_to_decrement_when_ready_.Reset(workers_count - workers_.size());
405     while (workers_.size() < workers_count) {
406       workers_.push_back(new Worker(&counter_to_decrement_when_ready_));
407     }
408     counter_to_decrement_when_ready_.Wait();
409   }
410 
411   // copy construction disallowed
412   WorkersPool(const WorkersPool&) = delete;
413 
414   // The workers in this pool. They are owned by the pool:
415   // the pool creates workers and destroys them in its destructor.
416   std::vector<Worker*> workers_;
417 
418   // The BlockingCounter used to wait for the workers.
419   BlockingCounter counter_to_decrement_when_ready_;
420 
421   // For N-threaded operations, we will use only N-1 worker threads
422   // while the last task will be run directly on the main thread.
423   // It will then use this main_thread_task_allocator_; having a
424   // dedicated allocator for that (separate from the base allocator_)
425   // allows to use the same code for all tasks regardless of which
426   // thread they run on.
427   Allocator main_thread_task_allocator_;
428 };
429 
430 // The task we use to implement a multi-threaded Gemm: a block of the
431 // RHS has been packed by the master thread; each worker thread
432 // then has to pack a block of the LHS and accumulate the Gemm of these
433 // packed LHS and RHS blocks.
434 template <typename KernelFormat, typename InputScalar, typename OutputScalar,
435           typename BitDepthParams, MapOrder LhsOrder, MapOrder RhsOrder,
436           MapOrder ResultOrder, typename LhsOffset, typename RhsOffset,
437           typename OutputPipelineType, typename GemmContextType>
438 struct GemmWithPackedRhsTask : Task {
439   typedef PackedSideBlock<typename KernelFormat::Lhs> PackedLhs;
440   typedef PackedSideBlock<typename KernelFormat::Rhs> PackedRhs;
GemmWithPackedRhsTaskGemmWithPackedRhsTask441   GemmWithPackedRhsTask(GemmContextType* _context, const KernelBase& _kernel,
442                         const MatrixMap<const InputScalar, LhsOrder>& _lhs,
443                         const PackedRhs& _packed_rhs,
444                         MatrixMap<OutputScalar, ResultOrder>* _result,
445                         const MatrixBlockBounds& _result_block,
446                         const LhsOffset& _lhs_offset,
447                         const RhsOffset& _rhs_offset,
448                         const BlockParams& _block_params,
449                         const OutputPipelineType& _output_pipeline)
450       : context(_context),
451         kernel(_kernel),
452         lhs(_lhs),
453         packed_rhs(_packed_rhs),
454         result(*_result),
455         result_block(_result_block),
456         lhs_offset(_lhs_offset),
457         rhs_offset(_rhs_offset),
458         block_params(_block_params),
459         output_pipeline(_output_pipeline) {}
460 
RunGemmWithPackedRhsTask461   void Run() override {
462     ScopedProfilingLabel label("GemmWithPackedRhsTask");
463 
464     const int rows = result_block.rows;
465     const int cols = result_block.cols;
466     const int depth = lhs.cols();
467 
468     PackedLhs packed_lhs(Side::Lhs, local_allocator, block_params);
469 
470     PackedResult packed_result(local_allocator, block_params);
471 
472     local_allocator->Commit();
473 
474     for (int c = 0; c < cols; c += block_params.l2_cols) {
475       int cs = std::min(block_params.l2_cols, cols - c);
476 
477       for (int r = 0; r < rows; r += block_params.l2_rows) {
478         int rs = std::min(block_params.l2_rows, rows - r);
479 
480         PackLhs(&packed_lhs, lhs.block(r, 0, rs, depth));
481 
482         Compute(kernel, block_params, &packed_result, packed_lhs, packed_rhs,
483                 depth);
484 
485         auto curr_result_block = MatrixBlockBounds(
486             result_block.start_row + r, result_block.start_col + c, rs, cs);
487         UnpackResult<KernelFormat>(
488             &result, curr_result_block, packed_result, depth,
489             packed_lhs.sums_of_each_slice(), packed_rhs.sums_of_each_slice(),
490             lhs_offset.block(curr_result_block.start_row, rs),
491             rhs_offset.block(curr_result_block.start_col, cs), output_pipeline);
492       }
493     }
494 
495     local_allocator->Decommit();
496   }
497 
498   const GemmContextType* context;
499   const KernelBase& kernel;
500   const MatrixMap<const InputScalar, LhsOrder> lhs;
501   const PackedRhs packed_rhs;
502   MatrixMap<OutputScalar, ResultOrder> result;
503   const MatrixBlockBounds result_block;
504   const LhsOffset& lhs_offset;
505   const RhsOffset& rhs_offset;
506   const BlockParams& block_params;
507   const OutputPipelineType& output_pipeline;
508 };
509 
510 // This base class for multi-threading allows subclasses to implement their own
511 // workers_pool() method.  See MultiThreadGemmContext below for an example;
512 // any other implementation of workers_pool() must return an object with the
513 // same public methods as WorkersPool.
514 class MultiThreadGemmContextBase : public SingleThreadGemmContext {
515  public:
set_max_num_threads(int n)516   void set_max_num_threads(int n) { max_num_threads_ = n; }
517 
max_num_threads()518   int max_num_threads() const { return max_num_threads_; }
519 
520  protected:
521   // The maximum number of worker threads to use (including
522   // the master thread).
523   // The default value 1 means single-threading. That is the default
524   // because gemmlowp's primary target is mobile hardware, where thermal
525   // constraints usually mean that it may not be realistic to use more
526   // than 1 CPU core even if multiple cores are present.
527   // The special value 0 means try to detect the number of hardware threads.
528   // Note: this assumes that all CPU cores are equivalent. That assumption
529   // is defeated on big.LITTLE ARM devices, where we have no API to query
530   // the number of big cores (which is typically what we would want to use,
531   // leaving aside above-mentioned thermal issues). That is the other reason
532   // why the best compromise here is to let max_num_threads_ default to 1,
533   // so users who want multi-threading have to make the decision of how many
534   // threads to use by themselves.
535   int max_num_threads_ = 1;
536 };
537 
538 class MultiThreadGemmContext : public MultiThreadGemmContextBase {
539  public:
workers_pool()540   WorkersPool* workers_pool() { return &workers_pool_; }
541 
542  private:
543   // The workers pool used by MultiThreadGemm. Making
544   // this part of the context allows it to be persistent,
545   // avoiding recreating threads on every Gemm.
546   WorkersPool workers_pool_;
547 };
548 
549 // Determines how many threads should be used for a given Gemm
550 // operation.
551 template <int KernelRows>
HowManyThreads(int max_num_threads,int rows,int cols,int depth)552 inline int HowManyThreads(int max_num_threads, int rows, int cols, int depth) {
553   // Early-exit in the default case where multi-threading is disabled.
554   if (max_num_threads == 1) {
555     return 1;
556   }
557 
558   // Determine the maximum number of threads.
559   int max_count = GetHardwareConcurrency(max_num_threads);
560 
561   // Basic calculation: take into account max pool size, and
562   // how many rows we have to feed our kernel.
563   // The motivation for an absolute minimum number of rows per thread,
564   // potentially higher than KernelRows, is that very thin thread workload
565   // currently defeat assumptions of the AddMod generator, resulting
566   // in substantial bias in TestWithRealData on 24 threads.
567   // Ideally, the AddMod generator should be aware of global (r,c) coordinates
568   // so as to be independent of the number of threads.
569   static const int AbsoluteMinRowsPerThread = 16;
570   static const int MinRowsPerThread = KernelRows > AbsoluteMinRowsPerThread
571                                           ? KernelRows
572                                           : AbsoluteMinRowsPerThread;
573   int thread_count = std::min(max_count, CeilQuotient(rows, MinRowsPerThread));
574 
575   // At this point for small products we already have thread_count==1 so
576   // we can avoid doing more work; otherwise, we still want to check
577   // that the cubic size (rows*cols*depth) is big enough to keep
578   // workers_ busy.
579   if (thread_count > 1) {
580     // Empirically determined value.
581     static const std::uint64_t min_cubic_size_per_thread = 64 * 1024;
582 
583     // We can only multiply two out of three sizes without risking overflow
584     const std::uint64_t cubic_size =
585         std::uint64_t(rows) * std::uint64_t(cols) * std::uint64_t(depth);
586 
587     thread_count =
588         std::min(thread_count, int(cubic_size / min_cubic_size_per_thread));
589 
590     if (thread_count < 1) {
591       thread_count = 1;
592     }
593   }
594 
595   assert(thread_count > 0 && thread_count <= max_count);
596   return thread_count;
597 }
598 
599 // The main multi-threaded Gemm function.
600 // To understand it, first read the code of SingleThreadGemm().
601 // The parallelization scheme used here is to have this master function
602 // pack a block of RHS and then start worker threads to pack a block of LHS
603 // each, and accumulate the corresponding products.
604 template <typename KernelFormat, typename InputScalar, typename OutputScalar,
605           typename BitDepthParams, MapOrder LhsOrder, MapOrder RhsOrder,
606           MapOrder ResultOrder, typename LhsOffset, typename RhsOffset,
607           typename OutputPipelineType, typename GemmContextType>
MultiThreadGemm(GemmContextType * context,const KernelBase & kernel,const MatrixMap<const InputScalar,LhsOrder> & lhs,const MatrixMap<const InputScalar,RhsOrder> & rhs,MatrixMap<OutputScalar,ResultOrder> * result,const LhsOffset & lhs_offset,const RhsOffset & rhs_offset,const OutputPipelineType & output_pipeline)608 void MultiThreadGemm(GemmContextType* context, const KernelBase& kernel,
609                      const MatrixMap<const InputScalar, LhsOrder>& lhs,
610                      const MatrixMap<const InputScalar, RhsOrder>& rhs,
611                      MatrixMap<OutputScalar, ResultOrder>* result,
612                      const LhsOffset& lhs_offset, const RhsOffset& rhs_offset,
613                      const OutputPipelineType& output_pipeline) {
614   ScopedProfilingLabel label("gemmlowp::MultiThreadGemm");
615 
616   assert(lhs.cols() == rhs.rows());
617 
618   int rows = result->rows();
619   int cols = result->cols();
620   int depth = lhs.cols();
621 
622   // zero sizes should have been caught earlier and early-returned.
623   assert(rows > 0);
624   assert(cols > 0);
625   assert(depth > 0);
626 
627   // The case of rows<cols should have been caught earlier and transposed.
628   assert(rows >= cols);
629 
630   const int thread_count = HowManyThreads<KernelFormat::kRows>(
631       context->max_num_threads(), rows, cols, depth);
632   if (thread_count == 1) {
633     return SingleThreadGemm<KernelFormat, InputScalar, OutputScalar,
634                             BitDepthParams>(context, kernel, lhs, rhs, result,
635                                             lhs_offset, rhs_offset,
636                                             output_pipeline);
637   }
638   assert(thread_count > 1);
639 
640   // Simple 1:1 mapping of tasks to physical cores, which is very important
641   // to getting good multithreaded performance, specially for not-very-large
642   // GEMMs, and especially on Android.
643   const int task_count = thread_count;
644 
645   Allocator* allocator = context->allocator();
646   auto* workers_pool = context->workers_pool();
647 
648   BlockParams block_params;
649   block_params.Init<KernelFormat>(
650       rows, cols, depth, task_count, context->l1_bytes_to_use(),
651       context->l2_bytes_to_use(), context->l2_rhs_factor());
652 
653   PackedSideBlock<typename KernelFormat::Rhs> packed_rhs(Side::Rhs, allocator,
654                                                          block_params);
655   allocator->Commit();
656 
657   // We loop over large blocks of the RHS.
658   for (int c = 0; c < cols; c += block_params.l2_cols) {
659     int cs = std::min(block_params.l2_cols, cols - c);
660 
661     // Pack a large block of the RHS.
662     PackRhs(&packed_rhs, rhs.block(0, c, depth, cs));
663 
664     // Give work to each worker.
665     std::vector<Task*> tasks;
666     int next_start_row = 0;
667     for (int n = 0; n < task_count; ++n) {
668       int start_row = next_start_row;
669       next_start_row = std::min(
670           rows, RoundUp<KernelFormat::kRows>(rows * (n + 1) / task_count));
671 
672       int block_rows = next_start_row - start_row;
673       auto lhs_block = lhs.block(start_row, 0, block_rows, depth);
674       typedef GemmWithPackedRhsTask<KernelFormat, InputScalar, OutputScalar,
675                                     BitDepthParams, LhsOrder, RhsOrder,
676                                     ResultOrder, LhsOffset, RhsOffset,
677                                     OutputPipelineType, GemmContextType>
678           TaskType;
679       tasks.push_back(
680           new TaskType(context, kernel, lhs_block, packed_rhs, result,
681                        MatrixBlockBounds(start_row, c, block_rows, cs),
682                        lhs_offset, rhs_offset, block_params, output_pipeline));
683     }
684     // Execute the work on the workers (and partially on this thread).
685     workers_pool->Execute(tasks);
686   }
687 
688   allocator->Decommit();
689 }
690 
691 }  // namespace gemmlowp
692 
693 #endif  // GEMMLOWP_INTERNAL_MULTI_THREAD_GEMM_H_
694