1# Copyright (c) 2016 The Chromium Authors. All rights reserved.
2# Use of this source code is governed by a BSD-style license that can be
3# found in the LICENSE file.
4
5"""Server side audio utilities functions for Brillo."""
6
7import contextlib
8import logging
9import numpy
10import os
11import struct
12import subprocess
13import tempfile
14import wave
15
16from autotest_lib.client.common_lib import error
17
18
19_BITS_PER_BYTE=8
20
21# Thresholds used when comparing files.
22#
23# The frequency threshold used when comparing files. The frequency of the
24# recorded audio has to be within _FREQUENCY_THRESHOLD percent of the frequency
25# of the original audio.
26_FREQUENCY_THRESHOLD = 0.01
27# Noise threshold controls how much noise is allowed as a fraction of the
28# magnitude of the peak frequency after taking an FFT. The power of all the
29# other frequencies in the signal should be within _FFT_NOISE_THRESHOLD percent
30# of the power of the main frequency.
31_FFT_NOISE_THRESHOLD = 0.05
32
33# Command used to encode audio. If you want to test with something different,
34# this should be changed.
35_ENCODING_CMD = 'sox'
36
37
38def extract_wav_frames(wave_file):
39    """Extract all frames from a WAV file.
40
41    @param wave_file: A Wave_read object representing a WAV file opened for
42                      reading.
43
44    @return: A list containing the frames in the WAV file.
45    """
46    num_frames = wave_file.getnframes()
47    sample_width = wave_file.getsampwidth()
48    if sample_width == 1:
49        fmt = '%iB'  # Read 1 byte.
50    elif sample_width == 2:
51        fmt = '%ih'  # Read 2 bytes.
52    elif sample_width == 4:
53        fmt = '%ii'  # Read 4 bytes.
54    else:
55        raise ValueError('Unsupported sample width')
56    frames =  list(struct.unpack(fmt % num_frames * wave_file.getnchannels(),
57                                 wave_file.readframes(num_frames)))
58
59    # Since 8-bit PCM is unsigned with an offset of 128, we subtract the offset
60    # to make it signed since the rest of the code assumes signed numbers.
61    if sample_width == 1:
62        frames = [val - 128 for val in frames]
63
64    return frames
65
66
67def check_wav_file(filename, num_channels=None, sample_rate=None,
68                   sample_width=None):
69    """Checks a WAV file and returns its peak PCM values.
70
71    @param filename: Input WAV file to analyze.
72    @param num_channels: Number of channels to expect (None to not check).
73    @param sample_rate: Sample rate to expect (None to not check).
74    @param sample_width: Sample width to expect (None to not check).
75
76    @return A list of the absolute maximum PCM values for each channel in the
77            WAV file.
78
79    @raise ValueError: Failed to process the WAV file or validate an attribute.
80    """
81    chk_file = None
82    try:
83        chk_file = wave.open(filename, 'r')
84        if num_channels is not None and chk_file.getnchannels() != num_channels:
85            raise ValueError('Expected %d channels but got %d instead.',
86                             num_channels, chk_file.getnchannels())
87        if sample_rate is not None and chk_file.getframerate() != sample_rate:
88            raise ValueError('Expected sample rate %d but got %d instead.',
89                             sample_rate, chk_file.getframerate())
90        if sample_width is not None and chk_file.getsampwidth() != sample_width:
91            raise ValueError('Expected sample width %d but got %d instead.',
92                             sample_width, chk_file.getsampwidth())
93        frames = extract_wav_frames(chk_file)
94    except wave.Error as e:
95        raise ValueError('Error processing WAV file: %s' % e)
96    finally:
97        if chk_file is not None:
98            chk_file.close()
99
100    peaks = []
101    for i in range(chk_file.getnchannels()):
102        peaks.append(max(map(abs, frames[i::chk_file.getnchannels()])))
103    return peaks;
104
105
106def generate_sine_file(host, num_channels, sample_rate, sample_width,
107                       duration_secs, sine_frequency, temp_dir,
108                       file_format='wav'):
109    """Generate a sine file and push it to the DUT.
110
111    @param host: An object representing the DUT.
112    @param num_channels: Number of channels to use.
113    @param sample_rate: Sample rate to use for sine wave generation.
114    @param sample_width: Sample width to use for sine wave generation.
115    @param duration_secs: Duration in seconds to generate sine wave for.
116    @param sine_frequency: Frequency to generate sine wave at.
117    @param temp_dir: A temporary directory on the host.
118    @param file_format: A string representing the encoding for the audio file.
119
120    @return A tuple of the filename on the server and the DUT.
121    """;
122    _, local_filename = tempfile.mkstemp(
123        prefix='sine-', suffix='.' + file_format, dir=temp_dir)
124    if sample_width == 1:
125        byte_format = '-e unsigned'
126    else:
127        byte_format = '-e signed'
128    gen_file_cmd = ('sox -n -t wav -c %d %s -b %d -r %d %s synth %d sine %d '
129                    'vol 0.9' % (num_channels, byte_format,
130                                 sample_width * _BITS_PER_BYTE, sample_rate,
131                                 local_filename, duration_secs, sine_frequency))
132    logging.info('Command to generate sine wave: %s', gen_file_cmd)
133    subprocess.call(gen_file_cmd, shell=True)
134    if file_format != 'wav':
135        # Convert the file to the appropriate format.
136        logging.info('Converting file to %s', file_format)
137        _, local_encoded_filename = tempfile.mkstemp(
138                prefix='sine-', suffix='.' + file_format, dir=temp_dir)
139        cvt_file_cmd = '%s %s %s' % (_ENCODING_CMD, local_filename,
140                                     local_encoded_filename)
141        logging.info('Command to convert file: %s', cvt_file_cmd)
142        subprocess.call(cvt_file_cmd, shell=True)
143    else:
144        local_encoded_filename = local_filename
145    dut_tmp_dir = '/data'
146    remote_filename = os.path.join(dut_tmp_dir, 'sine.' + file_format)
147    logging.info('Send file to DUT.')
148    # TODO(ralphnathan): Find a better place to put this file once the SELinux
149    # issues are resolved.
150    logging.info('remote_filename %s', remote_filename)
151    host.send_file(local_encoded_filename, remote_filename)
152    return local_filename, remote_filename
153
154
155def _is_outside_frequency_threshold(freq_reference, freq_rec):
156    """Compares the frequency of the recorded audio with the reference audio.
157
158    This function checks to see if the frequencies corresponding to the peak
159    FFT values are similiar meaning that the dominant frequency in the audio
160    signal is the same for the recorded audio as that in the audio played.
161
162    @param req_reference: The dominant frequency in the reference audio file.
163    @param freq_rec: The dominant frequency in the recorded audio file.
164
165    @return: True is freq_rec is with _FREQUENCY_THRESHOLD percent of
166              freq_reference.
167    """
168    ratio = float(freq_rec) / freq_reference
169    if ratio > 1 + _FREQUENCY_THRESHOLD or ratio < 1 - _FREQUENCY_THRESHOLD:
170        return True
171    return False
172
173
174def _compare_frames(reference_file_frames, rec_file_frames, num_channels,
175                    sample_rate):
176    """Compares audio frames from the reference file and the recorded file.
177
178    This method checks for two things:
179      1. That the main frequency is the same in both the files. This is done
180         using the FFT and observing the frequency corresponding to the
181         peak.
182      2. That there is no other dominant frequency in the recorded file.
183         This is done by sweeping the frequency domain and checking that the
184         frequency is always less than _FFT_NOISE_THRESHOLD percentage of
185         the peak.
186
187    The key assumption here is that the reference audio file contains only
188    one frequency.
189
190    @param reference_file_frames: Audio frames from the reference file.
191    @param rec_file_frames: Audio frames from the recorded file.
192    @param num_channels: Number of channels in the files.
193    @param sample_rate: Sample rate of the files.
194
195    @raise error.TestFail: The frequency of the recorded signal doesn't
196                           match that of the reference signal.
197    @raise error.TestFail: There is too much noise in the recorded signal.
198    """
199    for channel in range(num_channels):
200        reference_data = reference_file_frames[channel::num_channels]
201        rec_data = rec_file_frames[channel::num_channels]
202
203        # Get fft and frequencies corresponding to the fft values.
204        fft_reference = numpy.fft.rfft(reference_data)
205        fft_rec = numpy.fft.rfft(rec_data)
206        fft_freqs_reference = numpy.fft.rfftfreq(len(reference_data),
207                                                 1.0 / sample_rate)
208        fft_freqs_rec = numpy.fft.rfftfreq(len(rec_data), 1.0 / sample_rate)
209
210        # Get frequency at highest peak.
211        freq_reference = fft_freqs_reference[
212                numpy.argmax(numpy.abs(fft_reference))]
213        abs_fft_rec = numpy.abs(fft_rec)
214        freq_rec = fft_freqs_rec[numpy.argmax(abs_fft_rec)]
215
216        # Compare the two frequencies.
217        logging.info('Golden frequency of channel %i is %f', channel,
218                     freq_reference)
219        logging.info('Recorded frequency of channel %i is  %f', channel,
220                     freq_rec)
221        if _is_outside_frequency_threshold(freq_reference, freq_rec):
222            raise error.TestFail('The recorded audio frequency does not match '
223                                 'that of the audio played.')
224
225        # Check for noise in the frequency domain.
226        fft_rec_peak_val = numpy.max(abs_fft_rec)
227        noise_detected = False
228        for fft_index, fft_val in enumerate(abs_fft_rec):
229            if _is_outside_frequency_threshold(freq_reference, freq_rec):
230                # If the frequency exceeds _FFT_NOISE_THRESHOLD, then fail.
231                if fft_val > _FFT_NOISE_THRESHOLD * fft_rec_peak_val:
232                    logging.warning('Unexpected frequency peak detected at %f '
233                                    'Hz.', fft_freqs_rec[fft_index])
234                    noise_detected = True
235
236        if noise_detected:
237            raise error.TestFail('Signal is noiser than expected.')
238
239
240def compare_file(reference_audio_filename, test_audio_filename):
241    """Compares the recorded audio file to the reference audio file.
242
243    @param reference_audio_filename : Reference audio file containing the
244                                      reference signal.
245    @param test_audio_filename: Audio file containing audio captured from
246                                the test.
247    """
248    with contextlib.closing(wave.open(reference_audio_filename,
249                                      'rb')) as reference_file:
250        with contextlib.closing(wave.open(test_audio_filename,
251                                          'rb')) as rec_file:
252            # Extract data from files.
253            reference_file_frames = extract_wav_frames(reference_file)
254            rec_file_frames = extract_wav_frames(rec_file)
255
256            num_channels = reference_file.getnchannels()
257            _compare_frames(reference_file_frames, rec_file_frames,
258                            reference_file.getnchannels(),
259                            reference_file.getframerate())
260