1 /*
2  * Copyright 2012 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * on the rights to use, copy, modify, merge, publish, distribute, sub
8  * license, and/or sell copies of the Software, and to permit persons to whom
9  * the Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21  * USE OR OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "si_pipe.h"
25 #include "sid.h"
26 #include "gfx9d.h"
27 #include "radeon/r600_cs.h"
28 
29 #include "tgsi/tgsi_parse.h"
30 #include "tgsi/tgsi_ureg.h"
31 #include "util/hash_table.h"
32 #include "util/crc32.h"
33 #include "util/u_async_debug.h"
34 #include "util/u_memory.h"
35 #include "util/u_prim.h"
36 
37 #include "util/disk_cache.h"
38 #include "util/mesa-sha1.h"
39 #include "ac_exp_param.h"
40 #include "ac_shader_util.h"
41 
42 /* SHADER_CACHE */
43 
44 /**
45  * Return the TGSI binary in a buffer. The first 4 bytes contain its size as
46  * integer.
47  */
si_get_tgsi_binary(struct si_shader_selector * sel)48 static void *si_get_tgsi_binary(struct si_shader_selector *sel)
49 {
50 	unsigned tgsi_size = tgsi_num_tokens(sel->tokens) *
51 			     sizeof(struct tgsi_token);
52 	unsigned size = 4 + tgsi_size + sizeof(sel->so);
53 	char *result = (char*)MALLOC(size);
54 
55 	if (!result)
56 		return NULL;
57 
58 	*((uint32_t*)result) = size;
59 	memcpy(result + 4, sel->tokens, tgsi_size);
60 	memcpy(result + 4 + tgsi_size, &sel->so, sizeof(sel->so));
61 	return result;
62 }
63 
64 /** Copy "data" to "ptr" and return the next dword following copied data. */
write_data(uint32_t * ptr,const void * data,unsigned size)65 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
66 {
67 	/* data may be NULL if size == 0 */
68 	if (size)
69 		memcpy(ptr, data, size);
70 	ptr += DIV_ROUND_UP(size, 4);
71 	return ptr;
72 }
73 
74 /** Read data from "ptr". Return the next dword following the data. */
read_data(uint32_t * ptr,void * data,unsigned size)75 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
76 {
77 	memcpy(data, ptr, size);
78 	ptr += DIV_ROUND_UP(size, 4);
79 	return ptr;
80 }
81 
82 /**
83  * Write the size as uint followed by the data. Return the next dword
84  * following the copied data.
85  */
write_chunk(uint32_t * ptr,const void * data,unsigned size)86 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
87 {
88 	*ptr++ = size;
89 	return write_data(ptr, data, size);
90 }
91 
92 /**
93  * Read the size as uint followed by the data. Return both via parameters.
94  * Return the next dword following the data.
95  */
read_chunk(uint32_t * ptr,void ** data,unsigned * size)96 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
97 {
98 	*size = *ptr++;
99 	assert(*data == NULL);
100 	if (!*size)
101 		return ptr;
102 	*data = malloc(*size);
103 	return read_data(ptr, *data, *size);
104 }
105 
106 /**
107  * Return the shader binary in a buffer. The first 4 bytes contain its size
108  * as integer.
109  */
si_get_shader_binary(struct si_shader * shader)110 static void *si_get_shader_binary(struct si_shader *shader)
111 {
112 	/* There is always a size of data followed by the data itself. */
113 	unsigned relocs_size = shader->binary.reloc_count *
114 			       sizeof(shader->binary.relocs[0]);
115 	unsigned disasm_size = shader->binary.disasm_string ?
116 			       strlen(shader->binary.disasm_string) + 1 : 0;
117 	unsigned llvm_ir_size = shader->binary.llvm_ir_string ?
118 				strlen(shader->binary.llvm_ir_string) + 1 : 0;
119 	unsigned size =
120 		4 + /* total size */
121 		4 + /* CRC32 of the data below */
122 		align(sizeof(shader->config), 4) +
123 		align(sizeof(shader->info), 4) +
124 		4 + align(shader->binary.code_size, 4) +
125 		4 + align(shader->binary.rodata_size, 4) +
126 		4 + align(relocs_size, 4) +
127 		4 + align(disasm_size, 4) +
128 		4 + align(llvm_ir_size, 4);
129 	void *buffer = CALLOC(1, size);
130 	uint32_t *ptr = (uint32_t*)buffer;
131 
132 	if (!buffer)
133 		return NULL;
134 
135 	*ptr++ = size;
136 	ptr++; /* CRC32 is calculated at the end. */
137 
138 	ptr = write_data(ptr, &shader->config, sizeof(shader->config));
139 	ptr = write_data(ptr, &shader->info, sizeof(shader->info));
140 	ptr = write_chunk(ptr, shader->binary.code, shader->binary.code_size);
141 	ptr = write_chunk(ptr, shader->binary.rodata, shader->binary.rodata_size);
142 	ptr = write_chunk(ptr, shader->binary.relocs, relocs_size);
143 	ptr = write_chunk(ptr, shader->binary.disasm_string, disasm_size);
144 	ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
145 	assert((char *)ptr - (char *)buffer == size);
146 
147 	/* Compute CRC32. */
148 	ptr = (uint32_t*)buffer;
149 	ptr++;
150 	*ptr = util_hash_crc32(ptr + 1, size - 8);
151 
152 	return buffer;
153 }
154 
si_load_shader_binary(struct si_shader * shader,void * binary)155 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
156 {
157 	uint32_t *ptr = (uint32_t*)binary;
158 	uint32_t size = *ptr++;
159 	uint32_t crc32 = *ptr++;
160 	unsigned chunk_size;
161 
162 	if (util_hash_crc32(ptr, size - 8) != crc32) {
163 		fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
164 		return false;
165 	}
166 
167 	ptr = read_data(ptr, &shader->config, sizeof(shader->config));
168 	ptr = read_data(ptr, &shader->info, sizeof(shader->info));
169 	ptr = read_chunk(ptr, (void**)&shader->binary.code,
170 			 &shader->binary.code_size);
171 	ptr = read_chunk(ptr, (void**)&shader->binary.rodata,
172 			 &shader->binary.rodata_size);
173 	ptr = read_chunk(ptr, (void**)&shader->binary.relocs, &chunk_size);
174 	shader->binary.reloc_count = chunk_size / sizeof(shader->binary.relocs[0]);
175 	ptr = read_chunk(ptr, (void**)&shader->binary.disasm_string, &chunk_size);
176 	ptr = read_chunk(ptr, (void**)&shader->binary.llvm_ir_string, &chunk_size);
177 
178 	return true;
179 }
180 
181 /**
182  * Insert a shader into the cache. It's assumed the shader is not in the cache.
183  * Use si_shader_cache_load_shader before calling this.
184  *
185  * Returns false on failure, in which case the tgsi_binary should be freed.
186  */
si_shader_cache_insert_shader(struct si_screen * sscreen,void * tgsi_binary,struct si_shader * shader,bool insert_into_disk_cache)187 static bool si_shader_cache_insert_shader(struct si_screen *sscreen,
188 					  void *tgsi_binary,
189 					  struct si_shader *shader,
190 					  bool insert_into_disk_cache)
191 {
192 	void *hw_binary;
193 	struct hash_entry *entry;
194 	uint8_t key[CACHE_KEY_SIZE];
195 
196 	entry = _mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
197 	if (entry)
198 		return false; /* already added */
199 
200 	hw_binary = si_get_shader_binary(shader);
201 	if (!hw_binary)
202 		return false;
203 
204 	if (_mesa_hash_table_insert(sscreen->shader_cache, tgsi_binary,
205 				    hw_binary) == NULL) {
206 		FREE(hw_binary);
207 		return false;
208 	}
209 
210 	if (sscreen->disk_shader_cache && insert_into_disk_cache) {
211 		disk_cache_compute_key(sscreen->disk_shader_cache, tgsi_binary,
212 				       *((uint32_t *)tgsi_binary), key);
213 		disk_cache_put(sscreen->disk_shader_cache, key, hw_binary,
214 			       *((uint32_t *) hw_binary), NULL);
215 	}
216 
217 	return true;
218 }
219 
si_shader_cache_load_shader(struct si_screen * sscreen,void * tgsi_binary,struct si_shader * shader)220 static bool si_shader_cache_load_shader(struct si_screen *sscreen,
221 					void *tgsi_binary,
222 				        struct si_shader *shader)
223 {
224 	struct hash_entry *entry =
225 		_mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
226 	if (!entry) {
227 		if (sscreen->disk_shader_cache) {
228 			unsigned char sha1[CACHE_KEY_SIZE];
229 			size_t tg_size = *((uint32_t *) tgsi_binary);
230 
231 			disk_cache_compute_key(sscreen->disk_shader_cache,
232 					       tgsi_binary, tg_size, sha1);
233 
234 			size_t binary_size;
235 			uint8_t *buffer =
236 				disk_cache_get(sscreen->disk_shader_cache,
237 					       sha1, &binary_size);
238 			if (!buffer)
239 				return false;
240 
241 			if (binary_size < sizeof(uint32_t) ||
242 			    *((uint32_t*)buffer) != binary_size) {
243 				 /* Something has gone wrong discard the item
244 				  * from the cache and rebuild/link from
245 				  * source.
246 				  */
247 				assert(!"Invalid radeonsi shader disk cache "
248 				       "item!");
249 
250 				disk_cache_remove(sscreen->disk_shader_cache,
251 						  sha1);
252 				free(buffer);
253 
254 				return false;
255 			}
256 
257 			if (!si_load_shader_binary(shader, buffer)) {
258 				free(buffer);
259 				return false;
260 			}
261 			free(buffer);
262 
263 			if (!si_shader_cache_insert_shader(sscreen, tgsi_binary,
264 							   shader, false))
265 				FREE(tgsi_binary);
266 		} else {
267 			return false;
268 		}
269 	} else {
270 		if (si_load_shader_binary(shader, entry->data))
271 			FREE(tgsi_binary);
272 		else
273 			return false;
274 	}
275 	p_atomic_inc(&sscreen->num_shader_cache_hits);
276 	return true;
277 }
278 
si_shader_cache_key_hash(const void * key)279 static uint32_t si_shader_cache_key_hash(const void *key)
280 {
281 	/* The first dword is the key size. */
282 	return util_hash_crc32(key, *(uint32_t*)key);
283 }
284 
si_shader_cache_key_equals(const void * a,const void * b)285 static bool si_shader_cache_key_equals(const void *a, const void *b)
286 {
287 	uint32_t *keya = (uint32_t*)a;
288 	uint32_t *keyb = (uint32_t*)b;
289 
290 	/* The first dword is the key size. */
291 	if (*keya != *keyb)
292 		return false;
293 
294 	return memcmp(keya, keyb, *keya) == 0;
295 }
296 
si_destroy_shader_cache_entry(struct hash_entry * entry)297 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
298 {
299 	FREE((void*)entry->key);
300 	FREE(entry->data);
301 }
302 
si_init_shader_cache(struct si_screen * sscreen)303 bool si_init_shader_cache(struct si_screen *sscreen)
304 {
305 	(void) mtx_init(&sscreen->shader_cache_mutex, mtx_plain);
306 	sscreen->shader_cache =
307 		_mesa_hash_table_create(NULL,
308 					si_shader_cache_key_hash,
309 					si_shader_cache_key_equals);
310 
311 	return sscreen->shader_cache != NULL;
312 }
313 
si_destroy_shader_cache(struct si_screen * sscreen)314 void si_destroy_shader_cache(struct si_screen *sscreen)
315 {
316 	if (sscreen->shader_cache)
317 		_mesa_hash_table_destroy(sscreen->shader_cache,
318 					 si_destroy_shader_cache_entry);
319 	mtx_destroy(&sscreen->shader_cache_mutex);
320 }
321 
322 /* SHADER STATES */
323 
si_set_tesseval_regs(struct si_screen * sscreen,struct si_shader_selector * tes,struct si_pm4_state * pm4)324 static void si_set_tesseval_regs(struct si_screen *sscreen,
325 				 struct si_shader_selector *tes,
326 				 struct si_pm4_state *pm4)
327 {
328 	struct tgsi_shader_info *info = &tes->info;
329 	unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE];
330 	unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING];
331 	bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW];
332 	bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE];
333 	unsigned type, partitioning, topology, distribution_mode;
334 
335 	switch (tes_prim_mode) {
336 	case PIPE_PRIM_LINES:
337 		type = V_028B6C_TESS_ISOLINE;
338 		break;
339 	case PIPE_PRIM_TRIANGLES:
340 		type = V_028B6C_TESS_TRIANGLE;
341 		break;
342 	case PIPE_PRIM_QUADS:
343 		type = V_028B6C_TESS_QUAD;
344 		break;
345 	default:
346 		assert(0);
347 		return;
348 	}
349 
350 	switch (tes_spacing) {
351 	case PIPE_TESS_SPACING_FRACTIONAL_ODD:
352 		partitioning = V_028B6C_PART_FRAC_ODD;
353 		break;
354 	case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
355 		partitioning = V_028B6C_PART_FRAC_EVEN;
356 		break;
357 	case PIPE_TESS_SPACING_EQUAL:
358 		partitioning = V_028B6C_PART_INTEGER;
359 		break;
360 	default:
361 		assert(0);
362 		return;
363 	}
364 
365 	if (tes_point_mode)
366 		topology = V_028B6C_OUTPUT_POINT;
367 	else if (tes_prim_mode == PIPE_PRIM_LINES)
368 		topology = V_028B6C_OUTPUT_LINE;
369 	else if (tes_vertex_order_cw)
370 		/* for some reason, this must be the other way around */
371 		topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
372 	else
373 		topology = V_028B6C_OUTPUT_TRIANGLE_CW;
374 
375 	if (sscreen->has_distributed_tess) {
376 		if (sscreen->info.family == CHIP_FIJI ||
377 		    sscreen->info.family >= CHIP_POLARIS10)
378 			distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
379 		else
380 			distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
381 	} else
382 		distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
383 
384 	si_pm4_set_reg(pm4, R_028B6C_VGT_TF_PARAM,
385 		       S_028B6C_TYPE(type) |
386 		       S_028B6C_PARTITIONING(partitioning) |
387 		       S_028B6C_TOPOLOGY(topology) |
388 		       S_028B6C_DISTRIBUTION_MODE(distribution_mode));
389 }
390 
391 /* Polaris needs different VTX_REUSE_DEPTH settings depending on
392  * whether the "fractional odd" tessellation spacing is used.
393  *
394  * Possible VGT configurations and which state should set the register:
395  *
396  *   Reg set in | VGT shader configuration   | Value
397  * ------------------------------------------------------
398  *     VS as VS | VS                         | 30
399  *     VS as ES | ES -> GS -> VS             | 30
400  *    TES as VS | LS -> HS -> VS             | 14 or 30
401  *    TES as ES | LS -> HS -> ES -> GS -> VS | 14 or 30
402  *
403  * If "shader" is NULL, it's assumed it's not LS or GS copy shader.
404  */
polaris_set_vgt_vertex_reuse(struct si_screen * sscreen,struct si_shader_selector * sel,struct si_shader * shader,struct si_pm4_state * pm4)405 static void polaris_set_vgt_vertex_reuse(struct si_screen *sscreen,
406 					 struct si_shader_selector *sel,
407 					 struct si_shader *shader,
408 					 struct si_pm4_state *pm4)
409 {
410 	unsigned type = sel->type;
411 
412 	if (sscreen->info.family < CHIP_POLARIS10)
413 		return;
414 
415 	/* VS as VS, or VS as ES: */
416 	if ((type == PIPE_SHADER_VERTEX &&
417 	     (!shader ||
418 	      (!shader->key.as_ls && !shader->is_gs_copy_shader))) ||
419 	    /* TES as VS, or TES as ES: */
420 	    type == PIPE_SHADER_TESS_EVAL) {
421 		unsigned vtx_reuse_depth = 30;
422 
423 		if (type == PIPE_SHADER_TESS_EVAL &&
424 		    sel->info.properties[TGSI_PROPERTY_TES_SPACING] ==
425 		    PIPE_TESS_SPACING_FRACTIONAL_ODD)
426 			vtx_reuse_depth = 14;
427 
428 		si_pm4_set_reg(pm4, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
429 			       vtx_reuse_depth);
430 	}
431 }
432 
si_get_shader_pm4_state(struct si_shader * shader)433 static struct si_pm4_state *si_get_shader_pm4_state(struct si_shader *shader)
434 {
435 	if (shader->pm4)
436 		si_pm4_clear_state(shader->pm4);
437 	else
438 		shader->pm4 = CALLOC_STRUCT(si_pm4_state);
439 
440 	return shader->pm4;
441 }
442 
si_shader_ls(struct si_screen * sscreen,struct si_shader * shader)443 static void si_shader_ls(struct si_screen *sscreen, struct si_shader *shader)
444 {
445 	struct si_pm4_state *pm4;
446 	unsigned vgpr_comp_cnt;
447 	uint64_t va;
448 
449 	assert(sscreen->info.chip_class <= VI);
450 
451 	pm4 = si_get_shader_pm4_state(shader);
452 	if (!pm4)
453 		return;
454 
455 	va = shader->bo->gpu_address;
456 	si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
457 
458 	/* We need at least 2 components for LS.
459 	 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
460 	 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
461 	 */
462 	vgpr_comp_cnt = shader->info.uses_instanceid ? 2 : 1;
463 
464 	si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
465 	si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, va >> 40);
466 
467 	shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
468 			   S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) |
469 		           S_00B528_VGPR_COMP_CNT(vgpr_comp_cnt) |
470 			   S_00B528_DX10_CLAMP(1) |
471 			   S_00B528_FLOAT_MODE(shader->config.float_mode);
472 	shader->config.rsrc2 = S_00B52C_USER_SGPR(SI_VS_NUM_USER_SGPR) |
473 			   S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
474 }
475 
si_shader_hs(struct si_screen * sscreen,struct si_shader * shader)476 static void si_shader_hs(struct si_screen *sscreen, struct si_shader *shader)
477 {
478 	struct si_pm4_state *pm4;
479 	uint64_t va;
480 	unsigned ls_vgpr_comp_cnt = 0;
481 
482 	pm4 = si_get_shader_pm4_state(shader);
483 	if (!pm4)
484 		return;
485 
486 	va = shader->bo->gpu_address;
487 	si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
488 
489 	if (sscreen->info.chip_class >= GFX9) {
490 		si_pm4_set_reg(pm4, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8);
491 		si_pm4_set_reg(pm4, R_00B414_SPI_SHADER_PGM_HI_LS, va >> 40);
492 
493 		/* We need at least 2 components for LS.
494 		 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
495 		 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
496 		 */
497 		ls_vgpr_comp_cnt = shader->info.uses_instanceid ? 2 : 1;
498 
499 		shader->config.rsrc2 =
500 			S_00B42C_USER_SGPR(GFX9_TCS_NUM_USER_SGPR) |
501 			S_00B42C_USER_SGPR_MSB(GFX9_TCS_NUM_USER_SGPR >> 5) |
502 			S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
503 	} else {
504 		si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
505 		si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, va >> 40);
506 
507 		shader->config.rsrc2 =
508 			S_00B42C_USER_SGPR(GFX6_TCS_NUM_USER_SGPR) |
509 			S_00B42C_OC_LDS_EN(1) |
510 			S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
511 	}
512 
513 	si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
514 		       S_00B428_VGPRS((shader->config.num_vgprs - 1) / 4) |
515 		       S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8) |
516 		       S_00B428_DX10_CLAMP(1) |
517 		       S_00B428_FLOAT_MODE(shader->config.float_mode) |
518 		       S_00B428_LS_VGPR_COMP_CNT(ls_vgpr_comp_cnt));
519 
520 	if (sscreen->info.chip_class <= VI) {
521 		si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
522 			       shader->config.rsrc2);
523 	}
524 }
525 
si_shader_es(struct si_screen * sscreen,struct si_shader * shader)526 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
527 {
528 	struct si_pm4_state *pm4;
529 	unsigned num_user_sgprs;
530 	unsigned vgpr_comp_cnt;
531 	uint64_t va;
532 	unsigned oc_lds_en;
533 
534 	assert(sscreen->info.chip_class <= VI);
535 
536 	pm4 = si_get_shader_pm4_state(shader);
537 	if (!pm4)
538 		return;
539 
540 	va = shader->bo->gpu_address;
541 	si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
542 
543 	if (shader->selector->type == PIPE_SHADER_VERTEX) {
544 		/* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
545 		vgpr_comp_cnt = shader->info.uses_instanceid ? 1 : 0;
546 		num_user_sgprs = SI_VS_NUM_USER_SGPR;
547 	} else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
548 		vgpr_comp_cnt = shader->selector->info.uses_primid ? 3 : 2;
549 		num_user_sgprs = SI_TES_NUM_USER_SGPR;
550 	} else
551 		unreachable("invalid shader selector type");
552 
553 	oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
554 
555 	si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
556 		       shader->selector->esgs_itemsize / 4);
557 	si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
558 	si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, va >> 40);
559 	si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
560 		       S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
561 		       S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) |
562 		       S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
563 		       S_00B328_DX10_CLAMP(1) |
564 		       S_00B328_FLOAT_MODE(shader->config.float_mode));
565 	si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
566 		       S_00B32C_USER_SGPR(num_user_sgprs) |
567 		       S_00B32C_OC_LDS_EN(oc_lds_en) |
568 		       S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
569 
570 	if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
571 		si_set_tesseval_regs(sscreen, shader->selector, pm4);
572 
573 	polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
574 }
575 
576 struct gfx9_gs_info {
577 	unsigned es_verts_per_subgroup;
578 	unsigned gs_prims_per_subgroup;
579 	unsigned gs_inst_prims_in_subgroup;
580 	unsigned max_prims_per_subgroup;
581 	unsigned lds_size;
582 };
583 
gfx9_get_gs_info(struct si_shader_selector * es,struct si_shader_selector * gs,struct gfx9_gs_info * out)584 static void gfx9_get_gs_info(struct si_shader_selector *es,
585 				   struct si_shader_selector *gs,
586 				   struct gfx9_gs_info *out)
587 {
588 	unsigned gs_num_invocations = MAX2(gs->gs_num_invocations, 1);
589 	unsigned input_prim = gs->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
590 	bool uses_adjacency = input_prim >= PIPE_PRIM_LINES_ADJACENCY &&
591 			      input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
592 
593 	/* All these are in dwords: */
594 	/* We can't allow using the whole LDS, because GS waves compete with
595 	 * other shader stages for LDS space. */
596 	const unsigned max_lds_size = 8 * 1024;
597 	const unsigned esgs_itemsize = es->esgs_itemsize / 4;
598 	unsigned esgs_lds_size;
599 
600 	/* All these are per subgroup: */
601 	const unsigned max_out_prims = 32 * 1024;
602 	const unsigned max_es_verts = 255;
603 	const unsigned ideal_gs_prims = 64;
604 	unsigned max_gs_prims, gs_prims;
605 	unsigned min_es_verts, es_verts, worst_case_es_verts;
606 
607 	assert(gs_num_invocations <= 32); /* GL maximum */
608 
609 	if (uses_adjacency || gs_num_invocations > 1)
610 		max_gs_prims = 127 / gs_num_invocations;
611 	else
612 		max_gs_prims = 255;
613 
614 	/* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
615 	 * Make sure we don't go over the maximum value.
616 	 */
617 	if (gs->gs_max_out_vertices > 0) {
618 		max_gs_prims = MIN2(max_gs_prims,
619 				    max_out_prims /
620 				    (gs->gs_max_out_vertices * gs_num_invocations));
621 	}
622 	assert(max_gs_prims > 0);
623 
624 	/* If the primitive has adjacency, halve the number of vertices
625 	 * that will be reused in multiple primitives.
626 	 */
627 	min_es_verts = gs->gs_input_verts_per_prim / (uses_adjacency ? 2 : 1);
628 
629 	gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
630 	worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
631 
632 	/* Compute ESGS LDS size based on the worst case number of ES vertices
633 	 * needed to create the target number of GS prims per subgroup.
634 	 */
635 	esgs_lds_size = esgs_itemsize * worst_case_es_verts;
636 
637 	/* If total LDS usage is too big, refactor partitions based on ratio
638 	 * of ESGS item sizes.
639 	 */
640 	if (esgs_lds_size > max_lds_size) {
641 		/* Our target GS Prims Per Subgroup was too large. Calculate
642 		 * the maximum number of GS Prims Per Subgroup that will fit
643 		 * into LDS, capped by the maximum that the hardware can support.
644 		 */
645 		gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)),
646 				max_gs_prims);
647 		assert(gs_prims > 0);
648 		worst_case_es_verts = MIN2(min_es_verts * gs_prims,
649 					   max_es_verts);
650 
651 		esgs_lds_size = esgs_itemsize * worst_case_es_verts;
652 		assert(esgs_lds_size <= max_lds_size);
653 	}
654 
655 	/* Now calculate remaining ESGS information. */
656 	if (esgs_lds_size)
657 		es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
658 	else
659 		es_verts = max_es_verts;
660 
661 	/* Vertices for adjacency primitives are not always reused, so restore
662 	 * it for ES_VERTS_PER_SUBGRP.
663 	 */
664 	min_es_verts = gs->gs_input_verts_per_prim;
665 
666 	/* For normal primitives, the VGT only checks if they are past the ES
667 	 * verts per subgroup after allocating a full GS primitive and if they
668 	 * are, kick off a new subgroup.  But if those additional ES verts are
669 	 * unique (e.g. not reused) we need to make sure there is enough LDS
670 	 * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
671 	 */
672 	es_verts -= min_es_verts - 1;
673 
674 	out->es_verts_per_subgroup = es_verts;
675 	out->gs_prims_per_subgroup = gs_prims;
676 	out->gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
677 	out->max_prims_per_subgroup = out->gs_inst_prims_in_subgroup *
678 				      gs->gs_max_out_vertices;
679 	out->lds_size = align(esgs_lds_size, 128) / 128;
680 
681 	assert(out->max_prims_per_subgroup <= max_out_prims);
682 }
683 
si_shader_gs(struct si_screen * sscreen,struct si_shader * shader)684 static void si_shader_gs(struct si_screen *sscreen, struct si_shader *shader)
685 {
686 	struct si_shader_selector *sel = shader->selector;
687 	const ubyte *num_components = sel->info.num_stream_output_components;
688 	unsigned gs_num_invocations = sel->gs_num_invocations;
689 	struct si_pm4_state *pm4;
690 	uint64_t va;
691 	unsigned max_stream = sel->max_gs_stream;
692 	unsigned offset;
693 
694 	pm4 = si_get_shader_pm4_state(shader);
695 	if (!pm4)
696 		return;
697 
698 	offset = num_components[0] * sel->gs_max_out_vertices;
699 	si_pm4_set_reg(pm4, R_028A60_VGT_GSVS_RING_OFFSET_1, offset);
700 	if (max_stream >= 1)
701 		offset += num_components[1] * sel->gs_max_out_vertices;
702 	si_pm4_set_reg(pm4, R_028A64_VGT_GSVS_RING_OFFSET_2, offset);
703 	if (max_stream >= 2)
704 		offset += num_components[2] * sel->gs_max_out_vertices;
705 	si_pm4_set_reg(pm4, R_028A68_VGT_GSVS_RING_OFFSET_3, offset);
706 	if (max_stream >= 3)
707 		offset += num_components[3] * sel->gs_max_out_vertices;
708 	si_pm4_set_reg(pm4, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset);
709 
710 	/* The GSVS_RING_ITEMSIZE register takes 15 bits */
711 	assert(offset < (1 << 15));
712 
713 	si_pm4_set_reg(pm4, R_028B38_VGT_GS_MAX_VERT_OUT, sel->gs_max_out_vertices);
714 
715 	si_pm4_set_reg(pm4, R_028B5C_VGT_GS_VERT_ITEMSIZE, num_components[0]);
716 	si_pm4_set_reg(pm4, R_028B60_VGT_GS_VERT_ITEMSIZE_1, (max_stream >= 1) ? num_components[1] : 0);
717 	si_pm4_set_reg(pm4, R_028B64_VGT_GS_VERT_ITEMSIZE_2, (max_stream >= 2) ? num_components[2] : 0);
718 	si_pm4_set_reg(pm4, R_028B68_VGT_GS_VERT_ITEMSIZE_3, (max_stream >= 3) ? num_components[3] : 0);
719 
720 	si_pm4_set_reg(pm4, R_028B90_VGT_GS_INSTANCE_CNT,
721 		       S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
722 		       S_028B90_ENABLE(gs_num_invocations > 0));
723 
724 	va = shader->bo->gpu_address;
725 	si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
726 
727 	if (sscreen->info.chip_class >= GFX9) {
728 		unsigned input_prim = sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
729 		unsigned es_type = shader->key.part.gs.es->type;
730 		unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
731 		struct gfx9_gs_info gs_info;
732 
733 		if (es_type == PIPE_SHADER_VERTEX)
734 			/* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
735 			es_vgpr_comp_cnt = shader->info.uses_instanceid ? 1 : 0;
736 		else if (es_type == PIPE_SHADER_TESS_EVAL)
737 			es_vgpr_comp_cnt = shader->key.part.gs.es->info.uses_primid ? 3 : 2;
738 		else
739 			unreachable("invalid shader selector type");
740 
741 		/* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
742 		 * VGPR[0:4] are always loaded.
743 		 */
744 		if (sel->info.uses_invocationid)
745 			gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
746 		else if (sel->info.uses_primid)
747 			gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
748 		else if (input_prim >= PIPE_PRIM_TRIANGLES)
749 			gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
750 		else
751 			gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
752 
753 		gfx9_get_gs_info(shader->key.part.gs.es, sel, &gs_info);
754 
755 		si_pm4_set_reg(pm4, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8);
756 		si_pm4_set_reg(pm4, R_00B214_SPI_SHADER_PGM_HI_ES, va >> 40);
757 
758 		si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
759 			       S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
760 			       S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
761 			       S_00B228_DX10_CLAMP(1) |
762 			       S_00B228_FLOAT_MODE(shader->config.float_mode) |
763 			       S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt));
764 		si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
765 			       S_00B22C_USER_SGPR(GFX9_GS_NUM_USER_SGPR) |
766 			       S_00B22C_USER_SGPR_MSB(GFX9_GS_NUM_USER_SGPR >> 5) |
767 			       S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
768 			       S_00B22C_OC_LDS_EN(es_type == PIPE_SHADER_TESS_EVAL) |
769 			       S_00B22C_LDS_SIZE(gs_info.lds_size) |
770 			       S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
771 
772 		si_pm4_set_reg(pm4, R_028A44_VGT_GS_ONCHIP_CNTL,
773 			       S_028A44_ES_VERTS_PER_SUBGRP(gs_info.es_verts_per_subgroup) |
774 			       S_028A44_GS_PRIMS_PER_SUBGRP(gs_info.gs_prims_per_subgroup) |
775 			       S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_info.gs_inst_prims_in_subgroup));
776 		si_pm4_set_reg(pm4, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
777 			       S_028A94_MAX_PRIMS_PER_SUBGROUP(gs_info.max_prims_per_subgroup));
778 		si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
779 			       shader->key.part.gs.es->esgs_itemsize / 4);
780 
781 		if (es_type == PIPE_SHADER_TESS_EVAL)
782 			si_set_tesseval_regs(sscreen, shader->key.part.gs.es, pm4);
783 
784 		polaris_set_vgt_vertex_reuse(sscreen, shader->key.part.gs.es,
785 					     NULL, pm4);
786 	} else {
787 		si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
788 		si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, va >> 40);
789 
790 		si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
791 			       S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
792 			       S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
793 			       S_00B228_DX10_CLAMP(1) |
794 			       S_00B228_FLOAT_MODE(shader->config.float_mode));
795 		si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
796 			       S_00B22C_USER_SGPR(GFX6_GS_NUM_USER_SGPR) |
797 			       S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
798 	}
799 }
800 
801 /**
802  * Compute the state for \p shader, which will run as a vertex shader on the
803  * hardware.
804  *
805  * If \p gs is non-NULL, it points to the geometry shader for which this shader
806  * is the copy shader.
807  */
si_shader_vs(struct si_screen * sscreen,struct si_shader * shader,struct si_shader_selector * gs)808 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
809                          struct si_shader_selector *gs)
810 {
811 	const struct tgsi_shader_info *info = &shader->selector->info;
812 	struct si_pm4_state *pm4;
813 	unsigned num_user_sgprs;
814 	unsigned nparams, vgpr_comp_cnt;
815 	uint64_t va;
816 	unsigned oc_lds_en;
817 	unsigned window_space =
818 	   info->properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
819 	bool enable_prim_id = shader->key.mono.u.vs_export_prim_id || info->uses_primid;
820 
821 	pm4 = si_get_shader_pm4_state(shader);
822 	if (!pm4)
823 		return;
824 
825 	/* We always write VGT_GS_MODE in the VS state, because every switch
826 	 * between different shader pipelines involving a different GS or no
827 	 * GS at all involves a switch of the VS (different GS use different
828 	 * copy shaders). On the other hand, when the API switches from a GS to
829 	 * no GS and then back to the same GS used originally, the GS state is
830 	 * not sent again.
831 	 */
832 	if (!gs) {
833 		unsigned mode = V_028A40_GS_OFF;
834 
835 		/* PrimID needs GS scenario A. */
836 		if (enable_prim_id)
837 			mode = V_028A40_GS_SCENARIO_A;
838 
839 		si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, S_028A40_MODE(mode));
840 		si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, enable_prim_id);
841 	} else {
842 		si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE,
843 			       ac_vgt_gs_mode(gs->gs_max_out_vertices,
844 					      sscreen->info.chip_class));
845 		si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, 0);
846 	}
847 
848 	if (sscreen->info.chip_class <= VI) {
849 		/* Reuse needs to be set off if we write oViewport. */
850 		si_pm4_set_reg(pm4, R_028AB4_VGT_REUSE_OFF,
851 			       S_028AB4_REUSE_OFF(info->writes_viewport_index));
852 	}
853 
854 	va = shader->bo->gpu_address;
855 	si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
856 
857 	if (gs) {
858 		vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
859 		num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
860 	} else if (shader->selector->type == PIPE_SHADER_VERTEX) {
861 		/* VGPR0-3: (VertexID, InstanceID / StepRate0, PrimID, InstanceID)
862 		 * If PrimID is disabled. InstanceID / StepRate1 is loaded instead.
863 		 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
864 		 */
865 		vgpr_comp_cnt = enable_prim_id ? 2 : (shader->info.uses_instanceid ? 1 : 0);
866 
867 		if (info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS]) {
868 			num_user_sgprs = SI_SGPR_VS_BLIT_DATA +
869 					 info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
870 		} else {
871 			num_user_sgprs = SI_VS_NUM_USER_SGPR;
872 		}
873 	} else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
874 		vgpr_comp_cnt = enable_prim_id ? 3 : 2;
875 		num_user_sgprs = SI_TES_NUM_USER_SGPR;
876 	} else
877 		unreachable("invalid shader selector type");
878 
879 	/* VS is required to export at least one param. */
880 	nparams = MAX2(shader->info.nr_param_exports, 1);
881 	si_pm4_set_reg(pm4, R_0286C4_SPI_VS_OUT_CONFIG,
882 		       S_0286C4_VS_EXPORT_COUNT(nparams - 1));
883 
884 	si_pm4_set_reg(pm4, R_02870C_SPI_SHADER_POS_FORMAT,
885 		       S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
886 		       S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ?
887 						   V_02870C_SPI_SHADER_4COMP :
888 						   V_02870C_SPI_SHADER_NONE) |
889 		       S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ?
890 						   V_02870C_SPI_SHADER_4COMP :
891 						   V_02870C_SPI_SHADER_NONE) |
892 		       S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ?
893 						   V_02870C_SPI_SHADER_4COMP :
894 						   V_02870C_SPI_SHADER_NONE));
895 
896 	oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
897 
898 	si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
899 	si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, va >> 40);
900 	si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS,
901 		       S_00B128_VGPRS((shader->config.num_vgprs - 1) / 4) |
902 		       S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8) |
903 		       S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
904 		       S_00B128_DX10_CLAMP(1) |
905 		       S_00B128_FLOAT_MODE(shader->config.float_mode));
906 	si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS,
907 		       S_00B12C_USER_SGPR(num_user_sgprs) |
908 		       S_00B12C_OC_LDS_EN(oc_lds_en) |
909 		       S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
910 		       S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
911 		       S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
912 		       S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
913 		       S_00B12C_SO_EN(!!shader->selector->so.num_outputs) |
914 		       S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
915 	if (window_space)
916 		si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
917 			       S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1));
918 	else
919 		si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
920 			       S_028818_VTX_W0_FMT(1) |
921 			       S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
922 			       S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
923 			       S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
924 
925 	if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
926 		si_set_tesseval_regs(sscreen, shader->selector, pm4);
927 
928 	polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
929 }
930 
si_get_ps_num_interp(struct si_shader * ps)931 static unsigned si_get_ps_num_interp(struct si_shader *ps)
932 {
933 	struct tgsi_shader_info *info = &ps->selector->info;
934 	unsigned num_colors = !!(info->colors_read & 0x0f) +
935 			      !!(info->colors_read & 0xf0);
936 	unsigned num_interp = ps->selector->info.num_inputs +
937 			      (ps->key.part.ps.prolog.color_two_side ? num_colors : 0);
938 
939 	assert(num_interp <= 32);
940 	return MIN2(num_interp, 32);
941 }
942 
si_get_spi_shader_col_format(struct si_shader * shader)943 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
944 {
945 	unsigned value = shader->key.part.ps.epilog.spi_shader_col_format;
946 	unsigned i, num_targets = (util_last_bit(value) + 3) / 4;
947 
948 	/* If the i-th target format is set, all previous target formats must
949 	 * be non-zero to avoid hangs.
950 	 */
951 	for (i = 0; i < num_targets; i++)
952 		if (!(value & (0xf << (i * 4))))
953 			value |= V_028714_SPI_SHADER_32_R << (i * 4);
954 
955 	return value;
956 }
957 
si_shader_ps(struct si_shader * shader)958 static void si_shader_ps(struct si_shader *shader)
959 {
960 	struct tgsi_shader_info *info = &shader->selector->info;
961 	struct si_pm4_state *pm4;
962 	unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
963 	unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
964 	uint64_t va;
965 	unsigned input_ena = shader->config.spi_ps_input_ena;
966 
967 	/* we need to enable at least one of them, otherwise we hang the GPU */
968 	assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
969 	       G_0286CC_PERSP_CENTER_ENA(input_ena) ||
970 	       G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
971 	       G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
972 	       G_0286CC_LINEAR_SAMPLE_ENA(input_ena) ||
973 	       G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
974 	       G_0286CC_LINEAR_CENTROID_ENA(input_ena) ||
975 	       G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
976 	/* POS_W_FLOAT_ENA requires one of the perspective weights. */
977 	assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) ||
978 	       G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
979 	       G_0286CC_PERSP_CENTER_ENA(input_ena) ||
980 	       G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
981 	       G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
982 
983 	/* Validate interpolation optimization flags (read as implications). */
984 	assert(!shader->key.part.ps.prolog.bc_optimize_for_persp ||
985 	       (G_0286CC_PERSP_CENTER_ENA(input_ena) &&
986 		G_0286CC_PERSP_CENTROID_ENA(input_ena)));
987 	assert(!shader->key.part.ps.prolog.bc_optimize_for_linear ||
988 	       (G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
989 		G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
990 	assert(!shader->key.part.ps.prolog.force_persp_center_interp ||
991 	       (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) &&
992 		!G_0286CC_PERSP_CENTROID_ENA(input_ena)));
993 	assert(!shader->key.part.ps.prolog.force_linear_center_interp ||
994 	       (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) &&
995 		!G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
996 	assert(!shader->key.part.ps.prolog.force_persp_sample_interp ||
997 	       (!G_0286CC_PERSP_CENTER_ENA(input_ena) &&
998 		!G_0286CC_PERSP_CENTROID_ENA(input_ena)));
999 	assert(!shader->key.part.ps.prolog.force_linear_sample_interp ||
1000 	       (!G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
1001 		!G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1002 
1003 	/* Validate cases when the optimizations are off (read as implications). */
1004 	assert(shader->key.part.ps.prolog.bc_optimize_for_persp ||
1005 	       !G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1006 	       !G_0286CC_PERSP_CENTROID_ENA(input_ena));
1007 	assert(shader->key.part.ps.prolog.bc_optimize_for_linear ||
1008 	       !G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1009 	       !G_0286CC_LINEAR_CENTROID_ENA(input_ena));
1010 
1011 	pm4 = si_get_shader_pm4_state(shader);
1012 	if (!pm4)
1013 		return;
1014 
1015 	/* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
1016 	 * Possible vaules:
1017 	 * 0 -> Position = pixel center
1018 	 * 1 -> Position = pixel centroid
1019 	 * 2 -> Position = at sample position
1020 	 *
1021 	 * From GLSL 4.5 specification, section 7.1:
1022 	 *   "The variable gl_FragCoord is available as an input variable from
1023 	 *    within fragment shaders and it holds the window relative coordinates
1024 	 *    (x, y, z, 1/w) values for the fragment. If multi-sampling, this
1025 	 *    value can be for any location within the pixel, or one of the
1026 	 *    fragment samples. The use of centroid does not further restrict
1027 	 *    this value to be inside the current primitive."
1028 	 *
1029 	 * Meaning that centroid has no effect and we can return anything within
1030 	 * the pixel. Thus, return the value at sample position, because that's
1031 	 * the most accurate one shaders can get.
1032 	 */
1033 	spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
1034 
1035 	if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
1036 	    TGSI_FS_COORD_PIXEL_CENTER_INTEGER)
1037 		spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
1038 
1039 	spi_shader_col_format = si_get_spi_shader_col_format(shader);
1040 	cb_shader_mask = ac_get_cb_shader_mask(spi_shader_col_format);
1041 
1042 	/* Ensure that some export memory is always allocated, for two reasons:
1043 	 *
1044 	 * 1) Correctness: The hardware ignores the EXEC mask if no export
1045 	 *    memory is allocated, so KILL and alpha test do not work correctly
1046 	 *    without this.
1047 	 * 2) Performance: Every shader needs at least a NULL export, even when
1048 	 *    it writes no color/depth output. The NULL export instruction
1049 	 *    stalls without this setting.
1050 	 *
1051 	 * Don't add this to CB_SHADER_MASK.
1052 	 */
1053 	if (!spi_shader_col_format &&
1054 	    !info->writes_z && !info->writes_stencil && !info->writes_samplemask)
1055 		spi_shader_col_format = V_028714_SPI_SHADER_32_R;
1056 
1057 	si_pm4_set_reg(pm4, R_0286CC_SPI_PS_INPUT_ENA, input_ena);
1058 	si_pm4_set_reg(pm4, R_0286D0_SPI_PS_INPUT_ADDR,
1059 		       shader->config.spi_ps_input_addr);
1060 
1061 	/* Set interpolation controls. */
1062 	spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader));
1063 
1064 	/* Set registers. */
1065 	si_pm4_set_reg(pm4, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl);
1066 	si_pm4_set_reg(pm4, R_0286D8_SPI_PS_IN_CONTROL, spi_ps_in_control);
1067 
1068 	si_pm4_set_reg(pm4, R_028710_SPI_SHADER_Z_FORMAT,
1069 		       ac_get_spi_shader_z_format(info->writes_z,
1070 						  info->writes_stencil,
1071 						  info->writes_samplemask));
1072 
1073 	si_pm4_set_reg(pm4, R_028714_SPI_SHADER_COL_FORMAT, spi_shader_col_format);
1074 	si_pm4_set_reg(pm4, R_02823C_CB_SHADER_MASK, cb_shader_mask);
1075 
1076 	va = shader->bo->gpu_address;
1077 	si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
1078 	si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
1079 	si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, va >> 40);
1080 
1081 	si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
1082 		       S_00B028_VGPRS((shader->config.num_vgprs - 1) / 4) |
1083 		       S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8) |
1084 		       S_00B028_DX10_CLAMP(1) |
1085 		       S_00B028_FLOAT_MODE(shader->config.float_mode));
1086 	si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
1087 		       S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
1088 		       S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
1089 		       S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
1090 }
1091 
si_shader_init_pm4_state(struct si_screen * sscreen,struct si_shader * shader)1092 static void si_shader_init_pm4_state(struct si_screen *sscreen,
1093                                      struct si_shader *shader)
1094 {
1095 	switch (shader->selector->type) {
1096 	case PIPE_SHADER_VERTEX:
1097 		if (shader->key.as_ls)
1098 			si_shader_ls(sscreen, shader);
1099 		else if (shader->key.as_es)
1100 			si_shader_es(sscreen, shader);
1101 		else
1102 			si_shader_vs(sscreen, shader, NULL);
1103 		break;
1104 	case PIPE_SHADER_TESS_CTRL:
1105 		si_shader_hs(sscreen, shader);
1106 		break;
1107 	case PIPE_SHADER_TESS_EVAL:
1108 		if (shader->key.as_es)
1109 			si_shader_es(sscreen, shader);
1110 		else
1111 			si_shader_vs(sscreen, shader, NULL);
1112 		break;
1113 	case PIPE_SHADER_GEOMETRY:
1114 		si_shader_gs(sscreen, shader);
1115 		break;
1116 	case PIPE_SHADER_FRAGMENT:
1117 		si_shader_ps(shader);
1118 		break;
1119 	default:
1120 		assert(0);
1121 	}
1122 }
1123 
si_get_alpha_test_func(struct si_context * sctx)1124 static unsigned si_get_alpha_test_func(struct si_context *sctx)
1125 {
1126 	/* Alpha-test should be disabled if colorbuffer 0 is integer. */
1127 	if (sctx->queued.named.dsa)
1128 		return sctx->queued.named.dsa->alpha_func;
1129 
1130 	return PIPE_FUNC_ALWAYS;
1131 }
1132 
si_shader_selector_key_vs(struct si_context * sctx,struct si_shader_selector * vs,struct si_shader_key * key,struct si_vs_prolog_bits * prolog_key)1133 static void si_shader_selector_key_vs(struct si_context *sctx,
1134 				      struct si_shader_selector *vs,
1135 				      struct si_shader_key *key,
1136 				      struct si_vs_prolog_bits *prolog_key)
1137 {
1138 	if (!sctx->vertex_elements)
1139 		return;
1140 
1141 	prolog_key->instance_divisor_is_one =
1142 		sctx->vertex_elements->instance_divisor_is_one;
1143 	prolog_key->instance_divisor_is_fetched =
1144 		sctx->vertex_elements->instance_divisor_is_fetched;
1145 
1146 	/* Prefer a monolithic shader to allow scheduling divisions around
1147 	 * VBO loads. */
1148 	if (prolog_key->instance_divisor_is_fetched)
1149 		key->opt.prefer_mono = 1;
1150 
1151 	unsigned count = MIN2(vs->info.num_inputs,
1152 			      sctx->vertex_elements->count);
1153 	memcpy(key->mono.vs_fix_fetch, sctx->vertex_elements->fix_fetch, count);
1154 }
1155 
si_shader_selector_key_hw_vs(struct si_context * sctx,struct si_shader_selector * vs,struct si_shader_key * key)1156 static void si_shader_selector_key_hw_vs(struct si_context *sctx,
1157 					 struct si_shader_selector *vs,
1158 					 struct si_shader_key *key)
1159 {
1160 	struct si_shader_selector *ps = sctx->ps_shader.cso;
1161 
1162 	key->opt.clip_disable =
1163 		sctx->queued.named.rasterizer->clip_plane_enable == 0 &&
1164 		(vs->info.clipdist_writemask ||
1165 		 vs->info.writes_clipvertex) &&
1166 		!vs->info.culldist_writemask;
1167 
1168 	/* Find out if PS is disabled. */
1169 	bool ps_disabled = true;
1170 	if (ps) {
1171 		const struct si_state_blend *blend = sctx->queued.named.blend;
1172 		bool alpha_to_coverage = blend && blend->alpha_to_coverage;
1173 		bool ps_modifies_zs = ps->info.uses_kill ||
1174 				      ps->info.writes_z ||
1175 				      ps->info.writes_stencil ||
1176 				      ps->info.writes_samplemask ||
1177 				      alpha_to_coverage ||
1178 				      si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS;
1179 
1180 		unsigned ps_colormask = sctx->framebuffer.colorbuf_enabled_4bit &
1181 					sctx->queued.named.blend->cb_target_mask;
1182 		if (!ps->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS])
1183 			ps_colormask &= ps->colors_written_4bit;
1184 
1185 		ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard ||
1186 			      (!ps_colormask &&
1187 			       !ps_modifies_zs &&
1188 			       !ps->info.writes_memory);
1189 	}
1190 
1191 	/* Find out which VS outputs aren't used by the PS. */
1192 	uint64_t outputs_written = vs->outputs_written;
1193 	uint64_t inputs_read = 0;
1194 
1195 	/* ignore POSITION, PSIZE */
1196 	outputs_written &= ~((1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_POSITION, 0) |
1197 			     (1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_PSIZE, 0))));
1198 
1199 	if (!ps_disabled) {
1200 		inputs_read = ps->inputs_read;
1201 	}
1202 
1203 	uint64_t linked = outputs_written & inputs_read;
1204 
1205 	key->opt.kill_outputs = ~linked & outputs_written;
1206 }
1207 
1208 /* Compute the key for the hw shader variant */
si_shader_selector_key(struct pipe_context * ctx,struct si_shader_selector * sel,struct si_shader_key * key)1209 static inline void si_shader_selector_key(struct pipe_context *ctx,
1210 					  struct si_shader_selector *sel,
1211 					  struct si_shader_key *key)
1212 {
1213 	struct si_context *sctx = (struct si_context *)ctx;
1214 
1215 	memset(key, 0, sizeof(*key));
1216 
1217 	switch (sel->type) {
1218 	case PIPE_SHADER_VERTEX:
1219 		si_shader_selector_key_vs(sctx, sel, key, &key->part.vs.prolog);
1220 
1221 		if (sctx->tes_shader.cso)
1222 			key->as_ls = 1;
1223 		else if (sctx->gs_shader.cso)
1224 			key->as_es = 1;
1225 		else {
1226 			si_shader_selector_key_hw_vs(sctx, sel, key);
1227 
1228 			if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1229 				key->mono.u.vs_export_prim_id = 1;
1230 		}
1231 		break;
1232 	case PIPE_SHADER_TESS_CTRL:
1233 		if (sctx->b.chip_class >= GFX9) {
1234 			si_shader_selector_key_vs(sctx, sctx->vs_shader.cso,
1235 						  key, &key->part.tcs.ls_prolog);
1236 			key->part.tcs.ls = sctx->vs_shader.cso;
1237 
1238 			/* When the LS VGPR fix is needed, monolithic shaders
1239 			 * can:
1240 			 *  - avoid initializing EXEC in both the LS prolog
1241 			 *    and the LS main part when !vs_needs_prolog
1242 			 *  - remove the fixup for unused input VGPRs
1243 			 */
1244 			key->part.tcs.ls_prolog.ls_vgpr_fix = sctx->ls_vgpr_fix;
1245 
1246 			/* The LS output / HS input layout can be communicated
1247 			 * directly instead of via user SGPRs for merged LS-HS.
1248 			 * The LS VGPR fix prefers this too.
1249 			 */
1250 			key->opt.prefer_mono = 1;
1251 		}
1252 
1253 		key->part.tcs.epilog.prim_mode =
1254 			sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
1255 		key->part.tcs.epilog.invoc0_tess_factors_are_def =
1256 			sel->tcs_info.tessfactors_are_def_in_all_invocs;
1257 		key->part.tcs.epilog.tes_reads_tess_factors =
1258 			sctx->tes_shader.cso->info.reads_tess_factors;
1259 
1260 		if (sel == sctx->fixed_func_tcs_shader.cso)
1261 			key->mono.u.ff_tcs_inputs_to_copy = sctx->vs_shader.cso->outputs_written;
1262 		break;
1263 	case PIPE_SHADER_TESS_EVAL:
1264 		if (sctx->gs_shader.cso)
1265 			key->as_es = 1;
1266 		else {
1267 			si_shader_selector_key_hw_vs(sctx, sel, key);
1268 
1269 			if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1270 				key->mono.u.vs_export_prim_id = 1;
1271 		}
1272 		break;
1273 	case PIPE_SHADER_GEOMETRY:
1274 		if (sctx->b.chip_class >= GFX9) {
1275 			if (sctx->tes_shader.cso) {
1276 				key->part.gs.es = sctx->tes_shader.cso;
1277 			} else {
1278 				si_shader_selector_key_vs(sctx, sctx->vs_shader.cso,
1279 							  key, &key->part.gs.vs_prolog);
1280 				key->part.gs.es = sctx->vs_shader.cso;
1281 			}
1282 
1283 			/* Merged ES-GS can have unbalanced wave usage.
1284 			 *
1285 			 * ES threads are per-vertex, while GS threads are
1286 			 * per-primitive. So without any amplification, there
1287 			 * are fewer GS threads than ES threads, which can result
1288 			 * in empty (no-op) GS waves. With too much amplification,
1289 			 * there are more GS threads than ES threads, which
1290 			 * can result in empty (no-op) ES waves.
1291 			 *
1292 			 * Non-monolithic shaders are implemented by setting EXEC
1293 			 * at the beginning of shader parts, and don't jump to
1294 			 * the end if EXEC is 0.
1295 			 *
1296 			 * Monolithic shaders use conditional blocks, so they can
1297 			 * jump and skip empty waves of ES or GS. So set this to
1298 			 * always use optimized variants, which are monolithic.
1299 			 */
1300 			key->opt.prefer_mono = 1;
1301 		}
1302 		key->part.gs.prolog.tri_strip_adj_fix = sctx->gs_tri_strip_adj_fix;
1303 		break;
1304 	case PIPE_SHADER_FRAGMENT: {
1305 		struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
1306 		struct si_state_blend *blend = sctx->queued.named.blend;
1307 
1308 		if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
1309 		    sel->info.colors_written == 0x1)
1310 			key->part.ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
1311 
1312 		if (blend) {
1313 			/* Select the shader color format based on whether
1314 			 * blending or alpha are needed.
1315 			 */
1316 			key->part.ps.epilog.spi_shader_col_format =
1317 				(blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1318 				 sctx->framebuffer.spi_shader_col_format_blend_alpha) |
1319 				(blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1320 				 sctx->framebuffer.spi_shader_col_format_blend) |
1321 				(~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1322 				 sctx->framebuffer.spi_shader_col_format_alpha) |
1323 				(~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1324 				 sctx->framebuffer.spi_shader_col_format);
1325 			key->part.ps.epilog.spi_shader_col_format &= blend->cb_target_enabled_4bit;
1326 
1327 			/* The output for dual source blending should have
1328 			 * the same format as the first output.
1329 			 */
1330 			if (blend->dual_src_blend)
1331 				key->part.ps.epilog.spi_shader_col_format |=
1332 					(key->part.ps.epilog.spi_shader_col_format & 0xf) << 4;
1333 		} else
1334 			key->part.ps.epilog.spi_shader_col_format = sctx->framebuffer.spi_shader_col_format;
1335 
1336 		/* If alpha-to-coverage is enabled, we have to export alpha
1337 		 * even if there is no color buffer.
1338 		 */
1339 		if (!(key->part.ps.epilog.spi_shader_col_format & 0xf) &&
1340 		    blend && blend->alpha_to_coverage)
1341 			key->part.ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
1342 
1343 		/* On SI and CIK except Hawaii, the CB doesn't clamp outputs
1344 		 * to the range supported by the type if a channel has less
1345 		 * than 16 bits and the export format is 16_ABGR.
1346 		 */
1347 		if (sctx->b.chip_class <= CIK && sctx->b.family != CHIP_HAWAII) {
1348 			key->part.ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
1349 			key->part.ps.epilog.color_is_int10 = sctx->framebuffer.color_is_int10;
1350 		}
1351 
1352 		/* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
1353 		if (!key->part.ps.epilog.last_cbuf) {
1354 			key->part.ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
1355 			key->part.ps.epilog.color_is_int8 &= sel->info.colors_written;
1356 			key->part.ps.epilog.color_is_int10 &= sel->info.colors_written;
1357 		}
1358 
1359 		if (rs) {
1360 			bool is_poly = (sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES &&
1361 					sctx->current_rast_prim <= PIPE_PRIM_POLYGON) ||
1362 				       sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES_ADJACENCY;
1363 			bool is_line = !is_poly && sctx->current_rast_prim != PIPE_PRIM_POINTS;
1364 
1365 			key->part.ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
1366 			key->part.ps.prolog.flatshade_colors = rs->flatshade && sel->info.colors_read;
1367 
1368 			if (sctx->queued.named.blend) {
1369 				key->part.ps.epilog.alpha_to_one = sctx->queued.named.blend->alpha_to_one &&
1370 							      rs->multisample_enable;
1371 			}
1372 
1373 			key->part.ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
1374 			key->part.ps.epilog.poly_line_smoothing = ((is_poly && rs->poly_smooth) ||
1375 							      (is_line && rs->line_smooth)) &&
1376 							     sctx->framebuffer.nr_samples <= 1;
1377 			key->part.ps.epilog.clamp_color = rs->clamp_fragment_color;
1378 
1379 			if (sctx->ps_iter_samples > 1 &&
1380 			    sel->info.reads_samplemask) {
1381 				key->part.ps.prolog.samplemask_log_ps_iter =
1382 					util_logbase2(util_next_power_of_two(sctx->ps_iter_samples));
1383 			}
1384 
1385 			if (rs->force_persample_interp &&
1386 			    rs->multisample_enable &&
1387 			    sctx->framebuffer.nr_samples > 1 &&
1388 			    sctx->ps_iter_samples > 1) {
1389 				key->part.ps.prolog.force_persp_sample_interp =
1390 					sel->info.uses_persp_center ||
1391 					sel->info.uses_persp_centroid;
1392 
1393 				key->part.ps.prolog.force_linear_sample_interp =
1394 					sel->info.uses_linear_center ||
1395 					sel->info.uses_linear_centroid;
1396 			} else if (rs->multisample_enable &&
1397 				   sctx->framebuffer.nr_samples > 1) {
1398 				key->part.ps.prolog.bc_optimize_for_persp =
1399 					sel->info.uses_persp_center &&
1400 					sel->info.uses_persp_centroid;
1401 				key->part.ps.prolog.bc_optimize_for_linear =
1402 					sel->info.uses_linear_center &&
1403 					sel->info.uses_linear_centroid;
1404 			} else {
1405 				/* Make sure SPI doesn't compute more than 1 pair
1406 				 * of (i,j), which is the optimization here. */
1407 				key->part.ps.prolog.force_persp_center_interp =
1408 					sel->info.uses_persp_center +
1409 					sel->info.uses_persp_centroid +
1410 					sel->info.uses_persp_sample > 1;
1411 
1412 				key->part.ps.prolog.force_linear_center_interp =
1413 					sel->info.uses_linear_center +
1414 					sel->info.uses_linear_centroid +
1415 					sel->info.uses_linear_sample > 1;
1416 
1417 				if (sel->info.opcode_count[TGSI_OPCODE_INTERP_SAMPLE])
1418 					key->mono.u.ps.interpolate_at_sample_force_center = 1;
1419 			}
1420 		}
1421 
1422 		key->part.ps.epilog.alpha_func = si_get_alpha_test_func(sctx);
1423 		break;
1424 	}
1425 	default:
1426 		assert(0);
1427 	}
1428 
1429 	if (unlikely(sctx->screen->debug_flags & DBG(NO_OPT_VARIANT)))
1430 		memset(&key->opt, 0, sizeof(key->opt));
1431 }
1432 
si_build_shader_variant(struct si_shader * shader,int thread_index,bool low_priority)1433 static void si_build_shader_variant(struct si_shader *shader,
1434 				    int thread_index,
1435 				    bool low_priority)
1436 {
1437 	struct si_shader_selector *sel = shader->selector;
1438 	struct si_screen *sscreen = sel->screen;
1439 	LLVMTargetMachineRef tm;
1440 	struct pipe_debug_callback *debug = &shader->compiler_ctx_state.debug;
1441 	int r;
1442 
1443 	if (thread_index >= 0) {
1444 		if (low_priority) {
1445 			assert(thread_index < ARRAY_SIZE(sscreen->tm_low_priority));
1446 			tm = sscreen->tm_low_priority[thread_index];
1447 		} else {
1448 			assert(thread_index < ARRAY_SIZE(sscreen->tm));
1449 			tm = sscreen->tm[thread_index];
1450 		}
1451 		if (!debug->async)
1452 			debug = NULL;
1453 	} else {
1454 		assert(!low_priority);
1455 		tm = shader->compiler_ctx_state.tm;
1456 	}
1457 
1458 	r = si_shader_create(sscreen, tm, shader, debug);
1459 	if (unlikely(r)) {
1460 		R600_ERR("Failed to build shader variant (type=%u) %d\n",
1461 			 sel->type, r);
1462 		shader->compilation_failed = true;
1463 		return;
1464 	}
1465 
1466 	if (shader->compiler_ctx_state.is_debug_context) {
1467 		FILE *f = open_memstream(&shader->shader_log,
1468 					 &shader->shader_log_size);
1469 		if (f) {
1470 			si_shader_dump(sscreen, shader, NULL, sel->type, f, false);
1471 			fclose(f);
1472 		}
1473 	}
1474 
1475 	si_shader_init_pm4_state(sscreen, shader);
1476 }
1477 
si_build_shader_variant_low_priority(void * job,int thread_index)1478 static void si_build_shader_variant_low_priority(void *job, int thread_index)
1479 {
1480 	struct si_shader *shader = (struct si_shader *)job;
1481 
1482 	assert(thread_index >= 0);
1483 
1484 	si_build_shader_variant(shader, thread_index, true);
1485 }
1486 
1487 static const struct si_shader_key zeroed;
1488 
si_check_missing_main_part(struct si_screen * sscreen,struct si_shader_selector * sel,struct si_compiler_ctx_state * compiler_state,struct si_shader_key * key)1489 static bool si_check_missing_main_part(struct si_screen *sscreen,
1490 				       struct si_shader_selector *sel,
1491 				       struct si_compiler_ctx_state *compiler_state,
1492 				       struct si_shader_key *key)
1493 {
1494 	struct si_shader **mainp = si_get_main_shader_part(sel, key);
1495 
1496 	if (!*mainp) {
1497 		struct si_shader *main_part = CALLOC_STRUCT(si_shader);
1498 
1499 		if (!main_part)
1500 			return false;
1501 
1502 		/* We can leave the fence as permanently signaled because the
1503 		 * main part becomes visible globally only after it has been
1504 		 * compiled. */
1505 		util_queue_fence_init(&main_part->ready);
1506 
1507 		main_part->selector = sel;
1508 		main_part->key.as_es = key->as_es;
1509 		main_part->key.as_ls = key->as_ls;
1510 
1511 		if (si_compile_tgsi_shader(sscreen, compiler_state->tm,
1512 					   main_part, false,
1513 					   &compiler_state->debug) != 0) {
1514 			FREE(main_part);
1515 			return false;
1516 		}
1517 		*mainp = main_part;
1518 	}
1519 	return true;
1520 }
1521 
1522 /* Select the hw shader variant depending on the current state. */
si_shader_select_with_key(struct si_screen * sscreen,struct si_shader_ctx_state * state,struct si_compiler_ctx_state * compiler_state,struct si_shader_key * key,int thread_index)1523 static int si_shader_select_with_key(struct si_screen *sscreen,
1524 				     struct si_shader_ctx_state *state,
1525 				     struct si_compiler_ctx_state *compiler_state,
1526 				     struct si_shader_key *key,
1527 				     int thread_index)
1528 {
1529 	struct si_shader_selector *sel = state->cso;
1530 	struct si_shader_selector *previous_stage_sel = NULL;
1531 	struct si_shader *current = state->current;
1532 	struct si_shader *iter, *shader = NULL;
1533 
1534 again:
1535 	/* Check if we don't need to change anything.
1536 	 * This path is also used for most shaders that don't need multiple
1537 	 * variants, it will cost just a computation of the key and this
1538 	 * test. */
1539 	if (likely(current &&
1540 		   memcmp(&current->key, key, sizeof(*key)) == 0)) {
1541 		if (unlikely(!util_queue_fence_is_signalled(&current->ready))) {
1542 			if (current->is_optimized) {
1543 				memset(&key->opt, 0, sizeof(key->opt));
1544 				goto current_not_ready;
1545 			}
1546 
1547 			util_queue_fence_wait(&current->ready);
1548 		}
1549 
1550 		return current->compilation_failed ? -1 : 0;
1551 	}
1552 current_not_ready:
1553 
1554 	/* This must be done before the mutex is locked, because async GS
1555 	 * compilation calls this function too, and therefore must enter
1556 	 * the mutex first.
1557 	 *
1558 	 * Only wait if we are in a draw call. Don't wait if we are
1559 	 * in a compiler thread.
1560 	 */
1561 	if (thread_index < 0)
1562 		util_queue_fence_wait(&sel->ready);
1563 
1564 	mtx_lock(&sel->mutex);
1565 
1566 	/* Find the shader variant. */
1567 	for (iter = sel->first_variant; iter; iter = iter->next_variant) {
1568 		/* Don't check the "current" shader. We checked it above. */
1569 		if (current != iter &&
1570 		    memcmp(&iter->key, key, sizeof(*key)) == 0) {
1571 			mtx_unlock(&sel->mutex);
1572 
1573 			if (unlikely(!util_queue_fence_is_signalled(&iter->ready))) {
1574 				/* If it's an optimized shader and its compilation has
1575 				 * been started but isn't done, use the unoptimized
1576 				 * shader so as not to cause a stall due to compilation.
1577 				 */
1578 				if (iter->is_optimized) {
1579 					memset(&key->opt, 0, sizeof(key->opt));
1580 					goto again;
1581 				}
1582 
1583 				util_queue_fence_wait(&iter->ready);
1584 			}
1585 
1586 			if (iter->compilation_failed) {
1587 				return -1; /* skip the draw call */
1588 			}
1589 
1590 			state->current = iter;
1591 			return 0;
1592 		}
1593 	}
1594 
1595 	/* Build a new shader. */
1596 	shader = CALLOC_STRUCT(si_shader);
1597 	if (!shader) {
1598 		mtx_unlock(&sel->mutex);
1599 		return -ENOMEM;
1600 	}
1601 
1602 	util_queue_fence_init(&shader->ready);
1603 
1604 	shader->selector = sel;
1605 	shader->key = *key;
1606 	shader->compiler_ctx_state = *compiler_state;
1607 
1608 	/* If this is a merged shader, get the first shader's selector. */
1609 	if (sscreen->info.chip_class >= GFX9) {
1610 		if (sel->type == PIPE_SHADER_TESS_CTRL)
1611 			previous_stage_sel = key->part.tcs.ls;
1612 		else if (sel->type == PIPE_SHADER_GEOMETRY)
1613 			previous_stage_sel = key->part.gs.es;
1614 
1615 		/* We need to wait for the previous shader. */
1616 		if (previous_stage_sel && thread_index < 0)
1617 			util_queue_fence_wait(&previous_stage_sel->ready);
1618 	}
1619 
1620 	/* Compile the main shader part if it doesn't exist. This can happen
1621 	 * if the initial guess was wrong. */
1622 	bool is_pure_monolithic =
1623 		sscreen->use_monolithic_shaders ||
1624 		memcmp(&key->mono, &zeroed.mono, sizeof(key->mono)) != 0;
1625 
1626 	if (!is_pure_monolithic) {
1627 		bool ok;
1628 
1629 		/* Make sure the main shader part is present. This is needed
1630 		 * for shaders that can be compiled as VS, LS, or ES, and only
1631 		 * one of them is compiled at creation.
1632 		 *
1633 		 * For merged shaders, check that the starting shader's main
1634 		 * part is present.
1635 		 */
1636 		if (previous_stage_sel) {
1637 			struct si_shader_key shader1_key = zeroed;
1638 
1639 			if (sel->type == PIPE_SHADER_TESS_CTRL)
1640 				shader1_key.as_ls = 1;
1641 			else if (sel->type == PIPE_SHADER_GEOMETRY)
1642 				shader1_key.as_es = 1;
1643 			else
1644 				assert(0);
1645 
1646 			mtx_lock(&previous_stage_sel->mutex);
1647 			ok = si_check_missing_main_part(sscreen,
1648 							previous_stage_sel,
1649 							compiler_state, &shader1_key);
1650 			mtx_unlock(&previous_stage_sel->mutex);
1651 		} else {
1652 			ok = si_check_missing_main_part(sscreen, sel,
1653 							compiler_state, key);
1654 		}
1655 		if (!ok) {
1656 			FREE(shader);
1657 			mtx_unlock(&sel->mutex);
1658 			return -ENOMEM; /* skip the draw call */
1659 		}
1660 	}
1661 
1662 	/* Keep the reference to the 1st shader of merged shaders, so that
1663 	 * Gallium can't destroy it before we destroy the 2nd shader.
1664 	 *
1665 	 * Set sctx = NULL, because it's unused if we're not releasing
1666 	 * the shader, and we don't have any sctx here.
1667 	 */
1668 	si_shader_selector_reference(NULL, &shader->previous_stage_sel,
1669 				     previous_stage_sel);
1670 
1671 	/* Monolithic-only shaders don't make a distinction between optimized
1672 	 * and unoptimized. */
1673 	shader->is_monolithic =
1674 		is_pure_monolithic ||
1675 		memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
1676 
1677 	shader->is_optimized =
1678 		!is_pure_monolithic &&
1679 		memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
1680 
1681 	/* If it's an optimized shader, compile it asynchronously. */
1682 	if (shader->is_optimized &&
1683 	    !is_pure_monolithic &&
1684 	    thread_index < 0) {
1685 		/* Compile it asynchronously. */
1686 		util_queue_add_job(&sscreen->shader_compiler_queue_low_priority,
1687 				   shader, &shader->ready,
1688 				   si_build_shader_variant_low_priority, NULL);
1689 
1690 		/* Add only after the ready fence was reset, to guard against a
1691 		 * race with si_bind_XX_shader. */
1692 		if (!sel->last_variant) {
1693 			sel->first_variant = shader;
1694 			sel->last_variant = shader;
1695 		} else {
1696 			sel->last_variant->next_variant = shader;
1697 			sel->last_variant = shader;
1698 		}
1699 
1700 		/* Use the default (unoptimized) shader for now. */
1701 		memset(&key->opt, 0, sizeof(key->opt));
1702 		mtx_unlock(&sel->mutex);
1703 		goto again;
1704 	}
1705 
1706 	/* Reset the fence before adding to the variant list. */
1707 	util_queue_fence_reset(&shader->ready);
1708 
1709 	if (!sel->last_variant) {
1710 		sel->first_variant = shader;
1711 		sel->last_variant = shader;
1712 	} else {
1713 		sel->last_variant->next_variant = shader;
1714 		sel->last_variant = shader;
1715 	}
1716 
1717 	mtx_unlock(&sel->mutex);
1718 
1719 	assert(!shader->is_optimized);
1720 	si_build_shader_variant(shader, thread_index, false);
1721 
1722 	util_queue_fence_signal(&shader->ready);
1723 
1724 	if (!shader->compilation_failed)
1725 		state->current = shader;
1726 
1727 	return shader->compilation_failed ? -1 : 0;
1728 }
1729 
si_shader_select(struct pipe_context * ctx,struct si_shader_ctx_state * state,struct si_compiler_ctx_state * compiler_state)1730 static int si_shader_select(struct pipe_context *ctx,
1731 			    struct si_shader_ctx_state *state,
1732 			    struct si_compiler_ctx_state *compiler_state)
1733 {
1734 	struct si_context *sctx = (struct si_context *)ctx;
1735 	struct si_shader_key key;
1736 
1737 	si_shader_selector_key(ctx, state->cso, &key);
1738 	return si_shader_select_with_key(sctx->screen, state, compiler_state,
1739 					 &key, -1);
1740 }
1741 
si_parse_next_shader_property(const struct tgsi_shader_info * info,bool streamout,struct si_shader_key * key)1742 static void si_parse_next_shader_property(const struct tgsi_shader_info *info,
1743 					  bool streamout,
1744 					  struct si_shader_key *key)
1745 {
1746 	unsigned next_shader = info->properties[TGSI_PROPERTY_NEXT_SHADER];
1747 
1748 	switch (info->processor) {
1749 	case PIPE_SHADER_VERTEX:
1750 		switch (next_shader) {
1751 		case PIPE_SHADER_GEOMETRY:
1752 			key->as_es = 1;
1753 			break;
1754 		case PIPE_SHADER_TESS_CTRL:
1755 		case PIPE_SHADER_TESS_EVAL:
1756 			key->as_ls = 1;
1757 			break;
1758 		default:
1759 			/* If POSITION isn't written, it can only be a HW VS
1760 			 * if streamout is used. If streamout isn't used,
1761 			 * assume that it's a HW LS. (the next shader is TCS)
1762 			 * This heuristic is needed for separate shader objects.
1763 			 */
1764 			if (!info->writes_position && !streamout)
1765 				key->as_ls = 1;
1766 		}
1767 		break;
1768 
1769 	case PIPE_SHADER_TESS_EVAL:
1770 		if (next_shader == PIPE_SHADER_GEOMETRY ||
1771 		    !info->writes_position)
1772 			key->as_es = 1;
1773 		break;
1774 	}
1775 }
1776 
1777 /**
1778  * Compile the main shader part or the monolithic shader as part of
1779  * si_shader_selector initialization. Since it can be done asynchronously,
1780  * there is no way to report compile failures to applications.
1781  */
si_init_shader_selector_async(void * job,int thread_index)1782 static void si_init_shader_selector_async(void *job, int thread_index)
1783 {
1784 	struct si_shader_selector *sel = (struct si_shader_selector *)job;
1785 	struct si_screen *sscreen = sel->screen;
1786 	LLVMTargetMachineRef tm;
1787 	struct pipe_debug_callback *debug = &sel->compiler_ctx_state.debug;
1788 	unsigned i;
1789 
1790 	assert(!debug->debug_message || debug->async);
1791 	assert(thread_index >= 0);
1792 	assert(thread_index < ARRAY_SIZE(sscreen->tm));
1793 	tm = sscreen->tm[thread_index];
1794 
1795 	/* Compile the main shader part for use with a prolog and/or epilog.
1796 	 * If this fails, the driver will try to compile a monolithic shader
1797 	 * on demand.
1798 	 */
1799 	if (!sscreen->use_monolithic_shaders) {
1800 		struct si_shader *shader = CALLOC_STRUCT(si_shader);
1801 		void *tgsi_binary = NULL;
1802 
1803 		if (!shader) {
1804 			fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
1805 			return;
1806 		}
1807 
1808 		/* We can leave the fence signaled because use of the default
1809 		 * main part is guarded by the selector's ready fence. */
1810 		util_queue_fence_init(&shader->ready);
1811 
1812 		shader->selector = sel;
1813 		si_parse_next_shader_property(&sel->info,
1814 					      sel->so.num_outputs != 0,
1815 					      &shader->key);
1816 
1817 		if (sel->tokens)
1818 			tgsi_binary = si_get_tgsi_binary(sel);
1819 
1820 		/* Try to load the shader from the shader cache. */
1821 		mtx_lock(&sscreen->shader_cache_mutex);
1822 
1823 		if (tgsi_binary &&
1824 		    si_shader_cache_load_shader(sscreen, tgsi_binary, shader)) {
1825 			mtx_unlock(&sscreen->shader_cache_mutex);
1826 		} else {
1827 			mtx_unlock(&sscreen->shader_cache_mutex);
1828 
1829 			/* Compile the shader if it hasn't been loaded from the cache. */
1830 			if (si_compile_tgsi_shader(sscreen, tm, shader, false,
1831 						   debug) != 0) {
1832 				FREE(shader);
1833 				FREE(tgsi_binary);
1834 				fprintf(stderr, "radeonsi: can't compile a main shader part\n");
1835 				return;
1836 			}
1837 
1838 			if (tgsi_binary) {
1839 				mtx_lock(&sscreen->shader_cache_mutex);
1840 				if (!si_shader_cache_insert_shader(sscreen, tgsi_binary, shader, true))
1841 					FREE(tgsi_binary);
1842 				mtx_unlock(&sscreen->shader_cache_mutex);
1843 			}
1844 		}
1845 
1846 		*si_get_main_shader_part(sel, &shader->key) = shader;
1847 
1848 		/* Unset "outputs_written" flags for outputs converted to
1849 		 * DEFAULT_VAL, so that later inter-shader optimizations don't
1850 		 * try to eliminate outputs that don't exist in the final
1851 		 * shader.
1852 		 *
1853 		 * This is only done if non-monolithic shaders are enabled.
1854 		 */
1855 		if ((sel->type == PIPE_SHADER_VERTEX ||
1856 		     sel->type == PIPE_SHADER_TESS_EVAL) &&
1857 		    !shader->key.as_ls &&
1858 		    !shader->key.as_es) {
1859 			unsigned i;
1860 
1861 			for (i = 0; i < sel->info.num_outputs; i++) {
1862 				unsigned offset = shader->info.vs_output_param_offset[i];
1863 
1864 				if (offset <= AC_EXP_PARAM_OFFSET_31)
1865 					continue;
1866 
1867 				unsigned name = sel->info.output_semantic_name[i];
1868 				unsigned index = sel->info.output_semantic_index[i];
1869 				unsigned id;
1870 
1871 				switch (name) {
1872 				case TGSI_SEMANTIC_GENERIC:
1873 					/* don't process indices the function can't handle */
1874 					if (index >= SI_MAX_IO_GENERIC)
1875 						break;
1876 					/* fall through */
1877 				default:
1878 					id = si_shader_io_get_unique_index(name, index);
1879 					sel->outputs_written &= ~(1ull << id);
1880 					break;
1881 				case TGSI_SEMANTIC_POSITION: /* ignore these */
1882 				case TGSI_SEMANTIC_PSIZE:
1883 				case TGSI_SEMANTIC_CLIPVERTEX:
1884 				case TGSI_SEMANTIC_EDGEFLAG:
1885 					break;
1886 				}
1887 			}
1888 		}
1889 	}
1890 
1891 	/* Pre-compilation. */
1892 	if (sscreen->debug_flags & DBG(PRECOMPILE) &&
1893 	    /* GFX9 needs LS or ES for compilation, which we don't have here. */
1894 	    (sscreen->info.chip_class <= VI ||
1895 	     (sel->type != PIPE_SHADER_TESS_CTRL &&
1896 	      sel->type != PIPE_SHADER_GEOMETRY))) {
1897 		struct si_shader_ctx_state state = {sel};
1898 		struct si_shader_key key;
1899 
1900 		memset(&key, 0, sizeof(key));
1901 		si_parse_next_shader_property(&sel->info,
1902 					      sel->so.num_outputs != 0,
1903 					      &key);
1904 
1905 		/* GFX9 doesn't have LS and ES. */
1906 		if (sscreen->info.chip_class >= GFX9) {
1907 			key.as_ls = 0;
1908 			key.as_es = 0;
1909 		}
1910 
1911 		/* Set reasonable defaults, so that the shader key doesn't
1912 		 * cause any code to be eliminated.
1913 		 */
1914 		switch (sel->type) {
1915 		case PIPE_SHADER_TESS_CTRL:
1916 			key.part.tcs.epilog.prim_mode = PIPE_PRIM_TRIANGLES;
1917 			break;
1918 		case PIPE_SHADER_FRAGMENT:
1919 			key.part.ps.prolog.bc_optimize_for_persp =
1920 				sel->info.uses_persp_center &&
1921 				sel->info.uses_persp_centroid;
1922 			key.part.ps.prolog.bc_optimize_for_linear =
1923 				sel->info.uses_linear_center &&
1924 				sel->info.uses_linear_centroid;
1925 			key.part.ps.epilog.alpha_func = PIPE_FUNC_ALWAYS;
1926 			for (i = 0; i < 8; i++)
1927 				if (sel->info.colors_written & (1 << i))
1928 					key.part.ps.epilog.spi_shader_col_format |=
1929 						V_028710_SPI_SHADER_FP16_ABGR << (i * 4);
1930 			break;
1931 		}
1932 
1933 		if (si_shader_select_with_key(sscreen, &state,
1934 					      &sel->compiler_ctx_state, &key,
1935 					      thread_index))
1936 			fprintf(stderr, "radeonsi: can't create a monolithic shader\n");
1937 	}
1938 
1939 	/* The GS copy shader is always pre-compiled. */
1940 	if (sel->type == PIPE_SHADER_GEOMETRY) {
1941 		sel->gs_copy_shader = si_generate_gs_copy_shader(sscreen, tm, sel, debug);
1942 		if (!sel->gs_copy_shader) {
1943 			fprintf(stderr, "radeonsi: can't create GS copy shader\n");
1944 			return;
1945 		}
1946 
1947 		si_shader_vs(sscreen, sel->gs_copy_shader, sel);
1948 	}
1949 }
1950 
1951 /* Return descriptor slot usage masks from the given shader info. */
si_get_active_slot_masks(const struct tgsi_shader_info * info,uint32_t * const_and_shader_buffers,uint64_t * samplers_and_images)1952 void si_get_active_slot_masks(const struct tgsi_shader_info *info,
1953 			      uint32_t *const_and_shader_buffers,
1954 			      uint64_t *samplers_and_images)
1955 {
1956 	unsigned start, num_shaderbufs, num_constbufs, num_images, num_samplers;
1957 
1958 	num_shaderbufs = util_last_bit(info->shader_buffers_declared);
1959 	num_constbufs = util_last_bit(info->const_buffers_declared);
1960 	/* two 8-byte images share one 16-byte slot */
1961 	num_images = align(util_last_bit(info->images_declared), 2);
1962 	num_samplers = util_last_bit(info->samplers_declared);
1963 
1964 	/* The layout is: sb[last] ... sb[0], cb[0] ... cb[last] */
1965 	start = si_get_shaderbuf_slot(num_shaderbufs - 1);
1966 	*const_and_shader_buffers =
1967 		u_bit_consecutive(start, num_shaderbufs + num_constbufs);
1968 
1969 	/* The layout is: image[last] ... image[0], sampler[0] ... sampler[last] */
1970 	start = si_get_image_slot(num_images - 1) / 2;
1971 	*samplers_and_images =
1972 		u_bit_consecutive64(start, num_images / 2 + num_samplers);
1973 }
1974 
si_create_shader_selector(struct pipe_context * ctx,const struct pipe_shader_state * state)1975 static void *si_create_shader_selector(struct pipe_context *ctx,
1976 				       const struct pipe_shader_state *state)
1977 {
1978 	struct si_screen *sscreen = (struct si_screen *)ctx->screen;
1979 	struct si_context *sctx = (struct si_context*)ctx;
1980 	struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
1981 	int i;
1982 
1983 	if (!sel)
1984 		return NULL;
1985 
1986 	pipe_reference_init(&sel->reference, 1);
1987 	sel->screen = sscreen;
1988 	sel->compiler_ctx_state.debug = sctx->debug;
1989 	sel->compiler_ctx_state.is_debug_context = sctx->is_debug;
1990 
1991 	sel->so = state->stream_output;
1992 
1993 	if (state->type == PIPE_SHADER_IR_TGSI) {
1994 		sel->tokens = tgsi_dup_tokens(state->tokens);
1995 		if (!sel->tokens) {
1996 			FREE(sel);
1997 			return NULL;
1998 		}
1999 
2000 		tgsi_scan_shader(state->tokens, &sel->info);
2001 		tgsi_scan_tess_ctrl(state->tokens, &sel->info, &sel->tcs_info);
2002 	} else {
2003 		assert(state->type == PIPE_SHADER_IR_NIR);
2004 
2005 		sel->nir = state->ir.nir;
2006 
2007 		si_nir_scan_shader(sel->nir, &sel->info);
2008 		si_nir_scan_tess_ctrl(sel->nir, &sel->info, &sel->tcs_info);
2009 
2010 		si_lower_nir(sel);
2011 	}
2012 
2013 	sel->type = sel->info.processor;
2014 	p_atomic_inc(&sscreen->num_shaders_created);
2015 	si_get_active_slot_masks(&sel->info,
2016 				 &sel->active_const_and_shader_buffers,
2017 				 &sel->active_samplers_and_images);
2018 
2019 	/* Record which streamout buffers are enabled. */
2020 	for (i = 0; i < sel->so.num_outputs; i++) {
2021 		sel->enabled_streamout_buffer_mask |=
2022 			(1 << sel->so.output[i].output_buffer) <<
2023 			(sel->so.output[i].stream * 4);
2024 	}
2025 
2026 	/* The prolog is a no-op if there are no inputs. */
2027 	sel->vs_needs_prolog = sel->type == PIPE_SHADER_VERTEX &&
2028 			       sel->info.num_inputs &&
2029 			       !sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
2030 
2031 	sel->force_correct_derivs_after_kill =
2032 		sel->type == PIPE_SHADER_FRAGMENT &&
2033 		sel->info.uses_derivatives &&
2034 		sel->info.uses_kill &&
2035 		sctx->screen->debug_flags & DBG(FS_CORRECT_DERIVS_AFTER_KILL);
2036 
2037 	/* Set which opcode uses which (i,j) pair. */
2038 	if (sel->info.uses_persp_opcode_interp_centroid)
2039 		sel->info.uses_persp_centroid = true;
2040 
2041 	if (sel->info.uses_linear_opcode_interp_centroid)
2042 		sel->info.uses_linear_centroid = true;
2043 
2044 	if (sel->info.uses_persp_opcode_interp_offset ||
2045 	    sel->info.uses_persp_opcode_interp_sample)
2046 		sel->info.uses_persp_center = true;
2047 
2048 	if (sel->info.uses_linear_opcode_interp_offset ||
2049 	    sel->info.uses_linear_opcode_interp_sample)
2050 		sel->info.uses_linear_center = true;
2051 
2052 	switch (sel->type) {
2053 	case PIPE_SHADER_GEOMETRY:
2054 		sel->gs_output_prim =
2055 			sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
2056 		sel->gs_max_out_vertices =
2057 			sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
2058 		sel->gs_num_invocations =
2059 			sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
2060 		sel->gsvs_vertex_size = sel->info.num_outputs * 16;
2061 		sel->max_gsvs_emit_size = sel->gsvs_vertex_size *
2062 					  sel->gs_max_out_vertices;
2063 
2064 		sel->max_gs_stream = 0;
2065 		for (i = 0; i < sel->so.num_outputs; i++)
2066 			sel->max_gs_stream = MAX2(sel->max_gs_stream,
2067 						  sel->so.output[i].stream);
2068 
2069 		sel->gs_input_verts_per_prim =
2070 			u_vertices_per_prim(sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]);
2071 		break;
2072 
2073 	case PIPE_SHADER_TESS_CTRL:
2074 		/* Always reserve space for these. */
2075 		sel->patch_outputs_written |=
2076 			(1ull << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0)) |
2077 			(1ull << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0));
2078 		/* fall through */
2079 	case PIPE_SHADER_VERTEX:
2080 	case PIPE_SHADER_TESS_EVAL:
2081 		for (i = 0; i < sel->info.num_outputs; i++) {
2082 			unsigned name = sel->info.output_semantic_name[i];
2083 			unsigned index = sel->info.output_semantic_index[i];
2084 
2085 			switch (name) {
2086 			case TGSI_SEMANTIC_TESSINNER:
2087 			case TGSI_SEMANTIC_TESSOUTER:
2088 			case TGSI_SEMANTIC_PATCH:
2089 				sel->patch_outputs_written |=
2090 					1ull << si_shader_io_get_unique_index_patch(name, index);
2091 				break;
2092 
2093 			case TGSI_SEMANTIC_GENERIC:
2094 				/* don't process indices the function can't handle */
2095 				if (index >= SI_MAX_IO_GENERIC)
2096 					break;
2097 				/* fall through */
2098 			default:
2099 				sel->outputs_written |=
2100 					1ull << si_shader_io_get_unique_index(name, index);
2101 				break;
2102 			case TGSI_SEMANTIC_CLIPVERTEX: /* ignore these */
2103 			case TGSI_SEMANTIC_EDGEFLAG:
2104 				break;
2105 			}
2106 		}
2107 		sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
2108 
2109 		/* For the ESGS ring in LDS, add 1 dword to reduce LDS bank
2110 		 * conflicts, i.e. each vertex will start at a different bank.
2111 		 */
2112 		if (sctx->b.chip_class >= GFX9)
2113 			sel->esgs_itemsize += 4;
2114 		break;
2115 
2116 	case PIPE_SHADER_FRAGMENT:
2117 		for (i = 0; i < sel->info.num_inputs; i++) {
2118 			unsigned name = sel->info.input_semantic_name[i];
2119 			unsigned index = sel->info.input_semantic_index[i];
2120 
2121 			switch (name) {
2122 			case TGSI_SEMANTIC_GENERIC:
2123 				/* don't process indices the function can't handle */
2124 				if (index >= SI_MAX_IO_GENERIC)
2125 					break;
2126 				/* fall through */
2127 			default:
2128 				sel->inputs_read |=
2129 					1ull << si_shader_io_get_unique_index(name, index);
2130 				break;
2131 			case TGSI_SEMANTIC_PCOORD: /* ignore this */
2132 				break;
2133 			}
2134 		}
2135 
2136 		for (i = 0; i < 8; i++)
2137 			if (sel->info.colors_written & (1 << i))
2138 				sel->colors_written_4bit |= 0xf << (4 * i);
2139 
2140 		for (i = 0; i < sel->info.num_inputs; i++) {
2141 			if (sel->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR) {
2142 				int index = sel->info.input_semantic_index[i];
2143 				sel->color_attr_index[index] = i;
2144 			}
2145 		}
2146 		break;
2147 	}
2148 
2149 	/* PA_CL_VS_OUT_CNTL */
2150 	bool misc_vec_ena =
2151 		sel->info.writes_psize || sel->info.writes_edgeflag ||
2152 		sel->info.writes_layer || sel->info.writes_viewport_index;
2153 	sel->pa_cl_vs_out_cntl =
2154 		S_02881C_USE_VTX_POINT_SIZE(sel->info.writes_psize) |
2155 		S_02881C_USE_VTX_EDGE_FLAG(sel->info.writes_edgeflag) |
2156 		S_02881C_USE_VTX_RENDER_TARGET_INDX(sel->info.writes_layer) |
2157 		S_02881C_USE_VTX_VIEWPORT_INDX(sel->info.writes_viewport_index) |
2158 		S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
2159 		S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena);
2160 	sel->clipdist_mask = sel->info.writes_clipvertex ?
2161 				     SIX_BITS : sel->info.clipdist_writemask;
2162 	sel->culldist_mask = sel->info.culldist_writemask <<
2163 			     sel->info.num_written_clipdistance;
2164 
2165 	/* DB_SHADER_CONTROL */
2166 	sel->db_shader_control =
2167 		S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
2168 		S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
2169 		S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
2170 		S_02880C_KILL_ENABLE(sel->info.uses_kill);
2171 
2172 	switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) {
2173 	case TGSI_FS_DEPTH_LAYOUT_GREATER:
2174 		sel->db_shader_control |=
2175 			S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
2176 		break;
2177 	case TGSI_FS_DEPTH_LAYOUT_LESS:
2178 		sel->db_shader_control |=
2179 			S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
2180 		break;
2181 	}
2182 
2183 	/* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
2184 	 *
2185 	 *   | early Z/S | writes_mem | allow_ReZ? |      Z_ORDER       | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
2186 	 * --|-----------|------------|------------|--------------------|-------------------|-------------
2187 	 * 1a|   false   |   false    |   true     | EarlyZ_Then_ReZ    |         0         |     0
2188 	 * 1b|   false   |   false    |   false    | EarlyZ_Then_LateZ  |         0         |     0
2189 	 * 2 |   false   |   true     |   n/a      |       LateZ        |         1         |     0
2190 	 * 3 |   true    |   false    |   n/a      | EarlyZ_Then_LateZ  |         0         |     0
2191 	 * 4 |   true    |   true     |   n/a      | EarlyZ_Then_LateZ  |         0         |     1
2192 	 *
2193 	 * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
2194 	 * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
2195 	 *
2196 	 * Don't use ReZ without profiling !!!
2197 	 *
2198 	 * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
2199 	 * shaders.
2200 	 */
2201 	if (sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]) {
2202 		/* Cases 3, 4. */
2203 		sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
2204 					  S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
2205 					  S_02880C_EXEC_ON_NOOP(sel->info.writes_memory);
2206 	} else if (sel->info.writes_memory) {
2207 		/* Case 2. */
2208 		sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) |
2209 					  S_02880C_EXEC_ON_HIER_FAIL(1);
2210 	} else {
2211 		/* Case 1. */
2212 		sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
2213 	}
2214 
2215 	(void) mtx_init(&sel->mutex, mtx_plain);
2216 	util_queue_fence_init(&sel->ready);
2217 
2218 	struct util_async_debug_callback async_debug;
2219 	bool wait =
2220 		(sctx->debug.debug_message && !sctx->debug.async) ||
2221 		sctx->is_debug ||
2222 		si_can_dump_shader(sscreen, sel->info.processor);
2223 
2224 	if (wait) {
2225 		u_async_debug_init(&async_debug);
2226 		sel->compiler_ctx_state.debug = async_debug.base;
2227 	}
2228 
2229 	util_queue_add_job(&sscreen->shader_compiler_queue, sel,
2230 			   &sel->ready, si_init_shader_selector_async,
2231 			   NULL);
2232 
2233 	if (wait) {
2234 		util_queue_fence_wait(&sel->ready);
2235 		u_async_debug_drain(&async_debug, &sctx->debug);
2236 		u_async_debug_cleanup(&async_debug);
2237 	}
2238 
2239 	return sel;
2240 }
2241 
si_update_streamout_state(struct si_context * sctx)2242 static void si_update_streamout_state(struct si_context *sctx)
2243 {
2244 	struct si_shader_selector *shader_with_so = si_get_vs(sctx)->cso;
2245 
2246 	if (!shader_with_so)
2247 		return;
2248 
2249 	sctx->streamout.enabled_stream_buffers_mask =
2250 		shader_with_so->enabled_streamout_buffer_mask;
2251 	sctx->streamout.stride_in_dw = shader_with_so->so.stride;
2252 }
2253 
si_update_clip_regs(struct si_context * sctx,struct si_shader_selector * old_hw_vs,struct si_shader * old_hw_vs_variant,struct si_shader_selector * next_hw_vs,struct si_shader * next_hw_vs_variant)2254 static void si_update_clip_regs(struct si_context *sctx,
2255 				struct si_shader_selector *old_hw_vs,
2256 				struct si_shader *old_hw_vs_variant,
2257 				struct si_shader_selector *next_hw_vs,
2258 				struct si_shader *next_hw_vs_variant)
2259 {
2260 	if (next_hw_vs &&
2261 	    (!old_hw_vs ||
2262 	     old_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] !=
2263 	     next_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] ||
2264 	     old_hw_vs->pa_cl_vs_out_cntl != next_hw_vs->pa_cl_vs_out_cntl ||
2265 	     old_hw_vs->clipdist_mask != next_hw_vs->clipdist_mask ||
2266 	     old_hw_vs->culldist_mask != next_hw_vs->culldist_mask ||
2267 	     !old_hw_vs_variant ||
2268 	     !next_hw_vs_variant ||
2269 	     old_hw_vs_variant->key.opt.clip_disable !=
2270 	     next_hw_vs_variant->key.opt.clip_disable))
2271 		si_mark_atom_dirty(sctx, &sctx->clip_regs);
2272 }
2273 
si_update_common_shader_state(struct si_context * sctx)2274 static void si_update_common_shader_state(struct si_context *sctx)
2275 {
2276 	sctx->uses_bindless_samplers =
2277 		si_shader_uses_bindless_samplers(sctx->vs_shader.cso)  ||
2278 		si_shader_uses_bindless_samplers(sctx->gs_shader.cso)  ||
2279 		si_shader_uses_bindless_samplers(sctx->ps_shader.cso)  ||
2280 		si_shader_uses_bindless_samplers(sctx->tcs_shader.cso) ||
2281 		si_shader_uses_bindless_samplers(sctx->tes_shader.cso);
2282 	sctx->uses_bindless_images =
2283 		si_shader_uses_bindless_images(sctx->vs_shader.cso)  ||
2284 		si_shader_uses_bindless_images(sctx->gs_shader.cso)  ||
2285 		si_shader_uses_bindless_images(sctx->ps_shader.cso)  ||
2286 		si_shader_uses_bindless_images(sctx->tcs_shader.cso) ||
2287 		si_shader_uses_bindless_images(sctx->tes_shader.cso);
2288 	sctx->do_update_shaders = true;
2289 }
2290 
si_bind_vs_shader(struct pipe_context * ctx,void * state)2291 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
2292 {
2293 	struct si_context *sctx = (struct si_context *)ctx;
2294 	struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2295 	struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2296 	struct si_shader_selector *sel = state;
2297 
2298 	if (sctx->vs_shader.cso == sel)
2299 		return;
2300 
2301 	sctx->vs_shader.cso = sel;
2302 	sctx->vs_shader.current = sel ? sel->first_variant : NULL;
2303 	sctx->num_vs_blit_sgprs = sel ? sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS] : 0;
2304 
2305 	si_update_common_shader_state(sctx);
2306 	si_update_vs_viewport_state(sctx);
2307 	si_set_active_descriptors_for_shader(sctx, sel);
2308 	si_update_streamout_state(sctx);
2309 	si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2310 			    si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2311 }
2312 
si_update_tess_uses_prim_id(struct si_context * sctx)2313 static void si_update_tess_uses_prim_id(struct si_context *sctx)
2314 {
2315 	sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id =
2316 		(sctx->tes_shader.cso &&
2317 		 sctx->tes_shader.cso->info.uses_primid) ||
2318 		(sctx->tcs_shader.cso &&
2319 		 sctx->tcs_shader.cso->info.uses_primid) ||
2320 		(sctx->gs_shader.cso &&
2321 		 sctx->gs_shader.cso->info.uses_primid) ||
2322 		(sctx->ps_shader.cso && !sctx->gs_shader.cso &&
2323 		 sctx->ps_shader.cso->info.uses_primid);
2324 }
2325 
si_bind_gs_shader(struct pipe_context * ctx,void * state)2326 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
2327 {
2328 	struct si_context *sctx = (struct si_context *)ctx;
2329 	struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2330 	struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2331 	struct si_shader_selector *sel = state;
2332 	bool enable_changed = !!sctx->gs_shader.cso != !!sel;
2333 
2334 	if (sctx->gs_shader.cso == sel)
2335 		return;
2336 
2337 	sctx->gs_shader.cso = sel;
2338 	sctx->gs_shader.current = sel ? sel->first_variant : NULL;
2339 	sctx->ia_multi_vgt_param_key.u.uses_gs = sel != NULL;
2340 
2341 	si_update_common_shader_state(sctx);
2342 	sctx->last_rast_prim = -1; /* reset this so that it gets updated */
2343 
2344 	if (enable_changed) {
2345 		si_shader_change_notify(sctx);
2346 		if (sctx->ia_multi_vgt_param_key.u.uses_tess)
2347 			si_update_tess_uses_prim_id(sctx);
2348 	}
2349 	si_update_vs_viewport_state(sctx);
2350 	si_set_active_descriptors_for_shader(sctx, sel);
2351 	si_update_streamout_state(sctx);
2352 	si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2353 			    si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2354 }
2355 
si_bind_tcs_shader(struct pipe_context * ctx,void * state)2356 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
2357 {
2358 	struct si_context *sctx = (struct si_context *)ctx;
2359 	struct si_shader_selector *sel = state;
2360 	bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
2361 
2362 	if (sctx->tcs_shader.cso == sel)
2363 		return;
2364 
2365 	sctx->tcs_shader.cso = sel;
2366 	sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
2367 	si_update_tess_uses_prim_id(sctx);
2368 
2369 	si_update_common_shader_state(sctx);
2370 
2371 	if (enable_changed)
2372 		sctx->last_tcs = NULL; /* invalidate derived tess state */
2373 
2374 	si_set_active_descriptors_for_shader(sctx, sel);
2375 }
2376 
si_bind_tes_shader(struct pipe_context * ctx,void * state)2377 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
2378 {
2379 	struct si_context *sctx = (struct si_context *)ctx;
2380 	struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2381 	struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2382 	struct si_shader_selector *sel = state;
2383 	bool enable_changed = !!sctx->tes_shader.cso != !!sel;
2384 
2385 	if (sctx->tes_shader.cso == sel)
2386 		return;
2387 
2388 	sctx->tes_shader.cso = sel;
2389 	sctx->tes_shader.current = sel ? sel->first_variant : NULL;
2390 	sctx->ia_multi_vgt_param_key.u.uses_tess = sel != NULL;
2391 	si_update_tess_uses_prim_id(sctx);
2392 
2393 	si_update_common_shader_state(sctx);
2394 	sctx->last_rast_prim = -1; /* reset this so that it gets updated */
2395 
2396 	if (enable_changed) {
2397 		si_shader_change_notify(sctx);
2398 		sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
2399 	}
2400 	si_update_vs_viewport_state(sctx);
2401 	si_set_active_descriptors_for_shader(sctx, sel);
2402 	si_update_streamout_state(sctx);
2403 	si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2404 			    si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2405 }
2406 
si_bind_ps_shader(struct pipe_context * ctx,void * state)2407 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
2408 {
2409 	struct si_context *sctx = (struct si_context *)ctx;
2410 	struct si_shader_selector *old_sel = sctx->ps_shader.cso;
2411 	struct si_shader_selector *sel = state;
2412 
2413 	/* skip if supplied shader is one already in use */
2414 	if (old_sel == sel)
2415 		return;
2416 
2417 	sctx->ps_shader.cso = sel;
2418 	sctx->ps_shader.current = sel ? sel->first_variant : NULL;
2419 
2420 	si_update_common_shader_state(sctx);
2421 	if (sel) {
2422 		if (sctx->ia_multi_vgt_param_key.u.uses_tess)
2423 			si_update_tess_uses_prim_id(sctx);
2424 
2425 		if (!old_sel ||
2426 		    old_sel->info.colors_written != sel->info.colors_written)
2427 			si_mark_atom_dirty(sctx, &sctx->cb_render_state);
2428 
2429 		if (sctx->screen->has_out_of_order_rast &&
2430 		    (!old_sel ||
2431 		     old_sel->info.writes_memory != sel->info.writes_memory ||
2432 		     old_sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL] !=
2433 		     sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]))
2434 			si_mark_atom_dirty(sctx, &sctx->msaa_config);
2435 	}
2436 	si_set_active_descriptors_for_shader(sctx, sel);
2437 }
2438 
si_delete_shader(struct si_context * sctx,struct si_shader * shader)2439 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
2440 {
2441 	if (shader->is_optimized) {
2442 		util_queue_drop_job(&sctx->screen->shader_compiler_queue_low_priority,
2443 				    &shader->ready);
2444 	}
2445 
2446 	util_queue_fence_destroy(&shader->ready);
2447 
2448 	if (shader->pm4) {
2449 		switch (shader->selector->type) {
2450 		case PIPE_SHADER_VERTEX:
2451 			if (shader->key.as_ls) {
2452 				assert(sctx->b.chip_class <= VI);
2453 				si_pm4_delete_state(sctx, ls, shader->pm4);
2454 			} else if (shader->key.as_es) {
2455 				assert(sctx->b.chip_class <= VI);
2456 				si_pm4_delete_state(sctx, es, shader->pm4);
2457 			} else {
2458 				si_pm4_delete_state(sctx, vs, shader->pm4);
2459 			}
2460 			break;
2461 		case PIPE_SHADER_TESS_CTRL:
2462 			si_pm4_delete_state(sctx, hs, shader->pm4);
2463 			break;
2464 		case PIPE_SHADER_TESS_EVAL:
2465 			if (shader->key.as_es) {
2466 				assert(sctx->b.chip_class <= VI);
2467 				si_pm4_delete_state(sctx, es, shader->pm4);
2468 			} else {
2469 				si_pm4_delete_state(sctx, vs, shader->pm4);
2470 			}
2471 			break;
2472 		case PIPE_SHADER_GEOMETRY:
2473 			if (shader->is_gs_copy_shader)
2474 				si_pm4_delete_state(sctx, vs, shader->pm4);
2475 			else
2476 				si_pm4_delete_state(sctx, gs, shader->pm4);
2477 			break;
2478 		case PIPE_SHADER_FRAGMENT:
2479 			si_pm4_delete_state(sctx, ps, shader->pm4);
2480 			break;
2481 		}
2482 	}
2483 
2484 	si_shader_selector_reference(sctx, &shader->previous_stage_sel, NULL);
2485 	si_shader_destroy(shader);
2486 	free(shader);
2487 }
2488 
si_destroy_shader_selector(struct si_context * sctx,struct si_shader_selector * sel)2489 void si_destroy_shader_selector(struct si_context *sctx,
2490 				struct si_shader_selector *sel)
2491 {
2492 	struct si_shader *p = sel->first_variant, *c;
2493 	struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
2494 		[PIPE_SHADER_VERTEX] = &sctx->vs_shader,
2495 		[PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader,
2496 		[PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader,
2497 		[PIPE_SHADER_GEOMETRY] = &sctx->gs_shader,
2498 		[PIPE_SHADER_FRAGMENT] = &sctx->ps_shader,
2499 	};
2500 
2501 	util_queue_drop_job(&sctx->screen->shader_compiler_queue, &sel->ready);
2502 
2503 	if (current_shader[sel->type]->cso == sel) {
2504 		current_shader[sel->type]->cso = NULL;
2505 		current_shader[sel->type]->current = NULL;
2506 	}
2507 
2508 	while (p) {
2509 		c = p->next_variant;
2510 		si_delete_shader(sctx, p);
2511 		p = c;
2512 	}
2513 
2514 	if (sel->main_shader_part)
2515 		si_delete_shader(sctx, sel->main_shader_part);
2516 	if (sel->main_shader_part_ls)
2517 		si_delete_shader(sctx, sel->main_shader_part_ls);
2518 	if (sel->main_shader_part_es)
2519 		si_delete_shader(sctx, sel->main_shader_part_es);
2520 	if (sel->gs_copy_shader)
2521 		si_delete_shader(sctx, sel->gs_copy_shader);
2522 
2523 	util_queue_fence_destroy(&sel->ready);
2524 	mtx_destroy(&sel->mutex);
2525 	free(sel->tokens);
2526 	ralloc_free(sel->nir);
2527 	free(sel);
2528 }
2529 
si_delete_shader_selector(struct pipe_context * ctx,void * state)2530 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
2531 {
2532 	struct si_context *sctx = (struct si_context *)ctx;
2533 	struct si_shader_selector *sel = (struct si_shader_selector *)state;
2534 
2535 	si_shader_selector_reference(sctx, &sel, NULL);
2536 }
2537 
si_get_ps_input_cntl(struct si_context * sctx,struct si_shader * vs,unsigned name,unsigned index,unsigned interpolate)2538 static unsigned si_get_ps_input_cntl(struct si_context *sctx,
2539 				     struct si_shader *vs, unsigned name,
2540 				     unsigned index, unsigned interpolate)
2541 {
2542 	struct tgsi_shader_info *vsinfo = &vs->selector->info;
2543 	unsigned j, offset, ps_input_cntl = 0;
2544 
2545 	if (interpolate == TGSI_INTERPOLATE_CONSTANT ||
2546 	    (interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade))
2547 		ps_input_cntl |= S_028644_FLAT_SHADE(1);
2548 
2549 	if (name == TGSI_SEMANTIC_PCOORD ||
2550 	    (name == TGSI_SEMANTIC_TEXCOORD &&
2551 	     sctx->sprite_coord_enable & (1 << index))) {
2552 		ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
2553 	}
2554 
2555 	for (j = 0; j < vsinfo->num_outputs; j++) {
2556 		if (name == vsinfo->output_semantic_name[j] &&
2557 		    index == vsinfo->output_semantic_index[j]) {
2558 			offset = vs->info.vs_output_param_offset[j];
2559 
2560 			if (offset <= AC_EXP_PARAM_OFFSET_31) {
2561 				/* The input is loaded from parameter memory. */
2562 				ps_input_cntl |= S_028644_OFFSET(offset);
2563 			} else if (!G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
2564 				if (offset == AC_EXP_PARAM_UNDEFINED) {
2565 					/* This can happen with depth-only rendering. */
2566 					offset = 0;
2567 				} else {
2568 					/* The input is a DEFAULT_VAL constant. */
2569 					assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 &&
2570 					       offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
2571 					offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
2572 				}
2573 
2574 				ps_input_cntl = S_028644_OFFSET(0x20) |
2575 						S_028644_DEFAULT_VAL(offset);
2576 			}
2577 			break;
2578 		}
2579 	}
2580 
2581 	if (name == TGSI_SEMANTIC_PRIMID)
2582 		/* PrimID is written after the last output. */
2583 		ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]);
2584 	else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
2585 		/* No corresponding output found, load defaults into input.
2586 		 * Don't set any other bits.
2587 		 * (FLAT_SHADE=1 completely changes behavior) */
2588 		ps_input_cntl = S_028644_OFFSET(0x20);
2589 		/* D3D 9 behaviour. GL is undefined */
2590 		if (name == TGSI_SEMANTIC_COLOR && index == 0)
2591 			ps_input_cntl |= S_028644_DEFAULT_VAL(3);
2592 	}
2593 	return ps_input_cntl;
2594 }
2595 
si_emit_spi_map(struct si_context * sctx,struct r600_atom * atom)2596 static void si_emit_spi_map(struct si_context *sctx, struct r600_atom *atom)
2597 {
2598 	struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
2599 	struct si_shader *ps = sctx->ps_shader.current;
2600 	struct si_shader *vs = si_get_vs_state(sctx);
2601 	struct tgsi_shader_info *psinfo = ps ? &ps->selector->info : NULL;
2602 	unsigned i, num_interp, num_written = 0, bcol_interp[2];
2603 
2604 	if (!ps || !ps->selector->info.num_inputs)
2605 		return;
2606 
2607 	num_interp = si_get_ps_num_interp(ps);
2608 	assert(num_interp > 0);
2609 	radeon_set_context_reg_seq(cs, R_028644_SPI_PS_INPUT_CNTL_0, num_interp);
2610 
2611 	for (i = 0; i < psinfo->num_inputs; i++) {
2612 		unsigned name = psinfo->input_semantic_name[i];
2613 		unsigned index = psinfo->input_semantic_index[i];
2614 		unsigned interpolate = psinfo->input_interpolate[i];
2615 
2616 		radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, name, index,
2617 						     interpolate));
2618 		num_written++;
2619 
2620 		if (name == TGSI_SEMANTIC_COLOR) {
2621 			assert(index < ARRAY_SIZE(bcol_interp));
2622 			bcol_interp[index] = interpolate;
2623 		}
2624 	}
2625 
2626 	if (ps->key.part.ps.prolog.color_two_side) {
2627 		unsigned bcol = TGSI_SEMANTIC_BCOLOR;
2628 
2629 		for (i = 0; i < 2; i++) {
2630 			if (!(psinfo->colors_read & (0xf << (i * 4))))
2631 				continue;
2632 
2633 			radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, bcol,
2634 							     i, bcol_interp[i]));
2635 			num_written++;
2636 		}
2637 	}
2638 	assert(num_interp == num_written);
2639 }
2640 
2641 /**
2642  * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
2643  */
si_init_config_add_vgt_flush(struct si_context * sctx)2644 static void si_init_config_add_vgt_flush(struct si_context *sctx)
2645 {
2646 	if (sctx->init_config_has_vgt_flush)
2647 		return;
2648 
2649 	/* Done by Vulkan before VGT_FLUSH. */
2650 	si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
2651 	si_pm4_cmd_add(sctx->init_config,
2652 		       EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
2653 	si_pm4_cmd_end(sctx->init_config, false);
2654 
2655 	/* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
2656 	si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
2657 	si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
2658 	si_pm4_cmd_end(sctx->init_config, false);
2659 	sctx->init_config_has_vgt_flush = true;
2660 }
2661 
2662 /* Initialize state related to ESGS / GSVS ring buffers */
si_update_gs_ring_buffers(struct si_context * sctx)2663 static bool si_update_gs_ring_buffers(struct si_context *sctx)
2664 {
2665 	struct si_shader_selector *es =
2666 		sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso;
2667 	struct si_shader_selector *gs = sctx->gs_shader.cso;
2668 	struct si_pm4_state *pm4;
2669 
2670 	/* Chip constants. */
2671 	unsigned num_se = sctx->screen->info.max_se;
2672 	unsigned wave_size = 64;
2673 	unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
2674 	/* On SI-CI, the value comes from VGT_GS_VERTEX_REUSE = 16.
2675 	 * On VI+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
2676 	 */
2677 	unsigned gs_vertex_reuse = (sctx->b.chip_class >= VI ? 32 : 16) * num_se;
2678 	unsigned alignment = 256 * num_se;
2679 	/* The maximum size is 63.999 MB per SE. */
2680 	unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
2681 
2682 	/* Calculate the minimum size. */
2683 	unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse *
2684 					    wave_size, alignment);
2685 
2686 	/* These are recommended sizes, not minimum sizes. */
2687 	unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
2688 				  es->esgs_itemsize * gs->gs_input_verts_per_prim;
2689 	unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
2690 				  gs->max_gsvs_emit_size;
2691 
2692 	min_esgs_ring_size = align(min_esgs_ring_size, alignment);
2693 	esgs_ring_size = align(esgs_ring_size, alignment);
2694 	gsvs_ring_size = align(gsvs_ring_size, alignment);
2695 
2696 	esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
2697 	gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
2698 
2699 	/* Some rings don't have to be allocated if shaders don't use them.
2700 	 * (e.g. no varyings between ES and GS or GS and VS)
2701 	 *
2702 	 * GFX9 doesn't have the ESGS ring.
2703 	 */
2704 	bool update_esgs = sctx->b.chip_class <= VI &&
2705 			   esgs_ring_size &&
2706 			   (!sctx->esgs_ring ||
2707 			    sctx->esgs_ring->width0 < esgs_ring_size);
2708 	bool update_gsvs = gsvs_ring_size &&
2709 			   (!sctx->gsvs_ring ||
2710 			    sctx->gsvs_ring->width0 < gsvs_ring_size);
2711 
2712 	if (!update_esgs && !update_gsvs)
2713 		return true;
2714 
2715 	if (update_esgs) {
2716 		pipe_resource_reference(&sctx->esgs_ring, NULL);
2717 		sctx->esgs_ring =
2718 			si_aligned_buffer_create(sctx->b.b.screen,
2719 						   R600_RESOURCE_FLAG_UNMAPPABLE,
2720 						   PIPE_USAGE_DEFAULT,
2721 						   esgs_ring_size, alignment);
2722 		if (!sctx->esgs_ring)
2723 			return false;
2724 	}
2725 
2726 	if (update_gsvs) {
2727 		pipe_resource_reference(&sctx->gsvs_ring, NULL);
2728 		sctx->gsvs_ring =
2729 			si_aligned_buffer_create(sctx->b.b.screen,
2730 						   R600_RESOURCE_FLAG_UNMAPPABLE,
2731 						   PIPE_USAGE_DEFAULT,
2732 						   gsvs_ring_size, alignment);
2733 		if (!sctx->gsvs_ring)
2734 			return false;
2735 	}
2736 
2737 	/* Create the "init_config_gs_rings" state. */
2738 	pm4 = CALLOC_STRUCT(si_pm4_state);
2739 	if (!pm4)
2740 		return false;
2741 
2742 	if (sctx->b.chip_class >= CIK) {
2743 		if (sctx->esgs_ring) {
2744 			assert(sctx->b.chip_class <= VI);
2745 			si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE,
2746 				       sctx->esgs_ring->width0 / 256);
2747 		}
2748 		if (sctx->gsvs_ring)
2749 			si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE,
2750 				       sctx->gsvs_ring->width0 / 256);
2751 	} else {
2752 		if (sctx->esgs_ring)
2753 			si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE,
2754 				       sctx->esgs_ring->width0 / 256);
2755 		if (sctx->gsvs_ring)
2756 			si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE,
2757 				       sctx->gsvs_ring->width0 / 256);
2758 	}
2759 
2760 	/* Set the state. */
2761 	if (sctx->init_config_gs_rings)
2762 		si_pm4_free_state(sctx, sctx->init_config_gs_rings, ~0);
2763 	sctx->init_config_gs_rings = pm4;
2764 
2765 	if (!sctx->init_config_has_vgt_flush) {
2766 		si_init_config_add_vgt_flush(sctx);
2767 		si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
2768 	}
2769 
2770 	/* Flush the context to re-emit both init_config states. */
2771 	sctx->b.initial_gfx_cs_size = 0; /* force flush */
2772 	si_context_gfx_flush(sctx, PIPE_FLUSH_ASYNC, NULL);
2773 
2774 	/* Set ring bindings. */
2775 	if (sctx->esgs_ring) {
2776 		assert(sctx->b.chip_class <= VI);
2777 		si_set_ring_buffer(&sctx->b.b, SI_ES_RING_ESGS,
2778 				   sctx->esgs_ring, 0, sctx->esgs_ring->width0,
2779 				   true, true, 4, 64, 0);
2780 		si_set_ring_buffer(&sctx->b.b, SI_GS_RING_ESGS,
2781 				   sctx->esgs_ring, 0, sctx->esgs_ring->width0,
2782 				   false, false, 0, 0, 0);
2783 	}
2784 	if (sctx->gsvs_ring) {
2785 		si_set_ring_buffer(&sctx->b.b, SI_RING_GSVS,
2786 				   sctx->gsvs_ring, 0, sctx->gsvs_ring->width0,
2787 				   false, false, 0, 0, 0);
2788 	}
2789 
2790 	return true;
2791 }
2792 
si_shader_lock(struct si_shader * shader)2793 static void si_shader_lock(struct si_shader *shader)
2794 {
2795 	mtx_lock(&shader->selector->mutex);
2796 	if (shader->previous_stage_sel) {
2797 		assert(shader->previous_stage_sel != shader->selector);
2798 		mtx_lock(&shader->previous_stage_sel->mutex);
2799 	}
2800 }
2801 
si_shader_unlock(struct si_shader * shader)2802 static void si_shader_unlock(struct si_shader *shader)
2803 {
2804 	if (shader->previous_stage_sel)
2805 		mtx_unlock(&shader->previous_stage_sel->mutex);
2806 	mtx_unlock(&shader->selector->mutex);
2807 }
2808 
2809 /**
2810  * @returns 1 if \p sel has been updated to use a new scratch buffer
2811  *          0 if not
2812  *          < 0 if there was a failure
2813  */
si_update_scratch_buffer(struct si_context * sctx,struct si_shader * shader)2814 static int si_update_scratch_buffer(struct si_context *sctx,
2815 				    struct si_shader *shader)
2816 {
2817 	uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
2818 	int r;
2819 
2820 	if (!shader)
2821 		return 0;
2822 
2823 	/* This shader doesn't need a scratch buffer */
2824 	if (shader->config.scratch_bytes_per_wave == 0)
2825 		return 0;
2826 
2827 	/* Prevent race conditions when updating:
2828 	 * - si_shader::scratch_bo
2829 	 * - si_shader::binary::code
2830 	 * - si_shader::previous_stage::binary::code.
2831 	 */
2832 	si_shader_lock(shader);
2833 
2834 	/* This shader is already configured to use the current
2835 	 * scratch buffer. */
2836 	if (shader->scratch_bo == sctx->scratch_buffer) {
2837 		si_shader_unlock(shader);
2838 		return 0;
2839 	}
2840 
2841 	assert(sctx->scratch_buffer);
2842 
2843 	if (shader->previous_stage)
2844 		si_shader_apply_scratch_relocs(shader->previous_stage, scratch_va);
2845 
2846 	si_shader_apply_scratch_relocs(shader, scratch_va);
2847 
2848 	/* Replace the shader bo with a new bo that has the relocs applied. */
2849 	r = si_shader_binary_upload(sctx->screen, shader);
2850 	if (r) {
2851 		si_shader_unlock(shader);
2852 		return r;
2853 	}
2854 
2855 	/* Update the shader state to use the new shader bo. */
2856 	si_shader_init_pm4_state(sctx->screen, shader);
2857 
2858 	r600_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
2859 
2860 	si_shader_unlock(shader);
2861 	return 1;
2862 }
2863 
si_get_current_scratch_buffer_size(struct si_context * sctx)2864 static unsigned si_get_current_scratch_buffer_size(struct si_context *sctx)
2865 {
2866 	return sctx->scratch_buffer ? sctx->scratch_buffer->b.b.width0 : 0;
2867 }
2868 
si_get_scratch_buffer_bytes_per_wave(struct si_shader * shader)2869 static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
2870 {
2871 	return shader ? shader->config.scratch_bytes_per_wave : 0;
2872 }
2873 
si_get_tcs_current(struct si_context * sctx)2874 static struct si_shader *si_get_tcs_current(struct si_context *sctx)
2875 {
2876 	if (!sctx->tes_shader.cso)
2877 		return NULL; /* tessellation disabled */
2878 
2879 	return sctx->tcs_shader.cso ? sctx->tcs_shader.current :
2880 				      sctx->fixed_func_tcs_shader.current;
2881 }
2882 
si_get_max_scratch_bytes_per_wave(struct si_context * sctx)2883 static unsigned si_get_max_scratch_bytes_per_wave(struct si_context *sctx)
2884 {
2885 	unsigned bytes = 0;
2886 
2887 	bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
2888 	bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
2889 	bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
2890 	bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
2891 
2892 	if (sctx->tes_shader.cso) {
2893 		struct si_shader *tcs = si_get_tcs_current(sctx);
2894 
2895 		bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(tcs));
2896 	}
2897 	return bytes;
2898 }
2899 
si_update_scratch_relocs(struct si_context * sctx)2900 static bool si_update_scratch_relocs(struct si_context *sctx)
2901 {
2902 	struct si_shader *tcs = si_get_tcs_current(sctx);
2903 	int r;
2904 
2905 	/* Update the shaders, so that they are using the latest scratch.
2906 	 * The scratch buffer may have been changed since these shaders were
2907 	 * last used, so we still need to try to update them, even if they
2908 	 * require scratch buffers smaller than the current size.
2909 	 */
2910 	r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
2911 	if (r < 0)
2912 		return false;
2913 	if (r == 1)
2914 		si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
2915 
2916 	r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
2917 	if (r < 0)
2918 		return false;
2919 	if (r == 1)
2920 		si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
2921 
2922 	r = si_update_scratch_buffer(sctx, tcs);
2923 	if (r < 0)
2924 		return false;
2925 	if (r == 1)
2926 		si_pm4_bind_state(sctx, hs, tcs->pm4);
2927 
2928 	/* VS can be bound as LS, ES, or VS. */
2929 	r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
2930 	if (r < 0)
2931 		return false;
2932 	if (r == 1) {
2933 		if (sctx->tes_shader.current)
2934 			si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
2935 		else if (sctx->gs_shader.current)
2936 			si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
2937 		else
2938 			si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
2939 	}
2940 
2941 	/* TES can be bound as ES or VS. */
2942 	r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
2943 	if (r < 0)
2944 		return false;
2945 	if (r == 1) {
2946 		if (sctx->gs_shader.current)
2947 			si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
2948 		else
2949 			si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
2950 	}
2951 
2952 	return true;
2953 }
2954 
si_update_spi_tmpring_size(struct si_context * sctx)2955 static bool si_update_spi_tmpring_size(struct si_context *sctx)
2956 {
2957 	unsigned current_scratch_buffer_size =
2958 		si_get_current_scratch_buffer_size(sctx);
2959 	unsigned scratch_bytes_per_wave =
2960 		si_get_max_scratch_bytes_per_wave(sctx);
2961 	unsigned scratch_needed_size = scratch_bytes_per_wave *
2962 		sctx->scratch_waves;
2963 	unsigned spi_tmpring_size;
2964 
2965 	if (scratch_needed_size > 0) {
2966 		if (scratch_needed_size > current_scratch_buffer_size) {
2967 			/* Create a bigger scratch buffer */
2968 			r600_resource_reference(&sctx->scratch_buffer, NULL);
2969 
2970 			sctx->scratch_buffer = (struct r600_resource*)
2971 				si_aligned_buffer_create(&sctx->screen->b,
2972 							   R600_RESOURCE_FLAG_UNMAPPABLE,
2973 							   PIPE_USAGE_DEFAULT,
2974 							   scratch_needed_size, 256);
2975 			if (!sctx->scratch_buffer)
2976 				return false;
2977 
2978 			si_mark_atom_dirty(sctx, &sctx->scratch_state);
2979 			si_context_add_resource_size(&sctx->b.b,
2980 						     &sctx->scratch_buffer->b.b);
2981 		}
2982 
2983 		if (!si_update_scratch_relocs(sctx))
2984 			return false;
2985 	}
2986 
2987 	/* The LLVM shader backend should be reporting aligned scratch_sizes. */
2988 	assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
2989 		"scratch size should already be aligned correctly.");
2990 
2991 	spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
2992 			   S_0286E8_WAVESIZE(scratch_bytes_per_wave >> 10);
2993 	if (spi_tmpring_size != sctx->spi_tmpring_size) {
2994 		sctx->spi_tmpring_size = spi_tmpring_size;
2995 		si_mark_atom_dirty(sctx, &sctx->scratch_state);
2996 	}
2997 	return true;
2998 }
2999 
si_init_tess_factor_ring(struct si_context * sctx)3000 static void si_init_tess_factor_ring(struct si_context *sctx)
3001 {
3002 	bool double_offchip_buffers = sctx->b.chip_class >= CIK &&
3003 				      sctx->b.family != CHIP_CARRIZO &&
3004 				      sctx->b.family != CHIP_STONEY;
3005 	/* This must be one less than the maximum number due to a hw limitation.
3006 	 * Various hardware bugs in SI, CIK, and GFX9 need this.
3007 	 */
3008 	unsigned max_offchip_buffers_per_se = double_offchip_buffers ? 127 : 63;
3009 	unsigned max_offchip_buffers = max_offchip_buffers_per_se *
3010 				       sctx->screen->info.max_se;
3011 	unsigned offchip_granularity;
3012 
3013 	switch (sctx->screen->tess_offchip_block_dw_size) {
3014 	default:
3015 		assert(0);
3016 		/* fall through */
3017 	case 8192:
3018 		offchip_granularity = V_03093C_X_8K_DWORDS;
3019 		break;
3020 	case 4096:
3021 		offchip_granularity = V_03093C_X_4K_DWORDS;
3022 		break;
3023 	}
3024 
3025 	assert(!sctx->tf_ring);
3026 	/* Use 64K alignment for both rings, so that we can pass the address
3027 	 * to shaders as one SGPR containing bits [16:47].
3028 	 */
3029 	sctx->tf_ring = si_aligned_buffer_create(sctx->b.b.screen,
3030 						   R600_RESOURCE_FLAG_UNMAPPABLE,
3031 						   PIPE_USAGE_DEFAULT,
3032 						   32768 * sctx->screen->info.max_se,
3033 						   64 * 1024);
3034 	if (!sctx->tf_ring)
3035 		return;
3036 
3037 	assert(((sctx->tf_ring->width0 / 4) & C_030938_SIZE) == 0);
3038 
3039 	sctx->tess_offchip_ring =
3040 		si_aligned_buffer_create(sctx->b.b.screen,
3041 					   R600_RESOURCE_FLAG_UNMAPPABLE,
3042 					   PIPE_USAGE_DEFAULT,
3043 					   max_offchip_buffers *
3044 					   sctx->screen->tess_offchip_block_dw_size * 4,
3045 					   64 * 1024);
3046 	if (!sctx->tess_offchip_ring)
3047 		return;
3048 
3049 	si_init_config_add_vgt_flush(sctx);
3050 
3051 	uint64_t offchip_va = r600_resource(sctx->tess_offchip_ring)->gpu_address;
3052 	uint64_t factor_va = r600_resource(sctx->tf_ring)->gpu_address;
3053 	assert((offchip_va & 0xffff) == 0);
3054 	assert((factor_va & 0xffff) == 0);
3055 
3056 	si_pm4_add_bo(sctx->init_config, r600_resource(sctx->tess_offchip_ring),
3057 		      RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RINGS);
3058 	si_pm4_add_bo(sctx->init_config, r600_resource(sctx->tf_ring),
3059 		      RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RINGS);
3060 
3061 	/* Append these registers to the init config state. */
3062 	if (sctx->b.chip_class >= CIK) {
3063 		if (sctx->b.chip_class >= VI)
3064 			--max_offchip_buffers;
3065 
3066 		si_pm4_set_reg(sctx->init_config, R_030938_VGT_TF_RING_SIZE,
3067 			       S_030938_SIZE(sctx->tf_ring->width0 / 4));
3068 		si_pm4_set_reg(sctx->init_config, R_030940_VGT_TF_MEMORY_BASE,
3069 			       factor_va >> 8);
3070 		if (sctx->b.chip_class >= GFX9)
3071 			si_pm4_set_reg(sctx->init_config, R_030944_VGT_TF_MEMORY_BASE_HI,
3072 				       factor_va >> 40);
3073 		si_pm4_set_reg(sctx->init_config, R_03093C_VGT_HS_OFFCHIP_PARAM,
3074 		             S_03093C_OFFCHIP_BUFFERING(max_offchip_buffers) |
3075 		             S_03093C_OFFCHIP_GRANULARITY(offchip_granularity));
3076 	} else {
3077 		assert(offchip_granularity == V_03093C_X_8K_DWORDS);
3078 		si_pm4_set_reg(sctx->init_config, R_008988_VGT_TF_RING_SIZE,
3079 			       S_008988_SIZE(sctx->tf_ring->width0 / 4));
3080 		si_pm4_set_reg(sctx->init_config, R_0089B8_VGT_TF_MEMORY_BASE,
3081 			       factor_va >> 8);
3082 		si_pm4_set_reg(sctx->init_config, R_0089B0_VGT_HS_OFFCHIP_PARAM,
3083 		               S_0089B0_OFFCHIP_BUFFERING(max_offchip_buffers));
3084 	}
3085 
3086 	if (sctx->b.chip_class >= GFX9) {
3087 		si_pm4_set_reg(sctx->init_config,
3088 			       R_00B430_SPI_SHADER_USER_DATA_LS_0 +
3089 			       GFX9_SGPR_TCS_OFFCHIP_ADDR_BASE64K * 4,
3090 			       offchip_va >> 16);
3091 		si_pm4_set_reg(sctx->init_config,
3092 			       R_00B430_SPI_SHADER_USER_DATA_LS_0 +
3093 			       GFX9_SGPR_TCS_FACTOR_ADDR_BASE64K * 4,
3094 			       factor_va >> 16);
3095 	} else {
3096 		si_pm4_set_reg(sctx->init_config,
3097 			       R_00B430_SPI_SHADER_USER_DATA_HS_0 +
3098 			       GFX6_SGPR_TCS_OFFCHIP_ADDR_BASE64K * 4,
3099 			       offchip_va >> 16);
3100 		si_pm4_set_reg(sctx->init_config,
3101 			       R_00B430_SPI_SHADER_USER_DATA_HS_0 +
3102 			       GFX6_SGPR_TCS_FACTOR_ADDR_BASE64K * 4,
3103 			       factor_va >> 16);
3104 	}
3105 
3106 	/* Flush the context to re-emit the init_config state.
3107 	 * This is done only once in a lifetime of a context.
3108 	 */
3109 	si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
3110 	sctx->b.initial_gfx_cs_size = 0; /* force flush */
3111 	si_context_gfx_flush(sctx, PIPE_FLUSH_ASYNC, NULL);
3112 }
3113 
3114 /**
3115  * This is used when TCS is NULL in the VS->TCS->TES chain. In this case,
3116  * VS passes its outputs to TES directly, so the fixed-function shader only
3117  * has to write TESSOUTER and TESSINNER.
3118  */
si_generate_fixed_func_tcs(struct si_context * sctx)3119 static void si_generate_fixed_func_tcs(struct si_context *sctx)
3120 {
3121 	struct ureg_src outer, inner;
3122 	struct ureg_dst tessouter, tessinner;
3123 	struct ureg_program *ureg = ureg_create(PIPE_SHADER_TESS_CTRL);
3124 
3125 	if (!ureg)
3126 		return; /* if we get here, we're screwed */
3127 
3128 	assert(!sctx->fixed_func_tcs_shader.cso);
3129 
3130 	outer = ureg_DECL_system_value(ureg,
3131 				       TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI, 0);
3132 	inner = ureg_DECL_system_value(ureg,
3133 				       TGSI_SEMANTIC_DEFAULT_TESSINNER_SI, 0);
3134 
3135 	tessouter = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSOUTER, 0);
3136 	tessinner = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSINNER, 0);
3137 
3138 	ureg_MOV(ureg, tessouter, outer);
3139 	ureg_MOV(ureg, tessinner, inner);
3140 	ureg_END(ureg);
3141 
3142 	sctx->fixed_func_tcs_shader.cso =
3143 		ureg_create_shader_and_destroy(ureg, &sctx->b.b);
3144 }
3145 
si_update_vgt_shader_config(struct si_context * sctx)3146 static void si_update_vgt_shader_config(struct si_context *sctx)
3147 {
3148 	/* Calculate the index of the config.
3149 	 * 0 = VS, 1 = VS+GS, 2 = VS+Tess, 3 = VS+Tess+GS */
3150 	unsigned index = 2*!!sctx->tes_shader.cso + !!sctx->gs_shader.cso;
3151 	struct si_pm4_state **pm4 = &sctx->vgt_shader_config[index];
3152 
3153 	if (!*pm4) {
3154 		uint32_t stages = 0;
3155 
3156 		*pm4 = CALLOC_STRUCT(si_pm4_state);
3157 
3158 		if (sctx->tes_shader.cso) {
3159 			stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
3160 				  S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
3161 
3162 			if (sctx->gs_shader.cso)
3163 				stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
3164 					  S_028B54_GS_EN(1) |
3165 				          S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
3166 			else
3167 				stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
3168 		} else if (sctx->gs_shader.cso) {
3169 			stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
3170 				  S_028B54_GS_EN(1) |
3171 			          S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
3172 		}
3173 
3174 		if (sctx->b.chip_class >= GFX9)
3175 			stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
3176 
3177 		si_pm4_set_reg(*pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
3178 	}
3179 	si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
3180 }
3181 
si_update_shaders(struct si_context * sctx)3182 bool si_update_shaders(struct si_context *sctx)
3183 {
3184 	struct pipe_context *ctx = (struct pipe_context*)sctx;
3185 	struct si_compiler_ctx_state compiler_state;
3186 	struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
3187 	struct si_shader *old_vs = si_get_vs_state(sctx);
3188 	bool old_clip_disable = old_vs ? old_vs->key.opt.clip_disable : false;
3189 	struct si_shader *old_ps = sctx->ps_shader.current;
3190 	unsigned old_spi_shader_col_format =
3191 		old_ps ? old_ps->key.part.ps.epilog.spi_shader_col_format : 0;
3192 	int r;
3193 
3194 	compiler_state.tm = sctx->tm;
3195 	compiler_state.debug = sctx->debug;
3196 	compiler_state.is_debug_context = sctx->is_debug;
3197 
3198 	/* Update stages before GS. */
3199 	if (sctx->tes_shader.cso) {
3200 		if (!sctx->tf_ring) {
3201 			si_init_tess_factor_ring(sctx);
3202 			if (!sctx->tf_ring)
3203 				return false;
3204 		}
3205 
3206 		/* VS as LS */
3207 		if (sctx->b.chip_class <= VI) {
3208 			r = si_shader_select(ctx, &sctx->vs_shader,
3209 					     &compiler_state);
3210 			if (r)
3211 				return false;
3212 			si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
3213 		}
3214 
3215 		if (sctx->tcs_shader.cso) {
3216 			r = si_shader_select(ctx, &sctx->tcs_shader,
3217 					     &compiler_state);
3218 			if (r)
3219 				return false;
3220 			si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
3221 		} else {
3222 			if (!sctx->fixed_func_tcs_shader.cso) {
3223 				si_generate_fixed_func_tcs(sctx);
3224 				if (!sctx->fixed_func_tcs_shader.cso)
3225 					return false;
3226 			}
3227 
3228 			r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader,
3229 					     &compiler_state);
3230 			if (r)
3231 				return false;
3232 			si_pm4_bind_state(sctx, hs,
3233 					  sctx->fixed_func_tcs_shader.current->pm4);
3234 		}
3235 
3236 		if (sctx->gs_shader.cso) {
3237 			/* TES as ES */
3238 			if (sctx->b.chip_class <= VI) {
3239 				r = si_shader_select(ctx, &sctx->tes_shader,
3240 						     &compiler_state);
3241 				if (r)
3242 					return false;
3243 				si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
3244 			}
3245 		} else {
3246 			/* TES as VS */
3247 			r = si_shader_select(ctx, &sctx->tes_shader,
3248 					     &compiler_state);
3249 			if (r)
3250 				return false;
3251 			si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
3252 		}
3253 	} else if (sctx->gs_shader.cso) {
3254 		if (sctx->b.chip_class <= VI) {
3255 			/* VS as ES */
3256 			r = si_shader_select(ctx, &sctx->vs_shader,
3257 					     &compiler_state);
3258 			if (r)
3259 				return false;
3260 			si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
3261 
3262 			si_pm4_bind_state(sctx, ls, NULL);
3263 			si_pm4_bind_state(sctx, hs, NULL);
3264 		}
3265 	} else {
3266 		/* VS as VS */
3267 		r = si_shader_select(ctx, &sctx->vs_shader, &compiler_state);
3268 		if (r)
3269 			return false;
3270 		si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
3271 		si_pm4_bind_state(sctx, ls, NULL);
3272 		si_pm4_bind_state(sctx, hs, NULL);
3273 	}
3274 
3275 	/* Update GS. */
3276 	if (sctx->gs_shader.cso) {
3277 		r = si_shader_select(ctx, &sctx->gs_shader, &compiler_state);
3278 		if (r)
3279 			return false;
3280 		si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
3281 		si_pm4_bind_state(sctx, vs, sctx->gs_shader.cso->gs_copy_shader->pm4);
3282 
3283 		if (!si_update_gs_ring_buffers(sctx))
3284 			return false;
3285 	} else {
3286 		si_pm4_bind_state(sctx, gs, NULL);
3287 		if (sctx->b.chip_class <= VI)
3288 			si_pm4_bind_state(sctx, es, NULL);
3289 	}
3290 
3291 	si_update_vgt_shader_config(sctx);
3292 
3293 	if (old_clip_disable != si_get_vs_state(sctx)->key.opt.clip_disable)
3294 		si_mark_atom_dirty(sctx, &sctx->clip_regs);
3295 
3296 	if (sctx->ps_shader.cso) {
3297 		unsigned db_shader_control;
3298 
3299 		r = si_shader_select(ctx, &sctx->ps_shader, &compiler_state);
3300 		if (r)
3301 			return false;
3302 		si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
3303 
3304 		db_shader_control =
3305 			sctx->ps_shader.cso->db_shader_control |
3306 			S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS);
3307 
3308 		if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) ||
3309 		    sctx->sprite_coord_enable != rs->sprite_coord_enable ||
3310 		    sctx->flatshade != rs->flatshade) {
3311 			sctx->sprite_coord_enable = rs->sprite_coord_enable;
3312 			sctx->flatshade = rs->flatshade;
3313 			si_mark_atom_dirty(sctx, &sctx->spi_map);
3314 		}
3315 
3316 		if (sctx->screen->rbplus_allowed &&
3317 		    si_pm4_state_changed(sctx, ps) &&
3318 		    (!old_ps ||
3319 		     old_spi_shader_col_format !=
3320 		     sctx->ps_shader.current->key.part.ps.epilog.spi_shader_col_format))
3321 			si_mark_atom_dirty(sctx, &sctx->cb_render_state);
3322 
3323 		if (sctx->ps_db_shader_control != db_shader_control) {
3324 			sctx->ps_db_shader_control = db_shader_control;
3325 			si_mark_atom_dirty(sctx, &sctx->db_render_state);
3326 			if (sctx->screen->dpbb_allowed)
3327 				si_mark_atom_dirty(sctx, &sctx->dpbb_state);
3328 		}
3329 
3330 		if (sctx->smoothing_enabled != sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing) {
3331 			sctx->smoothing_enabled = sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing;
3332 			si_mark_atom_dirty(sctx, &sctx->msaa_config);
3333 
3334 			if (sctx->b.chip_class == SI)
3335 				si_mark_atom_dirty(sctx, &sctx->db_render_state);
3336 
3337 			if (sctx->framebuffer.nr_samples <= 1)
3338 				si_mark_atom_dirty(sctx, &sctx->msaa_sample_locs.atom);
3339 		}
3340 	}
3341 
3342 	if (si_pm4_state_enabled_and_changed(sctx, ls) ||
3343 	    si_pm4_state_enabled_and_changed(sctx, hs) ||
3344 	    si_pm4_state_enabled_and_changed(sctx, es) ||
3345 	    si_pm4_state_enabled_and_changed(sctx, gs) ||
3346 	    si_pm4_state_enabled_and_changed(sctx, vs) ||
3347 	    si_pm4_state_enabled_and_changed(sctx, ps)) {
3348 		if (!si_update_spi_tmpring_size(sctx))
3349 			return false;
3350 	}
3351 
3352 	if (sctx->b.chip_class >= CIK) {
3353 		if (si_pm4_state_enabled_and_changed(sctx, ls))
3354 			sctx->prefetch_L2_mask |= SI_PREFETCH_LS;
3355 		else if (!sctx->queued.named.ls)
3356 			sctx->prefetch_L2_mask &= ~SI_PREFETCH_LS;
3357 
3358 		if (si_pm4_state_enabled_and_changed(sctx, hs))
3359 			sctx->prefetch_L2_mask |= SI_PREFETCH_HS;
3360 		else if (!sctx->queued.named.hs)
3361 			sctx->prefetch_L2_mask &= ~SI_PREFETCH_HS;
3362 
3363 		if (si_pm4_state_enabled_and_changed(sctx, es))
3364 			sctx->prefetch_L2_mask |= SI_PREFETCH_ES;
3365 		else if (!sctx->queued.named.es)
3366 			sctx->prefetch_L2_mask &= ~SI_PREFETCH_ES;
3367 
3368 		if (si_pm4_state_enabled_and_changed(sctx, gs))
3369 			sctx->prefetch_L2_mask |= SI_PREFETCH_GS;
3370 		else if (!sctx->queued.named.gs)
3371 			sctx->prefetch_L2_mask &= ~SI_PREFETCH_GS;
3372 
3373 		if (si_pm4_state_enabled_and_changed(sctx, vs))
3374 			sctx->prefetch_L2_mask |= SI_PREFETCH_VS;
3375 		else if (!sctx->queued.named.vs)
3376 			sctx->prefetch_L2_mask &= ~SI_PREFETCH_VS;
3377 
3378 		if (si_pm4_state_enabled_and_changed(sctx, ps))
3379 			sctx->prefetch_L2_mask |= SI_PREFETCH_PS;
3380 		else if (!sctx->queued.named.ps)
3381 			sctx->prefetch_L2_mask &= ~SI_PREFETCH_PS;
3382 	}
3383 
3384 	sctx->do_update_shaders = false;
3385 	return true;
3386 }
3387 
si_emit_scratch_state(struct si_context * sctx,struct r600_atom * atom)3388 static void si_emit_scratch_state(struct si_context *sctx,
3389 				  struct r600_atom *atom)
3390 {
3391 	struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
3392 
3393 	radeon_set_context_reg(cs, R_0286E8_SPI_TMPRING_SIZE,
3394 			       sctx->spi_tmpring_size);
3395 
3396 	if (sctx->scratch_buffer) {
3397 		radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
3398 				      sctx->scratch_buffer, RADEON_USAGE_READWRITE,
3399 				      RADEON_PRIO_SCRATCH_BUFFER);
3400 	}
3401 }
3402 
si_get_blit_vs(struct si_context * sctx,enum blitter_attrib_type type,unsigned num_layers)3403 void *si_get_blit_vs(struct si_context *sctx, enum blitter_attrib_type type,
3404 		     unsigned num_layers)
3405 {
3406 	struct pipe_context *pipe = &sctx->b.b;
3407 	unsigned vs_blit_property;
3408 	void **vs;
3409 
3410 	switch (type) {
3411 	case UTIL_BLITTER_ATTRIB_NONE:
3412 		vs = num_layers > 1 ? &sctx->vs_blit_pos_layered :
3413 				      &sctx->vs_blit_pos;
3414 		vs_blit_property = SI_VS_BLIT_SGPRS_POS;
3415 		break;
3416 	case UTIL_BLITTER_ATTRIB_COLOR:
3417 		vs = num_layers > 1 ? &sctx->vs_blit_color_layered :
3418 				      &sctx->vs_blit_color;
3419 		vs_blit_property = SI_VS_BLIT_SGPRS_POS_COLOR;
3420 		break;
3421 	case UTIL_BLITTER_ATTRIB_TEXCOORD_XY:
3422 	case UTIL_BLITTER_ATTRIB_TEXCOORD_XYZW:
3423 		assert(num_layers == 1);
3424 		vs = &sctx->vs_blit_texcoord;
3425 		vs_blit_property = SI_VS_BLIT_SGPRS_POS_TEXCOORD;
3426 		break;
3427 	default:
3428 		assert(0);
3429 		return NULL;
3430 	}
3431 	if (*vs)
3432 		return *vs;
3433 
3434 	struct ureg_program *ureg = ureg_create(PIPE_SHADER_VERTEX);
3435 	if (!ureg)
3436 		return NULL;
3437 
3438 	/* Tell the shader to load VS inputs from SGPRs: */
3439 	ureg_property(ureg, TGSI_PROPERTY_VS_BLIT_SGPRS, vs_blit_property);
3440 	ureg_property(ureg, TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION, true);
3441 
3442 	/* This is just a pass-through shader with 1-3 MOV instructions. */
3443 	ureg_MOV(ureg,
3444 		 ureg_DECL_output(ureg, TGSI_SEMANTIC_POSITION, 0),
3445 		 ureg_DECL_vs_input(ureg, 0));
3446 
3447 	if (type != UTIL_BLITTER_ATTRIB_NONE) {
3448 		ureg_MOV(ureg,
3449 			 ureg_DECL_output(ureg, TGSI_SEMANTIC_GENERIC, 0),
3450 			 ureg_DECL_vs_input(ureg, 1));
3451 	}
3452 
3453 	if (num_layers > 1) {
3454 		struct ureg_src instance_id =
3455 			ureg_DECL_system_value(ureg, TGSI_SEMANTIC_INSTANCEID, 0);
3456 		struct ureg_dst layer =
3457 			ureg_DECL_output(ureg, TGSI_SEMANTIC_LAYER, 0);
3458 
3459 		ureg_MOV(ureg, ureg_writemask(layer, TGSI_WRITEMASK_X),
3460 			 ureg_scalar(instance_id, TGSI_SWIZZLE_X));
3461 	}
3462 	ureg_END(ureg);
3463 
3464 	*vs = ureg_create_shader_and_destroy(ureg, pipe);
3465 	return *vs;
3466 }
3467 
si_init_shader_functions(struct si_context * sctx)3468 void si_init_shader_functions(struct si_context *sctx)
3469 {
3470 	si_init_atom(sctx, &sctx->spi_map, &sctx->atoms.s.spi_map, si_emit_spi_map);
3471 	si_init_atom(sctx, &sctx->scratch_state, &sctx->atoms.s.scratch_state,
3472 		     si_emit_scratch_state);
3473 
3474 	sctx->b.b.create_vs_state = si_create_shader_selector;
3475 	sctx->b.b.create_tcs_state = si_create_shader_selector;
3476 	sctx->b.b.create_tes_state = si_create_shader_selector;
3477 	sctx->b.b.create_gs_state = si_create_shader_selector;
3478 	sctx->b.b.create_fs_state = si_create_shader_selector;
3479 
3480 	sctx->b.b.bind_vs_state = si_bind_vs_shader;
3481 	sctx->b.b.bind_tcs_state = si_bind_tcs_shader;
3482 	sctx->b.b.bind_tes_state = si_bind_tes_shader;
3483 	sctx->b.b.bind_gs_state = si_bind_gs_shader;
3484 	sctx->b.b.bind_fs_state = si_bind_ps_shader;
3485 
3486 	sctx->b.b.delete_vs_state = si_delete_shader_selector;
3487 	sctx->b.b.delete_tcs_state = si_delete_shader_selector;
3488 	sctx->b.b.delete_tes_state = si_delete_shader_selector;
3489 	sctx->b.b.delete_gs_state = si_delete_shader_selector;
3490 	sctx->b.b.delete_fs_state = si_delete_shader_selector;
3491 }
3492