1 /*
2  * Copyright 2013 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * on the rights to use, copy, modify, merge, publish, distribute, sub
8  * license, and/or sell copies of the Software, and to permit persons to whom
9  * the Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21  * USE OR OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "radeonsi/si_pipe.h"
25 #include "r600_cs.h"
26 #include "util/u_memory.h"
27 #include "util/u_upload_mgr.h"
28 #include <inttypes.h>
29 #include <stdio.h>
30 
si_rings_is_buffer_referenced(struct r600_common_context * ctx,struct pb_buffer * buf,enum radeon_bo_usage usage)31 bool si_rings_is_buffer_referenced(struct r600_common_context *ctx,
32 				   struct pb_buffer *buf,
33 				   enum radeon_bo_usage usage)
34 {
35 	if (ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs, buf, usage)) {
36 		return true;
37 	}
38 	if (radeon_emitted(ctx->dma.cs, 0) &&
39 	    ctx->ws->cs_is_buffer_referenced(ctx->dma.cs, buf, usage)) {
40 		return true;
41 	}
42 	return false;
43 }
44 
si_buffer_map_sync_with_rings(struct r600_common_context * ctx,struct r600_resource * resource,unsigned usage)45 void *si_buffer_map_sync_with_rings(struct r600_common_context *ctx,
46 				    struct r600_resource *resource,
47 				    unsigned usage)
48 {
49 	enum radeon_bo_usage rusage = RADEON_USAGE_READWRITE;
50 	bool busy = false;
51 
52 	assert(!(resource->flags & RADEON_FLAG_SPARSE));
53 
54 	if (usage & PIPE_TRANSFER_UNSYNCHRONIZED) {
55 		return ctx->ws->buffer_map(resource->buf, NULL, usage);
56 	}
57 
58 	if (!(usage & PIPE_TRANSFER_WRITE)) {
59 		/* have to wait for the last write */
60 		rusage = RADEON_USAGE_WRITE;
61 	}
62 
63 	if (radeon_emitted(ctx->gfx.cs, ctx->initial_gfx_cs_size) &&
64 	    ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs,
65 					     resource->buf, rusage)) {
66 		if (usage & PIPE_TRANSFER_DONTBLOCK) {
67 			ctx->gfx.flush(ctx, PIPE_FLUSH_ASYNC, NULL);
68 			return NULL;
69 		} else {
70 			ctx->gfx.flush(ctx, 0, NULL);
71 			busy = true;
72 		}
73 	}
74 	if (radeon_emitted(ctx->dma.cs, 0) &&
75 	    ctx->ws->cs_is_buffer_referenced(ctx->dma.cs,
76 					     resource->buf, rusage)) {
77 		if (usage & PIPE_TRANSFER_DONTBLOCK) {
78 			ctx->dma.flush(ctx, PIPE_FLUSH_ASYNC, NULL);
79 			return NULL;
80 		} else {
81 			ctx->dma.flush(ctx, 0, NULL);
82 			busy = true;
83 		}
84 	}
85 
86 	if (busy || !ctx->ws->buffer_wait(resource->buf, 0, rusage)) {
87 		if (usage & PIPE_TRANSFER_DONTBLOCK) {
88 			return NULL;
89 		} else {
90 			/* We will be wait for the GPU. Wait for any offloaded
91 			 * CS flush to complete to avoid busy-waiting in the winsys. */
92 			ctx->ws->cs_sync_flush(ctx->gfx.cs);
93 			if (ctx->dma.cs)
94 				ctx->ws->cs_sync_flush(ctx->dma.cs);
95 		}
96 	}
97 
98 	/* Setting the CS to NULL will prevent doing checks we have done already. */
99 	return ctx->ws->buffer_map(resource->buf, NULL, usage);
100 }
101 
si_init_resource_fields(struct si_screen * sscreen,struct r600_resource * res,uint64_t size,unsigned alignment)102 void si_init_resource_fields(struct si_screen *sscreen,
103 			     struct r600_resource *res,
104 			     uint64_t size, unsigned alignment)
105 {
106 	struct r600_texture *rtex = (struct r600_texture*)res;
107 
108 	res->bo_size = size;
109 	res->bo_alignment = alignment;
110 	res->flags = 0;
111 	res->texture_handle_allocated = false;
112 	res->image_handle_allocated = false;
113 
114 	switch (res->b.b.usage) {
115 	case PIPE_USAGE_STREAM:
116 		res->flags = RADEON_FLAG_GTT_WC;
117 		/* fall through */
118 	case PIPE_USAGE_STAGING:
119 		/* Transfers are likely to occur more often with these
120 		 * resources. */
121 		res->domains = RADEON_DOMAIN_GTT;
122 		break;
123 	case PIPE_USAGE_DYNAMIC:
124 		/* Older kernels didn't always flush the HDP cache before
125 		 * CS execution
126 		 */
127 		if (sscreen->info.drm_major == 2 &&
128 		    sscreen->info.drm_minor < 40) {
129 			res->domains = RADEON_DOMAIN_GTT;
130 			res->flags |= RADEON_FLAG_GTT_WC;
131 			break;
132 		}
133 		/* fall through */
134 	case PIPE_USAGE_DEFAULT:
135 	case PIPE_USAGE_IMMUTABLE:
136 	default:
137 		/* Not listing GTT here improves performance in some
138 		 * apps. */
139 		res->domains = RADEON_DOMAIN_VRAM;
140 		res->flags |= RADEON_FLAG_GTT_WC;
141 		break;
142 	}
143 
144 	if (res->b.b.target == PIPE_BUFFER &&
145 	    res->b.b.flags & (PIPE_RESOURCE_FLAG_MAP_PERSISTENT |
146 			      PIPE_RESOURCE_FLAG_MAP_COHERENT)) {
147 		/* Use GTT for all persistent mappings with older
148 		 * kernels, because they didn't always flush the HDP
149 		 * cache before CS execution.
150 		 *
151 		 * Write-combined CPU mappings are fine, the kernel
152 		 * ensures all CPU writes finish before the GPU
153 		 * executes a command stream.
154 		 */
155 		if (sscreen->info.drm_major == 2 &&
156 		    sscreen->info.drm_minor < 40)
157 			res->domains = RADEON_DOMAIN_GTT;
158 	}
159 
160 	/* Tiled textures are unmappable. Always put them in VRAM. */
161 	if ((res->b.b.target != PIPE_BUFFER && !rtex->surface.is_linear) ||
162 	    res->b.b.flags & R600_RESOURCE_FLAG_UNMAPPABLE) {
163 		res->domains = RADEON_DOMAIN_VRAM;
164 		res->flags |= RADEON_FLAG_NO_CPU_ACCESS |
165 			 RADEON_FLAG_GTT_WC;
166 	}
167 
168 	/* Displayable and shareable surfaces are not suballocated. */
169 	if (res->b.b.bind & (PIPE_BIND_SHARED | PIPE_BIND_SCANOUT))
170 		res->flags |= RADEON_FLAG_NO_SUBALLOC; /* shareable */
171 	else
172 		res->flags |= RADEON_FLAG_NO_INTERPROCESS_SHARING;
173 
174 	if (sscreen->debug_flags & DBG(NO_WC))
175 		res->flags &= ~RADEON_FLAG_GTT_WC;
176 
177 	if (res->b.b.flags & R600_RESOURCE_FLAG_READ_ONLY)
178 		res->flags |= RADEON_FLAG_READ_ONLY;
179 
180 	/* Set expected VRAM and GART usage for the buffer. */
181 	res->vram_usage = 0;
182 	res->gart_usage = 0;
183 	res->max_forced_staging_uploads = 0;
184 	res->b.max_forced_staging_uploads = 0;
185 
186 	if (res->domains & RADEON_DOMAIN_VRAM) {
187 		res->vram_usage = size;
188 
189 		res->max_forced_staging_uploads =
190 		res->b.max_forced_staging_uploads =
191 			sscreen->info.has_dedicated_vram &&
192 			size >= sscreen->info.vram_vis_size / 4 ? 1 : 0;
193 	} else if (res->domains & RADEON_DOMAIN_GTT) {
194 		res->gart_usage = size;
195 	}
196 }
197 
si_alloc_resource(struct si_screen * sscreen,struct r600_resource * res)198 bool si_alloc_resource(struct si_screen *sscreen,
199 		       struct r600_resource *res)
200 {
201 	struct pb_buffer *old_buf, *new_buf;
202 
203 	/* Allocate a new resource. */
204 	new_buf = sscreen->ws->buffer_create(sscreen->ws, res->bo_size,
205 					     res->bo_alignment,
206 					     res->domains, res->flags);
207 	if (!new_buf) {
208 		return false;
209 	}
210 
211 	/* Replace the pointer such that if res->buf wasn't NULL, it won't be
212 	 * NULL. This should prevent crashes with multiple contexts using
213 	 * the same buffer where one of the contexts invalidates it while
214 	 * the others are using it. */
215 	old_buf = res->buf;
216 	res->buf = new_buf; /* should be atomic */
217 
218 	if (sscreen->info.has_virtual_memory)
219 		res->gpu_address = sscreen->ws->buffer_get_virtual_address(res->buf);
220 	else
221 		res->gpu_address = 0;
222 
223 	pb_reference(&old_buf, NULL);
224 
225 	util_range_set_empty(&res->valid_buffer_range);
226 	res->TC_L2_dirty = false;
227 
228 	/* Print debug information. */
229 	if (sscreen->debug_flags & DBG(VM) && res->b.b.target == PIPE_BUFFER) {
230 		fprintf(stderr, "VM start=0x%"PRIX64"  end=0x%"PRIX64" | Buffer %"PRIu64" bytes\n",
231 			res->gpu_address, res->gpu_address + res->buf->size,
232 			res->buf->size);
233 	}
234 	return true;
235 }
236 
r600_buffer_destroy(struct pipe_screen * screen,struct pipe_resource * buf)237 static void r600_buffer_destroy(struct pipe_screen *screen,
238 				struct pipe_resource *buf)
239 {
240 	struct r600_resource *rbuffer = r600_resource(buf);
241 
242 	threaded_resource_deinit(buf);
243 	util_range_destroy(&rbuffer->valid_buffer_range);
244 	pb_reference(&rbuffer->buf, NULL);
245 	FREE(rbuffer);
246 }
247 
248 static bool
r600_invalidate_buffer(struct r600_common_context * rctx,struct r600_resource * rbuffer)249 r600_invalidate_buffer(struct r600_common_context *rctx,
250 		       struct r600_resource *rbuffer)
251 {
252 	/* Shared buffers can't be reallocated. */
253 	if (rbuffer->b.is_shared)
254 		return false;
255 
256 	/* Sparse buffers can't be reallocated. */
257 	if (rbuffer->flags & RADEON_FLAG_SPARSE)
258 		return false;
259 
260 	/* In AMD_pinned_memory, the user pointer association only gets
261 	 * broken when the buffer is explicitly re-allocated.
262 	 */
263 	if (rbuffer->b.is_user_ptr)
264 		return false;
265 
266 	/* Check if mapping this buffer would cause waiting for the GPU. */
267 	if (si_rings_is_buffer_referenced(rctx, rbuffer->buf, RADEON_USAGE_READWRITE) ||
268 	    !rctx->ws->buffer_wait(rbuffer->buf, 0, RADEON_USAGE_READWRITE)) {
269 		rctx->invalidate_buffer(&rctx->b, &rbuffer->b.b);
270 	} else {
271 		util_range_set_empty(&rbuffer->valid_buffer_range);
272 	}
273 
274 	return true;
275 }
276 
277 /* Replace the storage of dst with src. */
si_replace_buffer_storage(struct pipe_context * ctx,struct pipe_resource * dst,struct pipe_resource * src)278 void si_replace_buffer_storage(struct pipe_context *ctx,
279 				 struct pipe_resource *dst,
280 				 struct pipe_resource *src)
281 {
282 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
283 	struct r600_resource *rdst = r600_resource(dst);
284 	struct r600_resource *rsrc = r600_resource(src);
285 	uint64_t old_gpu_address = rdst->gpu_address;
286 
287 	pb_reference(&rdst->buf, rsrc->buf);
288 	rdst->gpu_address = rsrc->gpu_address;
289 	rdst->b.b.bind = rsrc->b.b.bind;
290 	rdst->b.max_forced_staging_uploads = rsrc->b.max_forced_staging_uploads;
291 	rdst->max_forced_staging_uploads = rsrc->max_forced_staging_uploads;
292 	rdst->flags = rsrc->flags;
293 
294 	assert(rdst->vram_usage == rsrc->vram_usage);
295 	assert(rdst->gart_usage == rsrc->gart_usage);
296 	assert(rdst->bo_size == rsrc->bo_size);
297 	assert(rdst->bo_alignment == rsrc->bo_alignment);
298 	assert(rdst->domains == rsrc->domains);
299 
300 	rctx->rebind_buffer(ctx, dst, old_gpu_address);
301 }
302 
si_invalidate_resource(struct pipe_context * ctx,struct pipe_resource * resource)303 static void si_invalidate_resource(struct pipe_context *ctx,
304 				   struct pipe_resource *resource)
305 {
306 	struct r600_common_context *rctx = (struct r600_common_context*)ctx;
307 	struct r600_resource *rbuffer = r600_resource(resource);
308 
309 	/* We currently only do anyting here for buffers */
310 	if (resource->target == PIPE_BUFFER)
311 		(void)r600_invalidate_buffer(rctx, rbuffer);
312 }
313 
r600_buffer_get_transfer(struct pipe_context * ctx,struct pipe_resource * resource,unsigned usage,const struct pipe_box * box,struct pipe_transfer ** ptransfer,void * data,struct r600_resource * staging,unsigned offset)314 static void *r600_buffer_get_transfer(struct pipe_context *ctx,
315 				      struct pipe_resource *resource,
316                                       unsigned usage,
317                                       const struct pipe_box *box,
318 				      struct pipe_transfer **ptransfer,
319 				      void *data, struct r600_resource *staging,
320 				      unsigned offset)
321 {
322 	struct r600_common_context *rctx = (struct r600_common_context*)ctx;
323 	struct r600_transfer *transfer;
324 
325 	if (usage & TC_TRANSFER_MAP_THREADED_UNSYNC)
326 		transfer = slab_alloc(&rctx->pool_transfers_unsync);
327 	else
328 		transfer = slab_alloc(&rctx->pool_transfers);
329 
330 	transfer->b.b.resource = NULL;
331 	pipe_resource_reference(&transfer->b.b.resource, resource);
332 	transfer->b.b.level = 0;
333 	transfer->b.b.usage = usage;
334 	transfer->b.b.box = *box;
335 	transfer->b.b.stride = 0;
336 	transfer->b.b.layer_stride = 0;
337 	transfer->b.staging = NULL;
338 	transfer->offset = offset;
339 	transfer->staging = staging;
340 	*ptransfer = &transfer->b.b;
341 	return data;
342 }
343 
r600_buffer_transfer_map(struct pipe_context * ctx,struct pipe_resource * resource,unsigned level,unsigned usage,const struct pipe_box * box,struct pipe_transfer ** ptransfer)344 static void *r600_buffer_transfer_map(struct pipe_context *ctx,
345                                       struct pipe_resource *resource,
346                                       unsigned level,
347                                       unsigned usage,
348                                       const struct pipe_box *box,
349                                       struct pipe_transfer **ptransfer)
350 {
351 	struct r600_common_context *rctx = (struct r600_common_context*)ctx;
352 	struct r600_resource *rbuffer = r600_resource(resource);
353 	uint8_t *data;
354 
355 	assert(box->x + box->width <= resource->width0);
356 
357 	/* From GL_AMD_pinned_memory issues:
358 	 *
359 	 *     4) Is glMapBuffer on a shared buffer guaranteed to return the
360 	 *        same system address which was specified at creation time?
361 	 *
362 	 *        RESOLVED: NO. The GL implementation might return a different
363 	 *        virtual mapping of that memory, although the same physical
364 	 *        page will be used.
365 	 *
366 	 * So don't ever use staging buffers.
367 	 */
368 	if (rbuffer->b.is_user_ptr)
369 		usage |= PIPE_TRANSFER_PERSISTENT;
370 
371 	/* See if the buffer range being mapped has never been initialized,
372 	 * in which case it can be mapped unsynchronized. */
373 	if (!(usage & (PIPE_TRANSFER_UNSYNCHRONIZED |
374 		       TC_TRANSFER_MAP_NO_INFER_UNSYNCHRONIZED)) &&
375 	    usage & PIPE_TRANSFER_WRITE &&
376 	    !rbuffer->b.is_shared &&
377 	    !util_ranges_intersect(&rbuffer->valid_buffer_range, box->x, box->x + box->width)) {
378 		usage |= PIPE_TRANSFER_UNSYNCHRONIZED;
379 	}
380 
381 	/* If discarding the entire range, discard the whole resource instead. */
382 	if (usage & PIPE_TRANSFER_DISCARD_RANGE &&
383 	    box->x == 0 && box->width == resource->width0) {
384 		usage |= PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE;
385 	}
386 
387 	/* If a buffer in VRAM is too large and the range is discarded, don't
388 	 * map it directly. This makes sure that the buffer stays in VRAM.
389 	 */
390 	bool force_discard_range = false;
391 	if (usage & (PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE |
392 		     PIPE_TRANSFER_DISCARD_RANGE) &&
393 	    !(usage & PIPE_TRANSFER_PERSISTENT) &&
394 	    /* Try not to decrement the counter if it's not positive. Still racy,
395 	     * but it makes it harder to wrap the counter from INT_MIN to INT_MAX. */
396 	    rbuffer->max_forced_staging_uploads > 0 &&
397 	    p_atomic_dec_return(&rbuffer->max_forced_staging_uploads) >= 0) {
398 		usage &= ~(PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE |
399 			   PIPE_TRANSFER_UNSYNCHRONIZED);
400 		usage |= PIPE_TRANSFER_DISCARD_RANGE;
401 		force_discard_range = true;
402 	}
403 
404 	if (usage & PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE &&
405 	    !(usage & (PIPE_TRANSFER_UNSYNCHRONIZED |
406 		       TC_TRANSFER_MAP_NO_INVALIDATE))) {
407 		assert(usage & PIPE_TRANSFER_WRITE);
408 
409 		if (r600_invalidate_buffer(rctx, rbuffer)) {
410 			/* At this point, the buffer is always idle. */
411 			usage |= PIPE_TRANSFER_UNSYNCHRONIZED;
412 		} else {
413 			/* Fall back to a temporary buffer. */
414 			usage |= PIPE_TRANSFER_DISCARD_RANGE;
415 		}
416 	}
417 
418 	if ((usage & PIPE_TRANSFER_DISCARD_RANGE) &&
419 	    ((!(usage & (PIPE_TRANSFER_UNSYNCHRONIZED |
420 			 PIPE_TRANSFER_PERSISTENT))) ||
421 	     (rbuffer->flags & RADEON_FLAG_SPARSE))) {
422 		assert(usage & PIPE_TRANSFER_WRITE);
423 
424 		/* Check if mapping this buffer would cause waiting for the GPU.
425 		 */
426 		if (rbuffer->flags & RADEON_FLAG_SPARSE ||
427 		    force_discard_range ||
428 		    si_rings_is_buffer_referenced(rctx, rbuffer->buf, RADEON_USAGE_READWRITE) ||
429 		    !rctx->ws->buffer_wait(rbuffer->buf, 0, RADEON_USAGE_READWRITE)) {
430 			/* Do a wait-free write-only transfer using a temporary buffer. */
431 			unsigned offset;
432 			struct r600_resource *staging = NULL;
433 
434 			u_upload_alloc(ctx->stream_uploader, 0,
435                                        box->width + (box->x % R600_MAP_BUFFER_ALIGNMENT),
436 				       rctx->screen->info.tcc_cache_line_size,
437 				       &offset, (struct pipe_resource**)&staging,
438                                        (void**)&data);
439 
440 			if (staging) {
441 				data += box->x % R600_MAP_BUFFER_ALIGNMENT;
442 				return r600_buffer_get_transfer(ctx, resource, usage, box,
443 								ptransfer, data, staging, offset);
444 			} else if (rbuffer->flags & RADEON_FLAG_SPARSE) {
445 				return NULL;
446 			}
447 		} else {
448 			/* At this point, the buffer is always idle (we checked it above). */
449 			usage |= PIPE_TRANSFER_UNSYNCHRONIZED;
450 		}
451 	}
452 	/* Use a staging buffer in cached GTT for reads. */
453 	else if (((usage & PIPE_TRANSFER_READ) &&
454 		  !(usage & PIPE_TRANSFER_PERSISTENT) &&
455 		  (rbuffer->domains & RADEON_DOMAIN_VRAM ||
456 		   rbuffer->flags & RADEON_FLAG_GTT_WC)) ||
457 		 (rbuffer->flags & RADEON_FLAG_SPARSE)) {
458 		struct r600_resource *staging;
459 
460 		assert(!(usage & TC_TRANSFER_MAP_THREADED_UNSYNC));
461 		staging = (struct r600_resource*) pipe_buffer_create(
462 				ctx->screen, 0, PIPE_USAGE_STAGING,
463 				box->width + (box->x % R600_MAP_BUFFER_ALIGNMENT));
464 		if (staging) {
465 			/* Copy the VRAM buffer to the staging buffer. */
466 			rctx->dma_copy(ctx, &staging->b.b, 0,
467 				       box->x % R600_MAP_BUFFER_ALIGNMENT,
468 				       0, 0, resource, 0, box);
469 
470 			data = si_buffer_map_sync_with_rings(rctx, staging,
471 							       usage & ~PIPE_TRANSFER_UNSYNCHRONIZED);
472 			if (!data) {
473 				r600_resource_reference(&staging, NULL);
474 				return NULL;
475 			}
476 			data += box->x % R600_MAP_BUFFER_ALIGNMENT;
477 
478 			return r600_buffer_get_transfer(ctx, resource, usage, box,
479 							ptransfer, data, staging, 0);
480 		} else if (rbuffer->flags & RADEON_FLAG_SPARSE) {
481 			return NULL;
482 		}
483 	}
484 
485 	data = si_buffer_map_sync_with_rings(rctx, rbuffer, usage);
486 	if (!data) {
487 		return NULL;
488 	}
489 	data += box->x;
490 
491 	return r600_buffer_get_transfer(ctx, resource, usage, box,
492 					ptransfer, data, NULL, 0);
493 }
494 
r600_buffer_do_flush_region(struct pipe_context * ctx,struct pipe_transfer * transfer,const struct pipe_box * box)495 static void r600_buffer_do_flush_region(struct pipe_context *ctx,
496 					struct pipe_transfer *transfer,
497 				        const struct pipe_box *box)
498 {
499 	struct r600_transfer *rtransfer = (struct r600_transfer*)transfer;
500 	struct r600_resource *rbuffer = r600_resource(transfer->resource);
501 
502 	if (rtransfer->staging) {
503 		struct pipe_resource *dst, *src;
504 		unsigned soffset;
505 		struct pipe_box dma_box;
506 
507 		dst = transfer->resource;
508 		src = &rtransfer->staging->b.b;
509 		soffset = rtransfer->offset + box->x % R600_MAP_BUFFER_ALIGNMENT;
510 
511 		u_box_1d(soffset, box->width, &dma_box);
512 
513 		/* Copy the staging buffer into the original one. */
514 		ctx->resource_copy_region(ctx, dst, 0, box->x, 0, 0, src, 0, &dma_box);
515 	}
516 
517 	util_range_add(&rbuffer->valid_buffer_range, box->x,
518 		       box->x + box->width);
519 }
520 
r600_buffer_flush_region(struct pipe_context * ctx,struct pipe_transfer * transfer,const struct pipe_box * rel_box)521 static void r600_buffer_flush_region(struct pipe_context *ctx,
522 				     struct pipe_transfer *transfer,
523 				     const struct pipe_box *rel_box)
524 {
525 	unsigned required_usage = PIPE_TRANSFER_WRITE |
526 				  PIPE_TRANSFER_FLUSH_EXPLICIT;
527 
528 	if ((transfer->usage & required_usage) == required_usage) {
529 		struct pipe_box box;
530 
531 		u_box_1d(transfer->box.x + rel_box->x, rel_box->width, &box);
532 		r600_buffer_do_flush_region(ctx, transfer, &box);
533 	}
534 }
535 
r600_buffer_transfer_unmap(struct pipe_context * ctx,struct pipe_transfer * transfer)536 static void r600_buffer_transfer_unmap(struct pipe_context *ctx,
537 				       struct pipe_transfer *transfer)
538 {
539 	struct r600_common_context *rctx = (struct r600_common_context*)ctx;
540 	struct r600_transfer *rtransfer = (struct r600_transfer*)transfer;
541 
542 	if (transfer->usage & PIPE_TRANSFER_WRITE &&
543 	    !(transfer->usage & PIPE_TRANSFER_FLUSH_EXPLICIT))
544 		r600_buffer_do_flush_region(ctx, transfer, &transfer->box);
545 
546 	r600_resource_reference(&rtransfer->staging, NULL);
547 	assert(rtransfer->b.staging == NULL); /* for threaded context only */
548 	pipe_resource_reference(&transfer->resource, NULL);
549 
550 	/* Don't use pool_transfers_unsync. We are always in the driver
551 	 * thread. */
552 	slab_free(&rctx->pool_transfers, transfer);
553 }
554 
si_buffer_subdata(struct pipe_context * ctx,struct pipe_resource * buffer,unsigned usage,unsigned offset,unsigned size,const void * data)555 static void si_buffer_subdata(struct pipe_context *ctx,
556 			      struct pipe_resource *buffer,
557 			      unsigned usage, unsigned offset,
558 			      unsigned size, const void *data)
559 {
560 	struct pipe_transfer *transfer = NULL;
561 	struct pipe_box box;
562 	uint8_t *map = NULL;
563 
564 	u_box_1d(offset, size, &box);
565 	map = r600_buffer_transfer_map(ctx, buffer, 0,
566 				       PIPE_TRANSFER_WRITE |
567 				       PIPE_TRANSFER_DISCARD_RANGE |
568 				       usage,
569 				       &box, &transfer);
570 	if (!map)
571 		return;
572 
573 	memcpy(map, data, size);
574 	r600_buffer_transfer_unmap(ctx, transfer);
575 }
576 
577 static const struct u_resource_vtbl r600_buffer_vtbl =
578 {
579 	NULL,				/* get_handle */
580 	r600_buffer_destroy,		/* resource_destroy */
581 	r600_buffer_transfer_map,	/* transfer_map */
582 	r600_buffer_flush_region,	/* transfer_flush_region */
583 	r600_buffer_transfer_unmap,	/* transfer_unmap */
584 };
585 
586 static struct r600_resource *
r600_alloc_buffer_struct(struct pipe_screen * screen,const struct pipe_resource * templ)587 r600_alloc_buffer_struct(struct pipe_screen *screen,
588 			 const struct pipe_resource *templ)
589 {
590 	struct r600_resource *rbuffer;
591 
592 	rbuffer = MALLOC_STRUCT(r600_resource);
593 
594 	rbuffer->b.b = *templ;
595 	rbuffer->b.b.next = NULL;
596 	pipe_reference_init(&rbuffer->b.b.reference, 1);
597 	rbuffer->b.b.screen = screen;
598 
599 	rbuffer->b.vtbl = &r600_buffer_vtbl;
600 	threaded_resource_init(&rbuffer->b.b);
601 
602 	rbuffer->buf = NULL;
603 	rbuffer->bind_history = 0;
604 	rbuffer->TC_L2_dirty = false;
605 	util_range_init(&rbuffer->valid_buffer_range);
606 	return rbuffer;
607 }
608 
si_buffer_create(struct pipe_screen * screen,const struct pipe_resource * templ,unsigned alignment)609 static struct pipe_resource *si_buffer_create(struct pipe_screen *screen,
610 					      const struct pipe_resource *templ,
611 					      unsigned alignment)
612 {
613 	struct si_screen *sscreen = (struct si_screen*)screen;
614 	struct r600_resource *rbuffer = r600_alloc_buffer_struct(screen, templ);
615 
616 	if (templ->flags & PIPE_RESOURCE_FLAG_SPARSE)
617 		rbuffer->b.b.flags |= R600_RESOURCE_FLAG_UNMAPPABLE;
618 
619 	si_init_resource_fields(sscreen, rbuffer, templ->width0, alignment);
620 
621 	if (templ->flags & PIPE_RESOURCE_FLAG_SPARSE)
622 		rbuffer->flags |= RADEON_FLAG_SPARSE;
623 
624 	if (!si_alloc_resource(sscreen, rbuffer)) {
625 		FREE(rbuffer);
626 		return NULL;
627 	}
628 	return &rbuffer->b.b;
629 }
630 
si_aligned_buffer_create(struct pipe_screen * screen,unsigned flags,unsigned usage,unsigned size,unsigned alignment)631 struct pipe_resource *si_aligned_buffer_create(struct pipe_screen *screen,
632 					       unsigned flags,
633 					       unsigned usage,
634 					       unsigned size,
635 					       unsigned alignment)
636 {
637 	struct pipe_resource buffer;
638 
639 	memset(&buffer, 0, sizeof buffer);
640 	buffer.target = PIPE_BUFFER;
641 	buffer.format = PIPE_FORMAT_R8_UNORM;
642 	buffer.bind = 0;
643 	buffer.usage = usage;
644 	buffer.flags = flags;
645 	buffer.width0 = size;
646 	buffer.height0 = 1;
647 	buffer.depth0 = 1;
648 	buffer.array_size = 1;
649 	return si_buffer_create(screen, &buffer, alignment);
650 }
651 
652 static struct pipe_resource *
si_buffer_from_user_memory(struct pipe_screen * screen,const struct pipe_resource * templ,void * user_memory)653 si_buffer_from_user_memory(struct pipe_screen *screen,
654 			   const struct pipe_resource *templ,
655 			   void *user_memory)
656 {
657 	struct si_screen *sscreen = (struct si_screen*)screen;
658 	struct radeon_winsys *ws = sscreen->ws;
659 	struct r600_resource *rbuffer = r600_alloc_buffer_struct(screen, templ);
660 
661 	rbuffer->domains = RADEON_DOMAIN_GTT;
662 	rbuffer->flags = 0;
663 	rbuffer->b.is_user_ptr = true;
664 	util_range_add(&rbuffer->valid_buffer_range, 0, templ->width0);
665 	util_range_add(&rbuffer->b.valid_buffer_range, 0, templ->width0);
666 
667 	/* Convert a user pointer to a buffer. */
668 	rbuffer->buf = ws->buffer_from_ptr(ws, user_memory, templ->width0);
669 	if (!rbuffer->buf) {
670 		FREE(rbuffer);
671 		return NULL;
672 	}
673 
674 	if (sscreen->info.has_virtual_memory)
675 		rbuffer->gpu_address =
676 			ws->buffer_get_virtual_address(rbuffer->buf);
677 	else
678 		rbuffer->gpu_address = 0;
679 
680 	rbuffer->vram_usage = 0;
681 	rbuffer->gart_usage = templ->width0;
682 
683 	return &rbuffer->b.b;
684 }
685 
si_resource_create(struct pipe_screen * screen,const struct pipe_resource * templ)686 static struct pipe_resource *si_resource_create(struct pipe_screen *screen,
687 						const struct pipe_resource *templ)
688 {
689 	if (templ->target == PIPE_BUFFER) {
690 		return si_buffer_create(screen, templ, 256);
691 	} else {
692 		return si_texture_create(screen, templ);
693 	}
694 }
695 
si_init_screen_buffer_functions(struct si_screen * sscreen)696 void si_init_screen_buffer_functions(struct si_screen *sscreen)
697 {
698 	sscreen->b.resource_create = si_resource_create;
699 	sscreen->b.resource_destroy = u_resource_destroy_vtbl;
700 	sscreen->b.resource_from_user_memory = si_buffer_from_user_memory;
701 }
702 
si_init_buffer_functions(struct si_context * sctx)703 void si_init_buffer_functions(struct si_context *sctx)
704 {
705 	sctx->b.b.invalidate_resource = si_invalidate_resource;
706 	sctx->b.b.transfer_map = u_transfer_map_vtbl;
707 	sctx->b.b.transfer_flush_region = u_transfer_flush_region_vtbl;
708 	sctx->b.b.transfer_unmap = u_transfer_unmap_vtbl;
709 	sctx->b.b.texture_subdata = u_default_texture_subdata;
710 	sctx->b.b.buffer_subdata = si_buffer_subdata;
711 }
712