1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Jason Ekstrand (jason@jlekstrand.net)
25  *
26  */
27 
28 #include "vtn_private.h"
29 #include "nir/nir_vla.h"
30 #include "nir/nir_control_flow.h"
31 #include "nir/nir_constant_expressions.h"
32 #include "spirv_info.h"
33 
34 #include <stdio.h>
35 
36 void
vtn_log(struct vtn_builder * b,enum nir_spirv_debug_level level,size_t spirv_offset,const char * message)37 vtn_log(struct vtn_builder *b, enum nir_spirv_debug_level level,
38         size_t spirv_offset, const char *message)
39 {
40    if (b->options->debug.func) {
41       b->options->debug.func(b->options->debug.private_data,
42                              level, spirv_offset, message);
43    }
44 
45 #ifndef NDEBUG
46    if (level >= NIR_SPIRV_DEBUG_LEVEL_WARNING)
47       fprintf(stderr, "%s\n", message);
48 #endif
49 }
50 
51 void
vtn_logf(struct vtn_builder * b,enum nir_spirv_debug_level level,size_t spirv_offset,const char * fmt,...)52 vtn_logf(struct vtn_builder *b, enum nir_spirv_debug_level level,
53          size_t spirv_offset, const char *fmt, ...)
54 {
55    va_list args;
56    char *msg;
57 
58    va_start(args, fmt);
59    msg = ralloc_vasprintf(NULL, fmt, args);
60    va_end(args);
61 
62    vtn_log(b, level, spirv_offset, msg);
63 
64    ralloc_free(msg);
65 }
66 
67 static void
vtn_log_err(struct vtn_builder * b,enum nir_spirv_debug_level level,const char * prefix,const char * file,unsigned line,const char * fmt,va_list args)68 vtn_log_err(struct vtn_builder *b,
69             enum nir_spirv_debug_level level, const char *prefix,
70             const char *file, unsigned line,
71             const char *fmt, va_list args)
72 {
73    char *msg;
74 
75    msg = ralloc_strdup(NULL, prefix);
76 
77 #ifndef NDEBUG
78    ralloc_asprintf_append(&msg, "    In file %s:%u\n", file, line);
79 #endif
80 
81    ralloc_asprintf_append(&msg, "    ");
82 
83    ralloc_vasprintf_append(&msg, fmt, args);
84 
85    ralloc_asprintf_append(&msg, "\n    %zu bytes into the SPIR-V binary",
86                           b->spirv_offset);
87 
88    if (b->file) {
89       ralloc_asprintf_append(&msg,
90                              "\n    in SPIR-V source file %s, line %d, col %d",
91                              b->file, b->line, b->col);
92    }
93 
94    vtn_log(b, level, b->spirv_offset, msg);
95 
96    ralloc_free(msg);
97 }
98 
99 static void
vtn_dump_shader(struct vtn_builder * b,const char * path,const char * prefix)100 vtn_dump_shader(struct vtn_builder *b, const char *path, const char *prefix)
101 {
102    static int idx = 0;
103 
104    char filename[1024];
105    int len = snprintf(filename, sizeof(filename), "%s/%s-%d.spirv",
106                       path, prefix, idx++);
107    if (len < 0 || len >= sizeof(filename))
108       return;
109 
110    FILE *f = fopen(filename, "w");
111    if (f == NULL)
112       return;
113 
114    fwrite(b->spirv, sizeof(*b->spirv), b->spirv_word_count, f);
115    fclose(f);
116 
117    vtn_info("SPIR-V shader dumped to %s", filename);
118 }
119 
120 void
_vtn_warn(struct vtn_builder * b,const char * file,unsigned line,const char * fmt,...)121 _vtn_warn(struct vtn_builder *b, const char *file, unsigned line,
122           const char *fmt, ...)
123 {
124    va_list args;
125 
126    va_start(args, fmt);
127    vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_WARNING, "SPIR-V WARNING:\n",
128                file, line, fmt, args);
129    va_end(args);
130 }
131 
132 void
_vtn_fail(struct vtn_builder * b,const char * file,unsigned line,const char * fmt,...)133 _vtn_fail(struct vtn_builder *b, const char *file, unsigned line,
134           const char *fmt, ...)
135 {
136    va_list args;
137 
138    va_start(args, fmt);
139    vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V parsing FAILED:\n",
140                file, line, fmt, args);
141    va_end(args);
142 
143    const char *dump_path = getenv("MESA_SPIRV_FAIL_DUMP_PATH");
144    if (dump_path)
145       vtn_dump_shader(b, dump_path, "fail");
146 
147    longjmp(b->fail_jump, 1);
148 }
149 
150 struct spec_constant_value {
151    bool is_double;
152    union {
153       uint32_t data32;
154       uint64_t data64;
155    };
156 };
157 
158 static struct vtn_ssa_value *
vtn_undef_ssa_value(struct vtn_builder * b,const struct glsl_type * type)159 vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
160 {
161    struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
162    val->type = type;
163 
164    if (glsl_type_is_vector_or_scalar(type)) {
165       unsigned num_components = glsl_get_vector_elements(val->type);
166       unsigned bit_size = glsl_get_bit_size(val->type);
167       val->def = nir_ssa_undef(&b->nb, num_components, bit_size);
168    } else {
169       unsigned elems = glsl_get_length(val->type);
170       val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
171       if (glsl_type_is_matrix(type)) {
172          const struct glsl_type *elem_type =
173             glsl_vector_type(glsl_get_base_type(type),
174                              glsl_get_vector_elements(type));
175 
176          for (unsigned i = 0; i < elems; i++)
177             val->elems[i] = vtn_undef_ssa_value(b, elem_type);
178       } else if (glsl_type_is_array(type)) {
179          const struct glsl_type *elem_type = glsl_get_array_element(type);
180          for (unsigned i = 0; i < elems; i++)
181             val->elems[i] = vtn_undef_ssa_value(b, elem_type);
182       } else {
183          for (unsigned i = 0; i < elems; i++) {
184             const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
185             val->elems[i] = vtn_undef_ssa_value(b, elem_type);
186          }
187       }
188    }
189 
190    return val;
191 }
192 
193 static struct vtn_ssa_value *
vtn_const_ssa_value(struct vtn_builder * b,nir_constant * constant,const struct glsl_type * type)194 vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant,
195                     const struct glsl_type *type)
196 {
197    struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant);
198 
199    if (entry)
200       return entry->data;
201 
202    struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
203    val->type = type;
204 
205    switch (glsl_get_base_type(type)) {
206    case GLSL_TYPE_INT:
207    case GLSL_TYPE_UINT:
208    case GLSL_TYPE_INT16:
209    case GLSL_TYPE_UINT16:
210    case GLSL_TYPE_INT64:
211    case GLSL_TYPE_UINT64:
212    case GLSL_TYPE_BOOL:
213    case GLSL_TYPE_FLOAT:
214    case GLSL_TYPE_FLOAT16:
215    case GLSL_TYPE_DOUBLE: {
216       int bit_size = glsl_get_bit_size(type);
217       if (glsl_type_is_vector_or_scalar(type)) {
218          unsigned num_components = glsl_get_vector_elements(val->type);
219          nir_load_const_instr *load =
220             nir_load_const_instr_create(b->shader, num_components, bit_size);
221 
222          load->value = constant->values[0];
223 
224          nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
225          val->def = &load->def;
226       } else {
227          assert(glsl_type_is_matrix(type));
228          unsigned rows = glsl_get_vector_elements(val->type);
229          unsigned columns = glsl_get_matrix_columns(val->type);
230          val->elems = ralloc_array(b, struct vtn_ssa_value *, columns);
231 
232          for (unsigned i = 0; i < columns; i++) {
233             struct vtn_ssa_value *col_val = rzalloc(b, struct vtn_ssa_value);
234             col_val->type = glsl_get_column_type(val->type);
235             nir_load_const_instr *load =
236                nir_load_const_instr_create(b->shader, rows, bit_size);
237 
238             load->value = constant->values[i];
239 
240             nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
241             col_val->def = &load->def;
242 
243             val->elems[i] = col_val;
244          }
245       }
246       break;
247    }
248 
249    case GLSL_TYPE_ARRAY: {
250       unsigned elems = glsl_get_length(val->type);
251       val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
252       const struct glsl_type *elem_type = glsl_get_array_element(val->type);
253       for (unsigned i = 0; i < elems; i++)
254          val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
255                                              elem_type);
256       break;
257    }
258 
259    case GLSL_TYPE_STRUCT: {
260       unsigned elems = glsl_get_length(val->type);
261       val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
262       for (unsigned i = 0; i < elems; i++) {
263          const struct glsl_type *elem_type =
264             glsl_get_struct_field(val->type, i);
265          val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
266                                              elem_type);
267       }
268       break;
269    }
270 
271    default:
272       vtn_fail("bad constant type");
273    }
274 
275    return val;
276 }
277 
278 struct vtn_ssa_value *
vtn_ssa_value(struct vtn_builder * b,uint32_t value_id)279 vtn_ssa_value(struct vtn_builder *b, uint32_t value_id)
280 {
281    struct vtn_value *val = vtn_untyped_value(b, value_id);
282    switch (val->value_type) {
283    case vtn_value_type_undef:
284       return vtn_undef_ssa_value(b, val->type->type);
285 
286    case vtn_value_type_constant:
287       return vtn_const_ssa_value(b, val->constant, val->type->type);
288 
289    case vtn_value_type_ssa:
290       return val->ssa;
291 
292    case vtn_value_type_pointer:
293       vtn_assert(val->pointer->ptr_type && val->pointer->ptr_type->type);
294       struct vtn_ssa_value *ssa =
295          vtn_create_ssa_value(b, val->pointer->ptr_type->type);
296       ssa->def = vtn_pointer_to_ssa(b, val->pointer);
297       return ssa;
298 
299    default:
300       vtn_fail("Invalid type for an SSA value");
301    }
302 }
303 
304 static char *
vtn_string_literal(struct vtn_builder * b,const uint32_t * words,unsigned word_count,unsigned * words_used)305 vtn_string_literal(struct vtn_builder *b, const uint32_t *words,
306                    unsigned word_count, unsigned *words_used)
307 {
308    char *dup = ralloc_strndup(b, (char *)words, word_count * sizeof(*words));
309    if (words_used) {
310       /* Ammount of space taken by the string (including the null) */
311       unsigned len = strlen(dup) + 1;
312       *words_used = DIV_ROUND_UP(len, sizeof(*words));
313    }
314    return dup;
315 }
316 
317 const uint32_t *
vtn_foreach_instruction(struct vtn_builder * b,const uint32_t * start,const uint32_t * end,vtn_instruction_handler handler)318 vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start,
319                         const uint32_t *end, vtn_instruction_handler handler)
320 {
321    b->file = NULL;
322    b->line = -1;
323    b->col = -1;
324 
325    const uint32_t *w = start;
326    while (w < end) {
327       SpvOp opcode = w[0] & SpvOpCodeMask;
328       unsigned count = w[0] >> SpvWordCountShift;
329       vtn_assert(count >= 1 && w + count <= end);
330 
331       b->spirv_offset = (uint8_t *)w - (uint8_t *)b->spirv;
332 
333       switch (opcode) {
334       case SpvOpNop:
335          break; /* Do nothing */
336 
337       case SpvOpLine:
338          b->file = vtn_value(b, w[1], vtn_value_type_string)->str;
339          b->line = w[2];
340          b->col = w[3];
341          break;
342 
343       case SpvOpNoLine:
344          b->file = NULL;
345          b->line = -1;
346          b->col = -1;
347          break;
348 
349       default:
350          if (!handler(b, opcode, w, count))
351             return w;
352          break;
353       }
354 
355       w += count;
356    }
357 
358    b->spirv_offset = 0;
359    b->file = NULL;
360    b->line = -1;
361    b->col = -1;
362 
363    assert(w == end);
364    return w;
365 }
366 
367 static void
vtn_handle_extension(struct vtn_builder * b,SpvOp opcode,const uint32_t * w,unsigned count)368 vtn_handle_extension(struct vtn_builder *b, SpvOp opcode,
369                      const uint32_t *w, unsigned count)
370 {
371    switch (opcode) {
372    case SpvOpExtInstImport: {
373       struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension);
374       if (strcmp((const char *)&w[2], "GLSL.std.450") == 0) {
375          val->ext_handler = vtn_handle_glsl450_instruction;
376       } else {
377          vtn_fail("Unsupported extension");
378       }
379       break;
380    }
381 
382    case SpvOpExtInst: {
383       struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
384       bool handled = val->ext_handler(b, w[4], w, count);
385       vtn_assert(handled);
386       break;
387    }
388 
389    default:
390       vtn_fail("Unhandled opcode");
391    }
392 }
393 
394 static void
_foreach_decoration_helper(struct vtn_builder * b,struct vtn_value * base_value,int parent_member,struct vtn_value * value,vtn_decoration_foreach_cb cb,void * data)395 _foreach_decoration_helper(struct vtn_builder *b,
396                            struct vtn_value *base_value,
397                            int parent_member,
398                            struct vtn_value *value,
399                            vtn_decoration_foreach_cb cb, void *data)
400 {
401    for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
402       int member;
403       if (dec->scope == VTN_DEC_DECORATION) {
404          member = parent_member;
405       } else if (dec->scope >= VTN_DEC_STRUCT_MEMBER0) {
406          vtn_fail_if(value->value_type != vtn_value_type_type ||
407                      value->type->base_type != vtn_base_type_struct,
408                      "OpMemberDecorate and OpGroupMemberDecorate are only "
409                      "allowed on OpTypeStruct");
410          /* This means we haven't recursed yet */
411          assert(value == base_value);
412 
413          member = dec->scope - VTN_DEC_STRUCT_MEMBER0;
414 
415          vtn_fail_if(member >= base_value->type->length,
416                      "OpMemberDecorate specifies member %d but the "
417                      "OpTypeStruct has only %u members",
418                      member, base_value->type->length);
419       } else {
420          /* Not a decoration */
421          assert(dec->scope == VTN_DEC_EXECUTION_MODE);
422          continue;
423       }
424 
425       if (dec->group) {
426          assert(dec->group->value_type == vtn_value_type_decoration_group);
427          _foreach_decoration_helper(b, base_value, member, dec->group,
428                                     cb, data);
429       } else {
430          cb(b, base_value, member, dec, data);
431       }
432    }
433 }
434 
435 /** Iterates (recursively if needed) over all of the decorations on a value
436  *
437  * This function iterates over all of the decorations applied to a given
438  * value.  If it encounters a decoration group, it recurses into the group
439  * and iterates over all of those decorations as well.
440  */
441 void
vtn_foreach_decoration(struct vtn_builder * b,struct vtn_value * value,vtn_decoration_foreach_cb cb,void * data)442 vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value,
443                        vtn_decoration_foreach_cb cb, void *data)
444 {
445    _foreach_decoration_helper(b, value, -1, value, cb, data);
446 }
447 
448 void
vtn_foreach_execution_mode(struct vtn_builder * b,struct vtn_value * value,vtn_execution_mode_foreach_cb cb,void * data)449 vtn_foreach_execution_mode(struct vtn_builder *b, struct vtn_value *value,
450                            vtn_execution_mode_foreach_cb cb, void *data)
451 {
452    for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
453       if (dec->scope != VTN_DEC_EXECUTION_MODE)
454          continue;
455 
456       assert(dec->group == NULL);
457       cb(b, value, dec, data);
458    }
459 }
460 
461 static void
vtn_handle_decoration(struct vtn_builder * b,SpvOp opcode,const uint32_t * w,unsigned count)462 vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode,
463                       const uint32_t *w, unsigned count)
464 {
465    const uint32_t *w_end = w + count;
466    const uint32_t target = w[1];
467    w += 2;
468 
469    switch (opcode) {
470    case SpvOpDecorationGroup:
471       vtn_push_value(b, target, vtn_value_type_decoration_group);
472       break;
473 
474    case SpvOpDecorate:
475    case SpvOpMemberDecorate:
476    case SpvOpExecutionMode: {
477       struct vtn_value *val = vtn_untyped_value(b, target);
478 
479       struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
480       switch (opcode) {
481       case SpvOpDecorate:
482          dec->scope = VTN_DEC_DECORATION;
483          break;
484       case SpvOpMemberDecorate:
485          dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++);
486          vtn_fail_if(dec->scope < VTN_DEC_STRUCT_MEMBER0, /* overflow */
487                      "Member argument of OpMemberDecorate too large");
488          break;
489       case SpvOpExecutionMode:
490          dec->scope = VTN_DEC_EXECUTION_MODE;
491          break;
492       default:
493          unreachable("Invalid decoration opcode");
494       }
495       dec->decoration = *(w++);
496       dec->literals = w;
497 
498       /* Link into the list */
499       dec->next = val->decoration;
500       val->decoration = dec;
501       break;
502    }
503 
504    case SpvOpGroupMemberDecorate:
505    case SpvOpGroupDecorate: {
506       struct vtn_value *group =
507          vtn_value(b, target, vtn_value_type_decoration_group);
508 
509       for (; w < w_end; w++) {
510          struct vtn_value *val = vtn_untyped_value(b, *w);
511          struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
512 
513          dec->group = group;
514          if (opcode == SpvOpGroupDecorate) {
515             dec->scope = VTN_DEC_DECORATION;
516          } else {
517             dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(++w);
518             vtn_fail_if(dec->scope < 0, /* Check for overflow */
519                         "Member argument of OpGroupMemberDecorate too large");
520          }
521 
522          /* Link into the list */
523          dec->next = val->decoration;
524          val->decoration = dec;
525       }
526       break;
527    }
528 
529    default:
530       unreachable("Unhandled opcode");
531    }
532 }
533 
534 struct member_decoration_ctx {
535    unsigned num_fields;
536    struct glsl_struct_field *fields;
537    struct vtn_type *type;
538 };
539 
540 /** Returns true if two types are "compatible", i.e. you can do an OpLoad,
541  * OpStore, or OpCopyMemory between them without breaking anything.
542  * Technically, the SPIR-V rules require the exact same type ID but this lets
543  * us internally be a bit looser.
544  */
545 bool
vtn_types_compatible(struct vtn_builder * b,struct vtn_type * t1,struct vtn_type * t2)546 vtn_types_compatible(struct vtn_builder *b,
547                      struct vtn_type *t1, struct vtn_type *t2)
548 {
549    if (t1->id == t2->id)
550       return true;
551 
552    if (t1->base_type != t2->base_type)
553       return false;
554 
555    switch (t1->base_type) {
556    case vtn_base_type_void:
557    case vtn_base_type_scalar:
558    case vtn_base_type_vector:
559    case vtn_base_type_matrix:
560    case vtn_base_type_image:
561    case vtn_base_type_sampler:
562    case vtn_base_type_sampled_image:
563       return t1->type == t2->type;
564 
565    case vtn_base_type_array:
566       return t1->length == t2->length &&
567              vtn_types_compatible(b, t1->array_element, t2->array_element);
568 
569    case vtn_base_type_pointer:
570       return vtn_types_compatible(b, t1->deref, t2->deref);
571 
572    case vtn_base_type_struct:
573       if (t1->length != t2->length)
574          return false;
575 
576       for (unsigned i = 0; i < t1->length; i++) {
577          if (!vtn_types_compatible(b, t1->members[i], t2->members[i]))
578             return false;
579       }
580       return true;
581 
582    case vtn_base_type_function:
583       /* This case shouldn't get hit since you can't copy around function
584        * types.  Just require them to be identical.
585        */
586       return false;
587    }
588 
589    vtn_fail("Invalid base type");
590 }
591 
592 /* does a shallow copy of a vtn_type */
593 
594 static struct vtn_type *
vtn_type_copy(struct vtn_builder * b,struct vtn_type * src)595 vtn_type_copy(struct vtn_builder *b, struct vtn_type *src)
596 {
597    struct vtn_type *dest = ralloc(b, struct vtn_type);
598    *dest = *src;
599 
600    switch (src->base_type) {
601    case vtn_base_type_void:
602    case vtn_base_type_scalar:
603    case vtn_base_type_vector:
604    case vtn_base_type_matrix:
605    case vtn_base_type_array:
606    case vtn_base_type_pointer:
607    case vtn_base_type_image:
608    case vtn_base_type_sampler:
609    case vtn_base_type_sampled_image:
610       /* Nothing more to do */
611       break;
612 
613    case vtn_base_type_struct:
614       dest->members = ralloc_array(b, struct vtn_type *, src->length);
615       memcpy(dest->members, src->members,
616              src->length * sizeof(src->members[0]));
617 
618       dest->offsets = ralloc_array(b, unsigned, src->length);
619       memcpy(dest->offsets, src->offsets,
620              src->length * sizeof(src->offsets[0]));
621       break;
622 
623    case vtn_base_type_function:
624       dest->params = ralloc_array(b, struct vtn_type *, src->length);
625       memcpy(dest->params, src->params, src->length * sizeof(src->params[0]));
626       break;
627    }
628 
629    return dest;
630 }
631 
632 static struct vtn_type *
mutable_matrix_member(struct vtn_builder * b,struct vtn_type * type,int member)633 mutable_matrix_member(struct vtn_builder *b, struct vtn_type *type, int member)
634 {
635    type->members[member] = vtn_type_copy(b, type->members[member]);
636    type = type->members[member];
637 
638    /* We may have an array of matrices.... Oh, joy! */
639    while (glsl_type_is_array(type->type)) {
640       type->array_element = vtn_type_copy(b, type->array_element);
641       type = type->array_element;
642    }
643 
644    vtn_assert(glsl_type_is_matrix(type->type));
645 
646    return type;
647 }
648 
649 static void
struct_member_decoration_cb(struct vtn_builder * b,struct vtn_value * val,int member,const struct vtn_decoration * dec,void * void_ctx)650 struct_member_decoration_cb(struct vtn_builder *b,
651                             struct vtn_value *val, int member,
652                             const struct vtn_decoration *dec, void *void_ctx)
653 {
654    struct member_decoration_ctx *ctx = void_ctx;
655 
656    if (member < 0)
657       return;
658 
659    assert(member < ctx->num_fields);
660 
661    switch (dec->decoration) {
662    case SpvDecorationNonWritable:
663    case SpvDecorationNonReadable:
664    case SpvDecorationRelaxedPrecision:
665    case SpvDecorationVolatile:
666    case SpvDecorationCoherent:
667    case SpvDecorationUniform:
668       break; /* FIXME: Do nothing with this for now. */
669    case SpvDecorationNoPerspective:
670       ctx->fields[member].interpolation = INTERP_MODE_NOPERSPECTIVE;
671       break;
672    case SpvDecorationFlat:
673       ctx->fields[member].interpolation = INTERP_MODE_FLAT;
674       break;
675    case SpvDecorationCentroid:
676       ctx->fields[member].centroid = true;
677       break;
678    case SpvDecorationSample:
679       ctx->fields[member].sample = true;
680       break;
681    case SpvDecorationStream:
682       /* Vulkan only allows one GS stream */
683       vtn_assert(dec->literals[0] == 0);
684       break;
685    case SpvDecorationLocation:
686       ctx->fields[member].location = dec->literals[0];
687       break;
688    case SpvDecorationComponent:
689       break; /* FIXME: What should we do with these? */
690    case SpvDecorationBuiltIn:
691       ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]);
692       ctx->type->members[member]->is_builtin = true;
693       ctx->type->members[member]->builtin = dec->literals[0];
694       ctx->type->builtin_block = true;
695       break;
696    case SpvDecorationOffset:
697       ctx->type->offsets[member] = dec->literals[0];
698       break;
699    case SpvDecorationMatrixStride:
700       /* Handled as a second pass */
701       break;
702    case SpvDecorationColMajor:
703       break; /* Nothing to do here.  Column-major is the default. */
704    case SpvDecorationRowMajor:
705       mutable_matrix_member(b, ctx->type, member)->row_major = true;
706       break;
707 
708    case SpvDecorationPatch:
709       break;
710 
711    case SpvDecorationSpecId:
712    case SpvDecorationBlock:
713    case SpvDecorationBufferBlock:
714    case SpvDecorationArrayStride:
715    case SpvDecorationGLSLShared:
716    case SpvDecorationGLSLPacked:
717    case SpvDecorationInvariant:
718    case SpvDecorationRestrict:
719    case SpvDecorationAliased:
720    case SpvDecorationConstant:
721    case SpvDecorationIndex:
722    case SpvDecorationBinding:
723    case SpvDecorationDescriptorSet:
724    case SpvDecorationLinkageAttributes:
725    case SpvDecorationNoContraction:
726    case SpvDecorationInputAttachmentIndex:
727       vtn_warn("Decoration not allowed on struct members: %s",
728                spirv_decoration_to_string(dec->decoration));
729       break;
730 
731    case SpvDecorationXfbBuffer:
732    case SpvDecorationXfbStride:
733       vtn_warn("Vulkan does not have transform feedback");
734       break;
735 
736    case SpvDecorationCPacked:
737    case SpvDecorationSaturatedConversion:
738    case SpvDecorationFuncParamAttr:
739    case SpvDecorationFPRoundingMode:
740    case SpvDecorationFPFastMathMode:
741    case SpvDecorationAlignment:
742       vtn_warn("Decoration only allowed for CL-style kernels: %s",
743                spirv_decoration_to_string(dec->decoration));
744       break;
745 
746    default:
747       vtn_fail("Unhandled decoration");
748    }
749 }
750 
751 /* Matrix strides are handled as a separate pass because we need to know
752  * whether the matrix is row-major or not first.
753  */
754 static void
struct_member_matrix_stride_cb(struct vtn_builder * b,struct vtn_value * val,int member,const struct vtn_decoration * dec,void * void_ctx)755 struct_member_matrix_stride_cb(struct vtn_builder *b,
756                                struct vtn_value *val, int member,
757                                const struct vtn_decoration *dec,
758                                void *void_ctx)
759 {
760    if (dec->decoration != SpvDecorationMatrixStride)
761       return;
762 
763    vtn_fail_if(member < 0,
764                "The MatrixStride decoration is only allowed on members "
765                "of OpTypeStruct");
766 
767    struct member_decoration_ctx *ctx = void_ctx;
768 
769    struct vtn_type *mat_type = mutable_matrix_member(b, ctx->type, member);
770    if (mat_type->row_major) {
771       mat_type->array_element = vtn_type_copy(b, mat_type->array_element);
772       mat_type->stride = mat_type->array_element->stride;
773       mat_type->array_element->stride = dec->literals[0];
774    } else {
775       vtn_assert(mat_type->array_element->stride > 0);
776       mat_type->stride = dec->literals[0];
777    }
778 }
779 
780 static void
type_decoration_cb(struct vtn_builder * b,struct vtn_value * val,int member,const struct vtn_decoration * dec,void * ctx)781 type_decoration_cb(struct vtn_builder *b,
782                    struct vtn_value *val, int member,
783                     const struct vtn_decoration *dec, void *ctx)
784 {
785    struct vtn_type *type = val->type;
786 
787    if (member != -1) {
788       /* This should have been handled by OpTypeStruct */
789       assert(val->type->base_type == vtn_base_type_struct);
790       assert(member >= 0 && member < val->type->length);
791       return;
792    }
793 
794    switch (dec->decoration) {
795    case SpvDecorationArrayStride:
796       vtn_assert(type->base_type == vtn_base_type_matrix ||
797                  type->base_type == vtn_base_type_array ||
798                  type->base_type == vtn_base_type_pointer);
799       type->stride = dec->literals[0];
800       break;
801    case SpvDecorationBlock:
802       vtn_assert(type->base_type == vtn_base_type_struct);
803       type->block = true;
804       break;
805    case SpvDecorationBufferBlock:
806       vtn_assert(type->base_type == vtn_base_type_struct);
807       type->buffer_block = true;
808       break;
809    case SpvDecorationGLSLShared:
810    case SpvDecorationGLSLPacked:
811       /* Ignore these, since we get explicit offsets anyways */
812       break;
813 
814    case SpvDecorationRowMajor:
815    case SpvDecorationColMajor:
816    case SpvDecorationMatrixStride:
817    case SpvDecorationBuiltIn:
818    case SpvDecorationNoPerspective:
819    case SpvDecorationFlat:
820    case SpvDecorationPatch:
821    case SpvDecorationCentroid:
822    case SpvDecorationSample:
823    case SpvDecorationVolatile:
824    case SpvDecorationCoherent:
825    case SpvDecorationNonWritable:
826    case SpvDecorationNonReadable:
827    case SpvDecorationUniform:
828    case SpvDecorationStream:
829    case SpvDecorationLocation:
830    case SpvDecorationComponent:
831    case SpvDecorationOffset:
832    case SpvDecorationXfbBuffer:
833    case SpvDecorationXfbStride:
834       vtn_warn("Decoration only allowed for struct members: %s",
835                spirv_decoration_to_string(dec->decoration));
836       break;
837 
838    case SpvDecorationRelaxedPrecision:
839    case SpvDecorationSpecId:
840    case SpvDecorationInvariant:
841    case SpvDecorationRestrict:
842    case SpvDecorationAliased:
843    case SpvDecorationConstant:
844    case SpvDecorationIndex:
845    case SpvDecorationBinding:
846    case SpvDecorationDescriptorSet:
847    case SpvDecorationLinkageAttributes:
848    case SpvDecorationNoContraction:
849    case SpvDecorationInputAttachmentIndex:
850       vtn_warn("Decoration not allowed on types: %s",
851                spirv_decoration_to_string(dec->decoration));
852       break;
853 
854    case SpvDecorationCPacked:
855    case SpvDecorationSaturatedConversion:
856    case SpvDecorationFuncParamAttr:
857    case SpvDecorationFPRoundingMode:
858    case SpvDecorationFPFastMathMode:
859    case SpvDecorationAlignment:
860       vtn_warn("Decoration only allowed for CL-style kernels: %s",
861                spirv_decoration_to_string(dec->decoration));
862       break;
863 
864    default:
865       vtn_fail("Unhandled decoration");
866    }
867 }
868 
869 static unsigned
translate_image_format(struct vtn_builder * b,SpvImageFormat format)870 translate_image_format(struct vtn_builder *b, SpvImageFormat format)
871 {
872    switch (format) {
873    case SpvImageFormatUnknown:      return 0;      /* GL_NONE */
874    case SpvImageFormatRgba32f:      return 0x8814; /* GL_RGBA32F */
875    case SpvImageFormatRgba16f:      return 0x881A; /* GL_RGBA16F */
876    case SpvImageFormatR32f:         return 0x822E; /* GL_R32F */
877    case SpvImageFormatRgba8:        return 0x8058; /* GL_RGBA8 */
878    case SpvImageFormatRgba8Snorm:   return 0x8F97; /* GL_RGBA8_SNORM */
879    case SpvImageFormatRg32f:        return 0x8230; /* GL_RG32F */
880    case SpvImageFormatRg16f:        return 0x822F; /* GL_RG16F */
881    case SpvImageFormatR11fG11fB10f: return 0x8C3A; /* GL_R11F_G11F_B10F */
882    case SpvImageFormatR16f:         return 0x822D; /* GL_R16F */
883    case SpvImageFormatRgba16:       return 0x805B; /* GL_RGBA16 */
884    case SpvImageFormatRgb10A2:      return 0x8059; /* GL_RGB10_A2 */
885    case SpvImageFormatRg16:         return 0x822C; /* GL_RG16 */
886    case SpvImageFormatRg8:          return 0x822B; /* GL_RG8 */
887    case SpvImageFormatR16:          return 0x822A; /* GL_R16 */
888    case SpvImageFormatR8:           return 0x8229; /* GL_R8 */
889    case SpvImageFormatRgba16Snorm:  return 0x8F9B; /* GL_RGBA16_SNORM */
890    case SpvImageFormatRg16Snorm:    return 0x8F99; /* GL_RG16_SNORM */
891    case SpvImageFormatRg8Snorm:     return 0x8F95; /* GL_RG8_SNORM */
892    case SpvImageFormatR16Snorm:     return 0x8F98; /* GL_R16_SNORM */
893    case SpvImageFormatR8Snorm:      return 0x8F94; /* GL_R8_SNORM */
894    case SpvImageFormatRgba32i:      return 0x8D82; /* GL_RGBA32I */
895    case SpvImageFormatRgba16i:      return 0x8D88; /* GL_RGBA16I */
896    case SpvImageFormatRgba8i:       return 0x8D8E; /* GL_RGBA8I */
897    case SpvImageFormatR32i:         return 0x8235; /* GL_R32I */
898    case SpvImageFormatRg32i:        return 0x823B; /* GL_RG32I */
899    case SpvImageFormatRg16i:        return 0x8239; /* GL_RG16I */
900    case SpvImageFormatRg8i:         return 0x8237; /* GL_RG8I */
901    case SpvImageFormatR16i:         return 0x8233; /* GL_R16I */
902    case SpvImageFormatR8i:          return 0x8231; /* GL_R8I */
903    case SpvImageFormatRgba32ui:     return 0x8D70; /* GL_RGBA32UI */
904    case SpvImageFormatRgba16ui:     return 0x8D76; /* GL_RGBA16UI */
905    case SpvImageFormatRgba8ui:      return 0x8D7C; /* GL_RGBA8UI */
906    case SpvImageFormatR32ui:        return 0x8236; /* GL_R32UI */
907    case SpvImageFormatRgb10a2ui:    return 0x906F; /* GL_RGB10_A2UI */
908    case SpvImageFormatRg32ui:       return 0x823C; /* GL_RG32UI */
909    case SpvImageFormatRg16ui:       return 0x823A; /* GL_RG16UI */
910    case SpvImageFormatRg8ui:        return 0x8238; /* GL_RG8UI */
911    case SpvImageFormatR16ui:        return 0x8234; /* GL_R16UI */
912    case SpvImageFormatR8ui:         return 0x8232; /* GL_R8UI */
913    default:
914       vtn_fail("Invalid image format");
915    }
916 }
917 
918 static struct vtn_type *
vtn_type_layout_std430(struct vtn_builder * b,struct vtn_type * type,uint32_t * size_out,uint32_t * align_out)919 vtn_type_layout_std430(struct vtn_builder *b, struct vtn_type *type,
920                        uint32_t *size_out, uint32_t *align_out)
921 {
922    switch (type->base_type) {
923    case vtn_base_type_scalar: {
924       uint32_t comp_size = glsl_get_bit_size(type->type) / 8;
925       *size_out = comp_size;
926       *align_out = comp_size;
927       return type;
928    }
929 
930    case vtn_base_type_vector: {
931       uint32_t comp_size = glsl_get_bit_size(type->type) / 8;
932       assert(type->length > 0 && type->length <= 4);
933       unsigned align_comps = type->length == 3 ? 4 : type->length;
934       *size_out = comp_size * type->length,
935       *align_out = comp_size * align_comps;
936       return type;
937    }
938 
939    case vtn_base_type_matrix:
940    case vtn_base_type_array: {
941       /* We're going to add an array stride */
942       type = vtn_type_copy(b, type);
943       uint32_t elem_size, elem_align;
944       type->array_element = vtn_type_layout_std430(b, type->array_element,
945                                                    &elem_size, &elem_align);
946       type->stride = vtn_align_u32(elem_size, elem_align);
947       *size_out = type->stride * type->length;
948       *align_out = elem_align;
949       return type;
950    }
951 
952    case vtn_base_type_struct: {
953       /* We're going to add member offsets */
954       type = vtn_type_copy(b, type);
955       uint32_t offset = 0;
956       uint32_t align = 0;
957       for (unsigned i = 0; i < type->length; i++) {
958          uint32_t mem_size, mem_align;
959          type->members[i] = vtn_type_layout_std430(b, type->members[i],
960                                                    &mem_size, &mem_align);
961          offset = vtn_align_u32(offset, mem_align);
962          type->offsets[i] = offset;
963          offset += mem_size;
964          align = MAX2(align, mem_align);
965       }
966       *size_out = offset;
967       *align_out = align;
968       return type;
969    }
970 
971    default:
972       unreachable("Invalid SPIR-V type for std430");
973    }
974 }
975 
976 static void
vtn_handle_type(struct vtn_builder * b,SpvOp opcode,const uint32_t * w,unsigned count)977 vtn_handle_type(struct vtn_builder *b, SpvOp opcode,
978                 const uint32_t *w, unsigned count)
979 {
980    struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_type);
981 
982    val->type = rzalloc(b, struct vtn_type);
983    val->type->id = w[1];
984 
985    switch (opcode) {
986    case SpvOpTypeVoid:
987       val->type->base_type = vtn_base_type_void;
988       val->type->type = glsl_void_type();
989       break;
990    case SpvOpTypeBool:
991       val->type->base_type = vtn_base_type_scalar;
992       val->type->type = glsl_bool_type();
993       val->type->length = 1;
994       break;
995    case SpvOpTypeInt: {
996       int bit_size = w[2];
997       const bool signedness = w[3];
998       val->type->base_type = vtn_base_type_scalar;
999       switch (bit_size) {
1000       case 64:
1001          val->type->type = (signedness ? glsl_int64_t_type() : glsl_uint64_t_type());
1002          break;
1003       case 32:
1004          val->type->type = (signedness ? glsl_int_type() : glsl_uint_type());
1005          break;
1006       case 16:
1007          val->type->type = (signedness ? glsl_int16_t_type() : glsl_uint16_t_type());
1008          break;
1009       default:
1010          vtn_fail("Invalid int bit size");
1011       }
1012       val->type->length = 1;
1013       break;
1014    }
1015 
1016    case SpvOpTypeFloat: {
1017       int bit_size = w[2];
1018       val->type->base_type = vtn_base_type_scalar;
1019       switch (bit_size) {
1020       case 16:
1021          val->type->type = glsl_float16_t_type();
1022          break;
1023       case 32:
1024          val->type->type = glsl_float_type();
1025          break;
1026       case 64:
1027          val->type->type = glsl_double_type();
1028          break;
1029       default:
1030          vtn_fail("Invalid float bit size");
1031       }
1032       val->type->length = 1;
1033       break;
1034    }
1035 
1036    case SpvOpTypeVector: {
1037       struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1038       unsigned elems = w[3];
1039 
1040       vtn_fail_if(base->base_type != vtn_base_type_scalar,
1041                   "Base type for OpTypeVector must be a scalar");
1042       vtn_fail_if(elems < 2 || elems > 4,
1043                   "Invalid component count for OpTypeVector");
1044 
1045       val->type->base_type = vtn_base_type_vector;
1046       val->type->type = glsl_vector_type(glsl_get_base_type(base->type), elems);
1047       val->type->length = elems;
1048       val->type->stride = glsl_get_bit_size(base->type) / 8;
1049       val->type->array_element = base;
1050       break;
1051    }
1052 
1053    case SpvOpTypeMatrix: {
1054       struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1055       unsigned columns = w[3];
1056 
1057       vtn_fail_if(base->base_type != vtn_base_type_vector,
1058                   "Base type for OpTypeMatrix must be a vector");
1059       vtn_fail_if(columns < 2 || columns > 4,
1060                   "Invalid column count for OpTypeMatrix");
1061 
1062       val->type->base_type = vtn_base_type_matrix;
1063       val->type->type = glsl_matrix_type(glsl_get_base_type(base->type),
1064                                          glsl_get_vector_elements(base->type),
1065                                          columns);
1066       vtn_fail_if(glsl_type_is_error(val->type->type),
1067                   "Unsupported base type for OpTypeMatrix");
1068       assert(!glsl_type_is_error(val->type->type));
1069       val->type->length = columns;
1070       val->type->array_element = base;
1071       val->type->row_major = false;
1072       val->type->stride = 0;
1073       break;
1074    }
1075 
1076    case SpvOpTypeRuntimeArray:
1077    case SpvOpTypeArray: {
1078       struct vtn_type *array_element =
1079          vtn_value(b, w[2], vtn_value_type_type)->type;
1080 
1081       if (opcode == SpvOpTypeRuntimeArray) {
1082          /* A length of 0 is used to denote unsized arrays */
1083          val->type->length = 0;
1084       } else {
1085          val->type->length =
1086             vtn_value(b, w[3], vtn_value_type_constant)->constant->values[0].u32[0];
1087       }
1088 
1089       val->type->base_type = vtn_base_type_array;
1090       val->type->type = glsl_array_type(array_element->type, val->type->length);
1091       val->type->array_element = array_element;
1092       val->type->stride = 0;
1093       break;
1094    }
1095 
1096    case SpvOpTypeStruct: {
1097       unsigned num_fields = count - 2;
1098       val->type->base_type = vtn_base_type_struct;
1099       val->type->length = num_fields;
1100       val->type->members = ralloc_array(b, struct vtn_type *, num_fields);
1101       val->type->offsets = ralloc_array(b, unsigned, num_fields);
1102 
1103       NIR_VLA(struct glsl_struct_field, fields, count);
1104       for (unsigned i = 0; i < num_fields; i++) {
1105          val->type->members[i] =
1106             vtn_value(b, w[i + 2], vtn_value_type_type)->type;
1107          fields[i] = (struct glsl_struct_field) {
1108             .type = val->type->members[i]->type,
1109             .name = ralloc_asprintf(b, "field%d", i),
1110             .location = -1,
1111          };
1112       }
1113 
1114       struct member_decoration_ctx ctx = {
1115          .num_fields = num_fields,
1116          .fields = fields,
1117          .type = val->type
1118       };
1119 
1120       vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx);
1121       vtn_foreach_decoration(b, val, struct_member_matrix_stride_cb, &ctx);
1122 
1123       const char *name = val->name ? val->name : "struct";
1124 
1125       val->type->type = glsl_struct_type(fields, num_fields, name);
1126       break;
1127    }
1128 
1129    case SpvOpTypeFunction: {
1130       val->type->base_type = vtn_base_type_function;
1131       val->type->type = NULL;
1132 
1133       val->type->return_type = vtn_value(b, w[2], vtn_value_type_type)->type;
1134 
1135       const unsigned num_params = count - 3;
1136       val->type->length = num_params;
1137       val->type->params = ralloc_array(b, struct vtn_type *, num_params);
1138       for (unsigned i = 0; i < count - 3; i++) {
1139          val->type->params[i] =
1140             vtn_value(b, w[i + 3], vtn_value_type_type)->type;
1141       }
1142       break;
1143    }
1144 
1145    case SpvOpTypePointer: {
1146       SpvStorageClass storage_class = w[2];
1147       struct vtn_type *deref_type =
1148          vtn_value(b, w[3], vtn_value_type_type)->type;
1149 
1150       val->type->base_type = vtn_base_type_pointer;
1151       val->type->storage_class = storage_class;
1152       val->type->deref = deref_type;
1153 
1154       if (storage_class == SpvStorageClassUniform ||
1155           storage_class == SpvStorageClassStorageBuffer) {
1156          /* These can actually be stored to nir_variables and used as SSA
1157           * values so they need a real glsl_type.
1158           */
1159          val->type->type = glsl_vector_type(GLSL_TYPE_UINT, 2);
1160       }
1161 
1162       if (storage_class == SpvStorageClassWorkgroup &&
1163           b->options->lower_workgroup_access_to_offsets) {
1164          uint32_t size, align;
1165          val->type->deref = vtn_type_layout_std430(b, val->type->deref,
1166                                                    &size, &align);
1167          val->type->length = size;
1168          val->type->align = align;
1169          /* These can actually be stored to nir_variables and used as SSA
1170           * values so they need a real glsl_type.
1171           */
1172          val->type->type = glsl_uint_type();
1173       }
1174       break;
1175    }
1176 
1177    case SpvOpTypeImage: {
1178       val->type->base_type = vtn_base_type_image;
1179 
1180       const struct vtn_type *sampled_type =
1181          vtn_value(b, w[2], vtn_value_type_type)->type;
1182 
1183       vtn_fail_if(sampled_type->base_type != vtn_base_type_scalar ||
1184                   glsl_get_bit_size(sampled_type->type) != 32,
1185                   "Sampled type of OpTypeImage must be a 32-bit scalar");
1186 
1187       enum glsl_sampler_dim dim;
1188       switch ((SpvDim)w[3]) {
1189       case SpvDim1D:       dim = GLSL_SAMPLER_DIM_1D;    break;
1190       case SpvDim2D:       dim = GLSL_SAMPLER_DIM_2D;    break;
1191       case SpvDim3D:       dim = GLSL_SAMPLER_DIM_3D;    break;
1192       case SpvDimCube:     dim = GLSL_SAMPLER_DIM_CUBE;  break;
1193       case SpvDimRect:     dim = GLSL_SAMPLER_DIM_RECT;  break;
1194       case SpvDimBuffer:   dim = GLSL_SAMPLER_DIM_BUF;   break;
1195       case SpvDimSubpassData: dim = GLSL_SAMPLER_DIM_SUBPASS; break;
1196       default:
1197          vtn_fail("Invalid SPIR-V image dimensionality");
1198       }
1199 
1200       bool is_shadow = w[4];
1201       bool is_array = w[5];
1202       bool multisampled = w[6];
1203       unsigned sampled = w[7];
1204       SpvImageFormat format = w[8];
1205 
1206       if (count > 9)
1207          val->type->access_qualifier = w[9];
1208       else
1209          val->type->access_qualifier = SpvAccessQualifierReadWrite;
1210 
1211       if (multisampled) {
1212          if (dim == GLSL_SAMPLER_DIM_2D)
1213             dim = GLSL_SAMPLER_DIM_MS;
1214          else if (dim == GLSL_SAMPLER_DIM_SUBPASS)
1215             dim = GLSL_SAMPLER_DIM_SUBPASS_MS;
1216          else
1217             vtn_fail("Unsupported multisampled image type");
1218       }
1219 
1220       val->type->image_format = translate_image_format(b, format);
1221 
1222       enum glsl_base_type sampled_base_type =
1223          glsl_get_base_type(sampled_type->type);
1224       if (sampled == 1) {
1225          val->type->sampled = true;
1226          val->type->type = glsl_sampler_type(dim, is_shadow, is_array,
1227                                              sampled_base_type);
1228       } else if (sampled == 2) {
1229          vtn_assert(!is_shadow);
1230          val->type->sampled = false;
1231          val->type->type = glsl_image_type(dim, is_array, sampled_base_type);
1232       } else {
1233          vtn_fail("We need to know if the image will be sampled");
1234       }
1235       break;
1236    }
1237 
1238    case SpvOpTypeSampledImage:
1239       val->type->base_type = vtn_base_type_sampled_image;
1240       val->type->image = vtn_value(b, w[2], vtn_value_type_type)->type;
1241       val->type->type = val->type->image->type;
1242       break;
1243 
1244    case SpvOpTypeSampler:
1245       /* The actual sampler type here doesn't really matter.  It gets
1246        * thrown away the moment you combine it with an image.  What really
1247        * matters is that it's a sampler type as opposed to an integer type
1248        * so the backend knows what to do.
1249        */
1250       val->type->base_type = vtn_base_type_sampler;
1251       val->type->type = glsl_bare_sampler_type();
1252       break;
1253 
1254    case SpvOpTypeOpaque:
1255    case SpvOpTypeEvent:
1256    case SpvOpTypeDeviceEvent:
1257    case SpvOpTypeReserveId:
1258    case SpvOpTypeQueue:
1259    case SpvOpTypePipe:
1260    default:
1261       vtn_fail("Unhandled opcode");
1262    }
1263 
1264    vtn_foreach_decoration(b, val, type_decoration_cb, NULL);
1265 }
1266 
1267 static nir_constant *
vtn_null_constant(struct vtn_builder * b,const struct glsl_type * type)1268 vtn_null_constant(struct vtn_builder *b, const struct glsl_type *type)
1269 {
1270    nir_constant *c = rzalloc(b, nir_constant);
1271 
1272    /* For pointers and other typeless things, we have to return something but
1273     * it doesn't matter what.
1274     */
1275    if (!type)
1276       return c;
1277 
1278    switch (glsl_get_base_type(type)) {
1279    case GLSL_TYPE_INT:
1280    case GLSL_TYPE_UINT:
1281    case GLSL_TYPE_INT16:
1282    case GLSL_TYPE_UINT16:
1283    case GLSL_TYPE_INT64:
1284    case GLSL_TYPE_UINT64:
1285    case GLSL_TYPE_BOOL:
1286    case GLSL_TYPE_FLOAT:
1287    case GLSL_TYPE_FLOAT16:
1288    case GLSL_TYPE_DOUBLE:
1289       /* Nothing to do here.  It's already initialized to zero */
1290       break;
1291 
1292    case GLSL_TYPE_ARRAY:
1293       vtn_assert(glsl_get_length(type) > 0);
1294       c->num_elements = glsl_get_length(type);
1295       c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1296 
1297       c->elements[0] = vtn_null_constant(b, glsl_get_array_element(type));
1298       for (unsigned i = 1; i < c->num_elements; i++)
1299          c->elements[i] = c->elements[0];
1300       break;
1301 
1302    case GLSL_TYPE_STRUCT:
1303       c->num_elements = glsl_get_length(type);
1304       c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1305 
1306       for (unsigned i = 0; i < c->num_elements; i++) {
1307          c->elements[i] = vtn_null_constant(b, glsl_get_struct_field(type, i));
1308       }
1309       break;
1310 
1311    default:
1312       vtn_fail("Invalid type for null constant");
1313    }
1314 
1315    return c;
1316 }
1317 
1318 static void
spec_constant_decoration_cb(struct vtn_builder * b,struct vtn_value * v,int member,const struct vtn_decoration * dec,void * data)1319 spec_constant_decoration_cb(struct vtn_builder *b, struct vtn_value *v,
1320                              int member, const struct vtn_decoration *dec,
1321                              void *data)
1322 {
1323    vtn_assert(member == -1);
1324    if (dec->decoration != SpvDecorationSpecId)
1325       return;
1326 
1327    struct spec_constant_value *const_value = data;
1328 
1329    for (unsigned i = 0; i < b->num_specializations; i++) {
1330       if (b->specializations[i].id == dec->literals[0]) {
1331          if (const_value->is_double)
1332             const_value->data64 = b->specializations[i].data64;
1333          else
1334             const_value->data32 = b->specializations[i].data32;
1335          return;
1336       }
1337    }
1338 }
1339 
1340 static uint32_t
get_specialization(struct vtn_builder * b,struct vtn_value * val,uint32_t const_value)1341 get_specialization(struct vtn_builder *b, struct vtn_value *val,
1342                    uint32_t const_value)
1343 {
1344    struct spec_constant_value data;
1345    data.is_double = false;
1346    data.data32 = const_value;
1347    vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1348    return data.data32;
1349 }
1350 
1351 static uint64_t
get_specialization64(struct vtn_builder * b,struct vtn_value * val,uint64_t const_value)1352 get_specialization64(struct vtn_builder *b, struct vtn_value *val,
1353                    uint64_t const_value)
1354 {
1355    struct spec_constant_value data;
1356    data.is_double = true;
1357    data.data64 = const_value;
1358    vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1359    return data.data64;
1360 }
1361 
1362 static void
handle_workgroup_size_decoration_cb(struct vtn_builder * b,struct vtn_value * val,int member,const struct vtn_decoration * dec,void * data)1363 handle_workgroup_size_decoration_cb(struct vtn_builder *b,
1364                                     struct vtn_value *val,
1365                                     int member,
1366                                     const struct vtn_decoration *dec,
1367                                     void *data)
1368 {
1369    vtn_assert(member == -1);
1370    if (dec->decoration != SpvDecorationBuiltIn ||
1371        dec->literals[0] != SpvBuiltInWorkgroupSize)
1372       return;
1373 
1374    vtn_assert(val->type->type == glsl_vector_type(GLSL_TYPE_UINT, 3));
1375 
1376    b->shader->info.cs.local_size[0] = val->constant->values[0].u32[0];
1377    b->shader->info.cs.local_size[1] = val->constant->values[0].u32[1];
1378    b->shader->info.cs.local_size[2] = val->constant->values[0].u32[2];
1379 }
1380 
1381 static void
vtn_handle_constant(struct vtn_builder * b,SpvOp opcode,const uint32_t * w,unsigned count)1382 vtn_handle_constant(struct vtn_builder *b, SpvOp opcode,
1383                     const uint32_t *w, unsigned count)
1384 {
1385    struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant);
1386    val->constant = rzalloc(b, nir_constant);
1387    switch (opcode) {
1388    case SpvOpConstantTrue:
1389    case SpvOpConstantFalse:
1390    case SpvOpSpecConstantTrue:
1391    case SpvOpSpecConstantFalse: {
1392       vtn_fail_if(val->type->type != glsl_bool_type(),
1393                   "Result type of %s must be OpTypeBool",
1394                   spirv_op_to_string(opcode));
1395 
1396       uint32_t int_val = (opcode == SpvOpConstantTrue ||
1397                           opcode == SpvOpSpecConstantTrue);
1398 
1399       if (opcode == SpvOpSpecConstantTrue ||
1400           opcode == SpvOpSpecConstantFalse)
1401          int_val = get_specialization(b, val, int_val);
1402 
1403       val->constant->values[0].u32[0] = int_val ? NIR_TRUE : NIR_FALSE;
1404       break;
1405    }
1406 
1407    case SpvOpConstant: {
1408       vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1409                   "Result type of %s must be a scalar",
1410                   spirv_op_to_string(opcode));
1411       int bit_size = glsl_get_bit_size(val->type->type);
1412       switch (bit_size) {
1413       case 64:
1414          val->constant->values->u64[0] = vtn_u64_literal(&w[3]);
1415          break;
1416       case 32:
1417          val->constant->values->u32[0] = w[3];
1418          break;
1419       case 16:
1420          val->constant->values->u16[0] = w[3];
1421          break;
1422       default:
1423          vtn_fail("Unsupported SpvOpConstant bit size");
1424       }
1425       break;
1426    }
1427 
1428    case SpvOpSpecConstant: {
1429       vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1430                   "Result type of %s must be a scalar",
1431                   spirv_op_to_string(opcode));
1432       int bit_size = glsl_get_bit_size(val->type->type);
1433       switch (bit_size) {
1434       case 64:
1435          val->constant->values[0].u64[0] =
1436             get_specialization64(b, val, vtn_u64_literal(&w[3]));
1437          break;
1438       case 32:
1439          val->constant->values[0].u32[0] = get_specialization(b, val, w[3]);
1440          break;
1441       case 16:
1442          val->constant->values[0].u16[0] = get_specialization(b, val, w[3]);
1443          break;
1444       default:
1445          vtn_fail("Unsupported SpvOpSpecConstant bit size");
1446       }
1447       break;
1448    }
1449 
1450    case SpvOpSpecConstantComposite:
1451    case SpvOpConstantComposite: {
1452       unsigned elem_count = count - 3;
1453       vtn_fail_if(elem_count != val->type->length,
1454                   "%s has %u constituents, expected %u",
1455                   spirv_op_to_string(opcode), elem_count, val->type->length);
1456 
1457       nir_constant **elems = ralloc_array(b, nir_constant *, elem_count);
1458       for (unsigned i = 0; i < elem_count; i++)
1459          elems[i] = vtn_value(b, w[i + 3], vtn_value_type_constant)->constant;
1460 
1461       switch (val->type->base_type) {
1462       case vtn_base_type_vector: {
1463          assert(glsl_type_is_vector(val->type->type));
1464          int bit_size = glsl_get_bit_size(val->type->type);
1465          for (unsigned i = 0; i < elem_count; i++) {
1466             switch (bit_size) {
1467             case 64:
1468                val->constant->values[0].u64[i] = elems[i]->values[0].u64[0];
1469                break;
1470             case 32:
1471                val->constant->values[0].u32[i] = elems[i]->values[0].u32[0];
1472                break;
1473             case 16:
1474                val->constant->values[0].u16[i] = elems[i]->values[0].u16[0];
1475                break;
1476             default:
1477                vtn_fail("Invalid SpvOpConstantComposite bit size");
1478             }
1479          }
1480          break;
1481       }
1482 
1483       case vtn_base_type_matrix:
1484          assert(glsl_type_is_matrix(val->type->type));
1485          for (unsigned i = 0; i < elem_count; i++)
1486             val->constant->values[i] = elems[i]->values[0];
1487          break;
1488 
1489       case vtn_base_type_struct:
1490       case vtn_base_type_array:
1491          ralloc_steal(val->constant, elems);
1492          val->constant->num_elements = elem_count;
1493          val->constant->elements = elems;
1494          break;
1495 
1496       default:
1497          vtn_fail("Result type of %s must be a composite type",
1498                   spirv_op_to_string(opcode));
1499       }
1500       break;
1501    }
1502 
1503    case SpvOpSpecConstantOp: {
1504       SpvOp opcode = get_specialization(b, val, w[3]);
1505       switch (opcode) {
1506       case SpvOpVectorShuffle: {
1507          struct vtn_value *v0 = &b->values[w[4]];
1508          struct vtn_value *v1 = &b->values[w[5]];
1509 
1510          vtn_assert(v0->value_type == vtn_value_type_constant ||
1511                     v0->value_type == vtn_value_type_undef);
1512          vtn_assert(v1->value_type == vtn_value_type_constant ||
1513                     v1->value_type == vtn_value_type_undef);
1514 
1515          unsigned len0 = glsl_get_vector_elements(v0->type->type);
1516          unsigned len1 = glsl_get_vector_elements(v1->type->type);
1517 
1518          vtn_assert(len0 + len1 < 16);
1519 
1520          unsigned bit_size = glsl_get_bit_size(val->type->type);
1521          unsigned bit_size0 = glsl_get_bit_size(v0->type->type);
1522          unsigned bit_size1 = glsl_get_bit_size(v1->type->type);
1523 
1524          vtn_assert(bit_size == bit_size0 && bit_size == bit_size1);
1525          (void)bit_size0; (void)bit_size1;
1526 
1527          if (bit_size == 64) {
1528             uint64_t u64[8];
1529             if (v0->value_type == vtn_value_type_constant) {
1530                for (unsigned i = 0; i < len0; i++)
1531                   u64[i] = v0->constant->values[0].u64[i];
1532             }
1533             if (v1->value_type == vtn_value_type_constant) {
1534                for (unsigned i = 0; i < len1; i++)
1535                   u64[len0 + i] = v1->constant->values[0].u64[i];
1536             }
1537 
1538             for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1539                uint32_t comp = w[i + 6];
1540                /* If component is not used, set the value to a known constant
1541                 * to detect if it is wrongly used.
1542                 */
1543                if (comp == (uint32_t)-1)
1544                   val->constant->values[0].u64[j] = 0xdeadbeefdeadbeef;
1545                else
1546                   val->constant->values[0].u64[j] = u64[comp];
1547             }
1548          } else {
1549             /* This is for both 32-bit and 16-bit values */
1550             uint32_t u32[8];
1551             if (v0->value_type == vtn_value_type_constant) {
1552                for (unsigned i = 0; i < len0; i++)
1553                   u32[i] = v0->constant->values[0].u32[i];
1554             }
1555             if (v1->value_type == vtn_value_type_constant) {
1556                for (unsigned i = 0; i < len1; i++)
1557                   u32[len0 + i] = v1->constant->values[0].u32[i];
1558             }
1559 
1560             for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1561                uint32_t comp = w[i + 6];
1562                /* If component is not used, set the value to a known constant
1563                 * to detect if it is wrongly used.
1564                 */
1565                if (comp == (uint32_t)-1)
1566                   val->constant->values[0].u32[j] = 0xdeadbeef;
1567                else
1568                   val->constant->values[0].u32[j] = u32[comp];
1569             }
1570          }
1571          break;
1572       }
1573 
1574       case SpvOpCompositeExtract:
1575       case SpvOpCompositeInsert: {
1576          struct vtn_value *comp;
1577          unsigned deref_start;
1578          struct nir_constant **c;
1579          if (opcode == SpvOpCompositeExtract) {
1580             comp = vtn_value(b, w[4], vtn_value_type_constant);
1581             deref_start = 5;
1582             c = &comp->constant;
1583          } else {
1584             comp = vtn_value(b, w[5], vtn_value_type_constant);
1585             deref_start = 6;
1586             val->constant = nir_constant_clone(comp->constant,
1587                                                (nir_variable *)b);
1588             c = &val->constant;
1589          }
1590 
1591          int elem = -1;
1592          int col = 0;
1593          const struct vtn_type *type = comp->type;
1594          for (unsigned i = deref_start; i < count; i++) {
1595             vtn_fail_if(w[i] > type->length,
1596                         "%uth index of %s is %u but the type has only "
1597                         "%u elements", i - deref_start,
1598                         spirv_op_to_string(opcode), w[i], type->length);
1599 
1600             switch (type->base_type) {
1601             case vtn_base_type_vector:
1602                elem = w[i];
1603                type = type->array_element;
1604                break;
1605 
1606             case vtn_base_type_matrix:
1607                assert(col == 0 && elem == -1);
1608                col = w[i];
1609                elem = 0;
1610                type = type->array_element;
1611                break;
1612 
1613             case vtn_base_type_array:
1614                c = &(*c)->elements[w[i]];
1615                type = type->array_element;
1616                break;
1617 
1618             case vtn_base_type_struct:
1619                c = &(*c)->elements[w[i]];
1620                type = type->members[w[i]];
1621                break;
1622 
1623             default:
1624                vtn_fail("%s must only index into composite types",
1625                         spirv_op_to_string(opcode));
1626             }
1627          }
1628 
1629          if (opcode == SpvOpCompositeExtract) {
1630             if (elem == -1) {
1631                val->constant = *c;
1632             } else {
1633                unsigned num_components = type->length;
1634                unsigned bit_size = glsl_get_bit_size(type->type);
1635                for (unsigned i = 0; i < num_components; i++)
1636                   switch(bit_size) {
1637                   case 64:
1638                      val->constant->values[0].u64[i] = (*c)->values[col].u64[elem + i];
1639                      break;
1640                   case 32:
1641                      val->constant->values[0].u32[i] = (*c)->values[col].u32[elem + i];
1642                      break;
1643                   case 16:
1644                      val->constant->values[0].u16[i] = (*c)->values[col].u16[elem + i];
1645                      break;
1646                   default:
1647                      vtn_fail("Invalid SpvOpCompositeExtract bit size");
1648                   }
1649             }
1650          } else {
1651             struct vtn_value *insert =
1652                vtn_value(b, w[4], vtn_value_type_constant);
1653             vtn_assert(insert->type == type);
1654             if (elem == -1) {
1655                *c = insert->constant;
1656             } else {
1657                unsigned num_components = type->length;
1658                unsigned bit_size = glsl_get_bit_size(type->type);
1659                for (unsigned i = 0; i < num_components; i++)
1660                   switch (bit_size) {
1661                   case 64:
1662                      (*c)->values[col].u64[elem + i] = insert->constant->values[0].u64[i];
1663                      break;
1664                   case 32:
1665                      (*c)->values[col].u32[elem + i] = insert->constant->values[0].u32[i];
1666                      break;
1667                   case 16:
1668                      (*c)->values[col].u16[elem + i] = insert->constant->values[0].u16[i];
1669                      break;
1670                   default:
1671                      vtn_fail("Invalid SpvOpCompositeInsert bit size");
1672                   }
1673             }
1674          }
1675          break;
1676       }
1677 
1678       default: {
1679          bool swap;
1680          nir_alu_type dst_alu_type = nir_get_nir_type_for_glsl_type(val->type->type);
1681          nir_alu_type src_alu_type = dst_alu_type;
1682          unsigned num_components = glsl_get_vector_elements(val->type->type);
1683          unsigned bit_size;
1684 
1685          vtn_assert(count <= 7);
1686 
1687          switch (opcode) {
1688          case SpvOpSConvert:
1689          case SpvOpFConvert:
1690             /* We have a source in a conversion */
1691             src_alu_type =
1692                nir_get_nir_type_for_glsl_type(
1693                   vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1694             /* We use the bitsize of the conversion source to evaluate the opcode later */
1695             bit_size = glsl_get_bit_size(
1696                vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1697             break;
1698          default:
1699             bit_size = glsl_get_bit_size(val->type->type);
1700          };
1701 
1702          nir_op op = vtn_nir_alu_op_for_spirv_opcode(b, opcode, &swap,
1703                                                      src_alu_type,
1704                                                      dst_alu_type);
1705          nir_const_value src[4];
1706 
1707          for (unsigned i = 0; i < count - 4; i++) {
1708             nir_constant *c =
1709                vtn_value(b, w[4 + i], vtn_value_type_constant)->constant;
1710 
1711             unsigned j = swap ? 1 - i : i;
1712             src[j] = c->values[0];
1713          }
1714 
1715          val->constant->values[0] =
1716             nir_eval_const_opcode(op, num_components, bit_size, src);
1717          break;
1718       } /* default */
1719       }
1720       break;
1721    }
1722 
1723    case SpvOpConstantNull:
1724       val->constant = vtn_null_constant(b, val->type->type);
1725       break;
1726 
1727    case SpvOpConstantSampler:
1728       vtn_fail("OpConstantSampler requires Kernel Capability");
1729       break;
1730 
1731    default:
1732       vtn_fail("Unhandled opcode");
1733    }
1734 
1735    /* Now that we have the value, update the workgroup size if needed */
1736    vtn_foreach_decoration(b, val, handle_workgroup_size_decoration_cb, NULL);
1737 }
1738 
1739 static void
vtn_handle_function_call(struct vtn_builder * b,SpvOp opcode,const uint32_t * w,unsigned count)1740 vtn_handle_function_call(struct vtn_builder *b, SpvOp opcode,
1741                          const uint32_t *w, unsigned count)
1742 {
1743    struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type;
1744    struct vtn_function *vtn_callee =
1745       vtn_value(b, w[3], vtn_value_type_function)->func;
1746    struct nir_function *callee = vtn_callee->impl->function;
1747 
1748    vtn_callee->referenced = true;
1749 
1750    nir_call_instr *call = nir_call_instr_create(b->nb.shader, callee);
1751    for (unsigned i = 0; i < call->num_params; i++) {
1752       unsigned arg_id = w[4 + i];
1753       struct vtn_value *arg = vtn_untyped_value(b, arg_id);
1754       if (arg->value_type == vtn_value_type_pointer &&
1755           arg->pointer->ptr_type->type == NULL) {
1756          nir_deref_var *d = vtn_pointer_to_deref(b, arg->pointer);
1757          call->params[i] = nir_deref_var_clone(d, call);
1758       } else {
1759          struct vtn_ssa_value *arg_ssa = vtn_ssa_value(b, arg_id);
1760 
1761          /* Make a temporary to store the argument in */
1762          nir_variable *tmp =
1763             nir_local_variable_create(b->nb.impl, arg_ssa->type, "arg_tmp");
1764          call->params[i] = nir_deref_var_create(call, tmp);
1765 
1766          vtn_local_store(b, arg_ssa, call->params[i]);
1767       }
1768    }
1769 
1770    nir_variable *out_tmp = NULL;
1771    vtn_assert(res_type->type == callee->return_type);
1772    if (!glsl_type_is_void(callee->return_type)) {
1773       out_tmp = nir_local_variable_create(b->nb.impl, callee->return_type,
1774                                           "out_tmp");
1775       call->return_deref = nir_deref_var_create(call, out_tmp);
1776    }
1777 
1778    nir_builder_instr_insert(&b->nb, &call->instr);
1779 
1780    if (glsl_type_is_void(callee->return_type)) {
1781       vtn_push_value(b, w[2], vtn_value_type_undef);
1782    } else {
1783       vtn_push_ssa(b, w[2], res_type, vtn_local_load(b, call->return_deref));
1784    }
1785 }
1786 
1787 struct vtn_ssa_value *
vtn_create_ssa_value(struct vtn_builder * b,const struct glsl_type * type)1788 vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
1789 {
1790    struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
1791    val->type = type;
1792 
1793    if (!glsl_type_is_vector_or_scalar(type)) {
1794       unsigned elems = glsl_get_length(type);
1795       val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
1796       for (unsigned i = 0; i < elems; i++) {
1797          const struct glsl_type *child_type;
1798 
1799          switch (glsl_get_base_type(type)) {
1800          case GLSL_TYPE_INT:
1801          case GLSL_TYPE_UINT:
1802          case GLSL_TYPE_INT16:
1803          case GLSL_TYPE_UINT16:
1804          case GLSL_TYPE_INT64:
1805          case GLSL_TYPE_UINT64:
1806          case GLSL_TYPE_BOOL:
1807          case GLSL_TYPE_FLOAT:
1808          case GLSL_TYPE_FLOAT16:
1809          case GLSL_TYPE_DOUBLE:
1810             child_type = glsl_get_column_type(type);
1811             break;
1812          case GLSL_TYPE_ARRAY:
1813             child_type = glsl_get_array_element(type);
1814             break;
1815          case GLSL_TYPE_STRUCT:
1816             child_type = glsl_get_struct_field(type, i);
1817             break;
1818          default:
1819             vtn_fail("unkown base type");
1820          }
1821 
1822          val->elems[i] = vtn_create_ssa_value(b, child_type);
1823       }
1824    }
1825 
1826    return val;
1827 }
1828 
1829 static nir_tex_src
vtn_tex_src(struct vtn_builder * b,unsigned index,nir_tex_src_type type)1830 vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type)
1831 {
1832    nir_tex_src src;
1833    src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def);
1834    src.src_type = type;
1835    return src;
1836 }
1837 
1838 static void
vtn_handle_texture(struct vtn_builder * b,SpvOp opcode,const uint32_t * w,unsigned count)1839 vtn_handle_texture(struct vtn_builder *b, SpvOp opcode,
1840                    const uint32_t *w, unsigned count)
1841 {
1842    if (opcode == SpvOpSampledImage) {
1843       struct vtn_value *val =
1844          vtn_push_value(b, w[2], vtn_value_type_sampled_image);
1845       val->sampled_image = ralloc(b, struct vtn_sampled_image);
1846       val->sampled_image->type =
1847          vtn_value(b, w[1], vtn_value_type_type)->type;
1848       val->sampled_image->image =
1849          vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
1850       val->sampled_image->sampler =
1851          vtn_value(b, w[4], vtn_value_type_pointer)->pointer;
1852       return;
1853    } else if (opcode == SpvOpImage) {
1854       struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_pointer);
1855       struct vtn_value *src_val = vtn_untyped_value(b, w[3]);
1856       if (src_val->value_type == vtn_value_type_sampled_image) {
1857          val->pointer = src_val->sampled_image->image;
1858       } else {
1859          vtn_assert(src_val->value_type == vtn_value_type_pointer);
1860          val->pointer = src_val->pointer;
1861       }
1862       return;
1863    }
1864 
1865    struct vtn_type *ret_type = vtn_value(b, w[1], vtn_value_type_type)->type;
1866    struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
1867 
1868    struct vtn_sampled_image sampled;
1869    struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]);
1870    if (sampled_val->value_type == vtn_value_type_sampled_image) {
1871       sampled = *sampled_val->sampled_image;
1872    } else {
1873       vtn_assert(sampled_val->value_type == vtn_value_type_pointer);
1874       sampled.type = sampled_val->pointer->type;
1875       sampled.image = NULL;
1876       sampled.sampler = sampled_val->pointer;
1877    }
1878 
1879    const struct glsl_type *image_type = sampled.type->type;
1880    const enum glsl_sampler_dim sampler_dim = glsl_get_sampler_dim(image_type);
1881    const bool is_array = glsl_sampler_type_is_array(image_type);
1882 
1883    /* Figure out the base texture operation */
1884    nir_texop texop;
1885    switch (opcode) {
1886    case SpvOpImageSampleImplicitLod:
1887    case SpvOpImageSampleDrefImplicitLod:
1888    case SpvOpImageSampleProjImplicitLod:
1889    case SpvOpImageSampleProjDrefImplicitLod:
1890       texop = nir_texop_tex;
1891       break;
1892 
1893    case SpvOpImageSampleExplicitLod:
1894    case SpvOpImageSampleDrefExplicitLod:
1895    case SpvOpImageSampleProjExplicitLod:
1896    case SpvOpImageSampleProjDrefExplicitLod:
1897       texop = nir_texop_txl;
1898       break;
1899 
1900    case SpvOpImageFetch:
1901       if (glsl_get_sampler_dim(image_type) == GLSL_SAMPLER_DIM_MS) {
1902          texop = nir_texop_txf_ms;
1903       } else {
1904          texop = nir_texop_txf;
1905       }
1906       break;
1907 
1908    case SpvOpImageGather:
1909    case SpvOpImageDrefGather:
1910       texop = nir_texop_tg4;
1911       break;
1912 
1913    case SpvOpImageQuerySizeLod:
1914    case SpvOpImageQuerySize:
1915       texop = nir_texop_txs;
1916       break;
1917 
1918    case SpvOpImageQueryLod:
1919       texop = nir_texop_lod;
1920       break;
1921 
1922    case SpvOpImageQueryLevels:
1923       texop = nir_texop_query_levels;
1924       break;
1925 
1926    case SpvOpImageQuerySamples:
1927       texop = nir_texop_texture_samples;
1928       break;
1929 
1930    default:
1931       vtn_fail("Unhandled opcode");
1932    }
1933 
1934    nir_tex_src srcs[8]; /* 8 should be enough */
1935    nir_tex_src *p = srcs;
1936 
1937    unsigned idx = 4;
1938 
1939    struct nir_ssa_def *coord;
1940    unsigned coord_components;
1941    switch (opcode) {
1942    case SpvOpImageSampleImplicitLod:
1943    case SpvOpImageSampleExplicitLod:
1944    case SpvOpImageSampleDrefImplicitLod:
1945    case SpvOpImageSampleDrefExplicitLod:
1946    case SpvOpImageSampleProjImplicitLod:
1947    case SpvOpImageSampleProjExplicitLod:
1948    case SpvOpImageSampleProjDrefImplicitLod:
1949    case SpvOpImageSampleProjDrefExplicitLod:
1950    case SpvOpImageFetch:
1951    case SpvOpImageGather:
1952    case SpvOpImageDrefGather:
1953    case SpvOpImageQueryLod: {
1954       /* All these types have the coordinate as their first real argument */
1955       switch (sampler_dim) {
1956       case GLSL_SAMPLER_DIM_1D:
1957       case GLSL_SAMPLER_DIM_BUF:
1958          coord_components = 1;
1959          break;
1960       case GLSL_SAMPLER_DIM_2D:
1961       case GLSL_SAMPLER_DIM_RECT:
1962       case GLSL_SAMPLER_DIM_MS:
1963          coord_components = 2;
1964          break;
1965       case GLSL_SAMPLER_DIM_3D:
1966       case GLSL_SAMPLER_DIM_CUBE:
1967          coord_components = 3;
1968          break;
1969       default:
1970          vtn_fail("Invalid sampler type");
1971       }
1972 
1973       if (is_array && texop != nir_texop_lod)
1974          coord_components++;
1975 
1976       coord = vtn_ssa_value(b, w[idx++])->def;
1977       p->src = nir_src_for_ssa(nir_channels(&b->nb, coord,
1978                                             (1 << coord_components) - 1));
1979       p->src_type = nir_tex_src_coord;
1980       p++;
1981       break;
1982    }
1983 
1984    default:
1985       coord = NULL;
1986       coord_components = 0;
1987       break;
1988    }
1989 
1990    switch (opcode) {
1991    case SpvOpImageSampleProjImplicitLod:
1992    case SpvOpImageSampleProjExplicitLod:
1993    case SpvOpImageSampleProjDrefImplicitLod:
1994    case SpvOpImageSampleProjDrefExplicitLod:
1995       /* These have the projector as the last coordinate component */
1996       p->src = nir_src_for_ssa(nir_channel(&b->nb, coord, coord_components));
1997       p->src_type = nir_tex_src_projector;
1998       p++;
1999       break;
2000 
2001    default:
2002       break;
2003    }
2004 
2005    bool is_shadow = false;
2006    unsigned gather_component = 0;
2007    switch (opcode) {
2008    case SpvOpImageSampleDrefImplicitLod:
2009    case SpvOpImageSampleDrefExplicitLod:
2010    case SpvOpImageSampleProjDrefImplicitLod:
2011    case SpvOpImageSampleProjDrefExplicitLod:
2012    case SpvOpImageDrefGather:
2013       /* These all have an explicit depth value as their next source */
2014       is_shadow = true;
2015       (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparator);
2016       break;
2017 
2018    case SpvOpImageGather:
2019       /* This has a component as its next source */
2020       gather_component =
2021          vtn_value(b, w[idx++], vtn_value_type_constant)->constant->values[0].u32[0];
2022       break;
2023 
2024    default:
2025       break;
2026    }
2027 
2028    /* For OpImageQuerySizeLod, we always have an LOD */
2029    if (opcode == SpvOpImageQuerySizeLod)
2030       (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2031 
2032    /* Now we need to handle some number of optional arguments */
2033    const struct vtn_ssa_value *gather_offsets = NULL;
2034    if (idx < count) {
2035       uint32_t operands = w[idx++];
2036 
2037       if (operands & SpvImageOperandsBiasMask) {
2038          vtn_assert(texop == nir_texop_tex);
2039          texop = nir_texop_txb;
2040          (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_bias);
2041       }
2042 
2043       if (operands & SpvImageOperandsLodMask) {
2044          vtn_assert(texop == nir_texop_txl || texop == nir_texop_txf ||
2045                     texop == nir_texop_txs);
2046          (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2047       }
2048 
2049       if (operands & SpvImageOperandsGradMask) {
2050          vtn_assert(texop == nir_texop_txl);
2051          texop = nir_texop_txd;
2052          (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddx);
2053          (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddy);
2054       }
2055 
2056       if (operands & SpvImageOperandsOffsetMask ||
2057           operands & SpvImageOperandsConstOffsetMask)
2058          (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_offset);
2059 
2060       if (operands & SpvImageOperandsConstOffsetsMask) {
2061          gather_offsets = vtn_ssa_value(b, w[idx++]);
2062          (*p++) = (nir_tex_src){};
2063       }
2064 
2065       if (operands & SpvImageOperandsSampleMask) {
2066          vtn_assert(texop == nir_texop_txf_ms);
2067          texop = nir_texop_txf_ms;
2068          (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index);
2069       }
2070    }
2071    /* We should have now consumed exactly all of the arguments */
2072    vtn_assert(idx == count);
2073 
2074    nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs);
2075    instr->op = texop;
2076 
2077    memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src));
2078 
2079    instr->coord_components = coord_components;
2080    instr->sampler_dim = sampler_dim;
2081    instr->is_array = is_array;
2082    instr->is_shadow = is_shadow;
2083    instr->is_new_style_shadow =
2084       is_shadow && glsl_get_components(ret_type->type) == 1;
2085    instr->component = gather_component;
2086 
2087    switch (glsl_get_sampler_result_type(image_type)) {
2088    case GLSL_TYPE_FLOAT:   instr->dest_type = nir_type_float;     break;
2089    case GLSL_TYPE_INT:     instr->dest_type = nir_type_int;       break;
2090    case GLSL_TYPE_UINT:    instr->dest_type = nir_type_uint;  break;
2091    case GLSL_TYPE_BOOL:    instr->dest_type = nir_type_bool;      break;
2092    default:
2093       vtn_fail("Invalid base type for sampler result");
2094    }
2095 
2096    nir_deref_var *sampler = vtn_pointer_to_deref(b, sampled.sampler);
2097    nir_deref_var *texture;
2098    if (sampled.image) {
2099       nir_deref_var *image = vtn_pointer_to_deref(b, sampled.image);
2100       texture = image;
2101    } else {
2102       texture = sampler;
2103    }
2104 
2105    instr->texture = nir_deref_var_clone(texture, instr);
2106 
2107    switch (instr->op) {
2108    case nir_texop_tex:
2109    case nir_texop_txb:
2110    case nir_texop_txl:
2111    case nir_texop_txd:
2112    case nir_texop_tg4:
2113       /* These operations require a sampler */
2114       instr->sampler = nir_deref_var_clone(sampler, instr);
2115       break;
2116    case nir_texop_txf:
2117    case nir_texop_txf_ms:
2118    case nir_texop_txs:
2119    case nir_texop_lod:
2120    case nir_texop_query_levels:
2121    case nir_texop_texture_samples:
2122    case nir_texop_samples_identical:
2123       /* These don't */
2124       instr->sampler = NULL;
2125       break;
2126    case nir_texop_txf_ms_mcs:
2127       vtn_fail("unexpected nir_texop_txf_ms_mcs");
2128    }
2129 
2130    nir_ssa_dest_init(&instr->instr, &instr->dest,
2131                      nir_tex_instr_dest_size(instr), 32, NULL);
2132 
2133    vtn_assert(glsl_get_vector_elements(ret_type->type) ==
2134               nir_tex_instr_dest_size(instr));
2135 
2136    nir_ssa_def *def;
2137    nir_instr *instruction;
2138    if (gather_offsets) {
2139       vtn_assert(glsl_get_base_type(gather_offsets->type) == GLSL_TYPE_ARRAY);
2140       vtn_assert(glsl_get_length(gather_offsets->type) == 4);
2141       nir_tex_instr *instrs[4] = {instr, NULL, NULL, NULL};
2142 
2143       /* Copy the current instruction 4x */
2144       for (uint32_t i = 1; i < 4; i++) {
2145          instrs[i] = nir_tex_instr_create(b->shader, instr->num_srcs);
2146          instrs[i]->op = instr->op;
2147          instrs[i]->coord_components = instr->coord_components;
2148          instrs[i]->sampler_dim = instr->sampler_dim;
2149          instrs[i]->is_array = instr->is_array;
2150          instrs[i]->is_shadow = instr->is_shadow;
2151          instrs[i]->is_new_style_shadow = instr->is_new_style_shadow;
2152          instrs[i]->component = instr->component;
2153          instrs[i]->dest_type = instr->dest_type;
2154          instrs[i]->texture = nir_deref_var_clone(texture, instrs[i]);
2155          instrs[i]->sampler = NULL;
2156 
2157          memcpy(instrs[i]->src, srcs, instr->num_srcs * sizeof(*instr->src));
2158 
2159          nir_ssa_dest_init(&instrs[i]->instr, &instrs[i]->dest,
2160                            nir_tex_instr_dest_size(instr), 32, NULL);
2161       }
2162 
2163       /* Fill in the last argument with the offset from the passed in offsets
2164        * and insert the instruction into the stream.
2165        */
2166       for (uint32_t i = 0; i < 4; i++) {
2167          nir_tex_src src;
2168          src.src = nir_src_for_ssa(gather_offsets->elems[i]->def);
2169          src.src_type = nir_tex_src_offset;
2170          instrs[i]->src[instrs[i]->num_srcs - 1] = src;
2171          nir_builder_instr_insert(&b->nb, &instrs[i]->instr);
2172       }
2173 
2174       /* Combine the results of the 4 instructions by taking their .w
2175        * components
2176        */
2177       nir_alu_instr *vec4 = nir_alu_instr_create(b->shader, nir_op_vec4);
2178       nir_ssa_dest_init(&vec4->instr, &vec4->dest.dest, 4, 32, NULL);
2179       vec4->dest.write_mask = 0xf;
2180       for (uint32_t i = 0; i < 4; i++) {
2181          vec4->src[i].src = nir_src_for_ssa(&instrs[i]->dest.ssa);
2182          vec4->src[i].swizzle[0] = 3;
2183       }
2184       def = &vec4->dest.dest.ssa;
2185       instruction = &vec4->instr;
2186    } else {
2187       def = &instr->dest.ssa;
2188       instruction = &instr->instr;
2189    }
2190 
2191    val->ssa = vtn_create_ssa_value(b, ret_type->type);
2192    val->ssa->def = def;
2193 
2194    nir_builder_instr_insert(&b->nb, instruction);
2195 }
2196 
2197 static void
fill_common_atomic_sources(struct vtn_builder * b,SpvOp opcode,const uint32_t * w,nir_src * src)2198 fill_common_atomic_sources(struct vtn_builder *b, SpvOp opcode,
2199                            const uint32_t *w, nir_src *src)
2200 {
2201    switch (opcode) {
2202    case SpvOpAtomicIIncrement:
2203       src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
2204       break;
2205 
2206    case SpvOpAtomicIDecrement:
2207       src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
2208       break;
2209 
2210    case SpvOpAtomicISub:
2211       src[0] =
2212          nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
2213       break;
2214 
2215    case SpvOpAtomicCompareExchange:
2216       src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[8])->def);
2217       src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
2218       break;
2219 
2220    case SpvOpAtomicExchange:
2221    case SpvOpAtomicIAdd:
2222    case SpvOpAtomicSMin:
2223    case SpvOpAtomicUMin:
2224    case SpvOpAtomicSMax:
2225    case SpvOpAtomicUMax:
2226    case SpvOpAtomicAnd:
2227    case SpvOpAtomicOr:
2228    case SpvOpAtomicXor:
2229       src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
2230       break;
2231 
2232    default:
2233       vtn_fail("Invalid SPIR-V atomic");
2234    }
2235 }
2236 
2237 static nir_ssa_def *
get_image_coord(struct vtn_builder * b,uint32_t value)2238 get_image_coord(struct vtn_builder *b, uint32_t value)
2239 {
2240    struct vtn_ssa_value *coord = vtn_ssa_value(b, value);
2241 
2242    /* The image_load_store intrinsics assume a 4-dim coordinate */
2243    unsigned dim = glsl_get_vector_elements(coord->type);
2244    unsigned swizzle[4];
2245    for (unsigned i = 0; i < 4; i++)
2246       swizzle[i] = MIN2(i, dim - 1);
2247 
2248    return nir_swizzle(&b->nb, coord->def, swizzle, 4, false);
2249 }
2250 
2251 static void
vtn_handle_image(struct vtn_builder * b,SpvOp opcode,const uint32_t * w,unsigned count)2252 vtn_handle_image(struct vtn_builder *b, SpvOp opcode,
2253                  const uint32_t *w, unsigned count)
2254 {
2255    /* Just get this one out of the way */
2256    if (opcode == SpvOpImageTexelPointer) {
2257       struct vtn_value *val =
2258          vtn_push_value(b, w[2], vtn_value_type_image_pointer);
2259       val->image = ralloc(b, struct vtn_image_pointer);
2260 
2261       val->image->image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2262       val->image->coord = get_image_coord(b, w[4]);
2263       val->image->sample = vtn_ssa_value(b, w[5])->def;
2264       return;
2265    }
2266 
2267    struct vtn_image_pointer image;
2268 
2269    switch (opcode) {
2270    case SpvOpAtomicExchange:
2271    case SpvOpAtomicCompareExchange:
2272    case SpvOpAtomicCompareExchangeWeak:
2273    case SpvOpAtomicIIncrement:
2274    case SpvOpAtomicIDecrement:
2275    case SpvOpAtomicIAdd:
2276    case SpvOpAtomicISub:
2277    case SpvOpAtomicLoad:
2278    case SpvOpAtomicSMin:
2279    case SpvOpAtomicUMin:
2280    case SpvOpAtomicSMax:
2281    case SpvOpAtomicUMax:
2282    case SpvOpAtomicAnd:
2283    case SpvOpAtomicOr:
2284    case SpvOpAtomicXor:
2285       image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image;
2286       break;
2287 
2288    case SpvOpAtomicStore:
2289       image = *vtn_value(b, w[1], vtn_value_type_image_pointer)->image;
2290       break;
2291 
2292    case SpvOpImageQuerySize:
2293       image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2294       image.coord = NULL;
2295       image.sample = NULL;
2296       break;
2297 
2298    case SpvOpImageRead:
2299       image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2300       image.coord = get_image_coord(b, w[4]);
2301 
2302       if (count > 5 && (w[5] & SpvImageOperandsSampleMask)) {
2303          vtn_assert(w[5] == SpvImageOperandsSampleMask);
2304          image.sample = vtn_ssa_value(b, w[6])->def;
2305       } else {
2306          image.sample = nir_ssa_undef(&b->nb, 1, 32);
2307       }
2308       break;
2309 
2310    case SpvOpImageWrite:
2311       image.image = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2312       image.coord = get_image_coord(b, w[2]);
2313 
2314       /* texel = w[3] */
2315 
2316       if (count > 4 && (w[4] & SpvImageOperandsSampleMask)) {
2317          vtn_assert(w[4] == SpvImageOperandsSampleMask);
2318          image.sample = vtn_ssa_value(b, w[5])->def;
2319       } else {
2320          image.sample = nir_ssa_undef(&b->nb, 1, 32);
2321       }
2322       break;
2323 
2324    default:
2325       vtn_fail("Invalid image opcode");
2326    }
2327 
2328    nir_intrinsic_op op;
2329    switch (opcode) {
2330 #define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_##N; break;
2331    OP(ImageQuerySize,         size)
2332    OP(ImageRead,              load)
2333    OP(ImageWrite,             store)
2334    OP(AtomicLoad,             load)
2335    OP(AtomicStore,            store)
2336    OP(AtomicExchange,         atomic_exchange)
2337    OP(AtomicCompareExchange,  atomic_comp_swap)
2338    OP(AtomicIIncrement,       atomic_add)
2339    OP(AtomicIDecrement,       atomic_add)
2340    OP(AtomicIAdd,             atomic_add)
2341    OP(AtomicISub,             atomic_add)
2342    OP(AtomicSMin,             atomic_min)
2343    OP(AtomicUMin,             atomic_min)
2344    OP(AtomicSMax,             atomic_max)
2345    OP(AtomicUMax,             atomic_max)
2346    OP(AtomicAnd,              atomic_and)
2347    OP(AtomicOr,               atomic_or)
2348    OP(AtomicXor,              atomic_xor)
2349 #undef OP
2350    default:
2351       vtn_fail("Invalid image opcode");
2352    }
2353 
2354    nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
2355 
2356    nir_deref_var *image_deref = vtn_pointer_to_deref(b, image.image);
2357    intrin->variables[0] = nir_deref_var_clone(image_deref, intrin);
2358 
2359    /* ImageQuerySize doesn't take any extra parameters */
2360    if (opcode != SpvOpImageQuerySize) {
2361       /* The image coordinate is always 4 components but we may not have that
2362        * many.  Swizzle to compensate.
2363        */
2364       unsigned swiz[4];
2365       for (unsigned i = 0; i < 4; i++)
2366          swiz[i] = i < image.coord->num_components ? i : 0;
2367       intrin->src[0] = nir_src_for_ssa(nir_swizzle(&b->nb, image.coord,
2368                                                    swiz, 4, false));
2369       intrin->src[1] = nir_src_for_ssa(image.sample);
2370    }
2371 
2372    switch (opcode) {
2373    case SpvOpAtomicLoad:
2374    case SpvOpImageQuerySize:
2375    case SpvOpImageRead:
2376       break;
2377    case SpvOpAtomicStore:
2378       intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2379       break;
2380    case SpvOpImageWrite:
2381       intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[3])->def);
2382       break;
2383 
2384    case SpvOpAtomicCompareExchange:
2385    case SpvOpAtomicIIncrement:
2386    case SpvOpAtomicIDecrement:
2387    case SpvOpAtomicExchange:
2388    case SpvOpAtomicIAdd:
2389    case SpvOpAtomicISub:
2390    case SpvOpAtomicSMin:
2391    case SpvOpAtomicUMin:
2392    case SpvOpAtomicSMax:
2393    case SpvOpAtomicUMax:
2394    case SpvOpAtomicAnd:
2395    case SpvOpAtomicOr:
2396    case SpvOpAtomicXor:
2397       fill_common_atomic_sources(b, opcode, w, &intrin->src[2]);
2398       break;
2399 
2400    default:
2401       vtn_fail("Invalid image opcode");
2402    }
2403 
2404    if (opcode != SpvOpImageWrite) {
2405       struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2406       struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2407 
2408       unsigned dest_components =
2409          nir_intrinsic_infos[intrin->intrinsic].dest_components;
2410       if (intrin->intrinsic == nir_intrinsic_image_size) {
2411          dest_components = intrin->num_components =
2412             glsl_get_vector_elements(type->type);
2413       }
2414 
2415       nir_ssa_dest_init(&intrin->instr, &intrin->dest,
2416                         dest_components, 32, NULL);
2417 
2418       nir_builder_instr_insert(&b->nb, &intrin->instr);
2419 
2420       val->ssa = vtn_create_ssa_value(b, type->type);
2421       val->ssa->def = &intrin->dest.ssa;
2422    } else {
2423       nir_builder_instr_insert(&b->nb, &intrin->instr);
2424    }
2425 }
2426 
2427 static nir_intrinsic_op
get_ssbo_nir_atomic_op(struct vtn_builder * b,SpvOp opcode)2428 get_ssbo_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2429 {
2430    switch (opcode) {
2431    case SpvOpAtomicLoad:      return nir_intrinsic_load_ssbo;
2432    case SpvOpAtomicStore:     return nir_intrinsic_store_ssbo;
2433 #define OP(S, N) case SpvOp##S: return nir_intrinsic_ssbo_##N;
2434    OP(AtomicExchange,         atomic_exchange)
2435    OP(AtomicCompareExchange,  atomic_comp_swap)
2436    OP(AtomicIIncrement,       atomic_add)
2437    OP(AtomicIDecrement,       atomic_add)
2438    OP(AtomicIAdd,             atomic_add)
2439    OP(AtomicISub,             atomic_add)
2440    OP(AtomicSMin,             atomic_imin)
2441    OP(AtomicUMin,             atomic_umin)
2442    OP(AtomicSMax,             atomic_imax)
2443    OP(AtomicUMax,             atomic_umax)
2444    OP(AtomicAnd,              atomic_and)
2445    OP(AtomicOr,               atomic_or)
2446    OP(AtomicXor,              atomic_xor)
2447 #undef OP
2448    default:
2449       vtn_fail("Invalid SSBO atomic");
2450    }
2451 }
2452 
2453 static nir_intrinsic_op
get_shared_nir_atomic_op(struct vtn_builder * b,SpvOp opcode)2454 get_shared_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2455 {
2456    switch (opcode) {
2457    case SpvOpAtomicLoad:      return nir_intrinsic_load_shared;
2458    case SpvOpAtomicStore:     return nir_intrinsic_store_shared;
2459 #define OP(S, N) case SpvOp##S: return nir_intrinsic_shared_##N;
2460    OP(AtomicExchange,         atomic_exchange)
2461    OP(AtomicCompareExchange,  atomic_comp_swap)
2462    OP(AtomicIIncrement,       atomic_add)
2463    OP(AtomicIDecrement,       atomic_add)
2464    OP(AtomicIAdd,             atomic_add)
2465    OP(AtomicISub,             atomic_add)
2466    OP(AtomicSMin,             atomic_imin)
2467    OP(AtomicUMin,             atomic_umin)
2468    OP(AtomicSMax,             atomic_imax)
2469    OP(AtomicUMax,             atomic_umax)
2470    OP(AtomicAnd,              atomic_and)
2471    OP(AtomicOr,               atomic_or)
2472    OP(AtomicXor,              atomic_xor)
2473 #undef OP
2474    default:
2475       vtn_fail("Invalid shared atomic");
2476    }
2477 }
2478 
2479 static nir_intrinsic_op
get_var_nir_atomic_op(struct vtn_builder * b,SpvOp opcode)2480 get_var_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2481 {
2482    switch (opcode) {
2483    case SpvOpAtomicLoad:      return nir_intrinsic_load_var;
2484    case SpvOpAtomicStore:     return nir_intrinsic_store_var;
2485 #define OP(S, N) case SpvOp##S: return nir_intrinsic_var_##N;
2486    OP(AtomicExchange,         atomic_exchange)
2487    OP(AtomicCompareExchange,  atomic_comp_swap)
2488    OP(AtomicIIncrement,       atomic_add)
2489    OP(AtomicIDecrement,       atomic_add)
2490    OP(AtomicIAdd,             atomic_add)
2491    OP(AtomicISub,             atomic_add)
2492    OP(AtomicSMin,             atomic_imin)
2493    OP(AtomicUMin,             atomic_umin)
2494    OP(AtomicSMax,             atomic_imax)
2495    OP(AtomicUMax,             atomic_umax)
2496    OP(AtomicAnd,              atomic_and)
2497    OP(AtomicOr,               atomic_or)
2498    OP(AtomicXor,              atomic_xor)
2499 #undef OP
2500    default:
2501       vtn_fail("Invalid shared atomic");
2502    }
2503 }
2504 
2505 static void
vtn_handle_ssbo_or_shared_atomic(struct vtn_builder * b,SpvOp opcode,const uint32_t * w,unsigned count)2506 vtn_handle_ssbo_or_shared_atomic(struct vtn_builder *b, SpvOp opcode,
2507                                  const uint32_t *w, unsigned count)
2508 {
2509    struct vtn_pointer *ptr;
2510    nir_intrinsic_instr *atomic;
2511 
2512    switch (opcode) {
2513    case SpvOpAtomicLoad:
2514    case SpvOpAtomicExchange:
2515    case SpvOpAtomicCompareExchange:
2516    case SpvOpAtomicCompareExchangeWeak:
2517    case SpvOpAtomicIIncrement:
2518    case SpvOpAtomicIDecrement:
2519    case SpvOpAtomicIAdd:
2520    case SpvOpAtomicISub:
2521    case SpvOpAtomicSMin:
2522    case SpvOpAtomicUMin:
2523    case SpvOpAtomicSMax:
2524    case SpvOpAtomicUMax:
2525    case SpvOpAtomicAnd:
2526    case SpvOpAtomicOr:
2527    case SpvOpAtomicXor:
2528       ptr = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2529       break;
2530 
2531    case SpvOpAtomicStore:
2532       ptr = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2533       break;
2534 
2535    default:
2536       vtn_fail("Invalid SPIR-V atomic");
2537    }
2538 
2539    /*
2540    SpvScope scope = w[4];
2541    SpvMemorySemanticsMask semantics = w[5];
2542    */
2543 
2544    if (ptr->mode == vtn_variable_mode_workgroup &&
2545        !b->options->lower_workgroup_access_to_offsets) {
2546       nir_deref_var *deref = vtn_pointer_to_deref(b, ptr);
2547       const struct glsl_type *deref_type = nir_deref_tail(&deref->deref)->type;
2548       nir_intrinsic_op op = get_var_nir_atomic_op(b, opcode);
2549       atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2550       atomic->variables[0] = nir_deref_var_clone(deref, atomic);
2551 
2552       switch (opcode) {
2553       case SpvOpAtomicLoad:
2554          atomic->num_components = glsl_get_vector_elements(deref_type);
2555          break;
2556 
2557       case SpvOpAtomicStore:
2558          atomic->num_components = glsl_get_vector_elements(deref_type);
2559          nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2560          atomic->src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2561          break;
2562 
2563       case SpvOpAtomicExchange:
2564       case SpvOpAtomicCompareExchange:
2565       case SpvOpAtomicCompareExchangeWeak:
2566       case SpvOpAtomicIIncrement:
2567       case SpvOpAtomicIDecrement:
2568       case SpvOpAtomicIAdd:
2569       case SpvOpAtomicISub:
2570       case SpvOpAtomicSMin:
2571       case SpvOpAtomicUMin:
2572       case SpvOpAtomicSMax:
2573       case SpvOpAtomicUMax:
2574       case SpvOpAtomicAnd:
2575       case SpvOpAtomicOr:
2576       case SpvOpAtomicXor:
2577          fill_common_atomic_sources(b, opcode, w, &atomic->src[0]);
2578          break;
2579 
2580       default:
2581          vtn_fail("Invalid SPIR-V atomic");
2582 
2583       }
2584    } else {
2585       nir_ssa_def *offset, *index;
2586       offset = vtn_pointer_to_offset(b, ptr, &index, NULL);
2587 
2588       nir_intrinsic_op op;
2589       if (ptr->mode == vtn_variable_mode_ssbo) {
2590          op = get_ssbo_nir_atomic_op(b, opcode);
2591       } else {
2592          vtn_assert(ptr->mode == vtn_variable_mode_workgroup &&
2593                     b->options->lower_workgroup_access_to_offsets);
2594          op = get_shared_nir_atomic_op(b, opcode);
2595       }
2596 
2597       atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2598 
2599       int src = 0;
2600       switch (opcode) {
2601       case SpvOpAtomicLoad:
2602          atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2603          if (ptr->mode == vtn_variable_mode_ssbo)
2604             atomic->src[src++] = nir_src_for_ssa(index);
2605          atomic->src[src++] = nir_src_for_ssa(offset);
2606          break;
2607 
2608       case SpvOpAtomicStore:
2609          atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2610          nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2611          atomic->src[src++] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2612          if (ptr->mode == vtn_variable_mode_ssbo)
2613             atomic->src[src++] = nir_src_for_ssa(index);
2614          atomic->src[src++] = nir_src_for_ssa(offset);
2615          break;
2616 
2617       case SpvOpAtomicExchange:
2618       case SpvOpAtomicCompareExchange:
2619       case SpvOpAtomicCompareExchangeWeak:
2620       case SpvOpAtomicIIncrement:
2621       case SpvOpAtomicIDecrement:
2622       case SpvOpAtomicIAdd:
2623       case SpvOpAtomicISub:
2624       case SpvOpAtomicSMin:
2625       case SpvOpAtomicUMin:
2626       case SpvOpAtomicSMax:
2627       case SpvOpAtomicUMax:
2628       case SpvOpAtomicAnd:
2629       case SpvOpAtomicOr:
2630       case SpvOpAtomicXor:
2631          if (ptr->mode == vtn_variable_mode_ssbo)
2632             atomic->src[src++] = nir_src_for_ssa(index);
2633          atomic->src[src++] = nir_src_for_ssa(offset);
2634          fill_common_atomic_sources(b, opcode, w, &atomic->src[src]);
2635          break;
2636 
2637       default:
2638          vtn_fail("Invalid SPIR-V atomic");
2639       }
2640    }
2641 
2642    if (opcode != SpvOpAtomicStore) {
2643       struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2644 
2645       nir_ssa_dest_init(&atomic->instr, &atomic->dest,
2646                         glsl_get_vector_elements(type->type),
2647                         glsl_get_bit_size(type->type), NULL);
2648 
2649       struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2650       val->ssa = rzalloc(b, struct vtn_ssa_value);
2651       val->ssa->def = &atomic->dest.ssa;
2652       val->ssa->type = type->type;
2653    }
2654 
2655    nir_builder_instr_insert(&b->nb, &atomic->instr);
2656 }
2657 
2658 static nir_alu_instr *
create_vec(struct vtn_builder * b,unsigned num_components,unsigned bit_size)2659 create_vec(struct vtn_builder *b, unsigned num_components, unsigned bit_size)
2660 {
2661    nir_op op;
2662    switch (num_components) {
2663    case 1: op = nir_op_fmov; break;
2664    case 2: op = nir_op_vec2; break;
2665    case 3: op = nir_op_vec3; break;
2666    case 4: op = nir_op_vec4; break;
2667    default: vtn_fail("bad vector size");
2668    }
2669 
2670    nir_alu_instr *vec = nir_alu_instr_create(b->shader, op);
2671    nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components,
2672                      bit_size, NULL);
2673    vec->dest.write_mask = (1 << num_components) - 1;
2674 
2675    return vec;
2676 }
2677 
2678 struct vtn_ssa_value *
vtn_ssa_transpose(struct vtn_builder * b,struct vtn_ssa_value * src)2679 vtn_ssa_transpose(struct vtn_builder *b, struct vtn_ssa_value *src)
2680 {
2681    if (src->transposed)
2682       return src->transposed;
2683 
2684    struct vtn_ssa_value *dest =
2685       vtn_create_ssa_value(b, glsl_transposed_type(src->type));
2686 
2687    for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) {
2688       nir_alu_instr *vec = create_vec(b, glsl_get_matrix_columns(src->type),
2689                                          glsl_get_bit_size(src->type));
2690       if (glsl_type_is_vector_or_scalar(src->type)) {
2691           vec->src[0].src = nir_src_for_ssa(src->def);
2692           vec->src[0].swizzle[0] = i;
2693       } else {
2694          for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) {
2695             vec->src[j].src = nir_src_for_ssa(src->elems[j]->def);
2696             vec->src[j].swizzle[0] = i;
2697          }
2698       }
2699       nir_builder_instr_insert(&b->nb, &vec->instr);
2700       dest->elems[i]->def = &vec->dest.dest.ssa;
2701    }
2702 
2703    dest->transposed = src;
2704 
2705    return dest;
2706 }
2707 
2708 nir_ssa_def *
vtn_vector_extract(struct vtn_builder * b,nir_ssa_def * src,unsigned index)2709 vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index)
2710 {
2711    unsigned swiz[4] = { index };
2712    return nir_swizzle(&b->nb, src, swiz, 1, true);
2713 }
2714 
2715 nir_ssa_def *
vtn_vector_insert(struct vtn_builder * b,nir_ssa_def * src,nir_ssa_def * insert,unsigned index)2716 vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert,
2717                   unsigned index)
2718 {
2719    nir_alu_instr *vec = create_vec(b, src->num_components,
2720                                    src->bit_size);
2721 
2722    for (unsigned i = 0; i < src->num_components; i++) {
2723       if (i == index) {
2724          vec->src[i].src = nir_src_for_ssa(insert);
2725       } else {
2726          vec->src[i].src = nir_src_for_ssa(src);
2727          vec->src[i].swizzle[0] = i;
2728       }
2729    }
2730 
2731    nir_builder_instr_insert(&b->nb, &vec->instr);
2732 
2733    return &vec->dest.dest.ssa;
2734 }
2735 
2736 nir_ssa_def *
vtn_vector_extract_dynamic(struct vtn_builder * b,nir_ssa_def * src,nir_ssa_def * index)2737 vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src,
2738                            nir_ssa_def *index)
2739 {
2740    nir_ssa_def *dest = vtn_vector_extract(b, src, 0);
2741    for (unsigned i = 1; i < src->num_components; i++)
2742       dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)),
2743                        vtn_vector_extract(b, src, i), dest);
2744 
2745    return dest;
2746 }
2747 
2748 nir_ssa_def *
vtn_vector_insert_dynamic(struct vtn_builder * b,nir_ssa_def * src,nir_ssa_def * insert,nir_ssa_def * index)2749 vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src,
2750                           nir_ssa_def *insert, nir_ssa_def *index)
2751 {
2752    nir_ssa_def *dest = vtn_vector_insert(b, src, insert, 0);
2753    for (unsigned i = 1; i < src->num_components; i++)
2754       dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)),
2755                        vtn_vector_insert(b, src, insert, i), dest);
2756 
2757    return dest;
2758 }
2759 
2760 static nir_ssa_def *
vtn_vector_shuffle(struct vtn_builder * b,unsigned num_components,nir_ssa_def * src0,nir_ssa_def * src1,const uint32_t * indices)2761 vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components,
2762                    nir_ssa_def *src0, nir_ssa_def *src1,
2763                    const uint32_t *indices)
2764 {
2765    nir_alu_instr *vec = create_vec(b, num_components, src0->bit_size);
2766 
2767    for (unsigned i = 0; i < num_components; i++) {
2768       uint32_t index = indices[i];
2769       if (index == 0xffffffff) {
2770          vec->src[i].src =
2771             nir_src_for_ssa(nir_ssa_undef(&b->nb, 1, src0->bit_size));
2772       } else if (index < src0->num_components) {
2773          vec->src[i].src = nir_src_for_ssa(src0);
2774          vec->src[i].swizzle[0] = index;
2775       } else {
2776          vec->src[i].src = nir_src_for_ssa(src1);
2777          vec->src[i].swizzle[0] = index - src0->num_components;
2778       }
2779    }
2780 
2781    nir_builder_instr_insert(&b->nb, &vec->instr);
2782 
2783    return &vec->dest.dest.ssa;
2784 }
2785 
2786 /*
2787  * Concatentates a number of vectors/scalars together to produce a vector
2788  */
2789 static nir_ssa_def *
vtn_vector_construct(struct vtn_builder * b,unsigned num_components,unsigned num_srcs,nir_ssa_def ** srcs)2790 vtn_vector_construct(struct vtn_builder *b, unsigned num_components,
2791                      unsigned num_srcs, nir_ssa_def **srcs)
2792 {
2793    nir_alu_instr *vec = create_vec(b, num_components, srcs[0]->bit_size);
2794 
2795    /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
2796     *
2797     *    "When constructing a vector, there must be at least two Constituent
2798     *    operands."
2799     */
2800    vtn_assert(num_srcs >= 2);
2801 
2802    unsigned dest_idx = 0;
2803    for (unsigned i = 0; i < num_srcs; i++) {
2804       nir_ssa_def *src = srcs[i];
2805       vtn_assert(dest_idx + src->num_components <= num_components);
2806       for (unsigned j = 0; j < src->num_components; j++) {
2807          vec->src[dest_idx].src = nir_src_for_ssa(src);
2808          vec->src[dest_idx].swizzle[0] = j;
2809          dest_idx++;
2810       }
2811    }
2812 
2813    /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
2814     *
2815     *    "When constructing a vector, the total number of components in all
2816     *    the operands must equal the number of components in Result Type."
2817     */
2818    vtn_assert(dest_idx == num_components);
2819 
2820    nir_builder_instr_insert(&b->nb, &vec->instr);
2821 
2822    return &vec->dest.dest.ssa;
2823 }
2824 
2825 static struct vtn_ssa_value *
vtn_composite_copy(void * mem_ctx,struct vtn_ssa_value * src)2826 vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src)
2827 {
2828    struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value);
2829    dest->type = src->type;
2830 
2831    if (glsl_type_is_vector_or_scalar(src->type)) {
2832       dest->def = src->def;
2833    } else {
2834       unsigned elems = glsl_get_length(src->type);
2835 
2836       dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems);
2837       for (unsigned i = 0; i < elems; i++)
2838          dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]);
2839    }
2840 
2841    return dest;
2842 }
2843 
2844 static struct vtn_ssa_value *
vtn_composite_insert(struct vtn_builder * b,struct vtn_ssa_value * src,struct vtn_ssa_value * insert,const uint32_t * indices,unsigned num_indices)2845 vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src,
2846                      struct vtn_ssa_value *insert, const uint32_t *indices,
2847                      unsigned num_indices)
2848 {
2849    struct vtn_ssa_value *dest = vtn_composite_copy(b, src);
2850 
2851    struct vtn_ssa_value *cur = dest;
2852    unsigned i;
2853    for (i = 0; i < num_indices - 1; i++) {
2854       cur = cur->elems[indices[i]];
2855    }
2856 
2857    if (glsl_type_is_vector_or_scalar(cur->type)) {
2858       /* According to the SPIR-V spec, OpCompositeInsert may work down to
2859        * the component granularity. In that case, the last index will be
2860        * the index to insert the scalar into the vector.
2861        */
2862 
2863       cur->def = vtn_vector_insert(b, cur->def, insert->def, indices[i]);
2864    } else {
2865       cur->elems[indices[i]] = insert;
2866    }
2867 
2868    return dest;
2869 }
2870 
2871 static struct vtn_ssa_value *
vtn_composite_extract(struct vtn_builder * b,struct vtn_ssa_value * src,const uint32_t * indices,unsigned num_indices)2872 vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src,
2873                       const uint32_t *indices, unsigned num_indices)
2874 {
2875    struct vtn_ssa_value *cur = src;
2876    for (unsigned i = 0; i < num_indices; i++) {
2877       if (glsl_type_is_vector_or_scalar(cur->type)) {
2878          vtn_assert(i == num_indices - 1);
2879          /* According to the SPIR-V spec, OpCompositeExtract may work down to
2880           * the component granularity. The last index will be the index of the
2881           * vector to extract.
2882           */
2883 
2884          struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value);
2885          ret->type = glsl_scalar_type(glsl_get_base_type(cur->type));
2886          ret->def = vtn_vector_extract(b, cur->def, indices[i]);
2887          return ret;
2888       } else {
2889          cur = cur->elems[indices[i]];
2890       }
2891    }
2892 
2893    return cur;
2894 }
2895 
2896 static void
vtn_handle_composite(struct vtn_builder * b,SpvOp opcode,const uint32_t * w,unsigned count)2897 vtn_handle_composite(struct vtn_builder *b, SpvOp opcode,
2898                      const uint32_t *w, unsigned count)
2899 {
2900    struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2901    const struct glsl_type *type =
2902       vtn_value(b, w[1], vtn_value_type_type)->type->type;
2903    val->ssa = vtn_create_ssa_value(b, type);
2904 
2905    switch (opcode) {
2906    case SpvOpVectorExtractDynamic:
2907       val->ssa->def = vtn_vector_extract_dynamic(b, vtn_ssa_value(b, w[3])->def,
2908                                                  vtn_ssa_value(b, w[4])->def);
2909       break;
2910 
2911    case SpvOpVectorInsertDynamic:
2912       val->ssa->def = vtn_vector_insert_dynamic(b, vtn_ssa_value(b, w[3])->def,
2913                                                 vtn_ssa_value(b, w[4])->def,
2914                                                 vtn_ssa_value(b, w[5])->def);
2915       break;
2916 
2917    case SpvOpVectorShuffle:
2918       val->ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type),
2919                                          vtn_ssa_value(b, w[3])->def,
2920                                          vtn_ssa_value(b, w[4])->def,
2921                                          w + 5);
2922       break;
2923 
2924    case SpvOpCompositeConstruct: {
2925       unsigned elems = count - 3;
2926       if (glsl_type_is_vector_or_scalar(type)) {
2927          nir_ssa_def *srcs[4];
2928          for (unsigned i = 0; i < elems; i++)
2929             srcs[i] = vtn_ssa_value(b, w[3 + i])->def;
2930          val->ssa->def =
2931             vtn_vector_construct(b, glsl_get_vector_elements(type),
2932                                  elems, srcs);
2933       } else {
2934          val->ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
2935          for (unsigned i = 0; i < elems; i++)
2936             val->ssa->elems[i] = vtn_ssa_value(b, w[3 + i]);
2937       }
2938       break;
2939    }
2940    case SpvOpCompositeExtract:
2941       val->ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]),
2942                                        w + 4, count - 4);
2943       break;
2944 
2945    case SpvOpCompositeInsert:
2946       val->ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]),
2947                                       vtn_ssa_value(b, w[3]),
2948                                       w + 5, count - 5);
2949       break;
2950 
2951    case SpvOpCopyObject:
2952       val->ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3]));
2953       break;
2954 
2955    default:
2956       vtn_fail("unknown composite operation");
2957    }
2958 }
2959 
2960 static void
vtn_handle_barrier(struct vtn_builder * b,SpvOp opcode,const uint32_t * w,unsigned count)2961 vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode,
2962                    const uint32_t *w, unsigned count)
2963 {
2964    nir_intrinsic_op intrinsic_op;
2965    switch (opcode) {
2966    case SpvOpEmitVertex:
2967    case SpvOpEmitStreamVertex:
2968       intrinsic_op = nir_intrinsic_emit_vertex;
2969       break;
2970    case SpvOpEndPrimitive:
2971    case SpvOpEndStreamPrimitive:
2972       intrinsic_op = nir_intrinsic_end_primitive;
2973       break;
2974    case SpvOpMemoryBarrier:
2975       intrinsic_op = nir_intrinsic_memory_barrier;
2976       break;
2977    case SpvOpControlBarrier:
2978       intrinsic_op = nir_intrinsic_barrier;
2979       break;
2980    default:
2981       vtn_fail("unknown barrier instruction");
2982    }
2983 
2984    nir_intrinsic_instr *intrin =
2985       nir_intrinsic_instr_create(b->shader, intrinsic_op);
2986 
2987    if (opcode == SpvOpEmitStreamVertex || opcode == SpvOpEndStreamPrimitive)
2988       nir_intrinsic_set_stream_id(intrin, w[1]);
2989 
2990    nir_builder_instr_insert(&b->nb, &intrin->instr);
2991 }
2992 
2993 static unsigned
gl_primitive_from_spv_execution_mode(struct vtn_builder * b,SpvExecutionMode mode)2994 gl_primitive_from_spv_execution_mode(struct vtn_builder *b,
2995                                      SpvExecutionMode mode)
2996 {
2997    switch (mode) {
2998    case SpvExecutionModeInputPoints:
2999    case SpvExecutionModeOutputPoints:
3000       return 0; /* GL_POINTS */
3001    case SpvExecutionModeInputLines:
3002       return 1; /* GL_LINES */
3003    case SpvExecutionModeInputLinesAdjacency:
3004       return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */
3005    case SpvExecutionModeTriangles:
3006       return 4; /* GL_TRIANGLES */
3007    case SpvExecutionModeInputTrianglesAdjacency:
3008       return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */
3009    case SpvExecutionModeQuads:
3010       return 7; /* GL_QUADS */
3011    case SpvExecutionModeIsolines:
3012       return 0x8E7A; /* GL_ISOLINES */
3013    case SpvExecutionModeOutputLineStrip:
3014       return 3; /* GL_LINE_STRIP */
3015    case SpvExecutionModeOutputTriangleStrip:
3016       return 5; /* GL_TRIANGLE_STRIP */
3017    default:
3018       vtn_fail("Invalid primitive type");
3019    }
3020 }
3021 
3022 static unsigned
vertices_in_from_spv_execution_mode(struct vtn_builder * b,SpvExecutionMode mode)3023 vertices_in_from_spv_execution_mode(struct vtn_builder *b,
3024                                     SpvExecutionMode mode)
3025 {
3026    switch (mode) {
3027    case SpvExecutionModeInputPoints:
3028       return 1;
3029    case SpvExecutionModeInputLines:
3030       return 2;
3031    case SpvExecutionModeInputLinesAdjacency:
3032       return 4;
3033    case SpvExecutionModeTriangles:
3034       return 3;
3035    case SpvExecutionModeInputTrianglesAdjacency:
3036       return 6;
3037    default:
3038       vtn_fail("Invalid GS input mode");
3039    }
3040 }
3041 
3042 static gl_shader_stage
stage_for_execution_model(struct vtn_builder * b,SpvExecutionModel model)3043 stage_for_execution_model(struct vtn_builder *b, SpvExecutionModel model)
3044 {
3045    switch (model) {
3046    case SpvExecutionModelVertex:
3047       return MESA_SHADER_VERTEX;
3048    case SpvExecutionModelTessellationControl:
3049       return MESA_SHADER_TESS_CTRL;
3050    case SpvExecutionModelTessellationEvaluation:
3051       return MESA_SHADER_TESS_EVAL;
3052    case SpvExecutionModelGeometry:
3053       return MESA_SHADER_GEOMETRY;
3054    case SpvExecutionModelFragment:
3055       return MESA_SHADER_FRAGMENT;
3056    case SpvExecutionModelGLCompute:
3057       return MESA_SHADER_COMPUTE;
3058    default:
3059       vtn_fail("Unsupported execution model");
3060    }
3061 }
3062 
3063 #define spv_check_supported(name, cap) do {		\
3064       if (!(b->options && b->options->caps.name))	\
3065          vtn_warn("Unsupported SPIR-V capability: %s",  \
3066                   spirv_capability_to_string(cap));     \
3067    } while(0)
3068 
3069 static bool
vtn_handle_preamble_instruction(struct vtn_builder * b,SpvOp opcode,const uint32_t * w,unsigned count)3070 vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode,
3071                                 const uint32_t *w, unsigned count)
3072 {
3073    switch (opcode) {
3074    case SpvOpSource: {
3075       const char *lang;
3076       switch (w[1]) {
3077       default:
3078       case SpvSourceLanguageUnknown:      lang = "unknown";    break;
3079       case SpvSourceLanguageESSL:         lang = "ESSL";       break;
3080       case SpvSourceLanguageGLSL:         lang = "GLSL";       break;
3081       case SpvSourceLanguageOpenCL_C:     lang = "OpenCL C";   break;
3082       case SpvSourceLanguageOpenCL_CPP:   lang = "OpenCL C++"; break;
3083       case SpvSourceLanguageHLSL:         lang = "HLSL";       break;
3084       }
3085 
3086       uint32_t version = w[2];
3087 
3088       const char *file =
3089          (count > 3) ? vtn_value(b, w[3], vtn_value_type_string)->str : "";
3090 
3091       vtn_info("Parsing SPIR-V from %s %u source file %s", lang, version, file);
3092       break;
3093    }
3094 
3095    case SpvOpSourceExtension:
3096    case SpvOpSourceContinued:
3097    case SpvOpExtension:
3098       /* Unhandled, but these are for debug so that's ok. */
3099       break;
3100 
3101    case SpvOpCapability: {
3102       SpvCapability cap = w[1];
3103       switch (cap) {
3104       case SpvCapabilityMatrix:
3105       case SpvCapabilityShader:
3106       case SpvCapabilityGeometry:
3107       case SpvCapabilityGeometryPointSize:
3108       case SpvCapabilityUniformBufferArrayDynamicIndexing:
3109       case SpvCapabilitySampledImageArrayDynamicIndexing:
3110       case SpvCapabilityStorageBufferArrayDynamicIndexing:
3111       case SpvCapabilityStorageImageArrayDynamicIndexing:
3112       case SpvCapabilityImageRect:
3113       case SpvCapabilitySampledRect:
3114       case SpvCapabilitySampled1D:
3115       case SpvCapabilityImage1D:
3116       case SpvCapabilitySampledCubeArray:
3117       case SpvCapabilityImageCubeArray:
3118       case SpvCapabilitySampledBuffer:
3119       case SpvCapabilityImageBuffer:
3120       case SpvCapabilityImageQuery:
3121       case SpvCapabilityDerivativeControl:
3122       case SpvCapabilityInterpolationFunction:
3123       case SpvCapabilityMultiViewport:
3124       case SpvCapabilitySampleRateShading:
3125       case SpvCapabilityClipDistance:
3126       case SpvCapabilityCullDistance:
3127       case SpvCapabilityInputAttachment:
3128       case SpvCapabilityImageGatherExtended:
3129       case SpvCapabilityStorageImageExtendedFormats:
3130          break;
3131 
3132       case SpvCapabilityGeometryStreams:
3133       case SpvCapabilityLinkage:
3134       case SpvCapabilityVector16:
3135       case SpvCapabilityFloat16Buffer:
3136       case SpvCapabilityFloat16:
3137       case SpvCapabilityInt64Atomics:
3138       case SpvCapabilityAtomicStorage:
3139       case SpvCapabilityInt16:
3140       case SpvCapabilityStorageImageMultisample:
3141       case SpvCapabilityInt8:
3142       case SpvCapabilitySparseResidency:
3143       case SpvCapabilityMinLod:
3144       case SpvCapabilityTransformFeedback:
3145          vtn_warn("Unsupported SPIR-V capability: %s",
3146                   spirv_capability_to_string(cap));
3147          break;
3148 
3149       case SpvCapabilityFloat64:
3150          spv_check_supported(float64, cap);
3151          break;
3152       case SpvCapabilityInt64:
3153          spv_check_supported(int64, cap);
3154          break;
3155 
3156       case SpvCapabilityAddresses:
3157       case SpvCapabilityKernel:
3158       case SpvCapabilityImageBasic:
3159       case SpvCapabilityImageReadWrite:
3160       case SpvCapabilityImageMipmap:
3161       case SpvCapabilityPipes:
3162       case SpvCapabilityGroups:
3163       case SpvCapabilityDeviceEnqueue:
3164       case SpvCapabilityLiteralSampler:
3165       case SpvCapabilityGenericPointer:
3166          vtn_warn("Unsupported OpenCL-style SPIR-V capability: %s",
3167                   spirv_capability_to_string(cap));
3168          break;
3169 
3170       case SpvCapabilityImageMSArray:
3171          spv_check_supported(image_ms_array, cap);
3172          break;
3173 
3174       case SpvCapabilityTessellation:
3175       case SpvCapabilityTessellationPointSize:
3176          spv_check_supported(tessellation, cap);
3177          break;
3178 
3179       case SpvCapabilityDrawParameters:
3180          spv_check_supported(draw_parameters, cap);
3181          break;
3182 
3183       case SpvCapabilityStorageImageReadWithoutFormat:
3184          spv_check_supported(image_read_without_format, cap);
3185          break;
3186 
3187       case SpvCapabilityStorageImageWriteWithoutFormat:
3188          spv_check_supported(image_write_without_format, cap);
3189          break;
3190 
3191       case SpvCapabilityMultiView:
3192          spv_check_supported(multiview, cap);
3193          break;
3194 
3195       case SpvCapabilityVariablePointersStorageBuffer:
3196       case SpvCapabilityVariablePointers:
3197          spv_check_supported(variable_pointers, cap);
3198          break;
3199 
3200       case SpvCapabilityStorageUniformBufferBlock16:
3201       case SpvCapabilityStorageUniform16:
3202       case SpvCapabilityStoragePushConstant16:
3203       case SpvCapabilityStorageInputOutput16:
3204          spv_check_supported(storage_16bit, cap);
3205          break;
3206 
3207       default:
3208          vtn_fail("Unhandled capability");
3209       }
3210       break;
3211    }
3212 
3213    case SpvOpExtInstImport:
3214       vtn_handle_extension(b, opcode, w, count);
3215       break;
3216 
3217    case SpvOpMemoryModel:
3218       vtn_assert(w[1] == SpvAddressingModelLogical);
3219       vtn_assert(w[2] == SpvMemoryModelSimple ||
3220                  w[2] == SpvMemoryModelGLSL450);
3221       break;
3222 
3223    case SpvOpEntryPoint: {
3224       struct vtn_value *entry_point = &b->values[w[2]];
3225       /* Let this be a name label regardless */
3226       unsigned name_words;
3227       entry_point->name = vtn_string_literal(b, &w[3], count - 3, &name_words);
3228 
3229       if (strcmp(entry_point->name, b->entry_point_name) != 0 ||
3230           stage_for_execution_model(b, w[1]) != b->entry_point_stage)
3231          break;
3232 
3233       vtn_assert(b->entry_point == NULL);
3234       b->entry_point = entry_point;
3235       break;
3236    }
3237 
3238    case SpvOpString:
3239       vtn_push_value(b, w[1], vtn_value_type_string)->str =
3240          vtn_string_literal(b, &w[2], count - 2, NULL);
3241       break;
3242 
3243    case SpvOpName:
3244       b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2, NULL);
3245       break;
3246 
3247    case SpvOpMemberName:
3248       /* TODO */
3249       break;
3250 
3251    case SpvOpExecutionMode:
3252    case SpvOpDecorationGroup:
3253    case SpvOpDecorate:
3254    case SpvOpMemberDecorate:
3255    case SpvOpGroupDecorate:
3256    case SpvOpGroupMemberDecorate:
3257       vtn_handle_decoration(b, opcode, w, count);
3258       break;
3259 
3260    default:
3261       return false; /* End of preamble */
3262    }
3263 
3264    return true;
3265 }
3266 
3267 static void
vtn_handle_execution_mode(struct vtn_builder * b,struct vtn_value * entry_point,const struct vtn_decoration * mode,void * data)3268 vtn_handle_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
3269                           const struct vtn_decoration *mode, void *data)
3270 {
3271    vtn_assert(b->entry_point == entry_point);
3272 
3273    switch(mode->exec_mode) {
3274    case SpvExecutionModeOriginUpperLeft:
3275    case SpvExecutionModeOriginLowerLeft:
3276       b->origin_upper_left =
3277          (mode->exec_mode == SpvExecutionModeOriginUpperLeft);
3278       break;
3279 
3280    case SpvExecutionModeEarlyFragmentTests:
3281       vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3282       b->shader->info.fs.early_fragment_tests = true;
3283       break;
3284 
3285    case SpvExecutionModeInvocations:
3286       vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3287       b->shader->info.gs.invocations = MAX2(1, mode->literals[0]);
3288       break;
3289 
3290    case SpvExecutionModeDepthReplacing:
3291       vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3292       b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY;
3293       break;
3294    case SpvExecutionModeDepthGreater:
3295       vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3296       b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER;
3297       break;
3298    case SpvExecutionModeDepthLess:
3299       vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3300       b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS;
3301       break;
3302    case SpvExecutionModeDepthUnchanged:
3303       vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3304       b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3305       break;
3306 
3307    case SpvExecutionModeLocalSize:
3308       vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
3309       b->shader->info.cs.local_size[0] = mode->literals[0];
3310       b->shader->info.cs.local_size[1] = mode->literals[1];
3311       b->shader->info.cs.local_size[2] = mode->literals[2];
3312       break;
3313    case SpvExecutionModeLocalSizeHint:
3314       break; /* Nothing to do with this */
3315 
3316    case SpvExecutionModeOutputVertices:
3317       if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3318           b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3319          b->shader->info.tess.tcs_vertices_out = mode->literals[0];
3320       } else {
3321          vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3322          b->shader->info.gs.vertices_out = mode->literals[0];
3323       }
3324       break;
3325 
3326    case SpvExecutionModeInputPoints:
3327    case SpvExecutionModeInputLines:
3328    case SpvExecutionModeInputLinesAdjacency:
3329    case SpvExecutionModeTriangles:
3330    case SpvExecutionModeInputTrianglesAdjacency:
3331    case SpvExecutionModeQuads:
3332    case SpvExecutionModeIsolines:
3333       if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3334           b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3335          b->shader->info.tess.primitive_mode =
3336             gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3337       } else {
3338          vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3339          b->shader->info.gs.vertices_in =
3340             vertices_in_from_spv_execution_mode(b, mode->exec_mode);
3341       }
3342       break;
3343 
3344    case SpvExecutionModeOutputPoints:
3345    case SpvExecutionModeOutputLineStrip:
3346    case SpvExecutionModeOutputTriangleStrip:
3347       vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3348       b->shader->info.gs.output_primitive =
3349          gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3350       break;
3351 
3352    case SpvExecutionModeSpacingEqual:
3353       vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3354                  b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3355       b->shader->info.tess.spacing = TESS_SPACING_EQUAL;
3356       break;
3357    case SpvExecutionModeSpacingFractionalEven:
3358       vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3359                  b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3360       b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_EVEN;
3361       break;
3362    case SpvExecutionModeSpacingFractionalOdd:
3363       vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3364                  b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3365       b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_ODD;
3366       break;
3367    case SpvExecutionModeVertexOrderCw:
3368       vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3369                  b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3370       b->shader->info.tess.ccw = false;
3371       break;
3372    case SpvExecutionModeVertexOrderCcw:
3373       vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3374                  b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3375       b->shader->info.tess.ccw = true;
3376       break;
3377    case SpvExecutionModePointMode:
3378       vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3379                  b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3380       b->shader->info.tess.point_mode = true;
3381       break;
3382 
3383    case SpvExecutionModePixelCenterInteger:
3384       b->pixel_center_integer = true;
3385       break;
3386 
3387    case SpvExecutionModeXfb:
3388       vtn_fail("Unhandled execution mode");
3389       break;
3390 
3391    case SpvExecutionModeVecTypeHint:
3392    case SpvExecutionModeContractionOff:
3393       break; /* OpenCL */
3394 
3395    default:
3396       vtn_fail("Unhandled execution mode");
3397    }
3398 }
3399 
3400 static bool
vtn_handle_variable_or_type_instruction(struct vtn_builder * b,SpvOp opcode,const uint32_t * w,unsigned count)3401 vtn_handle_variable_or_type_instruction(struct vtn_builder *b, SpvOp opcode,
3402                                         const uint32_t *w, unsigned count)
3403 {
3404    vtn_set_instruction_result_type(b, opcode, w, count);
3405 
3406    switch (opcode) {
3407    case SpvOpSource:
3408    case SpvOpSourceContinued:
3409    case SpvOpSourceExtension:
3410    case SpvOpExtension:
3411    case SpvOpCapability:
3412    case SpvOpExtInstImport:
3413    case SpvOpMemoryModel:
3414    case SpvOpEntryPoint:
3415    case SpvOpExecutionMode:
3416    case SpvOpString:
3417    case SpvOpName:
3418    case SpvOpMemberName:
3419    case SpvOpDecorationGroup:
3420    case SpvOpDecorate:
3421    case SpvOpMemberDecorate:
3422    case SpvOpGroupDecorate:
3423    case SpvOpGroupMemberDecorate:
3424       vtn_fail("Invalid opcode types and variables section");
3425       break;
3426 
3427    case SpvOpTypeVoid:
3428    case SpvOpTypeBool:
3429    case SpvOpTypeInt:
3430    case SpvOpTypeFloat:
3431    case SpvOpTypeVector:
3432    case SpvOpTypeMatrix:
3433    case SpvOpTypeImage:
3434    case SpvOpTypeSampler:
3435    case SpvOpTypeSampledImage:
3436    case SpvOpTypeArray:
3437    case SpvOpTypeRuntimeArray:
3438    case SpvOpTypeStruct:
3439    case SpvOpTypeOpaque:
3440    case SpvOpTypePointer:
3441    case SpvOpTypeFunction:
3442    case SpvOpTypeEvent:
3443    case SpvOpTypeDeviceEvent:
3444    case SpvOpTypeReserveId:
3445    case SpvOpTypeQueue:
3446    case SpvOpTypePipe:
3447       vtn_handle_type(b, opcode, w, count);
3448       break;
3449 
3450    case SpvOpConstantTrue:
3451    case SpvOpConstantFalse:
3452    case SpvOpConstant:
3453    case SpvOpConstantComposite:
3454    case SpvOpConstantSampler:
3455    case SpvOpConstantNull:
3456    case SpvOpSpecConstantTrue:
3457    case SpvOpSpecConstantFalse:
3458    case SpvOpSpecConstant:
3459    case SpvOpSpecConstantComposite:
3460    case SpvOpSpecConstantOp:
3461       vtn_handle_constant(b, opcode, w, count);
3462       break;
3463 
3464    case SpvOpUndef:
3465    case SpvOpVariable:
3466       vtn_handle_variables(b, opcode, w, count);
3467       break;
3468 
3469    default:
3470       return false; /* End of preamble */
3471    }
3472 
3473    return true;
3474 }
3475 
3476 static bool
vtn_handle_body_instruction(struct vtn_builder * b,SpvOp opcode,const uint32_t * w,unsigned count)3477 vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode,
3478                             const uint32_t *w, unsigned count)
3479 {
3480    switch (opcode) {
3481    case SpvOpLabel:
3482       break;
3483 
3484    case SpvOpLoopMerge:
3485    case SpvOpSelectionMerge:
3486       /* This is handled by cfg pre-pass and walk_blocks */
3487       break;
3488 
3489    case SpvOpUndef: {
3490       struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
3491       val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
3492       break;
3493    }
3494 
3495    case SpvOpExtInst:
3496       vtn_handle_extension(b, opcode, w, count);
3497       break;
3498 
3499    case SpvOpVariable:
3500    case SpvOpLoad:
3501    case SpvOpStore:
3502    case SpvOpCopyMemory:
3503    case SpvOpCopyMemorySized:
3504    case SpvOpAccessChain:
3505    case SpvOpPtrAccessChain:
3506    case SpvOpInBoundsAccessChain:
3507    case SpvOpArrayLength:
3508       vtn_handle_variables(b, opcode, w, count);
3509       break;
3510 
3511    case SpvOpFunctionCall:
3512       vtn_handle_function_call(b, opcode, w, count);
3513       break;
3514 
3515    case SpvOpSampledImage:
3516    case SpvOpImage:
3517    case SpvOpImageSampleImplicitLod:
3518    case SpvOpImageSampleExplicitLod:
3519    case SpvOpImageSampleDrefImplicitLod:
3520    case SpvOpImageSampleDrefExplicitLod:
3521    case SpvOpImageSampleProjImplicitLod:
3522    case SpvOpImageSampleProjExplicitLod:
3523    case SpvOpImageSampleProjDrefImplicitLod:
3524    case SpvOpImageSampleProjDrefExplicitLod:
3525    case SpvOpImageFetch:
3526    case SpvOpImageGather:
3527    case SpvOpImageDrefGather:
3528    case SpvOpImageQuerySizeLod:
3529    case SpvOpImageQueryLod:
3530    case SpvOpImageQueryLevels:
3531    case SpvOpImageQuerySamples:
3532       vtn_handle_texture(b, opcode, w, count);
3533       break;
3534 
3535    case SpvOpImageRead:
3536    case SpvOpImageWrite:
3537    case SpvOpImageTexelPointer:
3538       vtn_handle_image(b, opcode, w, count);
3539       break;
3540 
3541    case SpvOpImageQuerySize: {
3542       struct vtn_pointer *image =
3543          vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
3544       if (image->mode == vtn_variable_mode_image) {
3545          vtn_handle_image(b, opcode, w, count);
3546       } else {
3547          vtn_assert(image->mode == vtn_variable_mode_sampler);
3548          vtn_handle_texture(b, opcode, w, count);
3549       }
3550       break;
3551    }
3552 
3553    case SpvOpAtomicLoad:
3554    case SpvOpAtomicExchange:
3555    case SpvOpAtomicCompareExchange:
3556    case SpvOpAtomicCompareExchangeWeak:
3557    case SpvOpAtomicIIncrement:
3558    case SpvOpAtomicIDecrement:
3559    case SpvOpAtomicIAdd:
3560    case SpvOpAtomicISub:
3561    case SpvOpAtomicSMin:
3562    case SpvOpAtomicUMin:
3563    case SpvOpAtomicSMax:
3564    case SpvOpAtomicUMax:
3565    case SpvOpAtomicAnd:
3566    case SpvOpAtomicOr:
3567    case SpvOpAtomicXor: {
3568       struct vtn_value *pointer = vtn_untyped_value(b, w[3]);
3569       if (pointer->value_type == vtn_value_type_image_pointer) {
3570          vtn_handle_image(b, opcode, w, count);
3571       } else {
3572          vtn_assert(pointer->value_type == vtn_value_type_pointer);
3573          vtn_handle_ssbo_or_shared_atomic(b, opcode, w, count);
3574       }
3575       break;
3576    }
3577 
3578    case SpvOpAtomicStore: {
3579       struct vtn_value *pointer = vtn_untyped_value(b, w[1]);
3580       if (pointer->value_type == vtn_value_type_image_pointer) {
3581          vtn_handle_image(b, opcode, w, count);
3582       } else {
3583          vtn_assert(pointer->value_type == vtn_value_type_pointer);
3584          vtn_handle_ssbo_or_shared_atomic(b, opcode, w, count);
3585       }
3586       break;
3587    }
3588 
3589    case SpvOpSelect: {
3590       /* Handle OpSelect up-front here because it needs to be able to handle
3591        * pointers and not just regular vectors and scalars.
3592        */
3593       struct vtn_value *res_val = vtn_untyped_value(b, w[2]);
3594       struct vtn_value *sel_val = vtn_untyped_value(b, w[3]);
3595       struct vtn_value *obj1_val = vtn_untyped_value(b, w[4]);
3596       struct vtn_value *obj2_val = vtn_untyped_value(b, w[5]);
3597 
3598       const struct glsl_type *sel_type;
3599       switch (res_val->type->base_type) {
3600       case vtn_base_type_scalar:
3601          sel_type = glsl_bool_type();
3602          break;
3603       case vtn_base_type_vector:
3604          sel_type = glsl_vector_type(GLSL_TYPE_BOOL, res_val->type->length);
3605          break;
3606       case vtn_base_type_pointer:
3607          /* We need to have actual storage for pointer types */
3608          vtn_fail_if(res_val->type->type == NULL,
3609                      "Invalid pointer result type for OpSelect");
3610          sel_type = glsl_bool_type();
3611          break;
3612       default:
3613          vtn_fail("Result type of OpSelect must be a scalar, vector, or pointer");
3614       }
3615 
3616       if (unlikely(sel_val->type->type != sel_type)) {
3617          if (sel_val->type->type == glsl_bool_type()) {
3618             /* This case is illegal but some older versions of GLSLang produce
3619              * it.  The GLSLang issue was fixed on March 30, 2017:
3620              *
3621              * https://github.com/KhronosGroup/glslang/issues/809
3622              *
3623              * Unfortunately, there are applications in the wild which are
3624              * shipping with this bug so it isn't nice to fail on them so we
3625              * throw a warning instead.  It's not actually a problem for us as
3626              * nir_builder will just splat the condition out which is most
3627              * likely what the client wanted anyway.
3628              */
3629             vtn_warn("Condition type of OpSelect must have the same number "
3630                      "of components as Result Type");
3631          } else {
3632             vtn_fail("Condition type of OpSelect must be a scalar or vector "
3633                      "of Boolean type. It must have the same number of "
3634                      "components as Result Type");
3635          }
3636       }
3637 
3638       vtn_fail_if(obj1_val->type != res_val->type ||
3639                   obj2_val->type != res_val->type,
3640                   "Object types must match the result type in OpSelect");
3641 
3642       struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type;
3643       struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, res_type->type);
3644       ssa->def = nir_bcsel(&b->nb, vtn_ssa_value(b, w[3])->def,
3645                                    vtn_ssa_value(b, w[4])->def,
3646                                    vtn_ssa_value(b, w[5])->def);
3647       vtn_push_ssa(b, w[2], res_type, ssa);
3648       break;
3649    }
3650 
3651    case SpvOpSNegate:
3652    case SpvOpFNegate:
3653    case SpvOpNot:
3654    case SpvOpAny:
3655    case SpvOpAll:
3656    case SpvOpConvertFToU:
3657    case SpvOpConvertFToS:
3658    case SpvOpConvertSToF:
3659    case SpvOpConvertUToF:
3660    case SpvOpUConvert:
3661    case SpvOpSConvert:
3662    case SpvOpFConvert:
3663    case SpvOpQuantizeToF16:
3664    case SpvOpConvertPtrToU:
3665    case SpvOpConvertUToPtr:
3666    case SpvOpPtrCastToGeneric:
3667    case SpvOpGenericCastToPtr:
3668    case SpvOpBitcast:
3669    case SpvOpIsNan:
3670    case SpvOpIsInf:
3671    case SpvOpIsFinite:
3672    case SpvOpIsNormal:
3673    case SpvOpSignBitSet:
3674    case SpvOpLessOrGreater:
3675    case SpvOpOrdered:
3676    case SpvOpUnordered:
3677    case SpvOpIAdd:
3678    case SpvOpFAdd:
3679    case SpvOpISub:
3680    case SpvOpFSub:
3681    case SpvOpIMul:
3682    case SpvOpFMul:
3683    case SpvOpUDiv:
3684    case SpvOpSDiv:
3685    case SpvOpFDiv:
3686    case SpvOpUMod:
3687    case SpvOpSRem:
3688    case SpvOpSMod:
3689    case SpvOpFRem:
3690    case SpvOpFMod:
3691    case SpvOpVectorTimesScalar:
3692    case SpvOpDot:
3693    case SpvOpIAddCarry:
3694    case SpvOpISubBorrow:
3695    case SpvOpUMulExtended:
3696    case SpvOpSMulExtended:
3697    case SpvOpShiftRightLogical:
3698    case SpvOpShiftRightArithmetic:
3699    case SpvOpShiftLeftLogical:
3700    case SpvOpLogicalEqual:
3701    case SpvOpLogicalNotEqual:
3702    case SpvOpLogicalOr:
3703    case SpvOpLogicalAnd:
3704    case SpvOpLogicalNot:
3705    case SpvOpBitwiseOr:
3706    case SpvOpBitwiseXor:
3707    case SpvOpBitwiseAnd:
3708    case SpvOpIEqual:
3709    case SpvOpFOrdEqual:
3710    case SpvOpFUnordEqual:
3711    case SpvOpINotEqual:
3712    case SpvOpFOrdNotEqual:
3713    case SpvOpFUnordNotEqual:
3714    case SpvOpULessThan:
3715    case SpvOpSLessThan:
3716    case SpvOpFOrdLessThan:
3717    case SpvOpFUnordLessThan:
3718    case SpvOpUGreaterThan:
3719    case SpvOpSGreaterThan:
3720    case SpvOpFOrdGreaterThan:
3721    case SpvOpFUnordGreaterThan:
3722    case SpvOpULessThanEqual:
3723    case SpvOpSLessThanEqual:
3724    case SpvOpFOrdLessThanEqual:
3725    case SpvOpFUnordLessThanEqual:
3726    case SpvOpUGreaterThanEqual:
3727    case SpvOpSGreaterThanEqual:
3728    case SpvOpFOrdGreaterThanEqual:
3729    case SpvOpFUnordGreaterThanEqual:
3730    case SpvOpDPdx:
3731    case SpvOpDPdy:
3732    case SpvOpFwidth:
3733    case SpvOpDPdxFine:
3734    case SpvOpDPdyFine:
3735    case SpvOpFwidthFine:
3736    case SpvOpDPdxCoarse:
3737    case SpvOpDPdyCoarse:
3738    case SpvOpFwidthCoarse:
3739    case SpvOpBitFieldInsert:
3740    case SpvOpBitFieldSExtract:
3741    case SpvOpBitFieldUExtract:
3742    case SpvOpBitReverse:
3743    case SpvOpBitCount:
3744    case SpvOpTranspose:
3745    case SpvOpOuterProduct:
3746    case SpvOpMatrixTimesScalar:
3747    case SpvOpVectorTimesMatrix:
3748    case SpvOpMatrixTimesVector:
3749    case SpvOpMatrixTimesMatrix:
3750       vtn_handle_alu(b, opcode, w, count);
3751       break;
3752 
3753    case SpvOpVectorExtractDynamic:
3754    case SpvOpVectorInsertDynamic:
3755    case SpvOpVectorShuffle:
3756    case SpvOpCompositeConstruct:
3757    case SpvOpCompositeExtract:
3758    case SpvOpCompositeInsert:
3759    case SpvOpCopyObject:
3760       vtn_handle_composite(b, opcode, w, count);
3761       break;
3762 
3763    case SpvOpEmitVertex:
3764    case SpvOpEndPrimitive:
3765    case SpvOpEmitStreamVertex:
3766    case SpvOpEndStreamPrimitive:
3767    case SpvOpControlBarrier:
3768    case SpvOpMemoryBarrier:
3769       vtn_handle_barrier(b, opcode, w, count);
3770       break;
3771 
3772    default:
3773       vtn_fail("Unhandled opcode");
3774    }
3775 
3776    return true;
3777 }
3778 
3779 nir_function *
spirv_to_nir(const uint32_t * words,size_t word_count,struct nir_spirv_specialization * spec,unsigned num_spec,gl_shader_stage stage,const char * entry_point_name,const struct spirv_to_nir_options * options,const nir_shader_compiler_options * nir_options)3780 spirv_to_nir(const uint32_t *words, size_t word_count,
3781              struct nir_spirv_specialization *spec, unsigned num_spec,
3782              gl_shader_stage stage, const char *entry_point_name,
3783              const struct spirv_to_nir_options *options,
3784              const nir_shader_compiler_options *nir_options)
3785 {
3786    /* Initialize the stn_builder object */
3787    struct vtn_builder *b = rzalloc(NULL, struct vtn_builder);
3788    b->spirv = words;
3789    b->spirv_word_count = word_count;
3790    b->file = NULL;
3791    b->line = -1;
3792    b->col = -1;
3793    exec_list_make_empty(&b->functions);
3794    b->entry_point_stage = stage;
3795    b->entry_point_name = entry_point_name;
3796    b->options = options;
3797 
3798    /* See also _vtn_fail() */
3799    if (setjmp(b->fail_jump)) {
3800       ralloc_free(b);
3801       return NULL;
3802    }
3803 
3804    const uint32_t *word_end = words + word_count;
3805 
3806    /* Handle the SPIR-V header (first 4 dwords)  */
3807    vtn_assert(word_count > 5);
3808 
3809    vtn_assert(words[0] == SpvMagicNumber);
3810    vtn_assert(words[1] >= 0x10000);
3811    /* words[2] == generator magic */
3812    unsigned value_id_bound = words[3];
3813    vtn_assert(words[4] == 0);
3814 
3815    words+= 5;
3816 
3817    b->value_id_bound = value_id_bound;
3818    b->values = rzalloc_array(b, struct vtn_value, value_id_bound);
3819 
3820    /* Handle all the preamble instructions */
3821    words = vtn_foreach_instruction(b, words, word_end,
3822                                    vtn_handle_preamble_instruction);
3823 
3824    if (b->entry_point == NULL) {
3825       vtn_fail("Entry point not found");
3826       ralloc_free(b);
3827       return NULL;
3828    }
3829 
3830    b->shader = nir_shader_create(b, stage, nir_options, NULL);
3831 
3832    /* Set shader info defaults */
3833    b->shader->info.gs.invocations = 1;
3834 
3835    /* Parse execution modes */
3836    vtn_foreach_execution_mode(b, b->entry_point,
3837                               vtn_handle_execution_mode, NULL);
3838 
3839    b->specializations = spec;
3840    b->num_specializations = num_spec;
3841 
3842    /* Handle all variable, type, and constant instructions */
3843    words = vtn_foreach_instruction(b, words, word_end,
3844                                    vtn_handle_variable_or_type_instruction);
3845 
3846    /* Set types on all vtn_values */
3847    vtn_foreach_instruction(b, words, word_end, vtn_set_instruction_result_type);
3848 
3849    vtn_build_cfg(b, words, word_end);
3850 
3851    assert(b->entry_point->value_type == vtn_value_type_function);
3852    b->entry_point->func->referenced = true;
3853 
3854    bool progress;
3855    do {
3856       progress = false;
3857       foreach_list_typed(struct vtn_function, func, node, &b->functions) {
3858          if (func->referenced && !func->emitted) {
3859             b->const_table = _mesa_hash_table_create(b, _mesa_hash_pointer,
3860                                                      _mesa_key_pointer_equal);
3861 
3862             vtn_function_emit(b, func, vtn_handle_body_instruction);
3863             progress = true;
3864          }
3865       }
3866    } while (progress);
3867 
3868    vtn_assert(b->entry_point->value_type == vtn_value_type_function);
3869    nir_function *entry_point = b->entry_point->func->impl->function;
3870    vtn_assert(entry_point);
3871 
3872    /* Unparent the shader from the vtn_builder before we delete the builder */
3873    ralloc_steal(NULL, b->shader);
3874 
3875    ralloc_free(b);
3876 
3877    return entry_point;
3878 }
3879