1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This is the parent TargetLowering class for hardware code gen
12 /// targets.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #define AMDGPU_LOG2E_F     1.44269504088896340735992468100189214f
17 #define AMDGPU_LN2_F       0.693147180559945309417232121458176568f
18 #define AMDGPU_LN10_F      2.30258509299404568401799145468436421f
19 
20 #include "AMDGPUISelLowering.h"
21 #include "AMDGPU.h"
22 #include "AMDGPUCallLowering.h"
23 #include "AMDGPUFrameLowering.h"
24 #include "AMDGPUIntrinsicInfo.h"
25 #include "AMDGPURegisterInfo.h"
26 #include "AMDGPUSubtarget.h"
27 #include "AMDGPUTargetMachine.h"
28 #include "Utils/AMDGPUBaseInfo.h"
29 #include "R600MachineFunctionInfo.h"
30 #include "SIInstrInfo.h"
31 #include "SIMachineFunctionInfo.h"
32 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/CallingConvLower.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/SelectionDAG.h"
38 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DiagnosticInfo.h"
41 #include "llvm/Support/KnownBits.h"
42 using namespace llvm;
43 
allocateCCRegs(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State,const TargetRegisterClass * RC,unsigned NumRegs)44 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
45                            CCValAssign::LocInfo LocInfo,
46                            ISD::ArgFlagsTy ArgFlags, CCState &State,
47                            const TargetRegisterClass *RC,
48                            unsigned NumRegs) {
49   ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs);
50   unsigned RegResult = State.AllocateReg(RegList);
51   if (RegResult == AMDGPU::NoRegister)
52     return false;
53 
54   State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo));
55   return true;
56 }
57 
allocateSGPRTuple(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)58 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
59                               CCValAssign::LocInfo LocInfo,
60                               ISD::ArgFlagsTy ArgFlags, CCState &State) {
61   switch (LocVT.SimpleTy) {
62   case MVT::i64:
63   case MVT::f64:
64   case MVT::v2i32:
65   case MVT::v2f32:
66   case MVT::v4i16:
67   case MVT::v4f16: {
68     // Up to SGPR0-SGPR39
69     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
70                           &AMDGPU::SGPR_64RegClass, 20);
71   }
72   default:
73     return false;
74   }
75 }
76 
77 // Allocate up to VGPR31.
78 //
79 // TODO: Since there are no VGPR alignent requirements would it be better to
80 // split into individual scalar registers?
allocateVGPRTuple(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)81 static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
82                               CCValAssign::LocInfo LocInfo,
83                               ISD::ArgFlagsTy ArgFlags, CCState &State) {
84   switch (LocVT.SimpleTy) {
85   case MVT::i64:
86   case MVT::f64:
87   case MVT::v2i32:
88   case MVT::v2f32:
89   case MVT::v4i16:
90   case MVT::v4f16: {
91     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
92                           &AMDGPU::VReg_64RegClass, 31);
93   }
94   case MVT::v4i32:
95   case MVT::v4f32:
96   case MVT::v2i64:
97   case MVT::v2f64: {
98     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
99                           &AMDGPU::VReg_128RegClass, 29);
100   }
101   case MVT::v8i32:
102   case MVT::v8f32: {
103     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
104                           &AMDGPU::VReg_256RegClass, 25);
105 
106   }
107   case MVT::v16i32:
108   case MVT::v16f32: {
109     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
110                           &AMDGPU::VReg_512RegClass, 17);
111 
112   }
113   default:
114     return false;
115   }
116 }
117 
118 #include "AMDGPUGenCallingConv.inc"
119 
120 // Find a larger type to do a load / store of a vector with.
getEquivalentMemType(LLVMContext & Ctx,EVT VT)121 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
122   unsigned StoreSize = VT.getStoreSizeInBits();
123   if (StoreSize <= 32)
124     return EVT::getIntegerVT(Ctx, StoreSize);
125 
126   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
127   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
128 }
129 
numBitsUnsigned(SDValue Op,SelectionDAG & DAG)130 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
131   KnownBits Known;
132   EVT VT = Op.getValueType();
133   DAG.computeKnownBits(Op, Known);
134 
135   return VT.getSizeInBits() - Known.countMinLeadingZeros();
136 }
137 
numBitsSigned(SDValue Op,SelectionDAG & DAG)138 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
139   EVT VT = Op.getValueType();
140 
141   // In order for this to be a signed 24-bit value, bit 23, must
142   // be a sign bit.
143   return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
144 }
145 
AMDGPUTargetLowering(const TargetMachine & TM,const AMDGPUSubtarget & STI)146 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
147                                            const AMDGPUSubtarget &STI)
148     : TargetLowering(TM), Subtarget(&STI) {
149   AMDGPUASI = AMDGPU::getAMDGPUAS(TM);
150   // Lower floating point store/load to integer store/load to reduce the number
151   // of patterns in tablegen.
152   setOperationAction(ISD::LOAD, MVT::f32, Promote);
153   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
154 
155   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
156   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
157 
158   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
159   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
160 
161   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
162   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
163 
164   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
165   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
166 
167   setOperationAction(ISD::LOAD, MVT::i64, Promote);
168   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
169 
170   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
171   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
172 
173   setOperationAction(ISD::LOAD, MVT::f64, Promote);
174   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
175 
176   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
177   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
178 
179   // There are no 64-bit extloads. These should be done as a 32-bit extload and
180   // an extension to 64-bit.
181   for (MVT VT : MVT::integer_valuetypes()) {
182     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
183     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
184     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
185   }
186 
187   for (MVT VT : MVT::integer_valuetypes()) {
188     if (VT == MVT::i64)
189       continue;
190 
191     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
192     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
193     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
194     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
195 
196     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
197     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
198     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
199     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
200 
201     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
202     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
203     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
204     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
205   }
206 
207   for (MVT VT : MVT::integer_vector_valuetypes()) {
208     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
209     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
210     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
211     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
212     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
213     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
214     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
215     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
216     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
217     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
218     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
219     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
220   }
221 
222   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
223   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
224   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
225   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
226 
227   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
228   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
229   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
230   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
231 
232   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
233   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
234   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
235   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
236 
237   setOperationAction(ISD::STORE, MVT::f32, Promote);
238   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
239 
240   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
241   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
242 
243   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
244   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
245 
246   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
247   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
248 
249   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
250   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
251 
252   setOperationAction(ISD::STORE, MVT::i64, Promote);
253   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
254 
255   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
256   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
257 
258   setOperationAction(ISD::STORE, MVT::f64, Promote);
259   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
260 
261   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
262   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
263 
264   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
265   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
266   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
267   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
268 
269   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
270   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
271   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
272   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
273 
274   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
275   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
276   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
277   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
278 
279   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
280   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
281 
282   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
283   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
284 
285   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
286   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
287 
288   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
289   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
290 
291 
292   setOperationAction(ISD::Constant, MVT::i32, Legal);
293   setOperationAction(ISD::Constant, MVT::i64, Legal);
294   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
295   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
296 
297   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
298   setOperationAction(ISD::BRIND, MVT::Other, Expand);
299 
300   // This is totally unsupported, just custom lower to produce an error.
301   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
302 
303   // Library functions.  These default to Expand, but we have instructions
304   // for them.
305   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
306   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
307   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
308   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
309   setOperationAction(ISD::FABS,   MVT::f32, Legal);
310   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
311   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
312   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
313   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
314   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
315 
316   setOperationAction(ISD::FROUND, MVT::f32, Custom);
317   setOperationAction(ISD::FROUND, MVT::f64, Custom);
318 
319   setOperationAction(ISD::FLOG, MVT::f32, Custom);
320   setOperationAction(ISD::FLOG10, MVT::f32, Custom);
321 
322 
323   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
324   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
325 
326   setOperationAction(ISD::FREM, MVT::f32, Custom);
327   setOperationAction(ISD::FREM, MVT::f64, Custom);
328 
329   // Expand to fneg + fadd.
330   setOperationAction(ISD::FSUB, MVT::f64, Expand);
331 
332   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
333   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
334   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
335   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
336   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
337   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
338   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
339   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
340   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
341   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
342 
343   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
344   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
345   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
346 
347   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
348   for (MVT VT : ScalarIntVTs) {
349     // These should use [SU]DIVREM, so set them to expand
350     setOperationAction(ISD::SDIV, VT, Expand);
351     setOperationAction(ISD::UDIV, VT, Expand);
352     setOperationAction(ISD::SREM, VT, Expand);
353     setOperationAction(ISD::UREM, VT, Expand);
354 
355     // GPU does not have divrem function for signed or unsigned.
356     setOperationAction(ISD::SDIVREM, VT, Custom);
357     setOperationAction(ISD::UDIVREM, VT, Custom);
358 
359     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
360     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
361     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
362 
363     setOperationAction(ISD::BSWAP, VT, Expand);
364     setOperationAction(ISD::CTTZ, VT, Expand);
365     setOperationAction(ISD::CTLZ, VT, Expand);
366 
367     // AMDGPU uses ADDC/SUBC/ADDE/SUBE
368     setOperationAction(ISD::ADDC, VT, Legal);
369     setOperationAction(ISD::SUBC, VT, Legal);
370     setOperationAction(ISD::ADDE, VT, Legal);
371     setOperationAction(ISD::SUBE, VT, Legal);
372   }
373 
374   // The hardware supports 32-bit ROTR, but not ROTL.
375   setOperationAction(ISD::ROTL, MVT::i32, Expand);
376   setOperationAction(ISD::ROTL, MVT::i64, Expand);
377   setOperationAction(ISD::ROTR, MVT::i64, Expand);
378 
379   setOperationAction(ISD::MUL, MVT::i64, Expand);
380   setOperationAction(ISD::MULHU, MVT::i64, Expand);
381   setOperationAction(ISD::MULHS, MVT::i64, Expand);
382   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
383   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
384   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
385   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
386   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
387 
388   setOperationAction(ISD::SMIN, MVT::i32, Legal);
389   setOperationAction(ISD::UMIN, MVT::i32, Legal);
390   setOperationAction(ISD::SMAX, MVT::i32, Legal);
391   setOperationAction(ISD::UMAX, MVT::i32, Legal);
392 
393   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
394   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
395   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
396   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
397 
398   static const MVT::SimpleValueType VectorIntTypes[] = {
399     MVT::v2i32, MVT::v4i32
400   };
401 
402   for (MVT VT : VectorIntTypes) {
403     // Expand the following operations for the current type by default.
404     setOperationAction(ISD::ADD,  VT, Expand);
405     setOperationAction(ISD::AND,  VT, Expand);
406     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
407     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
408     setOperationAction(ISD::MUL,  VT, Expand);
409     setOperationAction(ISD::MULHU, VT, Expand);
410     setOperationAction(ISD::MULHS, VT, Expand);
411     setOperationAction(ISD::OR,   VT, Expand);
412     setOperationAction(ISD::SHL,  VT, Expand);
413     setOperationAction(ISD::SRA,  VT, Expand);
414     setOperationAction(ISD::SRL,  VT, Expand);
415     setOperationAction(ISD::ROTL, VT, Expand);
416     setOperationAction(ISD::ROTR, VT, Expand);
417     setOperationAction(ISD::SUB,  VT, Expand);
418     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
419     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
420     setOperationAction(ISD::SDIV, VT, Expand);
421     setOperationAction(ISD::UDIV, VT, Expand);
422     setOperationAction(ISD::SREM, VT, Expand);
423     setOperationAction(ISD::UREM, VT, Expand);
424     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
425     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
426     setOperationAction(ISD::SDIVREM, VT, Custom);
427     setOperationAction(ISD::UDIVREM, VT, Expand);
428     setOperationAction(ISD::SELECT, VT, Expand);
429     setOperationAction(ISD::VSELECT, VT, Expand);
430     setOperationAction(ISD::SELECT_CC, VT, Expand);
431     setOperationAction(ISD::XOR,  VT, Expand);
432     setOperationAction(ISD::BSWAP, VT, Expand);
433     setOperationAction(ISD::CTPOP, VT, Expand);
434     setOperationAction(ISD::CTTZ, VT, Expand);
435     setOperationAction(ISD::CTLZ, VT, Expand);
436     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
437     setOperationAction(ISD::SETCC, VT, Expand);
438   }
439 
440   static const MVT::SimpleValueType FloatVectorTypes[] = {
441     MVT::v2f32, MVT::v4f32
442   };
443 
444   for (MVT VT : FloatVectorTypes) {
445     setOperationAction(ISD::FABS, VT, Expand);
446     setOperationAction(ISD::FMINNUM, VT, Expand);
447     setOperationAction(ISD::FMAXNUM, VT, Expand);
448     setOperationAction(ISD::FADD, VT, Expand);
449     setOperationAction(ISD::FCEIL, VT, Expand);
450     setOperationAction(ISD::FCOS, VT, Expand);
451     setOperationAction(ISD::FDIV, VT, Expand);
452     setOperationAction(ISD::FEXP2, VT, Expand);
453     setOperationAction(ISD::FLOG2, VT, Expand);
454     setOperationAction(ISD::FREM, VT, Expand);
455     setOperationAction(ISD::FLOG, VT, Expand);
456     setOperationAction(ISD::FLOG10, VT, Expand);
457     setOperationAction(ISD::FPOW, VT, Expand);
458     setOperationAction(ISD::FFLOOR, VT, Expand);
459     setOperationAction(ISD::FTRUNC, VT, Expand);
460     setOperationAction(ISD::FMUL, VT, Expand);
461     setOperationAction(ISD::FMA, VT, Expand);
462     setOperationAction(ISD::FRINT, VT, Expand);
463     setOperationAction(ISD::FNEARBYINT, VT, Expand);
464     setOperationAction(ISD::FSQRT, VT, Expand);
465     setOperationAction(ISD::FSIN, VT, Expand);
466     setOperationAction(ISD::FSUB, VT, Expand);
467     setOperationAction(ISD::FNEG, VT, Expand);
468     setOperationAction(ISD::VSELECT, VT, Expand);
469     setOperationAction(ISD::SELECT_CC, VT, Expand);
470     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
471     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
472     setOperationAction(ISD::SETCC, VT, Expand);
473   }
474 
475   // This causes using an unrolled select operation rather than expansion with
476   // bit operations. This is in general better, but the alternative using BFI
477   // instructions may be better if the select sources are SGPRs.
478   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
479   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
480 
481   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
482   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
483 
484   // There are no libcalls of any kind.
485   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
486     setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
487 
488   setBooleanContents(ZeroOrNegativeOneBooleanContent);
489   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
490 
491   setSchedulingPreference(Sched::RegPressure);
492   setJumpIsExpensive(true);
493 
494   // FIXME: This is only partially true. If we have to do vector compares, any
495   // SGPR pair can be a condition register. If we have a uniform condition, we
496   // are better off doing SALU operations, where there is only one SCC. For now,
497   // we don't have a way of knowing during instruction selection if a condition
498   // will be uniform and we always use vector compares. Assume we are using
499   // vector compares until that is fixed.
500   setHasMultipleConditionRegisters(true);
501 
502   PredictableSelectIsExpensive = false;
503 
504   // We want to find all load dependencies for long chains of stores to enable
505   // merging into very wide vectors. The problem is with vectors with > 4
506   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
507   // vectors are a legal type, even though we have to split the loads
508   // usually. When we can more precisely specify load legality per address
509   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
510   // smarter so that they can figure out what to do in 2 iterations without all
511   // N > 4 stores on the same chain.
512   GatherAllAliasesMaxDepth = 16;
513 
514   // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
515   // about these during lowering.
516   MaxStoresPerMemcpy  = 0xffffffff;
517   MaxStoresPerMemmove = 0xffffffff;
518   MaxStoresPerMemset  = 0xffffffff;
519 
520   setTargetDAGCombine(ISD::BITCAST);
521   setTargetDAGCombine(ISD::SHL);
522   setTargetDAGCombine(ISD::SRA);
523   setTargetDAGCombine(ISD::SRL);
524   setTargetDAGCombine(ISD::TRUNCATE);
525   setTargetDAGCombine(ISD::MUL);
526   setTargetDAGCombine(ISD::MULHU);
527   setTargetDAGCombine(ISD::MULHS);
528   setTargetDAGCombine(ISD::SELECT);
529   setTargetDAGCombine(ISD::SELECT_CC);
530   setTargetDAGCombine(ISD::STORE);
531   setTargetDAGCombine(ISD::FADD);
532   setTargetDAGCombine(ISD::FSUB);
533   setTargetDAGCombine(ISD::FNEG);
534   setTargetDAGCombine(ISD::FABS);
535   setTargetDAGCombine(ISD::AssertZext);
536   setTargetDAGCombine(ISD::AssertSext);
537 }
538 
539 //===----------------------------------------------------------------------===//
540 // Target Information
541 //===----------------------------------------------------------------------===//
542 
543 LLVM_READNONE
fnegFoldsIntoOp(unsigned Opc)544 static bool fnegFoldsIntoOp(unsigned Opc) {
545   switch (Opc) {
546   case ISD::FADD:
547   case ISD::FSUB:
548   case ISD::FMUL:
549   case ISD::FMA:
550   case ISD::FMAD:
551   case ISD::FMINNUM:
552   case ISD::FMAXNUM:
553   case ISD::FSIN:
554   case ISD::FTRUNC:
555   case ISD::FRINT:
556   case ISD::FNEARBYINT:
557   case ISD::FCANONICALIZE:
558   case AMDGPUISD::RCP:
559   case AMDGPUISD::RCP_LEGACY:
560   case AMDGPUISD::RCP_IFLAG:
561   case AMDGPUISD::SIN_HW:
562   case AMDGPUISD::FMUL_LEGACY:
563   case AMDGPUISD::FMIN_LEGACY:
564   case AMDGPUISD::FMAX_LEGACY:
565     return true;
566   default:
567     return false;
568   }
569 }
570 
571 /// \p returns true if the operation will definitely need to use a 64-bit
572 /// encoding, and thus will use a VOP3 encoding regardless of the source
573 /// modifiers.
574 LLVM_READONLY
opMustUseVOP3Encoding(const SDNode * N,MVT VT)575 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
576   return N->getNumOperands() > 2 || VT == MVT::f64;
577 }
578 
579 // Most FP instructions support source modifiers, but this could be refined
580 // slightly.
581 LLVM_READONLY
hasSourceMods(const SDNode * N)582 static bool hasSourceMods(const SDNode *N) {
583   if (isa<MemSDNode>(N))
584     return false;
585 
586   switch (N->getOpcode()) {
587   case ISD::CopyToReg:
588   case ISD::SELECT:
589   case ISD::FDIV:
590   case ISD::FREM:
591   case ISD::INLINEASM:
592   case AMDGPUISD::INTERP_P1:
593   case AMDGPUISD::INTERP_P2:
594   case AMDGPUISD::DIV_SCALE:
595 
596   // TODO: Should really be looking at the users of the bitcast. These are
597   // problematic because bitcasts are used to legalize all stores to integer
598   // types.
599   case ISD::BITCAST:
600     return false;
601   default:
602     return true;
603   }
604 }
605 
allUsesHaveSourceMods(const SDNode * N,unsigned CostThreshold)606 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
607                                                  unsigned CostThreshold) {
608   // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
609   // it is truly free to use a source modifier in all cases. If there are
610   // multiple users but for each one will necessitate using VOP3, there will be
611   // a code size increase. Try to avoid increasing code size unless we know it
612   // will save on the instruction count.
613   unsigned NumMayIncreaseSize = 0;
614   MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
615 
616   // XXX - Should this limit number of uses to check?
617   for (const SDNode *U : N->uses()) {
618     if (!hasSourceMods(U))
619       return false;
620 
621     if (!opMustUseVOP3Encoding(U, VT)) {
622       if (++NumMayIncreaseSize > CostThreshold)
623         return false;
624     }
625   }
626 
627   return true;
628 }
629 
getVectorIdxTy(const DataLayout &) const630 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
631   return MVT::i32;
632 }
633 
isSelectSupported(SelectSupportKind SelType) const634 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
635   return true;
636 }
637 
638 // The backend supports 32 and 64 bit floating point immediates.
639 // FIXME: Why are we reporting vectors of FP immediates as legal?
isFPImmLegal(const APFloat & Imm,EVT VT) const640 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
641   EVT ScalarVT = VT.getScalarType();
642   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
643          (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
644 }
645 
646 // We don't want to shrink f64 / f32 constants.
ShouldShrinkFPConstant(EVT VT) const647 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
648   EVT ScalarVT = VT.getScalarType();
649   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
650 }
651 
shouldReduceLoadWidth(SDNode * N,ISD::LoadExtType,EVT NewVT) const652 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
653                                                  ISD::LoadExtType,
654                                                  EVT NewVT) const {
655 
656   unsigned NewSize = NewVT.getStoreSizeInBits();
657 
658   // If we are reducing to a 32-bit load, this is always better.
659   if (NewSize == 32)
660     return true;
661 
662   EVT OldVT = N->getValueType(0);
663   unsigned OldSize = OldVT.getStoreSizeInBits();
664 
665   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
666   // extloads, so doing one requires using a buffer_load. In cases where we
667   // still couldn't use a scalar load, using the wider load shouldn't really
668   // hurt anything.
669 
670   // If the old size already had to be an extload, there's no harm in continuing
671   // to reduce the width.
672   return (OldSize < 32);
673 }
674 
isLoadBitCastBeneficial(EVT LoadTy,EVT CastTy) const675 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
676                                                    EVT CastTy) const {
677 
678   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
679 
680   if (LoadTy.getScalarType() == MVT::i32)
681     return false;
682 
683   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
684   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
685 
686   return (LScalarSize < CastScalarSize) ||
687          (CastScalarSize >= 32);
688 }
689 
690 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
691 // profitable with the expansion for 64-bit since it's generally good to
692 // speculate things.
693 // FIXME: These should really have the size as a parameter.
isCheapToSpeculateCttz() const694 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
695   return true;
696 }
697 
isCheapToSpeculateCtlz() const698 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
699   return true;
700 }
701 
isSDNodeAlwaysUniform(const SDNode * N) const702 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const {
703   switch (N->getOpcode()) {
704     default:
705     return false;
706     case ISD::EntryToken:
707     case ISD::TokenFactor:
708       return true;
709     case ISD::INTRINSIC_WO_CHAIN:
710     {
711       unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
712       switch (IntrID) {
713         default:
714         return false;
715         case Intrinsic::amdgcn_readfirstlane:
716         case Intrinsic::amdgcn_readlane:
717           return true;
718       }
719     }
720     break;
721     case ISD::LOAD:
722     {
723       const LoadSDNode * L = dyn_cast<LoadSDNode>(N);
724       if (L->getMemOperand()->getAddrSpace()
725       == AMDGPUASI.CONSTANT_ADDRESS_32BIT)
726         return true;
727       return false;
728     }
729     break;
730   }
731 }
732 
733 //===---------------------------------------------------------------------===//
734 // Target Properties
735 //===---------------------------------------------------------------------===//
736 
isFAbsFree(EVT VT) const737 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
738   assert(VT.isFloatingPoint());
739 
740   // Packed operations do not have a fabs modifier.
741   return VT == MVT::f32 || VT == MVT::f64 ||
742          (Subtarget->has16BitInsts() && VT == MVT::f16);
743 }
744 
isFNegFree(EVT VT) const745 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
746   assert(VT.isFloatingPoint());
747   return VT == MVT::f32 || VT == MVT::f64 ||
748          (Subtarget->has16BitInsts() && VT == MVT::f16) ||
749          (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
750 }
751 
storeOfVectorConstantIsCheap(EVT MemVT,unsigned NumElem,unsigned AS) const752 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
753                                                          unsigned NumElem,
754                                                          unsigned AS) const {
755   return true;
756 }
757 
aggressivelyPreferBuildVectorSources(EVT VecVT) const758 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
759   // There are few operations which truly have vector input operands. Any vector
760   // operation is going to involve operations on each component, and a
761   // build_vector will be a copy per element, so it always makes sense to use a
762   // build_vector input in place of the extracted element to avoid a copy into a
763   // super register.
764   //
765   // We should probably only do this if all users are extracts only, but this
766   // should be the common case.
767   return true;
768 }
769 
isTruncateFree(EVT Source,EVT Dest) const770 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
771   // Truncate is just accessing a subregister.
772 
773   unsigned SrcSize = Source.getSizeInBits();
774   unsigned DestSize = Dest.getSizeInBits();
775 
776   return DestSize < SrcSize && DestSize % 32 == 0 ;
777 }
778 
isTruncateFree(Type * Source,Type * Dest) const779 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
780   // Truncate is just accessing a subregister.
781 
782   unsigned SrcSize = Source->getScalarSizeInBits();
783   unsigned DestSize = Dest->getScalarSizeInBits();
784 
785   if (DestSize== 16 && Subtarget->has16BitInsts())
786     return SrcSize >= 32;
787 
788   return DestSize < SrcSize && DestSize % 32 == 0;
789 }
790 
isZExtFree(Type * Src,Type * Dest) const791 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
792   unsigned SrcSize = Src->getScalarSizeInBits();
793   unsigned DestSize = Dest->getScalarSizeInBits();
794 
795   if (SrcSize == 16 && Subtarget->has16BitInsts())
796     return DestSize >= 32;
797 
798   return SrcSize == 32 && DestSize == 64;
799 }
800 
isZExtFree(EVT Src,EVT Dest) const801 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
802   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
803   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
804   // this will enable reducing 64-bit operations the 32-bit, which is always
805   // good.
806 
807   if (Src == MVT::i16)
808     return Dest == MVT::i32 ||Dest == MVT::i64 ;
809 
810   return Src == MVT::i32 && Dest == MVT::i64;
811 }
812 
isZExtFree(SDValue Val,EVT VT2) const813 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
814   return isZExtFree(Val.getValueType(), VT2);
815 }
816 
isNarrowingProfitable(EVT SrcVT,EVT DestVT) const817 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
818   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
819   // limited number of native 64-bit operations. Shrinking an operation to fit
820   // in a single 32-bit register should always be helpful. As currently used,
821   // this is much less general than the name suggests, and is only used in
822   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
823   // not profitable, and may actually be harmful.
824   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
825 }
826 
827 //===---------------------------------------------------------------------===//
828 // TargetLowering Callbacks
829 //===---------------------------------------------------------------------===//
830 
CCAssignFnForCall(CallingConv::ID CC,bool IsVarArg)831 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
832                                                   bool IsVarArg) {
833   switch (CC) {
834   case CallingConv::AMDGPU_KERNEL:
835   case CallingConv::SPIR_KERNEL:
836     llvm_unreachable("kernels should not be handled here");
837   case CallingConv::AMDGPU_VS:
838   case CallingConv::AMDGPU_GS:
839   case CallingConv::AMDGPU_PS:
840   case CallingConv::AMDGPU_CS:
841   case CallingConv::AMDGPU_HS:
842   case CallingConv::AMDGPU_ES:
843   case CallingConv::AMDGPU_LS:
844     return CC_AMDGPU;
845   case CallingConv::C:
846   case CallingConv::Fast:
847   case CallingConv::Cold:
848     return CC_AMDGPU_Func;
849   default:
850     report_fatal_error("Unsupported calling convention.");
851   }
852 }
853 
CCAssignFnForReturn(CallingConv::ID CC,bool IsVarArg)854 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
855                                                     bool IsVarArg) {
856   switch (CC) {
857   case CallingConv::AMDGPU_KERNEL:
858   case CallingConv::SPIR_KERNEL:
859     llvm_unreachable("kernels should not be handled here");
860   case CallingConv::AMDGPU_VS:
861   case CallingConv::AMDGPU_GS:
862   case CallingConv::AMDGPU_PS:
863   case CallingConv::AMDGPU_CS:
864   case CallingConv::AMDGPU_HS:
865   case CallingConv::AMDGPU_ES:
866   case CallingConv::AMDGPU_LS:
867     return RetCC_SI_Shader;
868   case CallingConv::C:
869   case CallingConv::Fast:
870   case CallingConv::Cold:
871     return RetCC_AMDGPU_Func;
872   default:
873     report_fatal_error("Unsupported calling convention.");
874   }
875 }
876 
877 /// The SelectionDAGBuilder will automatically promote function arguments
878 /// with illegal types.  However, this does not work for the AMDGPU targets
879 /// since the function arguments are stored in memory as these illegal types.
880 /// In order to handle this properly we need to get the original types sizes
881 /// from the LLVM IR Function and fixup the ISD:InputArg values before
882 /// passing them to AnalyzeFormalArguments()
883 
884 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
885 /// input values across multiple registers.  Each item in the Ins array
886 /// represents a single value that will be stored in registers.  Ins[x].VT is
887 /// the value type of the value that will be stored in the register, so
888 /// whatever SDNode we lower the argument to needs to be this type.
889 ///
890 /// In order to correctly lower the arguments we need to know the size of each
891 /// argument.  Since Ins[x].VT gives us the size of the register that will
892 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
893 /// for the orignal function argument so that we can deduce the correct memory
894 /// type to use for Ins[x].  In most cases the correct memory type will be
895 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
896 /// we have a kernel argument of type v8i8, this argument will be split into
897 /// 8 parts and each part will be represented by its own item in the Ins array.
898 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
899 /// the argument before it was split.  From this, we deduce that the memory type
900 /// for each individual part is i8.  We pass the memory type as LocVT to the
901 /// calling convention analysis function and the register type (Ins[x].VT) as
902 /// the ValVT.
analyzeFormalArgumentsCompute(CCState & State,const SmallVectorImpl<ISD::InputArg> & Ins) const903 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
904   CCState &State,
905   const SmallVectorImpl<ISD::InputArg> &Ins) const {
906   const MachineFunction &MF = State.getMachineFunction();
907   const Function &Fn = MF.getFunction();
908   LLVMContext &Ctx = Fn.getParent()->getContext();
909   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
910   const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
911   CallingConv::ID CC = Fn.getCallingConv();
912 
913   unsigned MaxAlign = 1;
914   uint64_t ExplicitArgOffset = 0;
915   const DataLayout &DL = Fn.getParent()->getDataLayout();
916 
917   unsigned InIndex = 0;
918 
919   for (const Argument &Arg : Fn.args()) {
920     Type *BaseArgTy = Arg.getType();
921     unsigned Align = DL.getABITypeAlignment(BaseArgTy);
922     MaxAlign = std::max(Align, MaxAlign);
923     unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy);
924 
925     uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset;
926     ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize;
927 
928     // We're basically throwing away everything passed into us and starting over
929     // to get accurate in-memory offsets. The "PartOffset" is completely useless
930     // to us as computed in Ins.
931     //
932     // We also need to figure out what type legalization is trying to do to get
933     // the correct memory offsets.
934 
935     SmallVector<EVT, 16> ValueVTs;
936     SmallVector<uint64_t, 16> Offsets;
937     ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
938 
939     for (unsigned Value = 0, NumValues = ValueVTs.size();
940          Value != NumValues; ++Value) {
941       uint64_t BasePartOffset = Offsets[Value];
942 
943       EVT ArgVT = ValueVTs[Value];
944       EVT MemVT = ArgVT;
945       MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
946       unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
947 
948       if (NumRegs == 1) {
949         // This argument is not split, so the IR type is the memory type.
950         if (ArgVT.isExtended()) {
951           // We have an extended type, like i24, so we should just use the
952           // register type.
953           MemVT = RegisterVT;
954         } else {
955           MemVT = ArgVT;
956         }
957       } else if (ArgVT.isVector() && RegisterVT.isVector() &&
958                  ArgVT.getScalarType() == RegisterVT.getScalarType()) {
959         assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
960         // We have a vector value which has been split into a vector with
961         // the same scalar type, but fewer elements.  This should handle
962         // all the floating-point vector types.
963         MemVT = RegisterVT;
964       } else if (ArgVT.isVector() &&
965                  ArgVT.getVectorNumElements() == NumRegs) {
966         // This arg has been split so that each element is stored in a separate
967         // register.
968         MemVT = ArgVT.getScalarType();
969       } else if (ArgVT.isExtended()) {
970         // We have an extended type, like i65.
971         MemVT = RegisterVT;
972       } else {
973         unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
974         assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
975         if (RegisterVT.isInteger()) {
976           MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
977         } else if (RegisterVT.isVector()) {
978           assert(!RegisterVT.getScalarType().isFloatingPoint());
979           unsigned NumElements = RegisterVT.getVectorNumElements();
980           assert(MemoryBits % NumElements == 0);
981           // This vector type has been split into another vector type with
982           // a different elements size.
983           EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
984                                            MemoryBits / NumElements);
985           MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
986         } else {
987           llvm_unreachable("cannot deduce memory type.");
988         }
989       }
990 
991       // Convert one element vectors to scalar.
992       if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
993         MemVT = MemVT.getScalarType();
994 
995       if (MemVT.isExtended()) {
996         // This should really only happen if we have vec3 arguments
997         assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3);
998         MemVT = MemVT.getPow2VectorType(State.getContext());
999       }
1000 
1001       unsigned PartOffset = 0;
1002       for (unsigned i = 0; i != NumRegs; ++i) {
1003         State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
1004                                                BasePartOffset + PartOffset,
1005                                                MemVT.getSimpleVT(),
1006                                                CCValAssign::Full));
1007         PartOffset += MemVT.getStoreSize();
1008       }
1009     }
1010   }
1011 }
1012 
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const1013 SDValue AMDGPUTargetLowering::LowerReturn(
1014   SDValue Chain, CallingConv::ID CallConv,
1015   bool isVarArg,
1016   const SmallVectorImpl<ISD::OutputArg> &Outs,
1017   const SmallVectorImpl<SDValue> &OutVals,
1018   const SDLoc &DL, SelectionDAG &DAG) const {
1019   // FIXME: Fails for r600 tests
1020   //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1021   // "wave terminate should not have return values");
1022   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1023 }
1024 
1025 //===---------------------------------------------------------------------===//
1026 // Target specific lowering
1027 //===---------------------------------------------------------------------===//
1028 
1029 /// Selects the correct CCAssignFn for a given CallingConvention value.
CCAssignFnForCall(CallingConv::ID CC,bool IsVarArg)1030 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1031                                                     bool IsVarArg) {
1032   return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1033 }
1034 
CCAssignFnForReturn(CallingConv::ID CC,bool IsVarArg)1035 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1036                                                       bool IsVarArg) {
1037   return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1038 }
1039 
addTokenForArgument(SDValue Chain,SelectionDAG & DAG,MachineFrameInfo & MFI,int ClobberedFI) const1040 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1041                                                   SelectionDAG &DAG,
1042                                                   MachineFrameInfo &MFI,
1043                                                   int ClobberedFI) const {
1044   SmallVector<SDValue, 8> ArgChains;
1045   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1046   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1047 
1048   // Include the original chain at the beginning of the list. When this is
1049   // used by target LowerCall hooks, this helps legalize find the
1050   // CALLSEQ_BEGIN node.
1051   ArgChains.push_back(Chain);
1052 
1053   // Add a chain value for each stack argument corresponding
1054   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1055                             UE = DAG.getEntryNode().getNode()->use_end();
1056        U != UE; ++U) {
1057     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1058       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1059         if (FI->getIndex() < 0) {
1060           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1061           int64_t InLastByte = InFirstByte;
1062           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1063 
1064           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1065               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1066             ArgChains.push_back(SDValue(L, 1));
1067         }
1068       }
1069     }
1070   }
1071 
1072   // Build a tokenfactor for all the chains.
1073   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1074 }
1075 
lowerUnhandledCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals,StringRef Reason) const1076 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1077                                                  SmallVectorImpl<SDValue> &InVals,
1078                                                  StringRef Reason) const {
1079   SDValue Callee = CLI.Callee;
1080   SelectionDAG &DAG = CLI.DAG;
1081 
1082   const Function &Fn = DAG.getMachineFunction().getFunction();
1083 
1084   StringRef FuncName("<unknown>");
1085 
1086   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1087     FuncName = G->getSymbol();
1088   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1089     FuncName = G->getGlobal()->getName();
1090 
1091   DiagnosticInfoUnsupported NoCalls(
1092     Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1093   DAG.getContext()->diagnose(NoCalls);
1094 
1095   if (!CLI.IsTailCall) {
1096     for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1097       InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1098   }
1099 
1100   return DAG.getEntryNode();
1101 }
1102 
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1103 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1104                                         SmallVectorImpl<SDValue> &InVals) const {
1105   return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1106 }
1107 
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const1108 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1109                                                       SelectionDAG &DAG) const {
1110   const Function &Fn = DAG.getMachineFunction().getFunction();
1111 
1112   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1113                                             SDLoc(Op).getDebugLoc());
1114   DAG.getContext()->diagnose(NoDynamicAlloca);
1115   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1116   return DAG.getMergeValues(Ops, SDLoc());
1117 }
1118 
LowerOperation(SDValue Op,SelectionDAG & DAG) const1119 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1120                                              SelectionDAG &DAG) const {
1121   switch (Op.getOpcode()) {
1122   default:
1123     Op->print(errs(), &DAG);
1124     llvm_unreachable("Custom lowering code for this"
1125                      "instruction is not implemented yet!");
1126     break;
1127   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1128   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1129   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1130   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1131   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1132   case ISD::FREM: return LowerFREM(Op, DAG);
1133   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1134   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1135   case ISD::FRINT: return LowerFRINT(Op, DAG);
1136   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1137   case ISD::FROUND: return LowerFROUND(Op, DAG);
1138   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1139   case ISD::FLOG:
1140     return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F);
1141   case ISD::FLOG10:
1142     return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F);
1143   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1144   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1145   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1146   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1147   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
1148   case ISD::CTTZ:
1149   case ISD::CTTZ_ZERO_UNDEF:
1150   case ISD::CTLZ:
1151   case ISD::CTLZ_ZERO_UNDEF:
1152     return LowerCTLZ_CTTZ(Op, DAG);
1153   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1154   }
1155   return Op;
1156 }
1157 
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const1158 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1159                                               SmallVectorImpl<SDValue> &Results,
1160                                               SelectionDAG &DAG) const {
1161   switch (N->getOpcode()) {
1162   case ISD::SIGN_EXTEND_INREG:
1163     // Different parts of legalization seem to interpret which type of
1164     // sign_extend_inreg is the one to check for custom lowering. The extended
1165     // from type is what really matters, but some places check for custom
1166     // lowering of the result type. This results in trying to use
1167     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1168     // nothing here and let the illegal result integer be handled normally.
1169     return;
1170   default:
1171     return;
1172   }
1173 }
1174 
hasDefinedInitializer(const GlobalValue * GV)1175 static bool hasDefinedInitializer(const GlobalValue *GV) {
1176   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1177   if (!GVar || !GVar->hasInitializer())
1178     return false;
1179 
1180   return !isa<UndefValue>(GVar->getInitializer());
1181 }
1182 
LowerGlobalAddress(AMDGPUMachineFunction * MFI,SDValue Op,SelectionDAG & DAG) const1183 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1184                                                  SDValue Op,
1185                                                  SelectionDAG &DAG) const {
1186 
1187   const DataLayout &DL = DAG.getDataLayout();
1188   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1189   const GlobalValue *GV = G->getGlobal();
1190 
1191   if (G->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS ||
1192       G->getAddressSpace() == AMDGPUASI.REGION_ADDRESS) {
1193     if (!MFI->isEntryFunction()) {
1194       const Function &Fn = DAG.getMachineFunction().getFunction();
1195       DiagnosticInfoUnsupported BadLDSDecl(
1196         Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc());
1197       DAG.getContext()->diagnose(BadLDSDecl);
1198     }
1199 
1200     // XXX: What does the value of G->getOffset() mean?
1201     assert(G->getOffset() == 0 &&
1202          "Do not know what to do with an non-zero offset");
1203 
1204     // TODO: We could emit code to handle the initialization somewhere.
1205     if (!hasDefinedInitializer(GV)) {
1206       unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
1207       return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1208     }
1209   }
1210 
1211   const Function &Fn = DAG.getMachineFunction().getFunction();
1212   DiagnosticInfoUnsupported BadInit(
1213       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
1214   DAG.getContext()->diagnose(BadInit);
1215   return SDValue();
1216 }
1217 
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG) const1218 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1219                                                   SelectionDAG &DAG) const {
1220   SmallVector<SDValue, 8> Args;
1221 
1222   EVT VT = Op.getValueType();
1223   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
1224     SDLoc SL(Op);
1225     SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
1226     SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
1227 
1228     SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
1229     return DAG.getNode(ISD::BITCAST, SL, VT, BV);
1230   }
1231 
1232   for (const SDUse &U : Op->ops())
1233     DAG.ExtractVectorElements(U.get(), Args);
1234 
1235   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1236 }
1237 
LowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const1238 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1239                                                      SelectionDAG &DAG) const {
1240 
1241   SmallVector<SDValue, 8> Args;
1242   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1243   EVT VT = Op.getValueType();
1244   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1245                             VT.getVectorNumElements());
1246 
1247   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1248 }
1249 
1250 /// Generate Min/Max node
combineFMinMaxLegacy(const SDLoc & DL,EVT VT,SDValue LHS,SDValue RHS,SDValue True,SDValue False,SDValue CC,DAGCombinerInfo & DCI) const1251 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1252                                                    SDValue LHS, SDValue RHS,
1253                                                    SDValue True, SDValue False,
1254                                                    SDValue CC,
1255                                                    DAGCombinerInfo &DCI) const {
1256   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1257     return SDValue();
1258 
1259   SelectionDAG &DAG = DCI.DAG;
1260   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1261   switch (CCOpcode) {
1262   case ISD::SETOEQ:
1263   case ISD::SETONE:
1264   case ISD::SETUNE:
1265   case ISD::SETNE:
1266   case ISD::SETUEQ:
1267   case ISD::SETEQ:
1268   case ISD::SETFALSE:
1269   case ISD::SETFALSE2:
1270   case ISD::SETTRUE:
1271   case ISD::SETTRUE2:
1272   case ISD::SETUO:
1273   case ISD::SETO:
1274     break;
1275   case ISD::SETULE:
1276   case ISD::SETULT: {
1277     if (LHS == True)
1278       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1279     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1280   }
1281   case ISD::SETOLE:
1282   case ISD::SETOLT:
1283   case ISD::SETLE:
1284   case ISD::SETLT: {
1285     // Ordered. Assume ordered for undefined.
1286 
1287     // Only do this after legalization to avoid interfering with other combines
1288     // which might occur.
1289     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1290         !DCI.isCalledByLegalizer())
1291       return SDValue();
1292 
1293     // We need to permute the operands to get the correct NaN behavior. The
1294     // selected operand is the second one based on the failing compare with NaN,
1295     // so permute it based on the compare type the hardware uses.
1296     if (LHS == True)
1297       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1298     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1299   }
1300   case ISD::SETUGE:
1301   case ISD::SETUGT: {
1302     if (LHS == True)
1303       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1304     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1305   }
1306   case ISD::SETGT:
1307   case ISD::SETGE:
1308   case ISD::SETOGE:
1309   case ISD::SETOGT: {
1310     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1311         !DCI.isCalledByLegalizer())
1312       return SDValue();
1313 
1314     if (LHS == True)
1315       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1316     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1317   }
1318   case ISD::SETCC_INVALID:
1319     llvm_unreachable("Invalid setcc condcode!");
1320   }
1321   return SDValue();
1322 }
1323 
1324 std::pair<SDValue, SDValue>
split64BitValue(SDValue Op,SelectionDAG & DAG) const1325 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1326   SDLoc SL(Op);
1327 
1328   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1329 
1330   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1331   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1332 
1333   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1334   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1335 
1336   return std::make_pair(Lo, Hi);
1337 }
1338 
getLoHalf64(SDValue Op,SelectionDAG & DAG) const1339 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1340   SDLoc SL(Op);
1341 
1342   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1343   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1344   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1345 }
1346 
getHiHalf64(SDValue Op,SelectionDAG & DAG) const1347 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1348   SDLoc SL(Op);
1349 
1350   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1351   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1352   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1353 }
1354 
SplitVectorLoad(const SDValue Op,SelectionDAG & DAG) const1355 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1356                                               SelectionDAG &DAG) const {
1357   LoadSDNode *Load = cast<LoadSDNode>(Op);
1358   EVT VT = Op.getValueType();
1359 
1360 
1361   // If this is a 2 element vector, we really want to scalarize and not create
1362   // weird 1 element vectors.
1363   if (VT.getVectorNumElements() == 2)
1364     return scalarizeVectorLoad(Load, DAG);
1365 
1366   SDValue BasePtr = Load->getBasePtr();
1367   EVT MemVT = Load->getMemoryVT();
1368   SDLoc SL(Op);
1369 
1370   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1371 
1372   EVT LoVT, HiVT;
1373   EVT LoMemVT, HiMemVT;
1374   SDValue Lo, Hi;
1375 
1376   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1377   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1378   std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
1379 
1380   unsigned Size = LoMemVT.getStoreSize();
1381   unsigned BaseAlign = Load->getAlignment();
1382   unsigned HiAlign = MinAlign(BaseAlign, Size);
1383 
1384   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1385                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1386                                   BaseAlign, Load->getMemOperand()->getFlags());
1387   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size);
1388   SDValue HiLoad =
1389       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1390                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1391                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1392 
1393   SDValue Ops[] = {
1394     DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
1395     DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1396                 LoLoad.getValue(1), HiLoad.getValue(1))
1397   };
1398 
1399   return DAG.getMergeValues(Ops, SL);
1400 }
1401 
SplitVectorStore(SDValue Op,SelectionDAG & DAG) const1402 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1403                                                SelectionDAG &DAG) const {
1404   StoreSDNode *Store = cast<StoreSDNode>(Op);
1405   SDValue Val = Store->getValue();
1406   EVT VT = Val.getValueType();
1407 
1408   // If this is a 2 element vector, we really want to scalarize and not create
1409   // weird 1 element vectors.
1410   if (VT.getVectorNumElements() == 2)
1411     return scalarizeVectorStore(Store, DAG);
1412 
1413   EVT MemVT = Store->getMemoryVT();
1414   SDValue Chain = Store->getChain();
1415   SDValue BasePtr = Store->getBasePtr();
1416   SDLoc SL(Op);
1417 
1418   EVT LoVT, HiVT;
1419   EVT LoMemVT, HiMemVT;
1420   SDValue Lo, Hi;
1421 
1422   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1423   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1424   std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
1425 
1426   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1427 
1428   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1429   unsigned BaseAlign = Store->getAlignment();
1430   unsigned Size = LoMemVT.getStoreSize();
1431   unsigned HiAlign = MinAlign(BaseAlign, Size);
1432 
1433   SDValue LoStore =
1434       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1435                         Store->getMemOperand()->getFlags());
1436   SDValue HiStore =
1437       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1438                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1439 
1440   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1441 }
1442 
1443 // This is a shortcut for integer division because we have fast i32<->f32
1444 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1445 // float is enough to accurately represent up to a 24-bit signed integer.
LowerDIVREM24(SDValue Op,SelectionDAG & DAG,bool Sign) const1446 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1447                                             bool Sign) const {
1448   SDLoc DL(Op);
1449   EVT VT = Op.getValueType();
1450   SDValue LHS = Op.getOperand(0);
1451   SDValue RHS = Op.getOperand(1);
1452   MVT IntVT = MVT::i32;
1453   MVT FltVT = MVT::f32;
1454 
1455   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1456   if (LHSSignBits < 9)
1457     return SDValue();
1458 
1459   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1460   if (RHSSignBits < 9)
1461     return SDValue();
1462 
1463   unsigned BitSize = VT.getSizeInBits();
1464   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1465   unsigned DivBits = BitSize - SignBits;
1466   if (Sign)
1467     ++DivBits;
1468 
1469   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1470   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1471 
1472   SDValue jq = DAG.getConstant(1, DL, IntVT);
1473 
1474   if (Sign) {
1475     // char|short jq = ia ^ ib;
1476     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1477 
1478     // jq = jq >> (bitsize - 2)
1479     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1480                      DAG.getConstant(BitSize - 2, DL, VT));
1481 
1482     // jq = jq | 0x1
1483     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1484   }
1485 
1486   // int ia = (int)LHS;
1487   SDValue ia = LHS;
1488 
1489   // int ib, (int)RHS;
1490   SDValue ib = RHS;
1491 
1492   // float fa = (float)ia;
1493   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1494 
1495   // float fb = (float)ib;
1496   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1497 
1498   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1499                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1500 
1501   // fq = trunc(fq);
1502   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1503 
1504   // float fqneg = -fq;
1505   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1506 
1507   // float fr = mad(fqneg, fb, fa);
1508   unsigned OpCode = Subtarget->hasFP32Denormals() ?
1509                     (unsigned)AMDGPUISD::FMAD_FTZ :
1510                     (unsigned)ISD::FMAD;
1511   SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1512 
1513   // int iq = (int)fq;
1514   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1515 
1516   // fr = fabs(fr);
1517   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1518 
1519   // fb = fabs(fb);
1520   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1521 
1522   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1523 
1524   // int cv = fr >= fb;
1525   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1526 
1527   // jq = (cv ? jq : 0);
1528   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1529 
1530   // dst = iq + jq;
1531   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1532 
1533   // Rem needs compensation, it's easier to recompute it
1534   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1535   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1536 
1537   // Truncate to number of bits this divide really is.
1538   if (Sign) {
1539     SDValue InRegSize
1540       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1541     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1542     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1543   } else {
1544     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1545     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1546     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1547   }
1548 
1549   return DAG.getMergeValues({ Div, Rem }, DL);
1550 }
1551 
LowerUDIVREM64(SDValue Op,SelectionDAG & DAG,SmallVectorImpl<SDValue> & Results) const1552 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1553                                       SelectionDAG &DAG,
1554                                       SmallVectorImpl<SDValue> &Results) const {
1555   SDLoc DL(Op);
1556   EVT VT = Op.getValueType();
1557 
1558   assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1559 
1560   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1561 
1562   SDValue One = DAG.getConstant(1, DL, HalfVT);
1563   SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1564 
1565   //HiLo split
1566   SDValue LHS = Op.getOperand(0);
1567   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1568   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1569 
1570   SDValue RHS = Op.getOperand(1);
1571   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1572   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1573 
1574   if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1575       DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1576 
1577     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1578                               LHS_Lo, RHS_Lo);
1579 
1580     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1581     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1582 
1583     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1584     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1585     return;
1586   }
1587 
1588   if (isTypeLegal(MVT::i64)) {
1589     // Compute denominator reciprocal.
1590     unsigned FMAD = Subtarget->hasFP32Denormals() ?
1591                     (unsigned)AMDGPUISD::FMAD_FTZ :
1592                     (unsigned)ISD::FMAD;
1593 
1594     SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1595     SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1596     SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1597       DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1598       Cvt_Lo);
1599     SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1600     SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1601       DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1602     SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1603       DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1604     SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1605     SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1606       DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1607       Mul1);
1608     SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1609     SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1610     SDValue Rcp64 = DAG.getBitcast(VT,
1611                         DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1612 
1613     SDValue Zero64 = DAG.getConstant(0, DL, VT);
1614     SDValue One64  = DAG.getConstant(1, DL, VT);
1615     SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1616     SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1617 
1618     SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1619     SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1620     SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1621     SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1622                                     Zero);
1623     SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1624                                     One);
1625 
1626     SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1627                                   Mulhi1_Lo, Zero1);
1628     SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1629                                   Mulhi1_Hi, Add1_Lo.getValue(1));
1630     SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
1631     SDValue Add1 = DAG.getBitcast(VT,
1632                         DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1633 
1634     SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1635     SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1636     SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1637                                     Zero);
1638     SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1639                                     One);
1640 
1641     SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1642                                   Mulhi2_Lo, Zero1);
1643     SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
1644                                    Mulhi2_Hi, Add1_Lo.getValue(1));
1645     SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
1646                                   Zero, Add2_Lo.getValue(1));
1647     SDValue Add2 = DAG.getBitcast(VT,
1648                         DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1649     SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1650 
1651     SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1652 
1653     SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1654     SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1655     SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1656                                   Mul3_Lo, Zero1);
1657     SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1658                                   Mul3_Hi, Sub1_Lo.getValue(1));
1659     SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1660     SDValue Sub1 = DAG.getBitcast(VT,
1661                         DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1662 
1663     SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1664     SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1665                                  ISD::SETUGE);
1666     SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1667                                  ISD::SETUGE);
1668     SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1669 
1670     // TODO: Here and below portions of the code can be enclosed into if/endif.
1671     // Currently control flow is unconditional and we have 4 selects after
1672     // potential endif to substitute PHIs.
1673 
1674     // if C3 != 0 ...
1675     SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1676                                   RHS_Lo, Zero1);
1677     SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1678                                   RHS_Hi, Sub1_Lo.getValue(1));
1679     SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1680                                   Zero, Sub2_Lo.getValue(1));
1681     SDValue Sub2 = DAG.getBitcast(VT,
1682                         DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1683 
1684     SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1685 
1686     SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1687                                  ISD::SETUGE);
1688     SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1689                                  ISD::SETUGE);
1690     SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1691 
1692     // if (C6 != 0)
1693     SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1694 
1695     SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1696                                   RHS_Lo, Zero1);
1697     SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1698                                   RHS_Hi, Sub2_Lo.getValue(1));
1699     SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1700                                   Zero, Sub3_Lo.getValue(1));
1701     SDValue Sub3 = DAG.getBitcast(VT,
1702                         DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1703 
1704     // endif C6
1705     // endif C3
1706 
1707     SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1708     SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1709 
1710     SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1711     SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1712 
1713     Results.push_back(Div);
1714     Results.push_back(Rem);
1715 
1716     return;
1717   }
1718 
1719   // r600 expandion.
1720   // Get Speculative values
1721   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1722   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1723 
1724   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
1725   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
1726   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1727 
1728   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
1729   SDValue DIV_Lo = Zero;
1730 
1731   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1732 
1733   for (unsigned i = 0; i < halfBitWidth; ++i) {
1734     const unsigned bitPos = halfBitWidth - i - 1;
1735     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1736     // Get value of high bit
1737     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1738     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
1739     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1740 
1741     // Shift
1742     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1743     // Add LHS high bit
1744     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1745 
1746     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1747     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
1748 
1749     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1750 
1751     // Update REM
1752     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1753     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1754   }
1755 
1756   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1757   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1758   Results.push_back(DIV);
1759   Results.push_back(REM);
1760 }
1761 
LowerUDIVREM(SDValue Op,SelectionDAG & DAG) const1762 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1763                                            SelectionDAG &DAG) const {
1764   SDLoc DL(Op);
1765   EVT VT = Op.getValueType();
1766 
1767   if (VT == MVT::i64) {
1768     SmallVector<SDValue, 2> Results;
1769     LowerUDIVREM64(Op, DAG, Results);
1770     return DAG.getMergeValues(Results, DL);
1771   }
1772 
1773   if (VT == MVT::i32) {
1774     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1775       return Res;
1776   }
1777 
1778   SDValue Num = Op.getOperand(0);
1779   SDValue Den = Op.getOperand(1);
1780 
1781   // RCP =  URECIP(Den) = 2^32 / Den + e
1782   // e is rounding error.
1783   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1784 
1785   // RCP_LO = mul(RCP, Den) */
1786   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1787 
1788   // RCP_HI = mulhu (RCP, Den) */
1789   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1790 
1791   // NEG_RCP_LO = -RCP_LO
1792   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1793                                                      RCP_LO);
1794 
1795   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1796   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1797                                            NEG_RCP_LO, RCP_LO,
1798                                            ISD::SETEQ);
1799   // Calculate the rounding error from the URECIP instruction
1800   // E = mulhu(ABS_RCP_LO, RCP)
1801   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1802 
1803   // RCP_A_E = RCP + E
1804   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1805 
1806   // RCP_S_E = RCP - E
1807   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1808 
1809   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1810   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1811                                      RCP_A_E, RCP_S_E,
1812                                      ISD::SETEQ);
1813   // Quotient = mulhu(Tmp0, Num)
1814   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1815 
1816   // Num_S_Remainder = Quotient * Den
1817   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1818 
1819   // Remainder = Num - Num_S_Remainder
1820   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1821 
1822   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1823   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1824                                                  DAG.getConstant(-1, DL, VT),
1825                                                  DAG.getConstant(0, DL, VT),
1826                                                  ISD::SETUGE);
1827   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1828   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1829                                                   Num_S_Remainder,
1830                                                   DAG.getConstant(-1, DL, VT),
1831                                                   DAG.getConstant(0, DL, VT),
1832                                                   ISD::SETUGE);
1833   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1834   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1835                                                Remainder_GE_Zero);
1836 
1837   // Calculate Division result:
1838 
1839   // Quotient_A_One = Quotient + 1
1840   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1841                                        DAG.getConstant(1, DL, VT));
1842 
1843   // Quotient_S_One = Quotient - 1
1844   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1845                                        DAG.getConstant(1, DL, VT));
1846 
1847   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1848   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1849                                      Quotient, Quotient_A_One, ISD::SETEQ);
1850 
1851   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1852   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1853                             Quotient_S_One, Div, ISD::SETEQ);
1854 
1855   // Calculate Rem result:
1856 
1857   // Remainder_S_Den = Remainder - Den
1858   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1859 
1860   // Remainder_A_Den = Remainder + Den
1861   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1862 
1863   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1864   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1865                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1866 
1867   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1868   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1869                             Remainder_A_Den, Rem, ISD::SETEQ);
1870   SDValue Ops[2] = {
1871     Div,
1872     Rem
1873   };
1874   return DAG.getMergeValues(Ops, DL);
1875 }
1876 
LowerSDIVREM(SDValue Op,SelectionDAG & DAG) const1877 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1878                                            SelectionDAG &DAG) const {
1879   SDLoc DL(Op);
1880   EVT VT = Op.getValueType();
1881 
1882   SDValue LHS = Op.getOperand(0);
1883   SDValue RHS = Op.getOperand(1);
1884 
1885   SDValue Zero = DAG.getConstant(0, DL, VT);
1886   SDValue NegOne = DAG.getConstant(-1, DL, VT);
1887 
1888   if (VT == MVT::i32) {
1889     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
1890       return Res;
1891   }
1892 
1893   if (VT == MVT::i64 &&
1894       DAG.ComputeNumSignBits(LHS) > 32 &&
1895       DAG.ComputeNumSignBits(RHS) > 32) {
1896     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1897 
1898     //HiLo split
1899     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1900     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1901     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1902                                  LHS_Lo, RHS_Lo);
1903     SDValue Res[2] = {
1904       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
1905       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
1906     };
1907     return DAG.getMergeValues(Res, DL);
1908   }
1909 
1910   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1911   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1912   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1913   SDValue RSign = LHSign; // Remainder sign is the same as LHS
1914 
1915   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1916   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1917 
1918   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1919   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1920 
1921   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1922   SDValue Rem = Div.getValue(1);
1923 
1924   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1925   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1926 
1927   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
1928   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
1929 
1930   SDValue Res[2] = {
1931     Div,
1932     Rem
1933   };
1934   return DAG.getMergeValues(Res, DL);
1935 }
1936 
1937 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
LowerFREM(SDValue Op,SelectionDAG & DAG) const1938 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
1939   SDLoc SL(Op);
1940   EVT VT = Op.getValueType();
1941   SDValue X = Op.getOperand(0);
1942   SDValue Y = Op.getOperand(1);
1943 
1944   // TODO: Should this propagate fast-math-flags?
1945 
1946   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
1947   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
1948   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
1949 
1950   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
1951 }
1952 
LowerFCEIL(SDValue Op,SelectionDAG & DAG) const1953 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
1954   SDLoc SL(Op);
1955   SDValue Src = Op.getOperand(0);
1956 
1957   // result = trunc(src)
1958   // if (src > 0.0 && src != result)
1959   //   result += 1.0
1960 
1961   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1962 
1963   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1964   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
1965 
1966   EVT SetCCVT =
1967       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1968 
1969   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
1970   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1971   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1972 
1973   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
1974   // TODO: Should this propagate fast-math-flags?
1975   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1976 }
1977 
extractF64Exponent(SDValue Hi,const SDLoc & SL,SelectionDAG & DAG)1978 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
1979                                   SelectionDAG &DAG) {
1980   const unsigned FractBits = 52;
1981   const unsigned ExpBits = 11;
1982 
1983   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
1984                                 Hi,
1985                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
1986                                 DAG.getConstant(ExpBits, SL, MVT::i32));
1987   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
1988                             DAG.getConstant(1023, SL, MVT::i32));
1989 
1990   return Exp;
1991 }
1992 
LowerFTRUNC(SDValue Op,SelectionDAG & DAG) const1993 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
1994   SDLoc SL(Op);
1995   SDValue Src = Op.getOperand(0);
1996 
1997   assert(Op.getValueType() == MVT::f64);
1998 
1999   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2000   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2001 
2002   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2003 
2004   // Extract the upper half, since this is where we will find the sign and
2005   // exponent.
2006   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
2007 
2008   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2009 
2010   const unsigned FractBits = 52;
2011 
2012   // Extract the sign bit.
2013   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2014   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2015 
2016   // Extend back to 64-bits.
2017   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2018   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2019 
2020   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2021   const SDValue FractMask
2022     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2023 
2024   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2025   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2026   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2027 
2028   EVT SetCCVT =
2029       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2030 
2031   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2032 
2033   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2034   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2035 
2036   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2037   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2038 
2039   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2040 }
2041 
LowerFRINT(SDValue Op,SelectionDAG & DAG) const2042 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2043   SDLoc SL(Op);
2044   SDValue Src = Op.getOperand(0);
2045 
2046   assert(Op.getValueType() == MVT::f64);
2047 
2048   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2049   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2050   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2051 
2052   // TODO: Should this propagate fast-math-flags?
2053 
2054   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2055   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2056 
2057   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2058 
2059   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2060   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2061 
2062   EVT SetCCVT =
2063       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2064   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2065 
2066   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2067 }
2068 
LowerFNEARBYINT(SDValue Op,SelectionDAG & DAG) const2069 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2070   // FNEARBYINT and FRINT are the same, except in their handling of FP
2071   // exceptions. Those aren't really meaningful for us, and OpenCL only has
2072   // rint, so just treat them as equivalent.
2073   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2074 }
2075 
2076 // XXX - May require not supporting f32 denormals?
2077 
2078 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2079 // compare and vselect end up producing worse code than scalarizing the whole
2080 // operation.
LowerFROUND32_16(SDValue Op,SelectionDAG & DAG) const2081 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const {
2082   SDLoc SL(Op);
2083   SDValue X = Op.getOperand(0);
2084   EVT VT = Op.getValueType();
2085 
2086   SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2087 
2088   // TODO: Should this propagate fast-math-flags?
2089 
2090   SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2091 
2092   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2093 
2094   const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2095   const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2096   const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2097 
2098   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2099 
2100   EVT SetCCVT =
2101       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2102 
2103   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2104 
2105   SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2106 
2107   return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2108 }
2109 
LowerFROUND64(SDValue Op,SelectionDAG & DAG) const2110 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
2111   SDLoc SL(Op);
2112   SDValue X = Op.getOperand(0);
2113 
2114   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
2115 
2116   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2117   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2118   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
2119   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
2120   EVT SetCCVT =
2121       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2122 
2123   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
2124 
2125   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
2126 
2127   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2128 
2129   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
2130                                        MVT::i64);
2131 
2132   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
2133   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
2134                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
2135                                           MVT::i64),
2136                           Exp);
2137 
2138   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
2139   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
2140                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
2141                               ISD::SETNE);
2142 
2143   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
2144                              D, DAG.getConstant(0, SL, MVT::i64));
2145   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
2146 
2147   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
2148   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
2149 
2150   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2151   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2152   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
2153 
2154   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
2155                             ExpEqNegOne,
2156                             DAG.getConstantFP(1.0, SL, MVT::f64),
2157                             DAG.getConstantFP(0.0, SL, MVT::f64));
2158 
2159   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
2160 
2161   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
2162   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
2163 
2164   return K;
2165 }
2166 
LowerFROUND(SDValue Op,SelectionDAG & DAG) const2167 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2168   EVT VT = Op.getValueType();
2169 
2170   if (VT == MVT::f32 || VT == MVT::f16)
2171     return LowerFROUND32_16(Op, DAG);
2172 
2173   if (VT == MVT::f64)
2174     return LowerFROUND64(Op, DAG);
2175 
2176   llvm_unreachable("unhandled type");
2177 }
2178 
LowerFFLOOR(SDValue Op,SelectionDAG & DAG) const2179 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2180   SDLoc SL(Op);
2181   SDValue Src = Op.getOperand(0);
2182 
2183   // result = trunc(src);
2184   // if (src < 0.0 && src != result)
2185   //   result += -1.0.
2186 
2187   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2188 
2189   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2190   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2191 
2192   EVT SetCCVT =
2193       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2194 
2195   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2196   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2197   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2198 
2199   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2200   // TODO: Should this propagate fast-math-flags?
2201   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2202 }
2203 
LowerFLOG(SDValue Op,SelectionDAG & DAG,double Log2BaseInverted) const2204 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2205                                         double Log2BaseInverted) const {
2206   EVT VT = Op.getValueType();
2207 
2208   SDLoc SL(Op);
2209   SDValue Operand = Op.getOperand(0);
2210   SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2211   SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2212 
2213   return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2214 }
2215 
isCtlzOpc(unsigned Opc)2216 static bool isCtlzOpc(unsigned Opc) {
2217   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2218 }
2219 
isCttzOpc(unsigned Opc)2220 static bool isCttzOpc(unsigned Opc) {
2221   return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2222 }
2223 
LowerCTLZ_CTTZ(SDValue Op,SelectionDAG & DAG) const2224 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2225   SDLoc SL(Op);
2226   SDValue Src = Op.getOperand(0);
2227   bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
2228                    Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
2229 
2230   unsigned ISDOpc, NewOpc;
2231   if (isCtlzOpc(Op.getOpcode())) {
2232     ISDOpc = ISD::CTLZ_ZERO_UNDEF;
2233     NewOpc = AMDGPUISD::FFBH_U32;
2234   } else if (isCttzOpc(Op.getOpcode())) {
2235     ISDOpc = ISD::CTTZ_ZERO_UNDEF;
2236     NewOpc = AMDGPUISD::FFBL_B32;
2237   } else
2238     llvm_unreachable("Unexpected OPCode!!!");
2239 
2240 
2241   if (ZeroUndef && Src.getValueType() == MVT::i32)
2242     return DAG.getNode(NewOpc, SL, MVT::i32, Src);
2243 
2244   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2245 
2246   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2247   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2248 
2249   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
2250   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
2251 
2252   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2253                                    *DAG.getContext(), MVT::i32);
2254 
2255   SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
2256   SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
2257 
2258   SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
2259   SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
2260 
2261   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
2262   SDValue Add, NewOpr;
2263   if (isCtlzOpc(Op.getOpcode())) {
2264     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
2265     // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2266     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
2267   } else {
2268     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
2269     // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2270     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
2271   }
2272 
2273   if (!ZeroUndef) {
2274     // Test if the full 64-bit input is zero.
2275 
2276     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2277     // which we probably don't want.
2278     SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
2279     SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
2280     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
2281 
2282     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2283     // with the same cycles, otherwise it is slower.
2284     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2285     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2286 
2287     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
2288 
2289     // The instruction returns -1 for 0 input, but the defined intrinsic
2290     // behavior is to return the number of bits.
2291     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
2292                          SrcIsZero, Bits32, NewOpr);
2293   }
2294 
2295   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2296 }
2297 
LowerINT_TO_FP32(SDValue Op,SelectionDAG & DAG,bool Signed) const2298 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2299                                                bool Signed) const {
2300   // Unsigned
2301   // cul2f(ulong u)
2302   //{
2303   //  uint lz = clz(u);
2304   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
2305   //  u = (u << lz) & 0x7fffffffffffffffUL;
2306   //  ulong t = u & 0xffffffffffUL;
2307   //  uint v = (e << 23) | (uint)(u >> 40);
2308   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2309   //  return as_float(v + r);
2310   //}
2311   // Signed
2312   // cl2f(long l)
2313   //{
2314   //  long s = l >> 63;
2315   //  float r = cul2f((l + s) ^ s);
2316   //  return s ? -r : r;
2317   //}
2318 
2319   SDLoc SL(Op);
2320   SDValue Src = Op.getOperand(0);
2321   SDValue L = Src;
2322 
2323   SDValue S;
2324   if (Signed) {
2325     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
2326     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
2327 
2328     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
2329     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
2330   }
2331 
2332   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2333                                    *DAG.getContext(), MVT::f32);
2334 
2335 
2336   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
2337   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
2338   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
2339   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
2340 
2341   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
2342   SDValue E = DAG.getSelect(SL, MVT::i32,
2343     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
2344     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
2345     ZeroI32);
2346 
2347   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
2348     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
2349     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
2350 
2351   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
2352                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
2353 
2354   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
2355                              U, DAG.getConstant(40, SL, MVT::i64));
2356 
2357   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
2358     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
2359     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
2360 
2361   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
2362   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
2363   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
2364 
2365   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2366 
2367   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
2368 
2369   SDValue R = DAG.getSelect(SL, MVT::i32,
2370     RCmp,
2371     One,
2372     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
2373   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
2374   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
2375 
2376   if (!Signed)
2377     return R;
2378 
2379   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
2380   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
2381 }
2382 
LowerINT_TO_FP64(SDValue Op,SelectionDAG & DAG,bool Signed) const2383 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2384                                                bool Signed) const {
2385   SDLoc SL(Op);
2386   SDValue Src = Op.getOperand(0);
2387 
2388   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2389 
2390   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2391                            DAG.getConstant(0, SL, MVT::i32));
2392   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2393                            DAG.getConstant(1, SL, MVT::i32));
2394 
2395   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2396                               SL, MVT::f64, Hi);
2397 
2398   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2399 
2400   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2401                               DAG.getConstant(32, SL, MVT::i32));
2402   // TODO: Should this propagate fast-math-flags?
2403   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2404 }
2405 
LowerUINT_TO_FP(SDValue Op,SelectionDAG & DAG) const2406 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2407                                                SelectionDAG &DAG) const {
2408   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2409          "operation should be legal");
2410 
2411   // TODO: Factor out code common with LowerSINT_TO_FP.
2412 
2413   EVT DestVT = Op.getValueType();
2414   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2415     SDLoc DL(Op);
2416     SDValue Src = Op.getOperand(0);
2417 
2418     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2419     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2420     SDValue FPRound =
2421         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2422 
2423     return FPRound;
2424   }
2425 
2426   if (DestVT == MVT::f32)
2427     return LowerINT_TO_FP32(Op, DAG, false);
2428 
2429   assert(DestVT == MVT::f64);
2430   return LowerINT_TO_FP64(Op, DAG, false);
2431 }
2432 
LowerSINT_TO_FP(SDValue Op,SelectionDAG & DAG) const2433 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2434                                               SelectionDAG &DAG) const {
2435   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2436          "operation should be legal");
2437 
2438   // TODO: Factor out code common with LowerUINT_TO_FP.
2439 
2440   EVT DestVT = Op.getValueType();
2441   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2442     SDLoc DL(Op);
2443     SDValue Src = Op.getOperand(0);
2444 
2445     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2446     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2447     SDValue FPRound =
2448         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2449 
2450     return FPRound;
2451   }
2452 
2453   if (DestVT == MVT::f32)
2454     return LowerINT_TO_FP32(Op, DAG, true);
2455 
2456   assert(DestVT == MVT::f64);
2457   return LowerINT_TO_FP64(Op, DAG, true);
2458 }
2459 
LowerFP64_TO_INT(SDValue Op,SelectionDAG & DAG,bool Signed) const2460 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2461                                                bool Signed) const {
2462   SDLoc SL(Op);
2463 
2464   SDValue Src = Op.getOperand(0);
2465 
2466   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2467 
2468   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2469                                  MVT::f64);
2470   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2471                                  MVT::f64);
2472   // TODO: Should this propagate fast-math-flags?
2473   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2474 
2475   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2476 
2477 
2478   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2479 
2480   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2481                            MVT::i32, FloorMul);
2482   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2483 
2484   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2485 
2486   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2487 }
2488 
LowerFP_TO_FP16(SDValue Op,SelectionDAG & DAG) const2489 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2490   SDLoc DL(Op);
2491   SDValue N0 = Op.getOperand(0);
2492 
2493   // Convert to target node to get known bits
2494   if (N0.getValueType() == MVT::f32)
2495     return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2496 
2497   if (getTargetMachine().Options.UnsafeFPMath) {
2498     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2499     return SDValue();
2500   }
2501 
2502   assert(N0.getSimpleValueType() == MVT::f64);
2503 
2504   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2505   const unsigned ExpMask = 0x7ff;
2506   const unsigned ExpBiasf64 = 1023;
2507   const unsigned ExpBiasf16 = 15;
2508   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2509   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2510   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2511   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2512                            DAG.getConstant(32, DL, MVT::i64));
2513   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2514   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2515   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2516                           DAG.getConstant(20, DL, MVT::i64));
2517   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2518                   DAG.getConstant(ExpMask, DL, MVT::i32));
2519   // Subtract the fp64 exponent bias (1023) to get the real exponent and
2520   // add the f16 bias (15) to get the biased exponent for the f16 format.
2521   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2522                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2523 
2524   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2525                           DAG.getConstant(8, DL, MVT::i32));
2526   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2527                   DAG.getConstant(0xffe, DL, MVT::i32));
2528 
2529   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2530                                   DAG.getConstant(0x1ff, DL, MVT::i32));
2531   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2532 
2533   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2534   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2535 
2536   // (M != 0 ? 0x0200 : 0) | 0x7c00;
2537   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2538       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2539                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2540 
2541   // N = M | (E << 12);
2542   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2543       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2544                   DAG.getConstant(12, DL, MVT::i32)));
2545 
2546   // B = clamp(1-E, 0, 13);
2547   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2548                                   One, E);
2549   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2550   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2551                   DAG.getConstant(13, DL, MVT::i32));
2552 
2553   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2554                                    DAG.getConstant(0x1000, DL, MVT::i32));
2555 
2556   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2557   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2558   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2559   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2560 
2561   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2562   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2563                               DAG.getConstant(0x7, DL, MVT::i32));
2564   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2565                   DAG.getConstant(2, DL, MVT::i32));
2566   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2567                                One, Zero, ISD::SETEQ);
2568   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2569                                One, Zero, ISD::SETGT);
2570   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2571   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2572 
2573   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2574                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2575   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2576                       I, V, ISD::SETEQ);
2577 
2578   // Extract the sign bit.
2579   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2580                             DAG.getConstant(16, DL, MVT::i32));
2581   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2582                      DAG.getConstant(0x8000, DL, MVT::i32));
2583 
2584   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2585   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2586 }
2587 
LowerFP_TO_SINT(SDValue Op,SelectionDAG & DAG) const2588 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2589                                               SelectionDAG &DAG) const {
2590   SDValue Src = Op.getOperand(0);
2591 
2592   // TODO: Factor out code common with LowerFP_TO_UINT.
2593 
2594   EVT SrcVT = Src.getValueType();
2595   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2596     SDLoc DL(Op);
2597 
2598     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2599     SDValue FpToInt32 =
2600         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2601 
2602     return FpToInt32;
2603   }
2604 
2605   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2606     return LowerFP64_TO_INT(Op, DAG, true);
2607 
2608   return SDValue();
2609 }
2610 
LowerFP_TO_UINT(SDValue Op,SelectionDAG & DAG) const2611 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2612                                               SelectionDAG &DAG) const {
2613   SDValue Src = Op.getOperand(0);
2614 
2615   // TODO: Factor out code common with LowerFP_TO_SINT.
2616 
2617   EVT SrcVT = Src.getValueType();
2618   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2619     SDLoc DL(Op);
2620 
2621     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2622     SDValue FpToInt32 =
2623         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2624 
2625     return FpToInt32;
2626   }
2627 
2628   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2629     return LowerFP64_TO_INT(Op, DAG, false);
2630 
2631   return SDValue();
2632 }
2633 
LowerSIGN_EXTEND_INREG(SDValue Op,SelectionDAG & DAG) const2634 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2635                                                      SelectionDAG &DAG) const {
2636   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2637   MVT VT = Op.getSimpleValueType();
2638   MVT ScalarVT = VT.getScalarType();
2639 
2640   assert(VT.isVector());
2641 
2642   SDValue Src = Op.getOperand(0);
2643   SDLoc DL(Op);
2644 
2645   // TODO: Don't scalarize on Evergreen?
2646   unsigned NElts = VT.getVectorNumElements();
2647   SmallVector<SDValue, 8> Args;
2648   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2649 
2650   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2651   for (unsigned I = 0; I < NElts; ++I)
2652     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2653 
2654   return DAG.getBuildVector(VT, DL, Args);
2655 }
2656 
2657 //===----------------------------------------------------------------------===//
2658 // Custom DAG optimizations
2659 //===----------------------------------------------------------------------===//
2660 
isU24(SDValue Op,SelectionDAG & DAG)2661 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2662   return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2663 }
2664 
isI24(SDValue Op,SelectionDAG & DAG)2665 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2666   EVT VT = Op.getValueType();
2667   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2668                                      // as unsigned 24-bit values.
2669     AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
2670 }
2671 
simplifyI24(SDNode * Node24,unsigned OpIdx,TargetLowering::DAGCombinerInfo & DCI)2672 static bool simplifyI24(SDNode *Node24, unsigned OpIdx,
2673                         TargetLowering::DAGCombinerInfo &DCI) {
2674 
2675   SelectionDAG &DAG = DCI.DAG;
2676   SDValue Op = Node24->getOperand(OpIdx);
2677   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2678   EVT VT = Op.getValueType();
2679 
2680   APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
2681   APInt KnownZero, KnownOne;
2682   TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
2683   if (TLI.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI, TLO))
2684     return true;
2685 
2686   return false;
2687 }
2688 
2689 template <typename IntTy>
constantFoldBFE(SelectionDAG & DAG,IntTy Src0,uint32_t Offset,uint32_t Width,const SDLoc & DL)2690 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2691                                uint32_t Width, const SDLoc &DL) {
2692   if (Width + Offset < 32) {
2693     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2694     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2695     return DAG.getConstant(Result, DL, MVT::i32);
2696   }
2697 
2698   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2699 }
2700 
hasVolatileUser(SDNode * Val)2701 static bool hasVolatileUser(SDNode *Val) {
2702   for (SDNode *U : Val->uses()) {
2703     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2704       if (M->isVolatile())
2705         return true;
2706     }
2707   }
2708 
2709   return false;
2710 }
2711 
shouldCombineMemoryType(EVT VT) const2712 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2713   // i32 vectors are the canonical memory type.
2714   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2715     return false;
2716 
2717   if (!VT.isByteSized())
2718     return false;
2719 
2720   unsigned Size = VT.getStoreSize();
2721 
2722   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2723     return false;
2724 
2725   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2726     return false;
2727 
2728   return true;
2729 }
2730 
2731 // Replace load of an illegal type with a store of a bitcast to a friendlier
2732 // type.
performLoadCombine(SDNode * N,DAGCombinerInfo & DCI) const2733 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2734                                                  DAGCombinerInfo &DCI) const {
2735   if (!DCI.isBeforeLegalize())
2736     return SDValue();
2737 
2738   LoadSDNode *LN = cast<LoadSDNode>(N);
2739   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2740     return SDValue();
2741 
2742   SDLoc SL(N);
2743   SelectionDAG &DAG = DCI.DAG;
2744   EVT VT = LN->getMemoryVT();
2745 
2746   unsigned Size = VT.getStoreSize();
2747   unsigned Align = LN->getAlignment();
2748   if (Align < Size && isTypeLegal(VT)) {
2749     bool IsFast;
2750     unsigned AS = LN->getAddressSpace();
2751 
2752     // Expand unaligned loads earlier than legalization. Due to visitation order
2753     // problems during legalization, the emitted instructions to pack and unpack
2754     // the bytes again are not eliminated in the case of an unaligned copy.
2755     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2756       if (VT.isVector())
2757         return scalarizeVectorLoad(LN, DAG);
2758 
2759       SDValue Ops[2];
2760       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2761       return DAG.getMergeValues(Ops, SDLoc(N));
2762     }
2763 
2764     if (!IsFast)
2765       return SDValue();
2766   }
2767 
2768   if (!shouldCombineMemoryType(VT))
2769     return SDValue();
2770 
2771   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2772 
2773   SDValue NewLoad
2774     = DAG.getLoad(NewVT, SL, LN->getChain(),
2775                   LN->getBasePtr(), LN->getMemOperand());
2776 
2777   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2778   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2779   return SDValue(N, 0);
2780 }
2781 
2782 // Replace store of an illegal type with a store of a bitcast to a friendlier
2783 // type.
performStoreCombine(SDNode * N,DAGCombinerInfo & DCI) const2784 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2785                                                   DAGCombinerInfo &DCI) const {
2786   if (!DCI.isBeforeLegalize())
2787     return SDValue();
2788 
2789   StoreSDNode *SN = cast<StoreSDNode>(N);
2790   if (SN->isVolatile() || !ISD::isNormalStore(SN))
2791     return SDValue();
2792 
2793   EVT VT = SN->getMemoryVT();
2794   unsigned Size = VT.getStoreSize();
2795 
2796   SDLoc SL(N);
2797   SelectionDAG &DAG = DCI.DAG;
2798   unsigned Align = SN->getAlignment();
2799   if (Align < Size && isTypeLegal(VT)) {
2800     bool IsFast;
2801     unsigned AS = SN->getAddressSpace();
2802 
2803     // Expand unaligned stores earlier than legalization. Due to visitation
2804     // order problems during legalization, the emitted instructions to pack and
2805     // unpack the bytes again are not eliminated in the case of an unaligned
2806     // copy.
2807     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2808       if (VT.isVector())
2809         return scalarizeVectorStore(SN, DAG);
2810 
2811       return expandUnalignedStore(SN, DAG);
2812     }
2813 
2814     if (!IsFast)
2815       return SDValue();
2816   }
2817 
2818   if (!shouldCombineMemoryType(VT))
2819     return SDValue();
2820 
2821   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2822   SDValue Val = SN->getValue();
2823 
2824   //DCI.AddToWorklist(Val.getNode());
2825 
2826   bool OtherUses = !Val.hasOneUse();
2827   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2828   if (OtherUses) {
2829     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2830     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2831   }
2832 
2833   return DAG.getStore(SN->getChain(), SL, CastVal,
2834                       SN->getBasePtr(), SN->getMemOperand());
2835 }
2836 
2837 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
2838 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
2839 // issues.
performAssertSZExtCombine(SDNode * N,DAGCombinerInfo & DCI) const2840 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
2841                                                         DAGCombinerInfo &DCI) const {
2842   SelectionDAG &DAG = DCI.DAG;
2843   SDValue N0 = N->getOperand(0);
2844 
2845   // (vt2 (assertzext (truncate vt0:x), vt1)) ->
2846   //     (vt2 (truncate (assertzext vt0:x, vt1)))
2847   if (N0.getOpcode() == ISD::TRUNCATE) {
2848     SDValue N1 = N->getOperand(1);
2849     EVT ExtVT = cast<VTSDNode>(N1)->getVT();
2850     SDLoc SL(N);
2851 
2852     SDValue Src = N0.getOperand(0);
2853     EVT SrcVT = Src.getValueType();
2854     if (SrcVT.bitsGE(ExtVT)) {
2855       SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
2856       return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
2857     }
2858   }
2859 
2860   return SDValue();
2861 }
2862 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
2863 /// binary operation \p Opc to it with the corresponding constant operands.
splitBinaryBitConstantOpImpl(DAGCombinerInfo & DCI,const SDLoc & SL,unsigned Opc,SDValue LHS,uint32_t ValLo,uint32_t ValHi) const2864 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
2865   DAGCombinerInfo &DCI, const SDLoc &SL,
2866   unsigned Opc, SDValue LHS,
2867   uint32_t ValLo, uint32_t ValHi) const {
2868   SelectionDAG &DAG = DCI.DAG;
2869   SDValue Lo, Hi;
2870   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
2871 
2872   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
2873   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
2874 
2875   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
2876   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
2877 
2878   // Re-visit the ands. It's possible we eliminated one of them and it could
2879   // simplify the vector.
2880   DCI.AddToWorklist(Lo.getNode());
2881   DCI.AddToWorklist(Hi.getNode());
2882 
2883   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
2884   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2885 }
2886 
performShlCombine(SDNode * N,DAGCombinerInfo & DCI) const2887 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
2888                                                 DAGCombinerInfo &DCI) const {
2889   EVT VT = N->getValueType(0);
2890 
2891   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2892   if (!RHS)
2893     return SDValue();
2894 
2895   SDValue LHS = N->getOperand(0);
2896   unsigned RHSVal = RHS->getZExtValue();
2897   if (!RHSVal)
2898     return LHS;
2899 
2900   SDLoc SL(N);
2901   SelectionDAG &DAG = DCI.DAG;
2902 
2903   switch (LHS->getOpcode()) {
2904   default:
2905     break;
2906   case ISD::ZERO_EXTEND:
2907   case ISD::SIGN_EXTEND:
2908   case ISD::ANY_EXTEND: {
2909     SDValue X = LHS->getOperand(0);
2910 
2911     if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
2912         isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
2913       // Prefer build_vector as the canonical form if packed types are legal.
2914       // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
2915       SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
2916        { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
2917       return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
2918     }
2919 
2920     // shl (ext x) => zext (shl x), if shift does not overflow int
2921     if (VT != MVT::i64)
2922       break;
2923     KnownBits Known;
2924     DAG.computeKnownBits(X, Known);
2925     unsigned LZ = Known.countMinLeadingZeros();
2926     if (LZ < RHSVal)
2927       break;
2928     EVT XVT = X.getValueType();
2929     SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
2930     return DAG.getZExtOrTrunc(Shl, SL, VT);
2931   }
2932   }
2933 
2934   if (VT != MVT::i64)
2935     return SDValue();
2936 
2937   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
2938 
2939   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
2940   // common case, splitting this into a move and a 32-bit shift is faster and
2941   // the same code size.
2942   if (RHSVal < 32)
2943     return SDValue();
2944 
2945   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
2946 
2947   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
2948   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
2949 
2950   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2951 
2952   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
2953   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2954 }
2955 
performSraCombine(SDNode * N,DAGCombinerInfo & DCI) const2956 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
2957                                                 DAGCombinerInfo &DCI) const {
2958   if (N->getValueType(0) != MVT::i64)
2959     return SDValue();
2960 
2961   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2962   if (!RHS)
2963     return SDValue();
2964 
2965   SelectionDAG &DAG = DCI.DAG;
2966   SDLoc SL(N);
2967   unsigned RHSVal = RHS->getZExtValue();
2968 
2969   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
2970   if (RHSVal == 32) {
2971     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2972     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2973                                    DAG.getConstant(31, SL, MVT::i32));
2974 
2975     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
2976     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2977   }
2978 
2979   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
2980   if (RHSVal == 63) {
2981     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2982     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2983                                    DAG.getConstant(31, SL, MVT::i32));
2984     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
2985     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2986   }
2987 
2988   return SDValue();
2989 }
2990 
performSrlCombine(SDNode * N,DAGCombinerInfo & DCI) const2991 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
2992                                                 DAGCombinerInfo &DCI) const {
2993   if (N->getValueType(0) != MVT::i64)
2994     return SDValue();
2995 
2996   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2997   if (!RHS)
2998     return SDValue();
2999 
3000   unsigned ShiftAmt = RHS->getZExtValue();
3001   if (ShiftAmt < 32)
3002     return SDValue();
3003 
3004   // srl i64:x, C for C >= 32
3005   // =>
3006   //   build_pair (srl hi_32(x), C - 32), 0
3007 
3008   SelectionDAG &DAG = DCI.DAG;
3009   SDLoc SL(N);
3010 
3011   SDValue One = DAG.getConstant(1, SL, MVT::i32);
3012   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3013 
3014   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0));
3015   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32,
3016                            VecOp, One);
3017 
3018   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3019   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3020 
3021   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3022 
3023   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3024 }
3025 
performTruncateCombine(SDNode * N,DAGCombinerInfo & DCI) const3026 SDValue AMDGPUTargetLowering::performTruncateCombine(
3027   SDNode *N, DAGCombinerInfo &DCI) const {
3028   SDLoc SL(N);
3029   SelectionDAG &DAG = DCI.DAG;
3030   EVT VT = N->getValueType(0);
3031   SDValue Src = N->getOperand(0);
3032 
3033   // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3034   if (Src.getOpcode() == ISD::BITCAST) {
3035     SDValue Vec = Src.getOperand(0);
3036     if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
3037       SDValue Elt0 = Vec.getOperand(0);
3038       EVT EltVT = Elt0.getValueType();
3039       if (VT.getSizeInBits() <= EltVT.getSizeInBits()) {
3040         if (EltVT.isFloatingPoint()) {
3041           Elt0 = DAG.getNode(ISD::BITCAST, SL,
3042                              EltVT.changeTypeToInteger(), Elt0);
3043         }
3044 
3045         return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
3046       }
3047     }
3048   }
3049 
3050   // Equivalent of above for accessing the high element of a vector as an
3051   // integer operation.
3052   // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3053   if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
3054     if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
3055       if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
3056         SDValue BV = stripBitcast(Src.getOperand(0));
3057         if (BV.getOpcode() == ISD::BUILD_VECTOR &&
3058             BV.getValueType().getVectorNumElements() == 2) {
3059           SDValue SrcElt = BV.getOperand(1);
3060           EVT SrcEltVT = SrcElt.getValueType();
3061           if (SrcEltVT.isFloatingPoint()) {
3062             SrcElt = DAG.getNode(ISD::BITCAST, SL,
3063                                  SrcEltVT.changeTypeToInteger(), SrcElt);
3064           }
3065 
3066           return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
3067         }
3068       }
3069     }
3070   }
3071 
3072   // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3073   //
3074   // i16 (trunc (srl i64:x, K)), K <= 16 ->
3075   //     i16 (trunc (srl (i32 (trunc x), K)))
3076   if (VT.getScalarSizeInBits() < 32) {
3077     EVT SrcVT = Src.getValueType();
3078     if (SrcVT.getScalarSizeInBits() > 32 &&
3079         (Src.getOpcode() == ISD::SRL ||
3080          Src.getOpcode() == ISD::SRA ||
3081          Src.getOpcode() == ISD::SHL)) {
3082       SDValue Amt = Src.getOperand(1);
3083       KnownBits Known;
3084       DAG.computeKnownBits(Amt, Known);
3085       unsigned Size = VT.getScalarSizeInBits();
3086       if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
3087           (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) {
3088         EVT MidVT = VT.isVector() ?
3089           EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3090                            VT.getVectorNumElements()) : MVT::i32;
3091 
3092         EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
3093         SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
3094                                     Src.getOperand(0));
3095         DCI.AddToWorklist(Trunc.getNode());
3096 
3097         if (Amt.getValueType() != NewShiftVT) {
3098           Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
3099           DCI.AddToWorklist(Amt.getNode());
3100         }
3101 
3102         SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
3103                                           Trunc, Amt);
3104         return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
3105       }
3106     }
3107   }
3108 
3109   return SDValue();
3110 }
3111 
3112 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3113 // instructions. If we only match on the legalized i64 mul expansion,
3114 // SimplifyDemandedBits will be unable to remove them because there will be
3115 // multiple uses due to the separate mul + mulh[su].
getMul24(SelectionDAG & DAG,const SDLoc & SL,SDValue N0,SDValue N1,unsigned Size,bool Signed)3116 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3117                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3118   if (Size <= 32) {
3119     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3120     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3121   }
3122 
3123   // Because we want to eliminate extension instructions before the
3124   // operation, we need to create a single user here (i.e. not the separate
3125   // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3126 
3127   unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
3128 
3129   SDValue Mul = DAG.getNode(MulOpc, SL,
3130                             DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
3131 
3132   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
3133                      Mul.getValue(0), Mul.getValue(1));
3134 }
3135 
performMulCombine(SDNode * N,DAGCombinerInfo & DCI) const3136 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3137                                                 DAGCombinerInfo &DCI) const {
3138   EVT VT = N->getValueType(0);
3139 
3140   unsigned Size = VT.getSizeInBits();
3141   if (VT.isVector() || Size > 64)
3142     return SDValue();
3143 
3144   // There are i16 integer mul/mad.
3145   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3146     return SDValue();
3147 
3148   SelectionDAG &DAG = DCI.DAG;
3149   SDLoc DL(N);
3150 
3151   SDValue N0 = N->getOperand(0);
3152   SDValue N1 = N->getOperand(1);
3153 
3154   // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3155   // in the source into any_extends if the result of the mul is truncated. Since
3156   // we can assume the high bits are whatever we want, use the underlying value
3157   // to avoid the unknown high bits from interfering.
3158   if (N0.getOpcode() == ISD::ANY_EXTEND)
3159     N0 = N0.getOperand(0);
3160 
3161   if (N1.getOpcode() == ISD::ANY_EXTEND)
3162     N1 = N1.getOperand(0);
3163 
3164   SDValue Mul;
3165 
3166   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3167     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3168     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3169     Mul = getMul24(DAG, DL, N0, N1, Size, false);
3170   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3171     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3172     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3173     Mul = getMul24(DAG, DL, N0, N1, Size, true);
3174   } else {
3175     return SDValue();
3176   }
3177 
3178   // We need to use sext even for MUL_U24, because MUL_U24 is used
3179   // for signed multiply of 8 and 16-bit types.
3180   return DAG.getSExtOrTrunc(Mul, DL, VT);
3181 }
3182 
performMulhsCombine(SDNode * N,DAGCombinerInfo & DCI) const3183 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3184                                                   DAGCombinerInfo &DCI) const {
3185   EVT VT = N->getValueType(0);
3186 
3187   if (!Subtarget->hasMulI24() || VT.isVector())
3188     return SDValue();
3189 
3190   SelectionDAG &DAG = DCI.DAG;
3191   SDLoc DL(N);
3192 
3193   SDValue N0 = N->getOperand(0);
3194   SDValue N1 = N->getOperand(1);
3195 
3196   if (!isI24(N0, DAG) || !isI24(N1, DAG))
3197     return SDValue();
3198 
3199   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3200   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3201 
3202   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3203   DCI.AddToWorklist(Mulhi.getNode());
3204   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3205 }
3206 
performMulhuCombine(SDNode * N,DAGCombinerInfo & DCI) const3207 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3208                                                   DAGCombinerInfo &DCI) const {
3209   EVT VT = N->getValueType(0);
3210 
3211   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3212     return SDValue();
3213 
3214   SelectionDAG &DAG = DCI.DAG;
3215   SDLoc DL(N);
3216 
3217   SDValue N0 = N->getOperand(0);
3218   SDValue N1 = N->getOperand(1);
3219 
3220   if (!isU24(N0, DAG) || !isU24(N1, DAG))
3221     return SDValue();
3222 
3223   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3224   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3225 
3226   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3227   DCI.AddToWorklist(Mulhi.getNode());
3228   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3229 }
3230 
performMulLoHi24Combine(SDNode * N,DAGCombinerInfo & DCI) const3231 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
3232   SDNode *N, DAGCombinerInfo &DCI) const {
3233   SelectionDAG &DAG = DCI.DAG;
3234 
3235   // Simplify demanded bits before splitting into multiple users.
3236   if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI))
3237     return SDValue();
3238 
3239   SDValue N0 = N->getOperand(0);
3240   SDValue N1 = N->getOperand(1);
3241 
3242   bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
3243 
3244   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3245   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3246 
3247   SDLoc SL(N);
3248 
3249   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3250   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3251   return DAG.getMergeValues({ MulLo, MulHi }, SL);
3252 }
3253 
isNegativeOne(SDValue Val)3254 static bool isNegativeOne(SDValue Val) {
3255   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3256     return C->isAllOnesValue();
3257   return false;
3258 }
3259 
getFFBX_U32(SelectionDAG & DAG,SDValue Op,const SDLoc & DL,unsigned Opc) const3260 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3261                                           SDValue Op,
3262                                           const SDLoc &DL,
3263                                           unsigned Opc) const {
3264   EVT VT = Op.getValueType();
3265   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3266   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3267                               LegalVT != MVT::i16))
3268     return SDValue();
3269 
3270   if (VT != MVT::i32)
3271     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3272 
3273   SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3274   if (VT != MVT::i32)
3275     FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3276 
3277   return FFBX;
3278 }
3279 
3280 // The native instructions return -1 on 0 input. Optimize out a select that
3281 // produces -1 on 0.
3282 //
3283 // TODO: If zero is not undef, we could also do this if the output is compared
3284 // against the bitwidth.
3285 //
3286 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
performCtlz_CttzCombine(const SDLoc & SL,SDValue Cond,SDValue LHS,SDValue RHS,DAGCombinerInfo & DCI) const3287 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3288                                                  SDValue LHS, SDValue RHS,
3289                                                  DAGCombinerInfo &DCI) const {
3290   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3291   if (!CmpRhs || !CmpRhs->isNullValue())
3292     return SDValue();
3293 
3294   SelectionDAG &DAG = DCI.DAG;
3295   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3296   SDValue CmpLHS = Cond.getOperand(0);
3297 
3298   unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 :
3299                                            AMDGPUISD::FFBH_U32;
3300 
3301   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3302   // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3303   if (CCOpcode == ISD::SETEQ &&
3304       (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3305       RHS.getOperand(0) == CmpLHS &&
3306       isNegativeOne(LHS)) {
3307     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3308   }
3309 
3310   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3311   // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3312   if (CCOpcode == ISD::SETNE &&
3313       (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3314       LHS.getOperand(0) == CmpLHS &&
3315       isNegativeOne(RHS)) {
3316     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3317   }
3318 
3319   return SDValue();
3320 }
3321 
distributeOpThroughSelect(TargetLowering::DAGCombinerInfo & DCI,unsigned Op,const SDLoc & SL,SDValue Cond,SDValue N1,SDValue N2)3322 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3323                                          unsigned Op,
3324                                          const SDLoc &SL,
3325                                          SDValue Cond,
3326                                          SDValue N1,
3327                                          SDValue N2) {
3328   SelectionDAG &DAG = DCI.DAG;
3329   EVT VT = N1.getValueType();
3330 
3331   SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3332                                   N1.getOperand(0), N2.getOperand(0));
3333   DCI.AddToWorklist(NewSelect.getNode());
3334   return DAG.getNode(Op, SL, VT, NewSelect);
3335 }
3336 
3337 // Pull a free FP operation out of a select so it may fold into uses.
3338 //
3339 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3340 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3341 //
3342 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3343 // select c, (fabs x), +k -> fabs (select c, x, k)
foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo & DCI,SDValue N)3344 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3345                                     SDValue N) {
3346   SelectionDAG &DAG = DCI.DAG;
3347   SDValue Cond = N.getOperand(0);
3348   SDValue LHS = N.getOperand(1);
3349   SDValue RHS = N.getOperand(2);
3350 
3351   EVT VT = N.getValueType();
3352   if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3353       (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3354     return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3355                                      SDLoc(N), Cond, LHS, RHS);
3356   }
3357 
3358   bool Inv = false;
3359   if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3360     std::swap(LHS, RHS);
3361     Inv = true;
3362   }
3363 
3364   // TODO: Support vector constants.
3365   ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3366   if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3367     SDLoc SL(N);
3368     // If one side is an fneg/fabs and the other is a constant, we can push the
3369     // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3370     SDValue NewLHS = LHS.getOperand(0);
3371     SDValue NewRHS = RHS;
3372 
3373     // Careful: if the neg can be folded up, don't try to pull it back down.
3374     bool ShouldFoldNeg = true;
3375 
3376     if (NewLHS.hasOneUse()) {
3377       unsigned Opc = NewLHS.getOpcode();
3378       if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3379         ShouldFoldNeg = false;
3380       if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3381         ShouldFoldNeg = false;
3382     }
3383 
3384     if (ShouldFoldNeg) {
3385       if (LHS.getOpcode() == ISD::FNEG)
3386         NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3387       else if (CRHS->isNegative())
3388         return SDValue();
3389 
3390       if (Inv)
3391         std::swap(NewLHS, NewRHS);
3392 
3393       SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3394                                       Cond, NewLHS, NewRHS);
3395       DCI.AddToWorklist(NewSelect.getNode());
3396       return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3397     }
3398   }
3399 
3400   return SDValue();
3401 }
3402 
3403 
performSelectCombine(SDNode * N,DAGCombinerInfo & DCI) const3404 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3405                                                    DAGCombinerInfo &DCI) const {
3406   if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3407     return Folded;
3408 
3409   SDValue Cond = N->getOperand(0);
3410   if (Cond.getOpcode() != ISD::SETCC)
3411     return SDValue();
3412 
3413   EVT VT = N->getValueType(0);
3414   SDValue LHS = Cond.getOperand(0);
3415   SDValue RHS = Cond.getOperand(1);
3416   SDValue CC = Cond.getOperand(2);
3417 
3418   SDValue True = N->getOperand(1);
3419   SDValue False = N->getOperand(2);
3420 
3421   if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3422     SelectionDAG &DAG = DCI.DAG;
3423     if ((DAG.isConstantValueOfAnyType(True) ||
3424          DAG.isConstantValueOfAnyType(True)) &&
3425         (!DAG.isConstantValueOfAnyType(False) &&
3426          !DAG.isConstantValueOfAnyType(False))) {
3427       // Swap cmp + select pair to move constant to false input.
3428       // This will allow using VOPC cndmasks more often.
3429       // select (setcc x, y), k, x -> select (setcc y, x) x, x
3430 
3431       SDLoc SL(N);
3432       ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3433                                             LHS.getValueType().isInteger());
3434 
3435       SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3436       return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3437     }
3438 
3439     if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3440       SDValue MinMax
3441         = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3442       // Revisit this node so we can catch min3/max3/med3 patterns.
3443       //DCI.AddToWorklist(MinMax.getNode());
3444       return MinMax;
3445     }
3446   }
3447 
3448   // There's no reason to not do this if the condition has other uses.
3449   return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3450 }
3451 
isConstantFPZero(SDValue N)3452 static bool isConstantFPZero(SDValue N) {
3453   if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N))
3454     return C->isZero() && !C->isNegative();
3455   return false;
3456 }
3457 
inverseMinMax(unsigned Opc)3458 static unsigned inverseMinMax(unsigned Opc) {
3459   switch (Opc) {
3460   case ISD::FMAXNUM:
3461     return ISD::FMINNUM;
3462   case ISD::FMINNUM:
3463     return ISD::FMAXNUM;
3464   case AMDGPUISD::FMAX_LEGACY:
3465     return AMDGPUISD::FMIN_LEGACY;
3466   case AMDGPUISD::FMIN_LEGACY:
3467     return  AMDGPUISD::FMAX_LEGACY;
3468   default:
3469     llvm_unreachable("invalid min/max opcode");
3470   }
3471 }
3472 
performFNegCombine(SDNode * N,DAGCombinerInfo & DCI) const3473 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3474                                                  DAGCombinerInfo &DCI) const {
3475   SelectionDAG &DAG = DCI.DAG;
3476   SDValue N0 = N->getOperand(0);
3477   EVT VT = N->getValueType(0);
3478 
3479   unsigned Opc = N0.getOpcode();
3480 
3481   // If the input has multiple uses and we can either fold the negate down, or
3482   // the other uses cannot, give up. This both prevents unprofitable
3483   // transformations and infinite loops: we won't repeatedly try to fold around
3484   // a negate that has no 'good' form.
3485   if (N0.hasOneUse()) {
3486     // This may be able to fold into the source, but at a code size cost. Don't
3487     // fold if the fold into the user is free.
3488     if (allUsesHaveSourceMods(N, 0))
3489       return SDValue();
3490   } else {
3491     if (fnegFoldsIntoOp(Opc) &&
3492         (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3493       return SDValue();
3494   }
3495 
3496   SDLoc SL(N);
3497   switch (Opc) {
3498   case ISD::FADD: {
3499     if (!mayIgnoreSignedZero(N0))
3500       return SDValue();
3501 
3502     // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3503     SDValue LHS = N0.getOperand(0);
3504     SDValue RHS = N0.getOperand(1);
3505 
3506     if (LHS.getOpcode() != ISD::FNEG)
3507       LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3508     else
3509       LHS = LHS.getOperand(0);
3510 
3511     if (RHS.getOpcode() != ISD::FNEG)
3512       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3513     else
3514       RHS = RHS.getOperand(0);
3515 
3516     SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3517     if (!N0.hasOneUse())
3518       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3519     return Res;
3520   }
3521   case ISD::FMUL:
3522   case AMDGPUISD::FMUL_LEGACY: {
3523     // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3524     // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3525     SDValue LHS = N0.getOperand(0);
3526     SDValue RHS = N0.getOperand(1);
3527 
3528     if (LHS.getOpcode() == ISD::FNEG)
3529       LHS = LHS.getOperand(0);
3530     else if (RHS.getOpcode() == ISD::FNEG)
3531       RHS = RHS.getOperand(0);
3532     else
3533       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3534 
3535     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3536     if (!N0.hasOneUse())
3537       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3538     return Res;
3539   }
3540   case ISD::FMA:
3541   case ISD::FMAD: {
3542     if (!mayIgnoreSignedZero(N0))
3543       return SDValue();
3544 
3545     // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3546     SDValue LHS = N0.getOperand(0);
3547     SDValue MHS = N0.getOperand(1);
3548     SDValue RHS = N0.getOperand(2);
3549 
3550     if (LHS.getOpcode() == ISD::FNEG)
3551       LHS = LHS.getOperand(0);
3552     else if (MHS.getOpcode() == ISD::FNEG)
3553       MHS = MHS.getOperand(0);
3554     else
3555       MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3556 
3557     if (RHS.getOpcode() != ISD::FNEG)
3558       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3559     else
3560       RHS = RHS.getOperand(0);
3561 
3562     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3563     if (!N0.hasOneUse())
3564       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3565     return Res;
3566   }
3567   case ISD::FMAXNUM:
3568   case ISD::FMINNUM:
3569   case AMDGPUISD::FMAX_LEGACY:
3570   case AMDGPUISD::FMIN_LEGACY: {
3571     // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3572     // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3573     // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3574     // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3575 
3576     SDValue LHS = N0.getOperand(0);
3577     SDValue RHS = N0.getOperand(1);
3578 
3579     // 0 doesn't have a negated inline immediate.
3580     // TODO: Shouldn't fold 1/2pi either, and should be generalized to other
3581     // operations.
3582     if (isConstantFPZero(RHS))
3583       return SDValue();
3584 
3585     SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3586     SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3587     unsigned Opposite = inverseMinMax(Opc);
3588 
3589     SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3590     if (!N0.hasOneUse())
3591       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3592     return Res;
3593   }
3594   case ISD::FP_EXTEND:
3595   case ISD::FTRUNC:
3596   case ISD::FRINT:
3597   case ISD::FNEARBYINT: // XXX - Should fround be handled?
3598   case ISD::FSIN:
3599   case ISD::FCANONICALIZE:
3600   case AMDGPUISD::RCP:
3601   case AMDGPUISD::RCP_LEGACY:
3602   case AMDGPUISD::RCP_IFLAG:
3603   case AMDGPUISD::SIN_HW: {
3604     SDValue CvtSrc = N0.getOperand(0);
3605     if (CvtSrc.getOpcode() == ISD::FNEG) {
3606       // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3607       // (fneg (rcp (fneg x))) -> (rcp x)
3608       return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3609     }
3610 
3611     if (!N0.hasOneUse())
3612       return SDValue();
3613 
3614     // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3615     // (fneg (rcp x)) -> (rcp (fneg x))
3616     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3617     return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3618   }
3619   case ISD::FP_ROUND: {
3620     SDValue CvtSrc = N0.getOperand(0);
3621 
3622     if (CvtSrc.getOpcode() == ISD::FNEG) {
3623       // (fneg (fp_round (fneg x))) -> (fp_round x)
3624       return DAG.getNode(ISD::FP_ROUND, SL, VT,
3625                          CvtSrc.getOperand(0), N0.getOperand(1));
3626     }
3627 
3628     if (!N0.hasOneUse())
3629       return SDValue();
3630 
3631     // (fneg (fp_round x)) -> (fp_round (fneg x))
3632     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3633     return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3634   }
3635   case ISD::FP16_TO_FP: {
3636     // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3637     // f16, but legalization of f16 fneg ends up pulling it out of the source.
3638     // Put the fneg back as a legal source operation that can be matched later.
3639     SDLoc SL(N);
3640 
3641     SDValue Src = N0.getOperand(0);
3642     EVT SrcVT = Src.getValueType();
3643 
3644     // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3645     SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3646                                   DAG.getConstant(0x8000, SL, SrcVT));
3647     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3648   }
3649   default:
3650     return SDValue();
3651   }
3652 }
3653 
performFAbsCombine(SDNode * N,DAGCombinerInfo & DCI) const3654 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3655                                                  DAGCombinerInfo &DCI) const {
3656   SelectionDAG &DAG = DCI.DAG;
3657   SDValue N0 = N->getOperand(0);
3658 
3659   if (!N0.hasOneUse())
3660     return SDValue();
3661 
3662   switch (N0.getOpcode()) {
3663   case ISD::FP16_TO_FP: {
3664     assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3665     SDLoc SL(N);
3666     SDValue Src = N0.getOperand(0);
3667     EVT SrcVT = Src.getValueType();
3668 
3669     // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3670     SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3671                                   DAG.getConstant(0x7fff, SL, SrcVT));
3672     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3673   }
3674   default:
3675     return SDValue();
3676   }
3677 }
3678 
performRcpCombine(SDNode * N,DAGCombinerInfo & DCI) const3679 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
3680                                                 DAGCombinerInfo &DCI) const {
3681   const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
3682   if (!CFP)
3683     return SDValue();
3684 
3685   // XXX - Should this flush denormals?
3686   const APFloat &Val = CFP->getValueAPF();
3687   APFloat One(Val.getSemantics(), "1.0");
3688   return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
3689 }
3690 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const3691 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
3692                                                 DAGCombinerInfo &DCI) const {
3693   SelectionDAG &DAG = DCI.DAG;
3694   SDLoc DL(N);
3695 
3696   switch(N->getOpcode()) {
3697   default:
3698     break;
3699   case ISD::BITCAST: {
3700     EVT DestVT = N->getValueType(0);
3701 
3702     // Push casts through vector builds. This helps avoid emitting a large
3703     // number of copies when materializing floating point vector constants.
3704     //
3705     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3706     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3707     if (DestVT.isVector()) {
3708       SDValue Src = N->getOperand(0);
3709       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
3710         EVT SrcVT = Src.getValueType();
3711         unsigned NElts = DestVT.getVectorNumElements();
3712 
3713         if (SrcVT.getVectorNumElements() == NElts) {
3714           EVT DestEltVT = DestVT.getVectorElementType();
3715 
3716           SmallVector<SDValue, 8> CastedElts;
3717           SDLoc SL(N);
3718           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
3719             SDValue Elt = Src.getOperand(I);
3720             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
3721           }
3722 
3723           return DAG.getBuildVector(DestVT, SL, CastedElts);
3724         }
3725       }
3726     }
3727 
3728     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
3729       break;
3730 
3731     // Fold bitcasts of constants.
3732     //
3733     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3734     // TODO: Generalize and move to DAGCombiner
3735     SDValue Src = N->getOperand(0);
3736     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
3737       if (Src.getValueType() == MVT::i64) {
3738         SDLoc SL(N);
3739         uint64_t CVal = C->getZExtValue();
3740         return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT,
3741                            DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3742                            DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3743       }
3744     }
3745 
3746     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
3747       const APInt &Val = C->getValueAPF().bitcastToAPInt();
3748       SDLoc SL(N);
3749       uint64_t CVal = Val.getZExtValue();
3750       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3751                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3752                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3753 
3754       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
3755     }
3756 
3757     break;
3758   }
3759   case ISD::SHL: {
3760     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3761       break;
3762 
3763     return performShlCombine(N, DCI);
3764   }
3765   case ISD::SRL: {
3766     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3767       break;
3768 
3769     return performSrlCombine(N, DCI);
3770   }
3771   case ISD::SRA: {
3772     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3773       break;
3774 
3775     return performSraCombine(N, DCI);
3776   }
3777   case ISD::TRUNCATE:
3778     return performTruncateCombine(N, DCI);
3779   case ISD::MUL:
3780     return performMulCombine(N, DCI);
3781   case ISD::MULHS:
3782     return performMulhsCombine(N, DCI);
3783   case ISD::MULHU:
3784     return performMulhuCombine(N, DCI);
3785   case AMDGPUISD::MUL_I24:
3786   case AMDGPUISD::MUL_U24:
3787   case AMDGPUISD::MULHI_I24:
3788   case AMDGPUISD::MULHI_U24: {
3789     // If the first call to simplify is successfull, then N may end up being
3790     // deleted, so we shouldn't call simplifyI24 again.
3791     simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI);
3792     return SDValue();
3793   }
3794   case AMDGPUISD::MUL_LOHI_I24:
3795   case AMDGPUISD::MUL_LOHI_U24:
3796     return performMulLoHi24Combine(N, DCI);
3797   case ISD::SELECT:
3798     return performSelectCombine(N, DCI);
3799   case ISD::FNEG:
3800     return performFNegCombine(N, DCI);
3801   case ISD::FABS:
3802     return performFAbsCombine(N, DCI);
3803   case AMDGPUISD::BFE_I32:
3804   case AMDGPUISD::BFE_U32: {
3805     assert(!N->getValueType(0).isVector() &&
3806            "Vector handling of BFE not implemented");
3807     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
3808     if (!Width)
3809       break;
3810 
3811     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
3812     if (WidthVal == 0)
3813       return DAG.getConstant(0, DL, MVT::i32);
3814 
3815     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
3816     if (!Offset)
3817       break;
3818 
3819     SDValue BitsFrom = N->getOperand(0);
3820     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
3821 
3822     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
3823 
3824     if (OffsetVal == 0) {
3825       // This is already sign / zero extended, so try to fold away extra BFEs.
3826       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
3827 
3828       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
3829       if (OpSignBits >= SignBits)
3830         return BitsFrom;
3831 
3832       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
3833       if (Signed) {
3834         // This is a sign_extend_inreg. Replace it to take advantage of existing
3835         // DAG Combines. If not eliminated, we will match back to BFE during
3836         // selection.
3837 
3838         // TODO: The sext_inreg of extended types ends, although we can could
3839         // handle them in a single BFE.
3840         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
3841                            DAG.getValueType(SmallVT));
3842       }
3843 
3844       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
3845     }
3846 
3847     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
3848       if (Signed) {
3849         return constantFoldBFE<int32_t>(DAG,
3850                                         CVal->getSExtValue(),
3851                                         OffsetVal,
3852                                         WidthVal,
3853                                         DL);
3854       }
3855 
3856       return constantFoldBFE<uint32_t>(DAG,
3857                                        CVal->getZExtValue(),
3858                                        OffsetVal,
3859                                        WidthVal,
3860                                        DL);
3861     }
3862 
3863     if ((OffsetVal + WidthVal) >= 32 &&
3864         !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
3865       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
3866       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
3867                          BitsFrom, ShiftVal);
3868     }
3869 
3870     if (BitsFrom.hasOneUse()) {
3871       APInt Demanded = APInt::getBitsSet(32,
3872                                          OffsetVal,
3873                                          OffsetVal + WidthVal);
3874 
3875       KnownBits Known;
3876       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
3877                                             !DCI.isBeforeLegalizeOps());
3878       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3879       if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
3880           TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
3881         DCI.CommitTargetLoweringOpt(TLO);
3882       }
3883     }
3884 
3885     break;
3886   }
3887   case ISD::LOAD:
3888     return performLoadCombine(N, DCI);
3889   case ISD::STORE:
3890     return performStoreCombine(N, DCI);
3891   case AMDGPUISD::RCP:
3892   case AMDGPUISD::RCP_IFLAG:
3893     return performRcpCombine(N, DCI);
3894   case ISD::AssertZext:
3895   case ISD::AssertSext:
3896     return performAssertSZExtCombine(N, DCI);
3897   }
3898   return SDValue();
3899 }
3900 
3901 //===----------------------------------------------------------------------===//
3902 // Helper functions
3903 //===----------------------------------------------------------------------===//
3904 
CreateLiveInRegister(SelectionDAG & DAG,const TargetRegisterClass * RC,unsigned Reg,EVT VT,const SDLoc & SL,bool RawReg) const3905 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
3906                                                    const TargetRegisterClass *RC,
3907                                                    unsigned Reg, EVT VT,
3908                                                    const SDLoc &SL,
3909                                                    bool RawReg) const {
3910   MachineFunction &MF = DAG.getMachineFunction();
3911   MachineRegisterInfo &MRI = MF.getRegInfo();
3912   unsigned VReg;
3913 
3914   if (!MRI.isLiveIn(Reg)) {
3915     VReg = MRI.createVirtualRegister(RC);
3916     MRI.addLiveIn(Reg, VReg);
3917   } else {
3918     VReg = MRI.getLiveInVirtReg(Reg);
3919   }
3920 
3921   if (RawReg)
3922     return DAG.getRegister(VReg, VT);
3923 
3924   return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
3925 }
3926 
loadStackInputValue(SelectionDAG & DAG,EVT VT,const SDLoc & SL,int64_t Offset) const3927 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
3928                                                   EVT VT,
3929                                                   const SDLoc &SL,
3930                                                   int64_t Offset) const {
3931   MachineFunction &MF = DAG.getMachineFunction();
3932   MachineFrameInfo &MFI = MF.getFrameInfo();
3933 
3934   int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true);
3935   auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
3936   SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
3937 
3938   return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4,
3939                      MachineMemOperand::MODereferenceable |
3940                      MachineMemOperand::MOInvariant);
3941 }
3942 
storeStackInputValue(SelectionDAG & DAG,const SDLoc & SL,SDValue Chain,SDValue StackPtr,SDValue ArgVal,int64_t Offset) const3943 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
3944                                                    const SDLoc &SL,
3945                                                    SDValue Chain,
3946                                                    SDValue StackPtr,
3947                                                    SDValue ArgVal,
3948                                                    int64_t Offset) const {
3949   MachineFunction &MF = DAG.getMachineFunction();
3950   MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
3951 
3952   SDValue Ptr = DAG.getObjectPtrOffset(SL, StackPtr, Offset);
3953   SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4,
3954                                MachineMemOperand::MODereferenceable);
3955   return Store;
3956 }
3957 
loadInputValue(SelectionDAG & DAG,const TargetRegisterClass * RC,EVT VT,const SDLoc & SL,const ArgDescriptor & Arg) const3958 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
3959                                              const TargetRegisterClass *RC,
3960                                              EVT VT, const SDLoc &SL,
3961                                              const ArgDescriptor &Arg) const {
3962   assert(Arg && "Attempting to load missing argument");
3963 
3964   if (Arg.isRegister())
3965     return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL);
3966   return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
3967 }
3968 
getImplicitParameterOffset(const MachineFunction & MF,const ImplicitParameter Param) const3969 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
3970     const MachineFunction &MF, const ImplicitParameter Param) const {
3971   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
3972   const AMDGPUSubtarget &ST =
3973       AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
3974   unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
3975   unsigned Alignment = ST.getAlignmentForImplicitArgPtr();
3976   uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
3977                        ExplicitArgOffset;
3978   switch (Param) {
3979   case GRID_DIM:
3980     return ArgOffset;
3981   case GRID_OFFSET:
3982     return ArgOffset + 4;
3983   }
3984   llvm_unreachable("unexpected implicit parameter type");
3985 }
3986 
3987 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
3988 
getTargetNodeName(unsigned Opcode) const3989 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
3990   switch ((AMDGPUISD::NodeType)Opcode) {
3991   case AMDGPUISD::FIRST_NUMBER: break;
3992   // AMDIL DAG nodes
3993   NODE_NAME_CASE(UMUL);
3994   NODE_NAME_CASE(BRANCH_COND);
3995 
3996   // AMDGPU DAG nodes
3997   NODE_NAME_CASE(IF)
3998   NODE_NAME_CASE(ELSE)
3999   NODE_NAME_CASE(LOOP)
4000   NODE_NAME_CASE(CALL)
4001   NODE_NAME_CASE(TC_RETURN)
4002   NODE_NAME_CASE(TRAP)
4003   NODE_NAME_CASE(RET_FLAG)
4004   NODE_NAME_CASE(RETURN_TO_EPILOG)
4005   NODE_NAME_CASE(ENDPGM)
4006   NODE_NAME_CASE(DWORDADDR)
4007   NODE_NAME_CASE(FRACT)
4008   NODE_NAME_CASE(SETCC)
4009   NODE_NAME_CASE(SETREG)
4010   NODE_NAME_CASE(FMA_W_CHAIN)
4011   NODE_NAME_CASE(FMUL_W_CHAIN)
4012   NODE_NAME_CASE(CLAMP)
4013   NODE_NAME_CASE(COS_HW)
4014   NODE_NAME_CASE(SIN_HW)
4015   NODE_NAME_CASE(FMAX_LEGACY)
4016   NODE_NAME_CASE(FMIN_LEGACY)
4017   NODE_NAME_CASE(FMAX3)
4018   NODE_NAME_CASE(SMAX3)
4019   NODE_NAME_CASE(UMAX3)
4020   NODE_NAME_CASE(FMIN3)
4021   NODE_NAME_CASE(SMIN3)
4022   NODE_NAME_CASE(UMIN3)
4023   NODE_NAME_CASE(FMED3)
4024   NODE_NAME_CASE(SMED3)
4025   NODE_NAME_CASE(UMED3)
4026   NODE_NAME_CASE(FDOT2)
4027   NODE_NAME_CASE(URECIP)
4028   NODE_NAME_CASE(DIV_SCALE)
4029   NODE_NAME_CASE(DIV_FMAS)
4030   NODE_NAME_CASE(DIV_FIXUP)
4031   NODE_NAME_CASE(FMAD_FTZ)
4032   NODE_NAME_CASE(TRIG_PREOP)
4033   NODE_NAME_CASE(RCP)
4034   NODE_NAME_CASE(RSQ)
4035   NODE_NAME_CASE(RCP_LEGACY)
4036   NODE_NAME_CASE(RSQ_LEGACY)
4037   NODE_NAME_CASE(RCP_IFLAG)
4038   NODE_NAME_CASE(FMUL_LEGACY)
4039   NODE_NAME_CASE(RSQ_CLAMP)
4040   NODE_NAME_CASE(LDEXP)
4041   NODE_NAME_CASE(FP_CLASS)
4042   NODE_NAME_CASE(DOT4)
4043   NODE_NAME_CASE(CARRY)
4044   NODE_NAME_CASE(BORROW)
4045   NODE_NAME_CASE(BFE_U32)
4046   NODE_NAME_CASE(BFE_I32)
4047   NODE_NAME_CASE(BFI)
4048   NODE_NAME_CASE(BFM)
4049   NODE_NAME_CASE(FFBH_U32)
4050   NODE_NAME_CASE(FFBH_I32)
4051   NODE_NAME_CASE(FFBL_B32)
4052   NODE_NAME_CASE(MUL_U24)
4053   NODE_NAME_CASE(MUL_I24)
4054   NODE_NAME_CASE(MULHI_U24)
4055   NODE_NAME_CASE(MULHI_I24)
4056   NODE_NAME_CASE(MUL_LOHI_U24)
4057   NODE_NAME_CASE(MUL_LOHI_I24)
4058   NODE_NAME_CASE(MAD_U24)
4059   NODE_NAME_CASE(MAD_I24)
4060   NODE_NAME_CASE(MAD_I64_I32)
4061   NODE_NAME_CASE(MAD_U64_U32)
4062   NODE_NAME_CASE(PERM)
4063   NODE_NAME_CASE(TEXTURE_FETCH)
4064   NODE_NAME_CASE(EXPORT)
4065   NODE_NAME_CASE(EXPORT_DONE)
4066   NODE_NAME_CASE(R600_EXPORT)
4067   NODE_NAME_CASE(CONST_ADDRESS)
4068   NODE_NAME_CASE(REGISTER_LOAD)
4069   NODE_NAME_CASE(REGISTER_STORE)
4070   NODE_NAME_CASE(SAMPLE)
4071   NODE_NAME_CASE(SAMPLEB)
4072   NODE_NAME_CASE(SAMPLED)
4073   NODE_NAME_CASE(SAMPLEL)
4074   NODE_NAME_CASE(CVT_F32_UBYTE0)
4075   NODE_NAME_CASE(CVT_F32_UBYTE1)
4076   NODE_NAME_CASE(CVT_F32_UBYTE2)
4077   NODE_NAME_CASE(CVT_F32_UBYTE3)
4078   NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
4079   NODE_NAME_CASE(CVT_PKNORM_I16_F32)
4080   NODE_NAME_CASE(CVT_PKNORM_U16_F32)
4081   NODE_NAME_CASE(CVT_PK_I16_I32)
4082   NODE_NAME_CASE(CVT_PK_U16_U32)
4083   NODE_NAME_CASE(FP_TO_FP16)
4084   NODE_NAME_CASE(FP16_ZEXT)
4085   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
4086   NODE_NAME_CASE(CONST_DATA_PTR)
4087   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
4088   NODE_NAME_CASE(KILL)
4089   NODE_NAME_CASE(DUMMY_CHAIN)
4090   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4091   NODE_NAME_CASE(INIT_EXEC)
4092   NODE_NAME_CASE(INIT_EXEC_FROM_INPUT)
4093   NODE_NAME_CASE(SENDMSG)
4094   NODE_NAME_CASE(SENDMSGHALT)
4095   NODE_NAME_CASE(INTERP_MOV)
4096   NODE_NAME_CASE(INTERP_P1)
4097   NODE_NAME_CASE(INTERP_P2)
4098   NODE_NAME_CASE(STORE_MSKOR)
4099   NODE_NAME_CASE(LOAD_CONSTANT)
4100   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
4101   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_X3)
4102   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
4103   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
4104   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
4105   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
4106   NODE_NAME_CASE(ATOMIC_INC)
4107   NODE_NAME_CASE(ATOMIC_DEC)
4108   NODE_NAME_CASE(ATOMIC_LOAD_FADD)
4109   NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
4110   NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
4111   NODE_NAME_CASE(BUFFER_LOAD)
4112   NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
4113   NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
4114   NODE_NAME_CASE(BUFFER_STORE)
4115   NODE_NAME_CASE(BUFFER_STORE_FORMAT)
4116   NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
4117   NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
4118   NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
4119   NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
4120   NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
4121   NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
4122   NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
4123   NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
4124   NODE_NAME_CASE(BUFFER_ATOMIC_AND)
4125   NODE_NAME_CASE(BUFFER_ATOMIC_OR)
4126   NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
4127   NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
4128 
4129   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4130   }
4131   return nullptr;
4132 }
4133 
getSqrtEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & RefinementSteps,bool & UseOneConstNR,bool Reciprocal) const4134 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4135                                               SelectionDAG &DAG, int Enabled,
4136                                               int &RefinementSteps,
4137                                               bool &UseOneConstNR,
4138                                               bool Reciprocal) const {
4139   EVT VT = Operand.getValueType();
4140 
4141   if (VT == MVT::f32) {
4142     RefinementSteps = 0;
4143     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4144   }
4145 
4146   // TODO: There is also f64 rsq instruction, but the documentation is less
4147   // clear on its precision.
4148 
4149   return SDValue();
4150 }
4151 
getRecipEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & RefinementSteps) const4152 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4153                                                SelectionDAG &DAG, int Enabled,
4154                                                int &RefinementSteps) const {
4155   EVT VT = Operand.getValueType();
4156 
4157   if (VT == MVT::f32) {
4158     // Reciprocal, < 1 ulp error.
4159     //
4160     // This reciprocal approximation converges to < 0.5 ulp error with one
4161     // newton rhapson performed with two fused multiple adds (FMAs).
4162 
4163     RefinementSteps = 0;
4164     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4165   }
4166 
4167   // TODO: There is also f64 rcp instruction, but the documentation is less
4168   // clear on its precision.
4169 
4170   return SDValue();
4171 }
4172 
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const4173 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4174     const SDValue Op, KnownBits &Known,
4175     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4176 
4177   Known.resetAll(); // Don't know anything.
4178 
4179   unsigned Opc = Op.getOpcode();
4180 
4181   switch (Opc) {
4182   default:
4183     break;
4184   case AMDGPUISD::CARRY:
4185   case AMDGPUISD::BORROW: {
4186     Known.Zero = APInt::getHighBitsSet(32, 31);
4187     break;
4188   }
4189 
4190   case AMDGPUISD::BFE_I32:
4191   case AMDGPUISD::BFE_U32: {
4192     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4193     if (!CWidth)
4194       return;
4195 
4196     uint32_t Width = CWidth->getZExtValue() & 0x1f;
4197 
4198     if (Opc == AMDGPUISD::BFE_U32)
4199       Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4200 
4201     break;
4202   }
4203   case AMDGPUISD::FP_TO_FP16:
4204   case AMDGPUISD::FP16_ZEXT: {
4205     unsigned BitWidth = Known.getBitWidth();
4206 
4207     // High bits are zero.
4208     Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4209     break;
4210   }
4211   case AMDGPUISD::MUL_U24:
4212   case AMDGPUISD::MUL_I24: {
4213     KnownBits LHSKnown, RHSKnown;
4214     DAG.computeKnownBits(Op.getOperand(0), LHSKnown, Depth + 1);
4215     DAG.computeKnownBits(Op.getOperand(1), RHSKnown, Depth + 1);
4216 
4217     unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4218                       RHSKnown.countMinTrailingZeros();
4219     Known.Zero.setLowBits(std::min(TrailZ, 32u));
4220 
4221     unsigned LHSValBits = 32 - std::max(LHSKnown.countMinSignBits(), 8u);
4222     unsigned RHSValBits = 32 - std::max(RHSKnown.countMinSignBits(), 8u);
4223     unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4224     if (MaxValBits >= 32)
4225       break;
4226     bool Negative = false;
4227     if (Opc == AMDGPUISD::MUL_I24) {
4228       bool LHSNegative = !!(LHSKnown.One  & (1 << 23));
4229       bool LHSPositive = !!(LHSKnown.Zero & (1 << 23));
4230       bool RHSNegative = !!(RHSKnown.One  & (1 << 23));
4231       bool RHSPositive = !!(RHSKnown.Zero & (1 << 23));
4232       if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive))
4233         break;
4234       Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative);
4235     }
4236     if (Negative)
4237       Known.One.setHighBits(32 - MaxValBits);
4238     else
4239       Known.Zero.setHighBits(32 - MaxValBits);
4240     break;
4241   }
4242   case AMDGPUISD::PERM: {
4243     ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4244     if (!CMask)
4245       return;
4246 
4247     KnownBits LHSKnown, RHSKnown;
4248     DAG.computeKnownBits(Op.getOperand(0), LHSKnown, Depth + 1);
4249     DAG.computeKnownBits(Op.getOperand(1), RHSKnown, Depth + 1);
4250     unsigned Sel = CMask->getZExtValue();
4251 
4252     for (unsigned I = 0; I < 32; I += 8) {
4253       unsigned SelBits = Sel & 0xff;
4254       if (SelBits < 4) {
4255         SelBits *= 8;
4256         Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4257         Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4258       } else if (SelBits < 7) {
4259         SelBits = (SelBits & 3) * 8;
4260         Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4261         Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4262       } else if (SelBits == 0x0c) {
4263         Known.Zero |= 0xff << I;
4264       } else if (SelBits > 0x0c) {
4265         Known.One |= 0xff << I;
4266       }
4267       Sel >>= 8;
4268     }
4269     break;
4270   }
4271   case ISD::INTRINSIC_WO_CHAIN: {
4272     unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4273     switch (IID) {
4274     case Intrinsic::amdgcn_mbcnt_lo:
4275     case Intrinsic::amdgcn_mbcnt_hi: {
4276       const GCNSubtarget &ST =
4277           DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
4278       // These return at most the wavefront size - 1.
4279       unsigned Size = Op.getValueType().getSizeInBits();
4280       Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2());
4281       break;
4282     }
4283     default:
4284       break;
4285     }
4286   }
4287   }
4288 }
4289 
ComputeNumSignBitsForTargetNode(SDValue Op,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const4290 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4291     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4292     unsigned Depth) const {
4293   switch (Op.getOpcode()) {
4294   case AMDGPUISD::BFE_I32: {
4295     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4296     if (!Width)
4297       return 1;
4298 
4299     unsigned SignBits = 32 - Width->getZExtValue() + 1;
4300     if (!isNullConstant(Op.getOperand(1)))
4301       return SignBits;
4302 
4303     // TODO: Could probably figure something out with non-0 offsets.
4304     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4305     return std::max(SignBits, Op0SignBits);
4306   }
4307 
4308   case AMDGPUISD::BFE_U32: {
4309     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4310     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4311   }
4312 
4313   case AMDGPUISD::CARRY:
4314   case AMDGPUISD::BORROW:
4315     return 31;
4316   case AMDGPUISD::FP_TO_FP16:
4317   case AMDGPUISD::FP16_ZEXT:
4318     return 16;
4319   default:
4320     return 1;
4321   }
4322 }
4323