1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include <android/content/pm/IPackageManagerNative.h>
17 #include <binder/ActivityManager.h>
18 #include <binder/BinderService.h>
19 #include <binder/IServiceManager.h>
20 #include <binder/PermissionCache.h>
21 #include <binder/PermissionController.h>
22 #include <cutils/ashmem.h>
23 #include <cutils/misc.h>
24 #include <cutils/properties.h>
25 #include <hardware/sensors.h>
26 #include <hardware_legacy/power.h>
27 #include <log/log.h>
28 #include <openssl/digest.h>
29 #include <openssl/hmac.h>
30 #include <openssl/rand.h>
31 #include <sensor/SensorEventQueue.h>
32 #include <sensorprivacy/SensorPrivacyManager.h>
33 #include <utils/SystemClock.h>
34 
35 #include "BatteryService.h"
36 #include "CorrectedGyroSensor.h"
37 #include "GravitySensor.h"
38 #include "LinearAccelerationSensor.h"
39 #include "OrientationSensor.h"
40 #include "RotationVectorSensor.h"
41 #include "SensorFusion.h"
42 #include "SensorInterface.h"
43 
44 #include "SensorService.h"
45 #include "SensorDirectConnection.h"
46 #include "SensorEventAckReceiver.h"
47 #include "SensorEventConnection.h"
48 #include "SensorRecord.h"
49 #include "SensorRegistrationInfo.h"
50 
51 #include <ctime>
52 #include <inttypes.h>
53 #include <math.h>
54 #include <sched.h>
55 #include <stdint.h>
56 #include <sys/socket.h>
57 #include <sys/stat.h>
58 #include <sys/types.h>
59 #include <unistd.h>
60 
61 #include <private/android_filesystem_config.h>
62 
63 namespace android {
64 // ---------------------------------------------------------------------------
65 
66 /*
67  * Notes:
68  *
69  * - what about a gyro-corrected magnetic-field sensor?
70  * - run mag sensor from time to time to force calibration
71  * - gravity sensor length is wrong (=> drift in linear-acc sensor)
72  *
73  */
74 
75 const char* SensorService::WAKE_LOCK_NAME = "SensorService_wakelock";
76 uint8_t SensorService::sHmacGlobalKey[128] = {};
77 bool SensorService::sHmacGlobalKeyIsValid = false;
78 std::map<String16, int> SensorService::sPackageTargetVersion;
79 Mutex SensorService::sPackageTargetVersionLock;
80 AppOpsManager SensorService::sAppOpsManager;
81 
82 #define SENSOR_SERVICE_DIR "/data/system/sensor_service"
83 #define SENSOR_SERVICE_HMAC_KEY_FILE  SENSOR_SERVICE_DIR "/hmac_key"
84 #define SENSOR_SERVICE_SCHED_FIFO_PRIORITY 10
85 
86 // Permissions.
87 static const String16 sDumpPermission("android.permission.DUMP");
88 static const String16 sLocationHardwarePermission("android.permission.LOCATION_HARDWARE");
89 static const String16 sManageSensorsPermission("android.permission.MANAGE_SENSORS");
90 
SensorService()91 SensorService::SensorService()
92     : mInitCheck(NO_INIT), mSocketBufferSize(SOCKET_BUFFER_SIZE_NON_BATCHED),
93       mWakeLockAcquired(false) {
94     mUidPolicy = new UidPolicy(this);
95     mSensorPrivacyPolicy = new SensorPrivacyPolicy(this);
96 }
97 
initializeHmacKey()98 bool SensorService::initializeHmacKey() {
99     int fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_RDONLY|O_CLOEXEC);
100     if (fd != -1) {
101         int result = read(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey));
102         close(fd);
103         if (result == sizeof(sHmacGlobalKey)) {
104             return true;
105         }
106         ALOGW("Unable to read HMAC key; generating new one.");
107     }
108 
109     if (RAND_bytes(sHmacGlobalKey, sizeof(sHmacGlobalKey)) == -1) {
110         ALOGW("Can't generate HMAC key; dynamic sensor getId() will be wrong.");
111         return false;
112     }
113 
114     // We need to make sure this is only readable to us.
115     bool wroteKey = false;
116     mkdir(SENSOR_SERVICE_DIR, S_IRWXU);
117     fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_WRONLY|O_CREAT|O_EXCL|O_CLOEXEC,
118               S_IRUSR|S_IWUSR);
119     if (fd != -1) {
120         int result = write(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey));
121         close(fd);
122         wroteKey = (result == sizeof(sHmacGlobalKey));
123     }
124     if (wroteKey) {
125         ALOGI("Generated new HMAC key.");
126     } else {
127         ALOGW("Unable to write HMAC key; dynamic sensor getId() will change "
128               "after reboot.");
129     }
130     // Even if we failed to write the key we return true, because we did
131     // initialize the HMAC key.
132     return true;
133 }
134 
135 // Set main thread to SCHED_FIFO to lower sensor event latency when system is under load
enableSchedFifoMode()136 void SensorService::enableSchedFifoMode() {
137     struct sched_param param = {0};
138     param.sched_priority = SENSOR_SERVICE_SCHED_FIFO_PRIORITY;
139     if (sched_setscheduler(getTid(), SCHED_FIFO | SCHED_RESET_ON_FORK, &param) != 0) {
140         ALOGE("Couldn't set SCHED_FIFO for SensorService thread");
141     }
142 }
143 
onFirstRef()144 void SensorService::onFirstRef() {
145     ALOGD("nuSensorService starting...");
146     SensorDevice& dev(SensorDevice::getInstance());
147 
148     sHmacGlobalKeyIsValid = initializeHmacKey();
149 
150     if (dev.initCheck() == NO_ERROR) {
151         sensor_t const* list;
152         ssize_t count = dev.getSensorList(&list);
153         if (count > 0) {
154             ssize_t orientationIndex = -1;
155             bool hasGyro = false, hasAccel = false, hasMag = false;
156             uint32_t virtualSensorsNeeds =
157                     (1<<SENSOR_TYPE_GRAVITY) |
158                     (1<<SENSOR_TYPE_LINEAR_ACCELERATION) |
159                     (1<<SENSOR_TYPE_ROTATION_VECTOR) |
160                     (1<<SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR) |
161                     (1<<SENSOR_TYPE_GAME_ROTATION_VECTOR);
162 
163             for (ssize_t i=0 ; i<count ; i++) {
164                 bool useThisSensor=true;
165 
166                 switch (list[i].type) {
167                     case SENSOR_TYPE_ACCELEROMETER:
168                         hasAccel = true;
169                         break;
170                     case SENSOR_TYPE_MAGNETIC_FIELD:
171                         hasMag = true;
172                         break;
173                     case SENSOR_TYPE_ORIENTATION:
174                         orientationIndex = i;
175                         break;
176                     case SENSOR_TYPE_GYROSCOPE:
177                     case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
178                         hasGyro = true;
179                         break;
180                     case SENSOR_TYPE_GRAVITY:
181                     case SENSOR_TYPE_LINEAR_ACCELERATION:
182                     case SENSOR_TYPE_ROTATION_VECTOR:
183                     case SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR:
184                     case SENSOR_TYPE_GAME_ROTATION_VECTOR:
185                         if (IGNORE_HARDWARE_FUSION) {
186                             useThisSensor = false;
187                         } else {
188                             virtualSensorsNeeds &= ~(1<<list[i].type);
189                         }
190                         break;
191                 }
192                 if (useThisSensor) {
193                     registerSensor( new HardwareSensor(list[i]) );
194                 }
195             }
196 
197             // it's safe to instantiate the SensorFusion object here
198             // (it wants to be instantiated after h/w sensors have been
199             // registered)
200             SensorFusion::getInstance();
201 
202             if (hasGyro && hasAccel && hasMag) {
203                 // Add Android virtual sensors if they're not already
204                 // available in the HAL
205                 bool needRotationVector =
206                         (virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR)) != 0;
207 
208                 registerSensor(new RotationVectorSensor(), !needRotationVector, true);
209                 registerSensor(new OrientationSensor(), !needRotationVector, true);
210 
211                 bool needLinearAcceleration =
212                         (virtualSensorsNeeds & (1<<SENSOR_TYPE_LINEAR_ACCELERATION)) != 0;
213 
214                 registerSensor(new LinearAccelerationSensor(list, count),
215                                !needLinearAcceleration, true);
216 
217                 // virtual debugging sensors are not for user
218                 registerSensor( new CorrectedGyroSensor(list, count), true, true);
219                 registerSensor( new GyroDriftSensor(), true, true);
220             }
221 
222             if (hasAccel && hasGyro) {
223                 bool needGravitySensor = (virtualSensorsNeeds & (1<<SENSOR_TYPE_GRAVITY)) != 0;
224                 registerSensor(new GravitySensor(list, count), !needGravitySensor, true);
225 
226                 bool needGameRotationVector =
227                         (virtualSensorsNeeds & (1<<SENSOR_TYPE_GAME_ROTATION_VECTOR)) != 0;
228                 registerSensor(new GameRotationVectorSensor(), !needGameRotationVector, true);
229             }
230 
231             if (hasAccel && hasMag) {
232                 bool needGeoMagRotationVector =
233                         (virtualSensorsNeeds & (1<<SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR)) != 0;
234                 registerSensor(new GeoMagRotationVectorSensor(), !needGeoMagRotationVector, true);
235             }
236 
237             // Check if the device really supports batching by looking at the FIFO event
238             // counts for each sensor.
239             bool batchingSupported = false;
240             mSensors.forEachSensor(
241                     [&batchingSupported] (const Sensor& s) -> bool {
242                         if (s.getFifoMaxEventCount() > 0) {
243                             batchingSupported = true;
244                         }
245                         return !batchingSupported;
246                     });
247 
248             if (batchingSupported) {
249                 // Increase socket buffer size to a max of 100 KB for batching capabilities.
250                 mSocketBufferSize = MAX_SOCKET_BUFFER_SIZE_BATCHED;
251             } else {
252                 mSocketBufferSize = SOCKET_BUFFER_SIZE_NON_BATCHED;
253             }
254 
255             // Compare the socketBufferSize value against the system limits and limit
256             // it to maxSystemSocketBufferSize if necessary.
257             FILE *fp = fopen("/proc/sys/net/core/wmem_max", "r");
258             char line[128];
259             if (fp != nullptr && fgets(line, sizeof(line), fp) != nullptr) {
260                 line[sizeof(line) - 1] = '\0';
261                 size_t maxSystemSocketBufferSize;
262                 sscanf(line, "%zu", &maxSystemSocketBufferSize);
263                 if (mSocketBufferSize > maxSystemSocketBufferSize) {
264                     mSocketBufferSize = maxSystemSocketBufferSize;
265                 }
266             }
267             if (fp) {
268                 fclose(fp);
269             }
270 
271             mWakeLockAcquired = false;
272             mLooper = new Looper(false);
273             const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
274             mSensorEventBuffer = new sensors_event_t[minBufferSize];
275             mSensorEventScratch = new sensors_event_t[minBufferSize];
276             mMapFlushEventsToConnections = new wp<const SensorEventConnection> [minBufferSize];
277             mCurrentOperatingMode = NORMAL;
278 
279             mNextSensorRegIndex = 0;
280             for (int i = 0; i < SENSOR_REGISTRATIONS_BUF_SIZE; ++i) {
281                 mLastNSensorRegistrations.push();
282             }
283 
284             mInitCheck = NO_ERROR;
285             mAckReceiver = new SensorEventAckReceiver(this);
286             mAckReceiver->run("SensorEventAckReceiver", PRIORITY_URGENT_DISPLAY);
287             run("SensorService", PRIORITY_URGENT_DISPLAY);
288 
289             // priority can only be changed after run
290             enableSchedFifoMode();
291 
292             // Start watching UID changes to apply policy.
293             mUidPolicy->registerSelf();
294 
295             // Start watching sensor privacy changes
296             mSensorPrivacyPolicy->registerSelf();
297         }
298     }
299 }
300 
setSensorAccess(uid_t uid,bool hasAccess)301 void SensorService::setSensorAccess(uid_t uid, bool hasAccess) {
302     SortedVector< sp<SensorEventConnection> > activeConnections;
303     populateActiveConnections(&activeConnections);
304     {
305         Mutex::Autolock _l(mLock);
306         for (size_t i = 0 ; i < activeConnections.size(); i++) {
307             if (activeConnections[i] != nullptr && activeConnections[i]->getUid() == uid) {
308                 activeConnections[i]->setSensorAccess(hasAccess);
309             }
310         }
311     }
312 }
313 
registerSensor(SensorInterface * s,bool isDebug,bool isVirtual)314 const Sensor& SensorService::registerSensor(SensorInterface* s, bool isDebug, bool isVirtual) {
315     int handle = s->getSensor().getHandle();
316     int type = s->getSensor().getType();
317     if (mSensors.add(handle, s, isDebug, isVirtual)){
318         mRecentEvent.emplace(handle, new SensorServiceUtil::RecentEventLogger(type));
319         return s->getSensor();
320     } else {
321         return mSensors.getNonSensor();
322     }
323 }
324 
registerDynamicSensorLocked(SensorInterface * s,bool isDebug)325 const Sensor& SensorService::registerDynamicSensorLocked(SensorInterface* s, bool isDebug) {
326     return registerSensor(s, isDebug);
327 }
328 
unregisterDynamicSensorLocked(int handle)329 bool SensorService::unregisterDynamicSensorLocked(int handle) {
330     bool ret = mSensors.remove(handle);
331 
332     const auto i = mRecentEvent.find(handle);
333     if (i != mRecentEvent.end()) {
334         delete i->second;
335         mRecentEvent.erase(i);
336     }
337     return ret;
338 }
339 
registerVirtualSensor(SensorInterface * s,bool isDebug)340 const Sensor& SensorService::registerVirtualSensor(SensorInterface* s, bool isDebug) {
341     return registerSensor(s, isDebug, true);
342 }
343 
~SensorService()344 SensorService::~SensorService() {
345     for (auto && entry : mRecentEvent) {
346         delete entry.second;
347     }
348     mUidPolicy->unregisterSelf();
349     mSensorPrivacyPolicy->unregisterSelf();
350 }
351 
dump(int fd,const Vector<String16> & args)352 status_t SensorService::dump(int fd, const Vector<String16>& args) {
353     String8 result;
354     if (!PermissionCache::checkCallingPermission(sDumpPermission)) {
355         result.appendFormat("Permission Denial: can't dump SensorService from pid=%d, uid=%d\n",
356                 IPCThreadState::self()->getCallingPid(),
357                 IPCThreadState::self()->getCallingUid());
358     } else {
359         bool privileged = IPCThreadState::self()->getCallingUid() == 0;
360         if (args.size() > 2) {
361            return INVALID_OPERATION;
362         }
363         Mutex::Autolock _l(mLock);
364         SensorDevice& dev(SensorDevice::getInstance());
365         if (args.size() == 2 && args[0] == String16("restrict")) {
366             // If already in restricted mode. Ignore.
367             if (mCurrentOperatingMode == RESTRICTED) {
368                 return status_t(NO_ERROR);
369             }
370             // If in any mode other than normal, ignore.
371             if (mCurrentOperatingMode != NORMAL) {
372                 return INVALID_OPERATION;
373             }
374 
375             mCurrentOperatingMode = RESTRICTED;
376             // temporarily stop all sensor direct report and disable sensors
377             disableAllSensorsLocked();
378             mWhiteListedPackage.setTo(String8(args[1]));
379             return status_t(NO_ERROR);
380         } else if (args.size() == 1 && args[0] == String16("enable")) {
381             // If currently in restricted mode, reset back to NORMAL mode else ignore.
382             if (mCurrentOperatingMode == RESTRICTED) {
383                 mCurrentOperatingMode = NORMAL;
384                 // enable sensors and recover all sensor direct report
385                 enableAllSensorsLocked();
386             }
387             if (mCurrentOperatingMode == DATA_INJECTION) {
388                resetToNormalModeLocked();
389             }
390             mWhiteListedPackage.clear();
391             return status_t(NO_ERROR);
392         } else if (args.size() == 2 && args[0] == String16("data_injection")) {
393             if (mCurrentOperatingMode == NORMAL) {
394                 dev.disableAllSensors();
395                 status_t err = dev.setMode(DATA_INJECTION);
396                 if (err == NO_ERROR) {
397                     mCurrentOperatingMode = DATA_INJECTION;
398                 } else {
399                     // Re-enable sensors.
400                     dev.enableAllSensors();
401                 }
402                 mWhiteListedPackage.setTo(String8(args[1]));
403                 return NO_ERROR;
404             } else if (mCurrentOperatingMode == DATA_INJECTION) {
405                 // Already in DATA_INJECTION mode. Treat this as a no_op.
406                 return NO_ERROR;
407             } else {
408                 // Transition to data injection mode supported only from NORMAL mode.
409                 return INVALID_OPERATION;
410             }
411         } else if (!mSensors.hasAnySensor()) {
412             result.append("No Sensors on the device\n");
413             result.appendFormat("devInitCheck : %d\n", SensorDevice::getInstance().initCheck());
414         } else {
415             // Default dump the sensor list and debugging information.
416             //
417             timespec curTime;
418             clock_gettime(CLOCK_REALTIME, &curTime);
419             struct tm* timeinfo = localtime(&(curTime.tv_sec));
420             result.appendFormat("Captured at: %02d:%02d:%02d.%03d\n", timeinfo->tm_hour,
421                                 timeinfo->tm_min, timeinfo->tm_sec, (int)ns2ms(curTime.tv_nsec));
422             result.append("Sensor Device:\n");
423             result.append(SensorDevice::getInstance().dump().c_str());
424 
425             result.append("Sensor List:\n");
426             result.append(mSensors.dump().c_str());
427 
428             result.append("Fusion States:\n");
429             SensorFusion::getInstance().dump(result);
430 
431             result.append("Recent Sensor events:\n");
432             for (auto&& i : mRecentEvent) {
433                 sp<SensorInterface> s = mSensors.getInterface(i.first);
434                 if (!i.second->isEmpty()) {
435                     if (privileged || s->getSensor().getRequiredPermission().isEmpty()) {
436                         i.second->setFormat("normal");
437                     } else {
438                         i.second->setFormat("mask_data");
439                     }
440                     // if there is events and sensor does not need special permission.
441                     result.appendFormat("%s: ", s->getSensor().getName().string());
442                     result.append(i.second->dump().c_str());
443                 }
444             }
445 
446             result.append("Active sensors:\n");
447             SensorDevice& dev = SensorDevice::getInstance();
448             for (size_t i=0 ; i<mActiveSensors.size() ; i++) {
449                 int handle = mActiveSensors.keyAt(i);
450                 if (dev.isSensorActive(handle)) {
451                     result.appendFormat("%s (handle=0x%08x, connections=%zu)\n",
452                             getSensorName(handle).string(),
453                             handle,
454                             mActiveSensors.valueAt(i)->getNumConnections());
455                 }
456             }
457 
458             result.appendFormat("Socket Buffer size = %zd events\n",
459                                 mSocketBufferSize/sizeof(sensors_event_t));
460             result.appendFormat("WakeLock Status: %s \n", mWakeLockAcquired ? "acquired" :
461                     "not held");
462             result.appendFormat("Mode :");
463             switch(mCurrentOperatingMode) {
464                case NORMAL:
465                    result.appendFormat(" NORMAL\n");
466                    break;
467                case RESTRICTED:
468                    result.appendFormat(" RESTRICTED : %s\n", mWhiteListedPackage.string());
469                    break;
470                case DATA_INJECTION:
471                    result.appendFormat(" DATA_INJECTION : %s\n", mWhiteListedPackage.string());
472             }
473             result.appendFormat("Sensor Privacy: %s\n",
474                     mSensorPrivacyPolicy->isSensorPrivacyEnabled() ? "enabled" : "disabled");
475 
476             result.appendFormat("%zd active connections\n", mActiveConnections.size());
477             for (size_t i=0 ; i < mActiveConnections.size() ; i++) {
478                 sp<SensorEventConnection> connection(mActiveConnections[i].promote());
479                 if (connection != nullptr) {
480                     result.appendFormat("Connection Number: %zu \n", i);
481                     connection->dump(result);
482                 }
483             }
484 
485             result.appendFormat("%zd direct connections\n", mDirectConnections.size());
486             for (size_t i = 0 ; i < mDirectConnections.size() ; i++) {
487                 sp<SensorDirectConnection> connection(mDirectConnections[i].promote());
488                 if (connection != nullptr) {
489                     result.appendFormat("Direct connection %zu:\n", i);
490                     connection->dump(result);
491                 }
492             }
493 
494             result.appendFormat("Previous Registrations:\n");
495             // Log in the reverse chronological order.
496             int currentIndex = (mNextSensorRegIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
497                 SENSOR_REGISTRATIONS_BUF_SIZE;
498             const int startIndex = currentIndex;
499             do {
500                 const SensorRegistrationInfo& reg_info = mLastNSensorRegistrations[currentIndex];
501                 if (SensorRegistrationInfo::isSentinel(reg_info)) {
502                     // Ignore sentinel, proceed to next item.
503                     currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
504                         SENSOR_REGISTRATIONS_BUF_SIZE;
505                     continue;
506                 }
507                 result.appendFormat("%s\n", reg_info.dump().c_str());
508                 currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
509                         SENSOR_REGISTRATIONS_BUF_SIZE;
510             } while(startIndex != currentIndex);
511         }
512     }
513     write(fd, result.string(), result.size());
514     return NO_ERROR;
515 }
516 
disableAllSensors()517 void SensorService::disableAllSensors() {
518     Mutex::Autolock _l(mLock);
519     disableAllSensorsLocked();
520 }
521 
disableAllSensorsLocked()522 void SensorService::disableAllSensorsLocked() {
523     SensorDevice& dev(SensorDevice::getInstance());
524     for (auto &i : mDirectConnections) {
525         sp<SensorDirectConnection> connection(i.promote());
526         if (connection != nullptr) {
527             connection->stopAll(true /* backupRecord */);
528         }
529     }
530     dev.disableAllSensors();
531     // Clear all pending flush connections for all active sensors. If one of the active
532     // connections has called flush() and the underlying sensor has been disabled before a
533     // flush complete event is returned, we need to remove the connection from this queue.
534     for (size_t i=0 ; i< mActiveSensors.size(); ++i) {
535         mActiveSensors.valueAt(i)->clearAllPendingFlushConnections();
536     }
537 }
538 
enableAllSensors()539 void SensorService::enableAllSensors() {
540     Mutex::Autolock _l(mLock);
541     enableAllSensorsLocked();
542 }
543 
enableAllSensorsLocked()544 void SensorService::enableAllSensorsLocked() {
545     // sensors should only be enabled if the operating state is not restricted and sensor
546     // privacy is not enabled.
547     if (mCurrentOperatingMode == RESTRICTED || mSensorPrivacyPolicy->isSensorPrivacyEnabled()) {
548         ALOGW("Sensors cannot be enabled: mCurrentOperatingMode = %d, sensor privacy = %s",
549               mCurrentOperatingMode,
550               mSensorPrivacyPolicy->isSensorPrivacyEnabled() ? "enabled" : "disabled");
551         return;
552     }
553     SensorDevice& dev(SensorDevice::getInstance());
554     dev.enableAllSensors();
555     for (auto &i : mDirectConnections) {
556         sp<SensorDirectConnection> connection(i.promote());
557         if (connection != nullptr) {
558             connection->recoverAll();
559         }
560     }
561 }
562 
563 // NOTE: This is a remote API - make sure all args are validated
shellCommand(int in,int out,int err,Vector<String16> & args)564 status_t SensorService::shellCommand(int in, int out, int err, Vector<String16>& args) {
565     if (!checkCallingPermission(sManageSensorsPermission, nullptr, nullptr)) {
566         return PERMISSION_DENIED;
567     }
568     if (in == BAD_TYPE || out == BAD_TYPE || err == BAD_TYPE) {
569         return BAD_VALUE;
570     }
571     if (args[0] == String16("set-uid-state")) {
572         return handleSetUidState(args, err);
573     } else if (args[0] == String16("reset-uid-state")) {
574         return handleResetUidState(args, err);
575     } else if (args[0] == String16("get-uid-state")) {
576         return handleGetUidState(args, out, err);
577     } else if (args.size() == 1 && args[0] == String16("help")) {
578         printHelp(out);
579         return NO_ERROR;
580     }
581     printHelp(err);
582     return BAD_VALUE;
583 }
584 
getUidForPackage(String16 packageName,int userId,uid_t & uid,int err)585 static status_t getUidForPackage(String16 packageName, int userId, /*inout*/uid_t& uid, int err) {
586     PermissionController pc;
587     uid = pc.getPackageUid(packageName, 0);
588     if (uid <= 0) {
589         ALOGE("Unknown package: '%s'", String8(packageName).string());
590         dprintf(err, "Unknown package: '%s'\n", String8(packageName).string());
591         return BAD_VALUE;
592     }
593 
594     if (userId < 0) {
595         ALOGE("Invalid user: %d", userId);
596         dprintf(err, "Invalid user: %d\n", userId);
597         return BAD_VALUE;
598     }
599 
600     uid = multiuser_get_uid(userId, uid);
601     return NO_ERROR;
602 }
603 
handleSetUidState(Vector<String16> & args,int err)604 status_t SensorService::handleSetUidState(Vector<String16>& args, int err) {
605     // Valid arg.size() is 3 or 5, args.size() is 5 with --user option.
606     if (!(args.size() == 3 || args.size() == 5)) {
607         printHelp(err);
608         return BAD_VALUE;
609     }
610 
611     bool active = false;
612     if (args[2] == String16("active")) {
613         active = true;
614     } else if ((args[2] != String16("idle"))) {
615         ALOGE("Expected active or idle but got: '%s'", String8(args[2]).string());
616         return BAD_VALUE;
617     }
618 
619     int userId = 0;
620     if (args.size() == 5 && args[3] == String16("--user")) {
621         userId = atoi(String8(args[4]));
622     }
623 
624     uid_t uid;
625     if (getUidForPackage(args[1], userId, uid, err) != NO_ERROR) {
626         return BAD_VALUE;
627     }
628 
629     mUidPolicy->addOverrideUid(uid, active);
630     return NO_ERROR;
631 }
632 
handleResetUidState(Vector<String16> & args,int err)633 status_t SensorService::handleResetUidState(Vector<String16>& args, int err) {
634     // Valid arg.size() is 2 or 4, args.size() is 4 with --user option.
635     if (!(args.size() == 2 || args.size() == 4)) {
636         printHelp(err);
637         return BAD_VALUE;
638     }
639 
640     int userId = 0;
641     if (args.size() == 4 && args[2] == String16("--user")) {
642         userId = atoi(String8(args[3]));
643     }
644 
645     uid_t uid;
646     if (getUidForPackage(args[1], userId, uid, err) == BAD_VALUE) {
647         return BAD_VALUE;
648     }
649 
650     mUidPolicy->removeOverrideUid(uid);
651     return NO_ERROR;
652 }
653 
handleGetUidState(Vector<String16> & args,int out,int err)654 status_t SensorService::handleGetUidState(Vector<String16>& args, int out, int err) {
655     // Valid arg.size() is 2 or 4, args.size() is 4 with --user option.
656     if (!(args.size() == 2 || args.size() == 4)) {
657         printHelp(err);
658         return BAD_VALUE;
659     }
660 
661     int userId = 0;
662     if (args.size() == 4 && args[2] == String16("--user")) {
663         userId = atoi(String8(args[3]));
664     }
665 
666     uid_t uid;
667     if (getUidForPackage(args[1], userId, uid, err) == BAD_VALUE) {
668         return BAD_VALUE;
669     }
670 
671     if (mUidPolicy->isUidActive(uid)) {
672         return dprintf(out, "active\n");
673     } else {
674         return dprintf(out, "idle\n");
675     }
676 }
677 
printHelp(int out)678 status_t SensorService::printHelp(int out) {
679     return dprintf(out, "Sensor service commands:\n"
680         "  get-uid-state <PACKAGE> [--user USER_ID] gets the uid state\n"
681         "  set-uid-state <PACKAGE> <active|idle> [--user USER_ID] overrides the uid state\n"
682         "  reset-uid-state <PACKAGE> [--user USER_ID] clears the uid state override\n"
683         "  help print this message\n");
684 }
685 
686 //TODO: move to SensorEventConnection later
cleanupAutoDisabledSensorLocked(const sp<SensorEventConnection> & connection,sensors_event_t const * buffer,const int count)687 void SensorService::cleanupAutoDisabledSensorLocked(const sp<SensorEventConnection>& connection,
688         sensors_event_t const* buffer, const int count) {
689     for (int i=0 ; i<count ; i++) {
690         int handle = buffer[i].sensor;
691         if (buffer[i].type == SENSOR_TYPE_META_DATA) {
692             handle = buffer[i].meta_data.sensor;
693         }
694         if (connection->hasSensor(handle)) {
695             sp<SensorInterface> si = getSensorInterfaceFromHandle(handle);
696             // If this buffer has an event from a one_shot sensor and this connection is registered
697             // for this particular one_shot sensor, try cleaning up the connection.
698             if (si != nullptr &&
699                 si->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
700                 si->autoDisable(connection.get(), handle);
701                 cleanupWithoutDisableLocked(connection, handle);
702             }
703 
704         }
705    }
706 }
707 
threadLoop()708 bool SensorService::threadLoop() {
709     ALOGD("nuSensorService thread starting...");
710 
711     // each virtual sensor could generate an event per "real" event, that's why we need to size
712     // numEventMax much smaller than MAX_RECEIVE_BUFFER_EVENT_COUNT.  in practice, this is too
713     // aggressive, but guaranteed to be enough.
714     const size_t vcount = mSensors.getVirtualSensors().size();
715     const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
716     const size_t numEventMax = minBufferSize / (1 + vcount);
717 
718     SensorDevice& device(SensorDevice::getInstance());
719 
720     const int halVersion = device.getHalDeviceVersion();
721     do {
722         ssize_t count = device.poll(mSensorEventBuffer, numEventMax);
723         if (count < 0) {
724             if(count == DEAD_OBJECT && device.isReconnecting()) {
725                 device.reconnect();
726                 continue;
727             } else {
728                 ALOGE("sensor poll failed (%s)", strerror(-count));
729                 break;
730             }
731         }
732 
733         // Reset sensors_event_t.flags to zero for all events in the buffer.
734         for (int i = 0; i < count; i++) {
735              mSensorEventBuffer[i].flags = 0;
736         }
737 
738         // Make a copy of the connection vector as some connections may be removed during the course
739         // of this loop (especially when one-shot sensor events are present in the sensor_event
740         // buffer). Promote all connections to StrongPointers before the lock is acquired. If the
741         // destructor of the sp gets called when the lock is acquired, it may result in a deadlock
742         // as ~SensorEventConnection() needs to acquire mLock again for cleanup. So copy all the
743         // strongPointers to a vector before the lock is acquired.
744         SortedVector< sp<SensorEventConnection> > activeConnections;
745         populateActiveConnections(&activeConnections);
746 
747         Mutex::Autolock _l(mLock);
748         // Poll has returned. Hold a wakelock if one of the events is from a wake up sensor. The
749         // rest of this loop is under a critical section protected by mLock. Acquiring a wakeLock,
750         // sending events to clients (incrementing SensorEventConnection::mWakeLockRefCount) should
751         // not be interleaved with decrementing SensorEventConnection::mWakeLockRefCount and
752         // releasing the wakelock.
753         uint32_t wakeEvents = 0;
754         for (int i = 0; i < count; i++) {
755             if (isWakeUpSensorEvent(mSensorEventBuffer[i])) {
756                 wakeEvents++;
757             }
758         }
759 
760         if (wakeEvents > 0) {
761             if (!mWakeLockAcquired) {
762                 setWakeLockAcquiredLocked(true);
763             }
764             device.writeWakeLockHandled(wakeEvents);
765         }
766         recordLastValueLocked(mSensorEventBuffer, count);
767 
768         // handle virtual sensors
769         if (count && vcount) {
770             sensors_event_t const * const event = mSensorEventBuffer;
771             if (!mActiveVirtualSensors.empty()) {
772                 size_t k = 0;
773                 SensorFusion& fusion(SensorFusion::getInstance());
774                 if (fusion.isEnabled()) {
775                     for (size_t i=0 ; i<size_t(count) ; i++) {
776                         fusion.process(event[i]);
777                     }
778                 }
779                 for (size_t i=0 ; i<size_t(count) && k<minBufferSize ; i++) {
780                     for (int handle : mActiveVirtualSensors) {
781                         if (count + k >= minBufferSize) {
782                             ALOGE("buffer too small to hold all events: "
783                                     "count=%zd, k=%zu, size=%zu",
784                                     count, k, minBufferSize);
785                             break;
786                         }
787                         sensors_event_t out;
788                         sp<SensorInterface> si = mSensors.getInterface(handle);
789                         if (si == nullptr) {
790                             ALOGE("handle %d is not an valid virtual sensor", handle);
791                             continue;
792                         }
793 
794                         if (si->process(&out, event[i])) {
795                             mSensorEventBuffer[count + k] = out;
796                             k++;
797                         }
798                     }
799                 }
800                 if (k) {
801                     // record the last synthesized values
802                     recordLastValueLocked(&mSensorEventBuffer[count], k);
803                     count += k;
804                     // sort the buffer by time-stamps
805                     sortEventBuffer(mSensorEventBuffer, count);
806                 }
807             }
808         }
809 
810         // handle backward compatibility for RotationVector sensor
811         if (halVersion < SENSORS_DEVICE_API_VERSION_1_0) {
812             for (int i = 0; i < count; i++) {
813                 if (mSensorEventBuffer[i].type == SENSOR_TYPE_ROTATION_VECTOR) {
814                     // All the 4 components of the quaternion should be available
815                     // No heading accuracy. Set it to -1
816                     mSensorEventBuffer[i].data[4] = -1;
817                 }
818             }
819         }
820 
821         for (int i = 0; i < count; ++i) {
822             // Map flush_complete_events in the buffer to SensorEventConnections which called flush
823             // on the hardware sensor. mapFlushEventsToConnections[i] will be the
824             // SensorEventConnection mapped to the corresponding flush_complete_event in
825             // mSensorEventBuffer[i] if such a mapping exists (NULL otherwise).
826             mMapFlushEventsToConnections[i] = nullptr;
827             if (mSensorEventBuffer[i].type == SENSOR_TYPE_META_DATA) {
828                 const int sensor_handle = mSensorEventBuffer[i].meta_data.sensor;
829                 SensorRecord* rec = mActiveSensors.valueFor(sensor_handle);
830                 if (rec != nullptr) {
831                     mMapFlushEventsToConnections[i] = rec->getFirstPendingFlushConnection();
832                     rec->removeFirstPendingFlushConnection();
833                 }
834             }
835 
836             // handle dynamic sensor meta events, process registration and unregistration of dynamic
837             // sensor based on content of event.
838             if (mSensorEventBuffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META) {
839                 if (mSensorEventBuffer[i].dynamic_sensor_meta.connected) {
840                     int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle;
841                     const sensor_t& dynamicSensor =
842                             *(mSensorEventBuffer[i].dynamic_sensor_meta.sensor);
843                     ALOGI("Dynamic sensor handle 0x%x connected, type %d, name %s",
844                           handle, dynamicSensor.type, dynamicSensor.name);
845 
846                     if (mSensors.isNewHandle(handle)) {
847                         const auto& uuid = mSensorEventBuffer[i].dynamic_sensor_meta.uuid;
848                         sensor_t s = dynamicSensor;
849                         // make sure the dynamic sensor flag is set
850                         s.flags |= DYNAMIC_SENSOR_MASK;
851                         // force the handle to be consistent
852                         s.handle = handle;
853 
854                         SensorInterface *si = new HardwareSensor(s, uuid);
855 
856                         // This will release hold on dynamic sensor meta, so it should be called
857                         // after Sensor object is created.
858                         device.handleDynamicSensorConnection(handle, true /*connected*/);
859                         registerDynamicSensorLocked(si);
860                     } else {
861                         ALOGE("Handle %d has been used, cannot use again before reboot.", handle);
862                     }
863                 } else {
864                     int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle;
865                     ALOGI("Dynamic sensor handle 0x%x disconnected", handle);
866 
867                     device.handleDynamicSensorConnection(handle, false /*connected*/);
868                     if (!unregisterDynamicSensorLocked(handle)) {
869                         ALOGE("Dynamic sensor release error.");
870                     }
871 
872                     size_t numConnections = activeConnections.size();
873                     for (size_t i=0 ; i < numConnections; ++i) {
874                         if (activeConnections[i] != nullptr) {
875                             activeConnections[i]->removeSensor(handle);
876                         }
877                     }
878                 }
879             }
880         }
881 
882         // Send our events to clients. Check the state of wake lock for each client and release the
883         // lock if none of the clients need it.
884         bool needsWakeLock = false;
885         size_t numConnections = activeConnections.size();
886         for (size_t i=0 ; i < numConnections; ++i) {
887             if (activeConnections[i] != nullptr) {
888                 activeConnections[i]->sendEvents(mSensorEventBuffer, count, mSensorEventScratch,
889                         mMapFlushEventsToConnections);
890                 needsWakeLock |= activeConnections[i]->needsWakeLock();
891                 // If the connection has one-shot sensors, it may be cleaned up after first trigger.
892                 // Early check for one-shot sensors.
893                 if (activeConnections[i]->hasOneShotSensors()) {
894                     cleanupAutoDisabledSensorLocked(activeConnections[i], mSensorEventBuffer,
895                             count);
896                 }
897             }
898         }
899 
900         if (mWakeLockAcquired && !needsWakeLock) {
901             setWakeLockAcquiredLocked(false);
902         }
903     } while (!Thread::exitPending());
904 
905     ALOGW("Exiting SensorService::threadLoop => aborting...");
906     abort();
907     return false;
908 }
909 
getLooper() const910 sp<Looper> SensorService::getLooper() const {
911     return mLooper;
912 }
913 
resetAllWakeLockRefCounts()914 void SensorService::resetAllWakeLockRefCounts() {
915     SortedVector< sp<SensorEventConnection> > activeConnections;
916     populateActiveConnections(&activeConnections);
917     {
918         Mutex::Autolock _l(mLock);
919         for (size_t i=0 ; i < activeConnections.size(); ++i) {
920             if (activeConnections[i] != nullptr) {
921                 activeConnections[i]->resetWakeLockRefCount();
922             }
923         }
924         setWakeLockAcquiredLocked(false);
925     }
926 }
927 
setWakeLockAcquiredLocked(bool acquire)928 void SensorService::setWakeLockAcquiredLocked(bool acquire) {
929     if (acquire) {
930         if (!mWakeLockAcquired) {
931             acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_NAME);
932             mWakeLockAcquired = true;
933         }
934         mLooper->wake();
935     } else {
936         if (mWakeLockAcquired) {
937             release_wake_lock(WAKE_LOCK_NAME);
938             mWakeLockAcquired = false;
939         }
940     }
941 }
942 
isWakeLockAcquired()943 bool SensorService::isWakeLockAcquired() {
944     Mutex::Autolock _l(mLock);
945     return mWakeLockAcquired;
946 }
947 
threadLoop()948 bool SensorService::SensorEventAckReceiver::threadLoop() {
949     ALOGD("new thread SensorEventAckReceiver");
950     sp<Looper> looper = mService->getLooper();
951     do {
952         bool wakeLockAcquired = mService->isWakeLockAcquired();
953         int timeout = -1;
954         if (wakeLockAcquired) timeout = 5000;
955         int ret = looper->pollOnce(timeout);
956         if (ret == ALOOPER_POLL_TIMEOUT) {
957            mService->resetAllWakeLockRefCounts();
958         }
959     } while(!Thread::exitPending());
960     return false;
961 }
962 
recordLastValueLocked(const sensors_event_t * buffer,size_t count)963 void SensorService::recordLastValueLocked(
964         const sensors_event_t* buffer, size_t count) {
965     for (size_t i = 0; i < count; i++) {
966         if (buffer[i].type == SENSOR_TYPE_META_DATA ||
967             buffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META ||
968             buffer[i].type == SENSOR_TYPE_ADDITIONAL_INFO) {
969             continue;
970         }
971 
972         auto logger = mRecentEvent.find(buffer[i].sensor);
973         if (logger != mRecentEvent.end()) {
974             logger->second->addEvent(buffer[i]);
975         }
976     }
977 }
978 
sortEventBuffer(sensors_event_t * buffer,size_t count)979 void SensorService::sortEventBuffer(sensors_event_t* buffer, size_t count) {
980     struct compar {
981         static int cmp(void const* lhs, void const* rhs) {
982             sensors_event_t const* l = static_cast<sensors_event_t const*>(lhs);
983             sensors_event_t const* r = static_cast<sensors_event_t const*>(rhs);
984             return l->timestamp - r->timestamp;
985         }
986     };
987     qsort(buffer, count, sizeof(sensors_event_t), compar::cmp);
988 }
989 
getSensorName(int handle) const990 String8 SensorService::getSensorName(int handle) const {
991     return mSensors.getName(handle);
992 }
993 
isVirtualSensor(int handle) const994 bool SensorService::isVirtualSensor(int handle) const {
995     sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
996     return sensor != nullptr && sensor->isVirtual();
997 }
998 
isWakeUpSensorEvent(const sensors_event_t & event) const999 bool SensorService::isWakeUpSensorEvent(const sensors_event_t& event) const {
1000     int handle = event.sensor;
1001     if (event.type == SENSOR_TYPE_META_DATA) {
1002         handle = event.meta_data.sensor;
1003     }
1004     sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
1005     return sensor != nullptr && sensor->getSensor().isWakeUpSensor();
1006 }
1007 
getIdFromUuid(const Sensor::uuid_t & uuid) const1008 int32_t SensorService::getIdFromUuid(const Sensor::uuid_t &uuid) const {
1009     if ((uuid.i64[0] == 0) && (uuid.i64[1] == 0)) {
1010         // UUID is not supported for this device.
1011         return 0;
1012     }
1013     if ((uuid.i64[0] == INT64_C(~0)) && (uuid.i64[1] == INT64_C(~0))) {
1014         // This sensor can be uniquely identified in the system by
1015         // the combination of its type and name.
1016         return -1;
1017     }
1018 
1019     // We have a dynamic sensor.
1020 
1021     if (!sHmacGlobalKeyIsValid) {
1022         // Rather than risk exposing UUIDs, we cripple dynamic sensors.
1023         ALOGW("HMAC key failure; dynamic sensor getId() will be wrong.");
1024         return 0;
1025     }
1026 
1027     // We want each app author/publisher to get a different ID, so that the
1028     // same dynamic sensor cannot be tracked across apps by multiple
1029     // authors/publishers.  So we use both our UUID and our User ID.
1030     // Note potential confusion:
1031     //     UUID => Universally Unique Identifier.
1032     //     UID  => User Identifier.
1033     // We refrain from using "uid" except as needed by API to try to
1034     // keep this distinction clear.
1035 
1036     auto appUserId = IPCThreadState::self()->getCallingUid();
1037     uint8_t uuidAndApp[sizeof(uuid) + sizeof(appUserId)];
1038     memcpy(uuidAndApp, &uuid, sizeof(uuid));
1039     memcpy(uuidAndApp + sizeof(uuid), &appUserId, sizeof(appUserId));
1040 
1041     // Now we use our key on our UUID/app combo to get the hash.
1042     uint8_t hash[EVP_MAX_MD_SIZE];
1043     unsigned int hashLen;
1044     if (HMAC(EVP_sha256(),
1045              sHmacGlobalKey, sizeof(sHmacGlobalKey),
1046              uuidAndApp, sizeof(uuidAndApp),
1047              hash, &hashLen) == nullptr) {
1048         // Rather than risk exposing UUIDs, we cripple dynamic sensors.
1049         ALOGW("HMAC failure; dynamic sensor getId() will be wrong.");
1050         return 0;
1051     }
1052 
1053     int32_t id = 0;
1054     if (hashLen < sizeof(id)) {
1055         // We never expect this case, but out of paranoia, we handle it.
1056         // Our 'id' length is already quite small, we don't want the
1057         // effective length of it to be even smaller.
1058         // Rather than risk exposing UUIDs, we cripple dynamic sensors.
1059         ALOGW("HMAC insufficient; dynamic sensor getId() will be wrong.");
1060         return 0;
1061     }
1062 
1063     // This is almost certainly less than all of 'hash', but it's as secure
1064     // as we can be with our current 'id' length.
1065     memcpy(&id, hash, sizeof(id));
1066 
1067     // Note at the beginning of the function that we return the values of
1068     // 0 and -1 to represent special cases.  As a result, we can't return
1069     // those as dynamic sensor IDs.  If we happened to hash to one of those
1070     // values, we change 'id' so we report as a dynamic sensor, and not as
1071     // one of those special cases.
1072     if (id == -1) {
1073         id = -2;
1074     } else if (id == 0) {
1075         id = 1;
1076     }
1077     return id;
1078 }
1079 
makeUuidsIntoIdsForSensorList(Vector<Sensor> & sensorList) const1080 void SensorService::makeUuidsIntoIdsForSensorList(Vector<Sensor> &sensorList) const {
1081     for (auto &sensor : sensorList) {
1082         int32_t id = getIdFromUuid(sensor.getUuid());
1083         sensor.setId(id);
1084     }
1085 }
1086 
getSensorList(const String16 &)1087 Vector<Sensor> SensorService::getSensorList(const String16& /* opPackageName */) {
1088     char value[PROPERTY_VALUE_MAX];
1089     property_get("debug.sensors", value, "0");
1090     const Vector<Sensor>& initialSensorList = (atoi(value)) ?
1091             mSensors.getUserDebugSensors() : mSensors.getUserSensors();
1092     Vector<Sensor> accessibleSensorList;
1093     for (size_t i = 0; i < initialSensorList.size(); i++) {
1094         Sensor sensor = initialSensorList[i];
1095         accessibleSensorList.add(sensor);
1096     }
1097     makeUuidsIntoIdsForSensorList(accessibleSensorList);
1098     return accessibleSensorList;
1099 }
1100 
getDynamicSensorList(const String16 & opPackageName)1101 Vector<Sensor> SensorService::getDynamicSensorList(const String16& opPackageName) {
1102     Vector<Sensor> accessibleSensorList;
1103     mSensors.forEachSensor(
1104             [&opPackageName, &accessibleSensorList] (const Sensor& sensor) -> bool {
1105                 if (sensor.isDynamicSensor()) {
1106                     if (canAccessSensor(sensor, "getDynamicSensorList", opPackageName)) {
1107                         accessibleSensorList.add(sensor);
1108                     } else {
1109                         ALOGI("Skipped sensor %s because it requires permission %s and app op %" PRId32,
1110                               sensor.getName().string(),
1111                               sensor.getRequiredPermission().string(),
1112                               sensor.getRequiredAppOp());
1113                     }
1114                 }
1115                 return true;
1116             });
1117     makeUuidsIntoIdsForSensorList(accessibleSensorList);
1118     return accessibleSensorList;
1119 }
1120 
createSensorEventConnection(const String8 & packageName,int requestedMode,const String16 & opPackageName)1121 sp<ISensorEventConnection> SensorService::createSensorEventConnection(const String8& packageName,
1122         int requestedMode, const String16& opPackageName) {
1123     // Only 2 modes supported for a SensorEventConnection ... NORMAL and DATA_INJECTION.
1124     if (requestedMode != NORMAL && requestedMode != DATA_INJECTION) {
1125         return nullptr;
1126     }
1127 
1128     Mutex::Autolock _l(mLock);
1129     // To create a client in DATA_INJECTION mode to inject data, SensorService should already be
1130     // operating in DI mode.
1131     if (requestedMode == DATA_INJECTION) {
1132         if (mCurrentOperatingMode != DATA_INJECTION) return nullptr;
1133         if (!isWhiteListedPackage(packageName)) return nullptr;
1134     }
1135 
1136     uid_t uid = IPCThreadState::self()->getCallingUid();
1137     pid_t pid = IPCThreadState::self()->getCallingPid();
1138 
1139     String8 connPackageName =
1140             (packageName == "") ? String8::format("unknown_package_pid_%d", pid) : packageName;
1141     String16 connOpPackageName =
1142             (opPackageName == String16("")) ? String16(connPackageName) : opPackageName;
1143     bool hasSensorAccess = mUidPolicy->isUidActive(uid);
1144     sp<SensorEventConnection> result(new SensorEventConnection(this, uid, connPackageName,
1145             requestedMode == DATA_INJECTION, connOpPackageName, hasSensorAccess));
1146     if (requestedMode == DATA_INJECTION) {
1147         if (mActiveConnections.indexOf(result) < 0) {
1148             mActiveConnections.add(result);
1149         }
1150         // Add the associated file descriptor to the Looper for polling whenever there is data to
1151         // be injected.
1152         result->updateLooperRegistration(mLooper);
1153     }
1154     return result;
1155 }
1156 
isDataInjectionEnabled()1157 int SensorService::isDataInjectionEnabled() {
1158     Mutex::Autolock _l(mLock);
1159     return (mCurrentOperatingMode == DATA_INJECTION);
1160 }
1161 
createSensorDirectConnection(const String16 & opPackageName,uint32_t size,int32_t type,int32_t format,const native_handle * resource)1162 sp<ISensorEventConnection> SensorService::createSensorDirectConnection(
1163         const String16& opPackageName, uint32_t size, int32_t type, int32_t format,
1164         const native_handle *resource) {
1165     Mutex::Autolock _l(mLock);
1166 
1167     // No new direct connections are allowed when sensor privacy is enabled
1168     if (mSensorPrivacyPolicy->isSensorPrivacyEnabled()) {
1169         ALOGE("Cannot create new direct connections when sensor privacy is enabled");
1170         return nullptr;
1171     }
1172 
1173     struct sensors_direct_mem_t mem = {
1174         .type = type,
1175         .format = format,
1176         .size = size,
1177         .handle = resource,
1178     };
1179     uid_t uid = IPCThreadState::self()->getCallingUid();
1180 
1181     if (mem.handle == nullptr) {
1182         ALOGE("Failed to clone resource handle");
1183         return nullptr;
1184     }
1185 
1186     // check format
1187     if (format != SENSOR_DIRECT_FMT_SENSORS_EVENT) {
1188         ALOGE("Direct channel format %d is unsupported!", format);
1189         return nullptr;
1190     }
1191 
1192     // check for duplication
1193     for (auto &i : mDirectConnections) {
1194         sp<SensorDirectConnection> connection(i.promote());
1195         if (connection != nullptr && connection->isEquivalent(&mem)) {
1196             ALOGE("Duplicate create channel request for the same share memory");
1197             return nullptr;
1198         }
1199     }
1200 
1201     // check specific to memory type
1202     switch(type) {
1203         case SENSOR_DIRECT_MEM_TYPE_ASHMEM: { // channel backed by ashmem
1204             if (resource->numFds < 1) {
1205                 ALOGE("Ashmem direct channel requires a memory region to be supplied");
1206                 android_errorWriteLog(0x534e4554, "70986337");  // SafetyNet
1207                 return nullptr;
1208             }
1209             int fd = resource->data[0];
1210             int size2 = ashmem_get_size_region(fd);
1211             // check size consistency
1212             if (size2 < static_cast<int64_t>(size)) {
1213                 ALOGE("Ashmem direct channel size %" PRIu32 " greater than shared memory size %d",
1214                       size, size2);
1215                 return nullptr;
1216             }
1217             break;
1218         }
1219         case SENSOR_DIRECT_MEM_TYPE_GRALLOC:
1220             // no specific checks for gralloc
1221             break;
1222         default:
1223             ALOGE("Unknown direct connection memory type %d", type);
1224             return nullptr;
1225     }
1226 
1227     native_handle_t *clone = native_handle_clone(resource);
1228     if (!clone) {
1229         return nullptr;
1230     }
1231 
1232     SensorDirectConnection* conn = nullptr;
1233     SensorDevice& dev(SensorDevice::getInstance());
1234     int channelHandle = dev.registerDirectChannel(&mem);
1235 
1236     if (channelHandle <= 0) {
1237         ALOGE("SensorDevice::registerDirectChannel returns %d", channelHandle);
1238     } else {
1239         mem.handle = clone;
1240         conn = new SensorDirectConnection(this, uid, &mem, channelHandle, opPackageName);
1241     }
1242 
1243     if (conn == nullptr) {
1244         native_handle_close(clone);
1245         native_handle_delete(clone);
1246     } else {
1247         // add to list of direct connections
1248         // sensor service should never hold pointer or sp of SensorDirectConnection object.
1249         mDirectConnections.add(wp<SensorDirectConnection>(conn));
1250     }
1251     return conn;
1252 }
1253 
setOperationParameter(int32_t handle,int32_t type,const Vector<float> & floats,const Vector<int32_t> & ints)1254 int SensorService::setOperationParameter(
1255             int32_t handle, int32_t type,
1256             const Vector<float> &floats, const Vector<int32_t> &ints) {
1257     Mutex::Autolock _l(mLock);
1258 
1259     if (!checkCallingPermission(sLocationHardwarePermission, nullptr, nullptr)) {
1260         return PERMISSION_DENIED;
1261     }
1262 
1263     bool isFloat = true;
1264     bool isCustom = false;
1265     size_t expectSize = INT32_MAX;
1266     switch (type) {
1267         case AINFO_LOCAL_GEOMAGNETIC_FIELD:
1268             isFloat = true;
1269             expectSize = 3;
1270             break;
1271         case AINFO_LOCAL_GRAVITY:
1272             isFloat = true;
1273             expectSize = 1;
1274             break;
1275         case AINFO_DOCK_STATE:
1276         case AINFO_HIGH_PERFORMANCE_MODE:
1277         case AINFO_MAGNETIC_FIELD_CALIBRATION:
1278             isFloat = false;
1279             expectSize = 1;
1280             break;
1281         default:
1282             // CUSTOM events must only contain float data; it may have variable size
1283             if (type < AINFO_CUSTOM_START || type >= AINFO_DEBUGGING_START ||
1284                     ints.size() ||
1285                     sizeof(additional_info_event_t::data_float)/sizeof(float) < floats.size() ||
1286                     handle < 0) {
1287                 return BAD_VALUE;
1288             }
1289             isFloat = true;
1290             isCustom = true;
1291             expectSize = floats.size();
1292             break;
1293     }
1294 
1295     if (!isCustom && handle != -1) {
1296         return BAD_VALUE;
1297     }
1298 
1299     // three events: first one is begin tag, last one is end tag, the one in the middle
1300     // is the payload.
1301     sensors_event_t event[3];
1302     int64_t timestamp = elapsedRealtimeNano();
1303     for (sensors_event_t* i = event; i < event + 3; i++) {
1304         *i = (sensors_event_t) {
1305             .version = sizeof(sensors_event_t),
1306             .sensor = handle,
1307             .type = SENSOR_TYPE_ADDITIONAL_INFO,
1308             .timestamp = timestamp++,
1309             .additional_info = (additional_info_event_t) {
1310                 .serial = 0
1311             }
1312         };
1313     }
1314 
1315     event[0].additional_info.type = AINFO_BEGIN;
1316     event[1].additional_info.type = type;
1317     event[2].additional_info.type = AINFO_END;
1318 
1319     if (isFloat) {
1320         if (floats.size() != expectSize) {
1321             return BAD_VALUE;
1322         }
1323         for (size_t i = 0; i < expectSize; ++i) {
1324             event[1].additional_info.data_float[i] = floats[i];
1325         }
1326     } else {
1327         if (ints.size() != expectSize) {
1328             return BAD_VALUE;
1329         }
1330         for (size_t i = 0; i < expectSize; ++i) {
1331             event[1].additional_info.data_int32[i] = ints[i];
1332         }
1333     }
1334 
1335     SensorDevice& dev(SensorDevice::getInstance());
1336     for (sensors_event_t* i = event; i < event + 3; i++) {
1337         int ret = dev.injectSensorData(i);
1338         if (ret != NO_ERROR) {
1339             return ret;
1340         }
1341     }
1342     return NO_ERROR;
1343 }
1344 
resetToNormalMode()1345 status_t SensorService::resetToNormalMode() {
1346     Mutex::Autolock _l(mLock);
1347     return resetToNormalModeLocked();
1348 }
1349 
resetToNormalModeLocked()1350 status_t SensorService::resetToNormalModeLocked() {
1351     SensorDevice& dev(SensorDevice::getInstance());
1352     status_t err = dev.setMode(NORMAL);
1353     if (err == NO_ERROR) {
1354         mCurrentOperatingMode = NORMAL;
1355         dev.enableAllSensors();
1356     }
1357     return err;
1358 }
1359 
cleanupConnection(SensorEventConnection * c)1360 void SensorService::cleanupConnection(SensorEventConnection* c) {
1361     Mutex::Autolock _l(mLock);
1362     const wp<SensorEventConnection> connection(c);
1363     size_t size = mActiveSensors.size();
1364     ALOGD_IF(DEBUG_CONNECTIONS, "%zu active sensors", size);
1365     for (size_t i=0 ; i<size ; ) {
1366         int handle = mActiveSensors.keyAt(i);
1367         if (c->hasSensor(handle)) {
1368             ALOGD_IF(DEBUG_CONNECTIONS, "%zu: disabling handle=0x%08x", i, handle);
1369             sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
1370             if (sensor != nullptr) {
1371                 sensor->activate(c, false);
1372             } else {
1373                 ALOGE("sensor interface of handle=0x%08x is null!", handle);
1374             }
1375             c->removeSensor(handle);
1376         }
1377         SensorRecord* rec = mActiveSensors.valueAt(i);
1378         ALOGE_IF(!rec, "mActiveSensors[%zu] is null (handle=0x%08x)!", i, handle);
1379         ALOGD_IF(DEBUG_CONNECTIONS,
1380                 "removing connection %p for sensor[%zu].handle=0x%08x",
1381                 c, i, handle);
1382 
1383         if (rec && rec->removeConnection(connection)) {
1384             ALOGD_IF(DEBUG_CONNECTIONS, "... and it was the last connection");
1385             mActiveSensors.removeItemsAt(i, 1);
1386             mActiveVirtualSensors.erase(handle);
1387             delete rec;
1388             size--;
1389         } else {
1390             i++;
1391         }
1392     }
1393     c->updateLooperRegistration(mLooper);
1394     mActiveConnections.remove(connection);
1395     BatteryService::cleanup(c->getUid());
1396     if (c->needsWakeLock()) {
1397         checkWakeLockStateLocked();
1398     }
1399 
1400     {
1401         Mutex::Autolock packageLock(sPackageTargetVersionLock);
1402         auto iter = sPackageTargetVersion.find(c->mOpPackageName);
1403         if (iter != sPackageTargetVersion.end()) {
1404             sPackageTargetVersion.erase(iter);
1405         }
1406     }
1407 
1408     SensorDevice& dev(SensorDevice::getInstance());
1409     dev.notifyConnectionDestroyed(c);
1410 }
1411 
cleanupConnection(SensorDirectConnection * c)1412 void SensorService::cleanupConnection(SensorDirectConnection* c) {
1413     Mutex::Autolock _l(mLock);
1414 
1415     SensorDevice& dev(SensorDevice::getInstance());
1416     dev.unregisterDirectChannel(c->getHalChannelHandle());
1417     mDirectConnections.remove(c);
1418 }
1419 
getSensorInterfaceFromHandle(int handle) const1420 sp<SensorInterface> SensorService::getSensorInterfaceFromHandle(int handle) const {
1421     return mSensors.getInterface(handle);
1422 }
1423 
enable(const sp<SensorEventConnection> & connection,int handle,nsecs_t samplingPeriodNs,nsecs_t maxBatchReportLatencyNs,int reservedFlags,const String16 & opPackageName)1424 status_t SensorService::enable(const sp<SensorEventConnection>& connection,
1425         int handle, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs, int reservedFlags,
1426         const String16& opPackageName) {
1427     if (mInitCheck != NO_ERROR)
1428         return mInitCheck;
1429 
1430     sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
1431     if (sensor == nullptr ||
1432         !canAccessSensor(sensor->getSensor(), "Tried enabling", opPackageName)) {
1433         return BAD_VALUE;
1434     }
1435 
1436     Mutex::Autolock _l(mLock);
1437     if (mCurrentOperatingMode != NORMAL
1438            && !isWhiteListedPackage(connection->getPackageName())) {
1439         return INVALID_OPERATION;
1440     }
1441 
1442     SensorRecord* rec = mActiveSensors.valueFor(handle);
1443     if (rec == nullptr) {
1444         rec = new SensorRecord(connection);
1445         mActiveSensors.add(handle, rec);
1446         if (sensor->isVirtual()) {
1447             mActiveVirtualSensors.emplace(handle);
1448         }
1449 
1450         // There was no SensorRecord for this sensor which means it was previously disabled. Mark
1451         // the recent event as stale to ensure that the previous event is not sent to a client. This
1452         // ensures on-change events that were generated during a previous sensor activation are not
1453         // erroneously sent to newly connected clients, especially if a second client registers for
1454         // an on-change sensor before the first client receives the updated event. Once an updated
1455         // event is received, the recent events will be marked as current, and any new clients will
1456         // immediately receive the most recent event.
1457         if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ON_CHANGE) {
1458             auto logger = mRecentEvent.find(handle);
1459             if (logger != mRecentEvent.end()) {
1460                 logger->second->setLastEventStale();
1461             }
1462         }
1463     } else {
1464         if (rec->addConnection(connection)) {
1465             // this sensor is already activated, but we are adding a connection that uses it.
1466             // Immediately send down the last known value of the requested sensor if it's not a
1467             // "continuous" sensor.
1468             if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ON_CHANGE) {
1469                 // NOTE: The wake_up flag of this event may get set to
1470                 // WAKE_UP_SENSOR_EVENT_NEEDS_ACK if this is a wake_up event.
1471 
1472                 auto logger = mRecentEvent.find(handle);
1473                 if (logger != mRecentEvent.end()) {
1474                     sensors_event_t event;
1475                     // Verify that the last sensor event was generated from the current activation
1476                     // of the sensor. If not, it is possible for an on-change sensor to receive a
1477                     // sensor event that is stale if two clients re-activate the sensor
1478                     // simultaneously.
1479                     if(logger->second->populateLastEventIfCurrent(&event)) {
1480                         event.sensor = handle;
1481                         if (event.version == sizeof(sensors_event_t)) {
1482                             if (isWakeUpSensorEvent(event) && !mWakeLockAcquired) {
1483                                 setWakeLockAcquiredLocked(true);
1484                             }
1485                             connection->sendEvents(&event, 1, nullptr);
1486                             if (!connection->needsWakeLock() && mWakeLockAcquired) {
1487                                 checkWakeLockStateLocked();
1488                             }
1489                         }
1490                     }
1491                 }
1492             }
1493         }
1494     }
1495 
1496     if (connection->addSensor(handle)) {
1497         BatteryService::enableSensor(connection->getUid(), handle);
1498         // the sensor was added (which means it wasn't already there)
1499         // so, see if this connection becomes active
1500         if (mActiveConnections.indexOf(connection) < 0) {
1501             mActiveConnections.add(connection);
1502         }
1503     } else {
1504         ALOGW("sensor %08x already enabled in connection %p (ignoring)",
1505             handle, connection.get());
1506     }
1507 
1508     // Check maximum delay for the sensor.
1509     nsecs_t maxDelayNs = sensor->getSensor().getMaxDelay() * 1000LL;
1510     if (maxDelayNs > 0 && (samplingPeriodNs > maxDelayNs)) {
1511         samplingPeriodNs = maxDelayNs;
1512     }
1513 
1514     nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
1515     if (samplingPeriodNs < minDelayNs) {
1516         samplingPeriodNs = minDelayNs;
1517     }
1518 
1519     ALOGD_IF(DEBUG_CONNECTIONS, "Calling batch handle==%d flags=%d"
1520                                 "rate=%" PRId64 " timeout== %" PRId64"",
1521              handle, reservedFlags, samplingPeriodNs, maxBatchReportLatencyNs);
1522 
1523     status_t err = sensor->batch(connection.get(), handle, 0, samplingPeriodNs,
1524                                  maxBatchReportLatencyNs);
1525 
1526     // Call flush() before calling activate() on the sensor. Wait for a first
1527     // flush complete event before sending events on this connection. Ignore
1528     // one-shot sensors which don't support flush(). Ignore on-change sensors
1529     // to maintain the on-change logic (any on-change events except the initial
1530     // one should be trigger by a change in value). Also if this sensor isn't
1531     // already active, don't call flush().
1532     if (err == NO_ERROR &&
1533             sensor->getSensor().getReportingMode() == AREPORTING_MODE_CONTINUOUS &&
1534             rec->getNumConnections() > 1) {
1535         connection->setFirstFlushPending(handle, true);
1536         status_t err_flush = sensor->flush(connection.get(), handle);
1537         // Flush may return error if the underlying h/w sensor uses an older HAL.
1538         if (err_flush == NO_ERROR) {
1539             rec->addPendingFlushConnection(connection.get());
1540         } else {
1541             connection->setFirstFlushPending(handle, false);
1542         }
1543     }
1544 
1545     if (err == NO_ERROR) {
1546         ALOGD_IF(DEBUG_CONNECTIONS, "Calling activate on %d", handle);
1547         err = sensor->activate(connection.get(), true);
1548     }
1549 
1550     if (err == NO_ERROR) {
1551         connection->updateLooperRegistration(mLooper);
1552 
1553         if (sensor->getSensor().getRequiredPermission().size() > 0 &&
1554                 sensor->getSensor().getRequiredAppOp() >= 0) {
1555             connection->mHandleToAppOp[handle] = sensor->getSensor().getRequiredAppOp();
1556         }
1557 
1558         mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex) =
1559                 SensorRegistrationInfo(handle, connection->getPackageName(),
1560                                        samplingPeriodNs, maxBatchReportLatencyNs, true);
1561         mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE;
1562     }
1563 
1564     if (err != NO_ERROR) {
1565         // batch/activate has failed, reset our state.
1566         cleanupWithoutDisableLocked(connection, handle);
1567     }
1568     return err;
1569 }
1570 
disable(const sp<SensorEventConnection> & connection,int handle)1571 status_t SensorService::disable(const sp<SensorEventConnection>& connection, int handle) {
1572     if (mInitCheck != NO_ERROR)
1573         return mInitCheck;
1574 
1575     Mutex::Autolock _l(mLock);
1576     status_t err = cleanupWithoutDisableLocked(connection, handle);
1577     if (err == NO_ERROR) {
1578         sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
1579         err = sensor != nullptr ? sensor->activate(connection.get(), false) : status_t(BAD_VALUE);
1580 
1581     }
1582     if (err == NO_ERROR) {
1583         mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex) =
1584                 SensorRegistrationInfo(handle, connection->getPackageName(), 0, 0, false);
1585         mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE;
1586     }
1587     return err;
1588 }
1589 
cleanupWithoutDisable(const sp<SensorEventConnection> & connection,int handle)1590 status_t SensorService::cleanupWithoutDisable(
1591         const sp<SensorEventConnection>& connection, int handle) {
1592     Mutex::Autolock _l(mLock);
1593     return cleanupWithoutDisableLocked(connection, handle);
1594 }
1595 
cleanupWithoutDisableLocked(const sp<SensorEventConnection> & connection,int handle)1596 status_t SensorService::cleanupWithoutDisableLocked(
1597         const sp<SensorEventConnection>& connection, int handle) {
1598     SensorRecord* rec = mActiveSensors.valueFor(handle);
1599     if (rec) {
1600         // see if this connection becomes inactive
1601         if (connection->removeSensor(handle)) {
1602             BatteryService::disableSensor(connection->getUid(), handle);
1603         }
1604         if (connection->hasAnySensor() == false) {
1605             connection->updateLooperRegistration(mLooper);
1606             mActiveConnections.remove(connection);
1607         }
1608         // see if this sensor becomes inactive
1609         if (rec->removeConnection(connection)) {
1610             mActiveSensors.removeItem(handle);
1611             mActiveVirtualSensors.erase(handle);
1612             delete rec;
1613         }
1614         return NO_ERROR;
1615     }
1616     return BAD_VALUE;
1617 }
1618 
setEventRate(const sp<SensorEventConnection> & connection,int handle,nsecs_t ns,const String16 & opPackageName)1619 status_t SensorService::setEventRate(const sp<SensorEventConnection>& connection,
1620         int handle, nsecs_t ns, const String16& opPackageName) {
1621     if (mInitCheck != NO_ERROR)
1622         return mInitCheck;
1623 
1624     sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
1625     if (sensor == nullptr ||
1626         !canAccessSensor(sensor->getSensor(), "Tried configuring", opPackageName)) {
1627         return BAD_VALUE;
1628     }
1629 
1630     if (ns < 0)
1631         return BAD_VALUE;
1632 
1633     nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
1634     if (ns < minDelayNs) {
1635         ns = minDelayNs;
1636     }
1637 
1638     return sensor->setDelay(connection.get(), handle, ns);
1639 }
1640 
flushSensor(const sp<SensorEventConnection> & connection,const String16 & opPackageName)1641 status_t SensorService::flushSensor(const sp<SensorEventConnection>& connection,
1642         const String16& opPackageName) {
1643     if (mInitCheck != NO_ERROR) return mInitCheck;
1644     SensorDevice& dev(SensorDevice::getInstance());
1645     const int halVersion = dev.getHalDeviceVersion();
1646     status_t err(NO_ERROR);
1647     Mutex::Autolock _l(mLock);
1648     // Loop through all sensors for this connection and call flush on each of them.
1649     for (size_t i = 0; i < connection->mSensorInfo.size(); ++i) {
1650         const int handle = connection->mSensorInfo.keyAt(i);
1651         sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
1652         if (sensor == nullptr) {
1653             continue;
1654         }
1655         if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
1656             ALOGE("flush called on a one-shot sensor");
1657             err = INVALID_OPERATION;
1658             continue;
1659         }
1660         if (halVersion <= SENSORS_DEVICE_API_VERSION_1_0 || isVirtualSensor(handle)) {
1661             // For older devices just increment pending flush count which will send a trivial
1662             // flush complete event.
1663             connection->incrementPendingFlushCount(handle);
1664         } else {
1665             if (!canAccessSensor(sensor->getSensor(), "Tried flushing", opPackageName)) {
1666                 err = INVALID_OPERATION;
1667                 continue;
1668             }
1669             status_t err_flush = sensor->flush(connection.get(), handle);
1670             if (err_flush == NO_ERROR) {
1671                 SensorRecord* rec = mActiveSensors.valueFor(handle);
1672                 if (rec != nullptr) rec->addPendingFlushConnection(connection);
1673             }
1674             err = (err_flush != NO_ERROR) ? err_flush : err;
1675         }
1676     }
1677     return err;
1678 }
1679 
canAccessSensor(const Sensor & sensor,const char * operation,const String16 & opPackageName)1680 bool SensorService::canAccessSensor(const Sensor& sensor, const char* operation,
1681         const String16& opPackageName) {
1682     // Check if a permission is required for this sensor
1683     if (sensor.getRequiredPermission().length() <= 0) {
1684         return true;
1685     }
1686 
1687     const int32_t opCode = sensor.getRequiredAppOp();
1688     const int32_t appOpMode = sAppOpsManager.checkOp(opCode,
1689             IPCThreadState::self()->getCallingUid(), opPackageName);
1690     bool appOpAllowed = appOpMode == AppOpsManager::MODE_ALLOWED;
1691 
1692     bool canAccess = false;
1693     if (hasPermissionForSensor(sensor)) {
1694         // Ensure that the AppOp is allowed, or that there is no necessary app op for the sensor
1695         if (opCode < 0 || appOpAllowed) {
1696             canAccess = true;
1697         }
1698     } else if (sensor.getType() == SENSOR_TYPE_STEP_COUNTER ||
1699             sensor.getType() == SENSOR_TYPE_STEP_DETECTOR) {
1700         int targetSdkVersion = getTargetSdkVersion(opPackageName);
1701         // Allow access to the sensor if the application targets pre-Q, which is before the
1702         // requirement to hold the AR permission to access Step Counter and Step Detector events
1703         // was introduced, and the user hasn't revoked the app op.
1704         //
1705         // Verifying the app op is required to ensure that the user hasn't revoked the necessary
1706         // permissions to access the Step Detector and Step Counter when the application targets
1707         // pre-Q. Without this check, if the user revokes the pre-Q install-time GMS Core AR
1708         // permission, the app would still be able to receive Step Counter and Step Detector events.
1709         if (appOpAllowed &&
1710                 targetSdkVersion > 0 &&
1711                 targetSdkVersion <= __ANDROID_API_P__) {
1712             canAccess = true;
1713         }
1714     }
1715 
1716     if (canAccess) {
1717         sAppOpsManager.noteOp(opCode, IPCThreadState::self()->getCallingUid(), opPackageName);
1718     } else {
1719         ALOGE("%s a sensor (%s) without holding its required permission: %s",
1720                 operation, sensor.getName().string(), sensor.getRequiredPermission().string());
1721     }
1722 
1723     return canAccess;
1724 }
1725 
hasPermissionForSensor(const Sensor & sensor)1726 bool SensorService::hasPermissionForSensor(const Sensor& sensor) {
1727     bool hasPermission = false;
1728     const String8& requiredPermission = sensor.getRequiredPermission();
1729 
1730     // Runtime permissions can't use the cache as they may change.
1731     if (sensor.isRequiredPermissionRuntime()) {
1732         hasPermission = checkPermission(String16(requiredPermission),
1733                 IPCThreadState::self()->getCallingPid(), IPCThreadState::self()->getCallingUid());
1734     } else {
1735         hasPermission = PermissionCache::checkCallingPermission(String16(requiredPermission));
1736     }
1737     return hasPermission;
1738 }
1739 
getTargetSdkVersion(const String16 & opPackageName)1740 int SensorService::getTargetSdkVersion(const String16& opPackageName) {
1741     Mutex::Autolock packageLock(sPackageTargetVersionLock);
1742     int targetSdkVersion = -1;
1743     auto entry = sPackageTargetVersion.find(opPackageName);
1744     if (entry != sPackageTargetVersion.end()) {
1745         targetSdkVersion = entry->second;
1746     } else {
1747         sp<IBinder> binder = defaultServiceManager()->getService(String16("package_native"));
1748         if (binder != nullptr) {
1749             sp<content::pm::IPackageManagerNative> packageManager =
1750                     interface_cast<content::pm::IPackageManagerNative>(binder);
1751             if (packageManager != nullptr) {
1752                 binder::Status status = packageManager->getTargetSdkVersionForPackage(
1753                         opPackageName, &targetSdkVersion);
1754                 if (!status.isOk()) {
1755                     targetSdkVersion = -1;
1756                 }
1757             }
1758         }
1759         sPackageTargetVersion[opPackageName] = targetSdkVersion;
1760     }
1761     return targetSdkVersion;
1762 }
1763 
checkWakeLockState()1764 void SensorService::checkWakeLockState() {
1765     Mutex::Autolock _l(mLock);
1766     checkWakeLockStateLocked();
1767 }
1768 
checkWakeLockStateLocked()1769 void SensorService::checkWakeLockStateLocked() {
1770     if (!mWakeLockAcquired) {
1771         return;
1772     }
1773     bool releaseLock = true;
1774     for (size_t i=0 ; i<mActiveConnections.size() ; i++) {
1775         sp<SensorEventConnection> connection(mActiveConnections[i].promote());
1776         if (connection != nullptr) {
1777             if (connection->needsWakeLock()) {
1778                 releaseLock = false;
1779                 break;
1780             }
1781         }
1782     }
1783     if (releaseLock) {
1784         setWakeLockAcquiredLocked(false);
1785     }
1786 }
1787 
sendEventsFromCache(const sp<SensorEventConnection> & connection)1788 void SensorService::sendEventsFromCache(const sp<SensorEventConnection>& connection) {
1789     Mutex::Autolock _l(mLock);
1790     connection->writeToSocketFromCache();
1791     if (connection->needsWakeLock()) {
1792         setWakeLockAcquiredLocked(true);
1793     }
1794 }
1795 
populateActiveConnections(SortedVector<sp<SensorEventConnection>> * activeConnections)1796 void SensorService::populateActiveConnections(
1797         SortedVector< sp<SensorEventConnection> >* activeConnections) {
1798     Mutex::Autolock _l(mLock);
1799     for (size_t i=0 ; i < mActiveConnections.size(); ++i) {
1800         sp<SensorEventConnection> connection(mActiveConnections[i].promote());
1801         if (connection != nullptr) {
1802             activeConnections->add(connection);
1803         }
1804     }
1805 }
1806 
isWhiteListedPackage(const String8 & packageName)1807 bool SensorService::isWhiteListedPackage(const String8& packageName) {
1808     return (packageName.contains(mWhiteListedPackage.string()));
1809 }
1810 
isOperationPermitted(const String16 & opPackageName)1811 bool SensorService::isOperationPermitted(const String16& opPackageName) {
1812     Mutex::Autolock _l(mLock);
1813     if (mCurrentOperatingMode == RESTRICTED) {
1814         String8 package(opPackageName);
1815         return isWhiteListedPackage(package);
1816     }
1817     return true;
1818 }
1819 
registerSelf()1820 void SensorService::UidPolicy::registerSelf() {
1821     ActivityManager am;
1822     am.registerUidObserver(this, ActivityManager::UID_OBSERVER_GONE
1823             | ActivityManager::UID_OBSERVER_IDLE
1824             | ActivityManager::UID_OBSERVER_ACTIVE,
1825             ActivityManager::PROCESS_STATE_UNKNOWN,
1826             String16("android"));
1827 }
1828 
unregisterSelf()1829 void SensorService::UidPolicy::unregisterSelf() {
1830     ActivityManager am;
1831     am.unregisterUidObserver(this);
1832 }
1833 
onUidGone(__unused uid_t uid,__unused bool disabled)1834 void SensorService::UidPolicy::onUidGone(__unused uid_t uid, __unused bool disabled) {
1835     onUidIdle(uid, disabled);
1836 }
1837 
onUidActive(uid_t uid)1838 void SensorService::UidPolicy::onUidActive(uid_t uid) {
1839     {
1840         Mutex::Autolock _l(mUidLock);
1841         mActiveUids.insert(uid);
1842     }
1843     sp<SensorService> service = mService.promote();
1844     if (service != nullptr) {
1845         service->setSensorAccess(uid, true);
1846     }
1847 }
1848 
onUidIdle(uid_t uid,__unused bool disabled)1849 void SensorService::UidPolicy::onUidIdle(uid_t uid, __unused bool disabled) {
1850     bool deleted = false;
1851     {
1852         Mutex::Autolock _l(mUidLock);
1853         if (mActiveUids.erase(uid) > 0) {
1854             deleted = true;
1855         }
1856     }
1857     if (deleted) {
1858         sp<SensorService> service = mService.promote();
1859         if (service != nullptr) {
1860             service->setSensorAccess(uid, false);
1861         }
1862     }
1863 }
1864 
addOverrideUid(uid_t uid,bool active)1865 void SensorService::UidPolicy::addOverrideUid(uid_t uid, bool active) {
1866     updateOverrideUid(uid, active, true);
1867 }
1868 
removeOverrideUid(uid_t uid)1869 void SensorService::UidPolicy::removeOverrideUid(uid_t uid) {
1870     updateOverrideUid(uid, false, false);
1871 }
1872 
updateOverrideUid(uid_t uid,bool active,bool insert)1873 void SensorService::UidPolicy::updateOverrideUid(uid_t uid, bool active, bool insert) {
1874     bool wasActive = false;
1875     bool isActive = false;
1876     {
1877         Mutex::Autolock _l(mUidLock);
1878         wasActive = isUidActiveLocked(uid);
1879         mOverrideUids.erase(uid);
1880         if (insert) {
1881             mOverrideUids.insert(std::pair<uid_t, bool>(uid, active));
1882         }
1883         isActive = isUidActiveLocked(uid);
1884     }
1885     if (wasActive != isActive) {
1886         sp<SensorService> service = mService.promote();
1887         if (service != nullptr) {
1888             service->setSensorAccess(uid, isActive);
1889         }
1890     }
1891 }
1892 
isUidActive(uid_t uid)1893 bool SensorService::UidPolicy::isUidActive(uid_t uid) {
1894     // Non-app UIDs are considered always active
1895     if (uid < FIRST_APPLICATION_UID) {
1896         return true;
1897     }
1898     Mutex::Autolock _l(mUidLock);
1899     return isUidActiveLocked(uid);
1900 }
1901 
isUidActiveLocked(uid_t uid)1902 bool SensorService::UidPolicy::isUidActiveLocked(uid_t uid) {
1903     // Non-app UIDs are considered always active
1904     if (uid < FIRST_APPLICATION_UID) {
1905         return true;
1906     }
1907     auto it = mOverrideUids.find(uid);
1908     if (it != mOverrideUids.end()) {
1909         return it->second;
1910     }
1911     return mActiveUids.find(uid) != mActiveUids.end();
1912 }
1913 
registerSelf()1914 void SensorService::SensorPrivacyPolicy::registerSelf() {
1915     SensorPrivacyManager spm;
1916     mSensorPrivacyEnabled = spm.isSensorPrivacyEnabled();
1917     spm.addSensorPrivacyListener(this);
1918 }
1919 
unregisterSelf()1920 void SensorService::SensorPrivacyPolicy::unregisterSelf() {
1921     SensorPrivacyManager spm;
1922     spm.removeSensorPrivacyListener(this);
1923 }
1924 
isSensorPrivacyEnabled()1925 bool SensorService::SensorPrivacyPolicy::isSensorPrivacyEnabled() {
1926     return mSensorPrivacyEnabled;
1927 }
1928 
onSensorPrivacyChanged(bool enabled)1929 binder::Status SensorService::SensorPrivacyPolicy::onSensorPrivacyChanged(bool enabled) {
1930     mSensorPrivacyEnabled = enabled;
1931     sp<SensorService> service = mService.promote();
1932     if (service != nullptr) {
1933         if (enabled) {
1934             service->disableAllSensors();
1935         } else {
1936             service->enableAllSensors();
1937         }
1938     }
1939     return binder::Status::ok();
1940 }
1941 }; // namespace android
1942