1# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15
16
17"""Utilities for using generic resources."""
18# pylint: disable=g-bad-name
19from __future__ import absolute_import
20from __future__ import division
21from __future__ import print_function
22
23import collections
24import os
25
26from tensorflow.python.framework import dtypes
27from tensorflow.python.framework import ops
28from tensorflow.python.ops import array_ops
29from tensorflow.python.ops import control_flow_ops
30from tensorflow.python.ops import math_ops
31from tensorflow.python.util import tf_should_use
32
33
34_Resource = collections.namedtuple("_Resource",
35                                   ["handle", "create", "is_initialized"])
36
37
38def register_resource(handle, create_op, is_initialized_op, is_shared=True):
39  """Registers a resource into the appropriate collections.
40
41  This makes the resource findable in either the shared or local resources
42  collection.
43
44  Args:
45   handle: op which returns a handle for the resource.
46   create_op: op which initializes the resource.
47   is_initialized_op: op which returns a scalar boolean tensor of whether
48    the resource has been initialized.
49   is_shared: if True, the resource gets added to the shared resource
50    collection; otherwise it gets added to the local resource collection.
51
52  """
53  resource = _Resource(handle, create_op, is_initialized_op)
54  if is_shared:
55    ops.add_to_collection(ops.GraphKeys.RESOURCES, resource)
56  else:
57    ops.add_to_collection(ops.GraphKeys.LOCAL_RESOURCES, resource)
58
59
60def shared_resources():
61  """Returns resources visible to all tasks in the cluster."""
62  return ops.get_collection(ops.GraphKeys.RESOURCES)
63
64
65def local_resources():
66  """Returns resources intended to be local to this session."""
67  return ops.get_collection(ops.GraphKeys.LOCAL_RESOURCES)
68
69
70def report_uninitialized_resources(resource_list=None,
71                                   name="report_uninitialized_resources"):
72  """Returns the names of all uninitialized resources in resource_list.
73
74  If the returned tensor is empty then all resources have been initialized.
75
76  Args:
77   resource_list: resources to check. If None, will use shared_resources() +
78    local_resources().
79   name: name for the resource-checking op.
80
81  Returns:
82   Tensor containing names of the handles of all resources which have not
83   yet been initialized.
84
85  """
86  if resource_list is None:
87    resource_list = shared_resources() + local_resources()
88  with ops.name_scope(name):
89    # Run all operations on CPU
90    local_device = os.environ.get(
91        "TF_DEVICE_FOR_UNINITIALIZED_VARIABLE_REPORTING", "/cpu:0")
92    with ops.device(local_device):
93      if not resource_list:
94        # Return an empty tensor so we only need to check for returned tensor
95        # size being 0 as an indication of model ready.
96        return array_ops.constant([], dtype=dtypes.string)
97      # Get a 1-D boolean tensor listing whether each resource is initialized.
98      variables_mask = math_ops.logical_not(
99          array_ops.stack([r.is_initialized for r in resource_list]))
100      # Get a 1-D string tensor containing all the resource names.
101      variable_names_tensor = array_ops.constant(
102          [s.handle.name for s in resource_list])
103      # Return a 1-D tensor containing all the names of uninitialized resources.
104      return array_ops.boolean_mask(variable_names_tensor, variables_mask)
105
106
107@tf_should_use.should_use_result
108def initialize_resources(resource_list, name="init"):
109  """Initializes the resources in the given list.
110
111  Args:
112   resource_list: list of resources to initialize.
113   name: name of the initialization op.
114
115  Returns:
116   op responsible for initializing all resources.
117  """
118  if resource_list:
119    return control_flow_ops.group(*[r.create for r in resource_list], name=name)
120  return control_flow_ops.no_op(name=name)
121