1"""Test suite for statistics module, including helper NumericTestCase and 2approx_equal function. 3 4""" 5 6import collections 7import collections.abc 8import decimal 9import doctest 10import math 11import random 12import sys 13import unittest 14 15from decimal import Decimal 16from fractions import Fraction 17 18 19# Module to be tested. 20import statistics 21 22 23# === Helper functions and class === 24 25def sign(x): 26 """Return -1.0 for negatives, including -0.0, otherwise +1.0.""" 27 return math.copysign(1, x) 28 29def _nan_equal(a, b): 30 """Return True if a and b are both the same kind of NAN. 31 32 >>> _nan_equal(Decimal('NAN'), Decimal('NAN')) 33 True 34 >>> _nan_equal(Decimal('sNAN'), Decimal('sNAN')) 35 True 36 >>> _nan_equal(Decimal('NAN'), Decimal('sNAN')) 37 False 38 >>> _nan_equal(Decimal(42), Decimal('NAN')) 39 False 40 41 >>> _nan_equal(float('NAN'), float('NAN')) 42 True 43 >>> _nan_equal(float('NAN'), 0.5) 44 False 45 46 >>> _nan_equal(float('NAN'), Decimal('NAN')) 47 False 48 49 NAN payloads are not compared. 50 """ 51 if type(a) is not type(b): 52 return False 53 if isinstance(a, float): 54 return math.isnan(a) and math.isnan(b) 55 aexp = a.as_tuple()[2] 56 bexp = b.as_tuple()[2] 57 return (aexp == bexp) and (aexp in ('n', 'N')) # Both NAN or both sNAN. 58 59 60def _calc_errors(actual, expected): 61 """Return the absolute and relative errors between two numbers. 62 63 >>> _calc_errors(100, 75) 64 (25, 0.25) 65 >>> _calc_errors(100, 100) 66 (0, 0.0) 67 68 Returns the (absolute error, relative error) between the two arguments. 69 """ 70 base = max(abs(actual), abs(expected)) 71 abs_err = abs(actual - expected) 72 rel_err = abs_err/base if base else float('inf') 73 return (abs_err, rel_err) 74 75 76def approx_equal(x, y, tol=1e-12, rel=1e-7): 77 """approx_equal(x, y [, tol [, rel]]) => True|False 78 79 Return True if numbers x and y are approximately equal, to within some 80 margin of error, otherwise return False. Numbers which compare equal 81 will also compare approximately equal. 82 83 x is approximately equal to y if the difference between them is less than 84 an absolute error tol or a relative error rel, whichever is bigger. 85 86 If given, both tol and rel must be finite, non-negative numbers. If not 87 given, default values are tol=1e-12 and rel=1e-7. 88 89 >>> approx_equal(1.2589, 1.2587, tol=0.0003, rel=0) 90 True 91 >>> approx_equal(1.2589, 1.2587, tol=0.0001, rel=0) 92 False 93 94 Absolute error is defined as abs(x-y); if that is less than or equal to 95 tol, x and y are considered approximately equal. 96 97 Relative error is defined as abs((x-y)/x) or abs((x-y)/y), whichever is 98 smaller, provided x or y are not zero. If that figure is less than or 99 equal to rel, x and y are considered approximately equal. 100 101 Complex numbers are not directly supported. If you wish to compare to 102 complex numbers, extract their real and imaginary parts and compare them 103 individually. 104 105 NANs always compare unequal, even with themselves. Infinities compare 106 approximately equal if they have the same sign (both positive or both 107 negative). Infinities with different signs compare unequal; so do 108 comparisons of infinities with finite numbers. 109 """ 110 if tol < 0 or rel < 0: 111 raise ValueError('error tolerances must be non-negative') 112 # NANs are never equal to anything, approximately or otherwise. 113 if math.isnan(x) or math.isnan(y): 114 return False 115 # Numbers which compare equal also compare approximately equal. 116 if x == y: 117 # This includes the case of two infinities with the same sign. 118 return True 119 if math.isinf(x) or math.isinf(y): 120 # This includes the case of two infinities of opposite sign, or 121 # one infinity and one finite number. 122 return False 123 # Two finite numbers. 124 actual_error = abs(x - y) 125 allowed_error = max(tol, rel*max(abs(x), abs(y))) 126 return actual_error <= allowed_error 127 128 129# This class exists only as somewhere to stick a docstring containing 130# doctests. The following docstring and tests were originally in a separate 131# module. Now that it has been merged in here, I need somewhere to hang the. 132# docstring. Ultimately, this class will die, and the information below will 133# either become redundant, or be moved into more appropriate places. 134class _DoNothing: 135 """ 136 When doing numeric work, especially with floats, exact equality is often 137 not what you want. Due to round-off error, it is often a bad idea to try 138 to compare floats with equality. Instead the usual procedure is to test 139 them with some (hopefully small!) allowance for error. 140 141 The ``approx_equal`` function allows you to specify either an absolute 142 error tolerance, or a relative error, or both. 143 144 Absolute error tolerances are simple, but you need to know the magnitude 145 of the quantities being compared: 146 147 >>> approx_equal(12.345, 12.346, tol=1e-3) 148 True 149 >>> approx_equal(12.345e6, 12.346e6, tol=1e-3) # tol is too small. 150 False 151 152 Relative errors are more suitable when the values you are comparing can 153 vary in magnitude: 154 155 >>> approx_equal(12.345, 12.346, rel=1e-4) 156 True 157 >>> approx_equal(12.345e6, 12.346e6, rel=1e-4) 158 True 159 160 but a naive implementation of relative error testing can run into trouble 161 around zero. 162 163 If you supply both an absolute tolerance and a relative error, the 164 comparison succeeds if either individual test succeeds: 165 166 >>> approx_equal(12.345e6, 12.346e6, tol=1e-3, rel=1e-4) 167 True 168 169 """ 170 pass 171 172 173 174# We prefer this for testing numeric values that may not be exactly equal, 175# and avoid using TestCase.assertAlmostEqual, because it sucks :-) 176 177class NumericTestCase(unittest.TestCase): 178 """Unit test class for numeric work. 179 180 This subclasses TestCase. In addition to the standard method 181 ``TestCase.assertAlmostEqual``, ``assertApproxEqual`` is provided. 182 """ 183 # By default, we expect exact equality, unless overridden. 184 tol = rel = 0 185 186 def assertApproxEqual( 187 self, first, second, tol=None, rel=None, msg=None 188 ): 189 """Test passes if ``first`` and ``second`` are approximately equal. 190 191 This test passes if ``first`` and ``second`` are equal to 192 within ``tol``, an absolute error, or ``rel``, a relative error. 193 194 If either ``tol`` or ``rel`` are None or not given, they default to 195 test attributes of the same name (by default, 0). 196 197 The objects may be either numbers, or sequences of numbers. Sequences 198 are tested element-by-element. 199 200 >>> class MyTest(NumericTestCase): 201 ... def test_number(self): 202 ... x = 1.0/6 203 ... y = sum([x]*6) 204 ... self.assertApproxEqual(y, 1.0, tol=1e-15) 205 ... def test_sequence(self): 206 ... a = [1.001, 1.001e-10, 1.001e10] 207 ... b = [1.0, 1e-10, 1e10] 208 ... self.assertApproxEqual(a, b, rel=1e-3) 209 ... 210 >>> import unittest 211 >>> from io import StringIO # Suppress test runner output. 212 >>> suite = unittest.TestLoader().loadTestsFromTestCase(MyTest) 213 >>> unittest.TextTestRunner(stream=StringIO()).run(suite) 214 <unittest.runner.TextTestResult run=2 errors=0 failures=0> 215 216 """ 217 if tol is None: 218 tol = self.tol 219 if rel is None: 220 rel = self.rel 221 if ( 222 isinstance(first, collections.abc.Sequence) and 223 isinstance(second, collections.abc.Sequence) 224 ): 225 check = self._check_approx_seq 226 else: 227 check = self._check_approx_num 228 check(first, second, tol, rel, msg) 229 230 def _check_approx_seq(self, first, second, tol, rel, msg): 231 if len(first) != len(second): 232 standardMsg = ( 233 "sequences differ in length: %d items != %d items" 234 % (len(first), len(second)) 235 ) 236 msg = self._formatMessage(msg, standardMsg) 237 raise self.failureException(msg) 238 for i, (a,e) in enumerate(zip(first, second)): 239 self._check_approx_num(a, e, tol, rel, msg, i) 240 241 def _check_approx_num(self, first, second, tol, rel, msg, idx=None): 242 if approx_equal(first, second, tol, rel): 243 # Test passes. Return early, we are done. 244 return None 245 # Otherwise we failed. 246 standardMsg = self._make_std_err_msg(first, second, tol, rel, idx) 247 msg = self._formatMessage(msg, standardMsg) 248 raise self.failureException(msg) 249 250 @staticmethod 251 def _make_std_err_msg(first, second, tol, rel, idx): 252 # Create the standard error message for approx_equal failures. 253 assert first != second 254 template = ( 255 ' %r != %r\n' 256 ' values differ by more than tol=%r and rel=%r\n' 257 ' -> absolute error = %r\n' 258 ' -> relative error = %r' 259 ) 260 if idx is not None: 261 header = 'numeric sequences first differ at index %d.\n' % idx 262 template = header + template 263 # Calculate actual errors: 264 abs_err, rel_err = _calc_errors(first, second) 265 return template % (first, second, tol, rel, abs_err, rel_err) 266 267 268# ======================== 269# === Test the helpers === 270# ======================== 271 272class TestSign(unittest.TestCase): 273 """Test that the helper function sign() works correctly.""" 274 def testZeroes(self): 275 # Test that signed zeroes report their sign correctly. 276 self.assertEqual(sign(0.0), +1) 277 self.assertEqual(sign(-0.0), -1) 278 279 280# --- Tests for approx_equal --- 281 282class ApproxEqualSymmetryTest(unittest.TestCase): 283 # Test symmetry of approx_equal. 284 285 def test_relative_symmetry(self): 286 # Check that approx_equal treats relative error symmetrically. 287 # (a-b)/a is usually not equal to (a-b)/b. Ensure that this 288 # doesn't matter. 289 # 290 # Note: the reason for this test is that an early version 291 # of approx_equal was not symmetric. A relative error test 292 # would pass, or fail, depending on which value was passed 293 # as the first argument. 294 # 295 args1 = [2456, 37.8, -12.45, Decimal('2.54'), Fraction(17, 54)] 296 args2 = [2459, 37.2, -12.41, Decimal('2.59'), Fraction(15, 54)] 297 assert len(args1) == len(args2) 298 for a, b in zip(args1, args2): 299 self.do_relative_symmetry(a, b) 300 301 def do_relative_symmetry(self, a, b): 302 a, b = min(a, b), max(a, b) 303 assert a < b 304 delta = b - a # The absolute difference between the values. 305 rel_err1, rel_err2 = abs(delta/a), abs(delta/b) 306 # Choose an error margin halfway between the two. 307 rel = (rel_err1 + rel_err2)/2 308 # Now see that values a and b compare approx equal regardless of 309 # which is given first. 310 self.assertTrue(approx_equal(a, b, tol=0, rel=rel)) 311 self.assertTrue(approx_equal(b, a, tol=0, rel=rel)) 312 313 def test_symmetry(self): 314 # Test that approx_equal(a, b) == approx_equal(b, a) 315 args = [-23, -2, 5, 107, 93568] 316 delta = 2 317 for a in args: 318 for type_ in (int, float, Decimal, Fraction): 319 x = type_(a)*100 320 y = x + delta 321 r = abs(delta/max(x, y)) 322 # There are five cases to check: 323 # 1) actual error <= tol, <= rel 324 self.do_symmetry_test(x, y, tol=delta, rel=r) 325 self.do_symmetry_test(x, y, tol=delta+1, rel=2*r) 326 # 2) actual error > tol, > rel 327 self.do_symmetry_test(x, y, tol=delta-1, rel=r/2) 328 # 3) actual error <= tol, > rel 329 self.do_symmetry_test(x, y, tol=delta, rel=r/2) 330 # 4) actual error > tol, <= rel 331 self.do_symmetry_test(x, y, tol=delta-1, rel=r) 332 self.do_symmetry_test(x, y, tol=delta-1, rel=2*r) 333 # 5) exact equality test 334 self.do_symmetry_test(x, x, tol=0, rel=0) 335 self.do_symmetry_test(x, y, tol=0, rel=0) 336 337 def do_symmetry_test(self, a, b, tol, rel): 338 template = "approx_equal comparisons don't match for %r" 339 flag1 = approx_equal(a, b, tol, rel) 340 flag2 = approx_equal(b, a, tol, rel) 341 self.assertEqual(flag1, flag2, template.format((a, b, tol, rel))) 342 343 344class ApproxEqualExactTest(unittest.TestCase): 345 # Test the approx_equal function with exactly equal values. 346 # Equal values should compare as approximately equal. 347 # Test cases for exactly equal values, which should compare approx 348 # equal regardless of the error tolerances given. 349 350 def do_exactly_equal_test(self, x, tol, rel): 351 result = approx_equal(x, x, tol=tol, rel=rel) 352 self.assertTrue(result, 'equality failure for x=%r' % x) 353 result = approx_equal(-x, -x, tol=tol, rel=rel) 354 self.assertTrue(result, 'equality failure for x=%r' % -x) 355 356 def test_exactly_equal_ints(self): 357 # Test that equal int values are exactly equal. 358 for n in [42, 19740, 14974, 230, 1795, 700245, 36587]: 359 self.do_exactly_equal_test(n, 0, 0) 360 361 def test_exactly_equal_floats(self): 362 # Test that equal float values are exactly equal. 363 for x in [0.42, 1.9740, 1497.4, 23.0, 179.5, 70.0245, 36.587]: 364 self.do_exactly_equal_test(x, 0, 0) 365 366 def test_exactly_equal_fractions(self): 367 # Test that equal Fraction values are exactly equal. 368 F = Fraction 369 for f in [F(1, 2), F(0), F(5, 3), F(9, 7), F(35, 36), F(3, 7)]: 370 self.do_exactly_equal_test(f, 0, 0) 371 372 def test_exactly_equal_decimals(self): 373 # Test that equal Decimal values are exactly equal. 374 D = Decimal 375 for d in map(D, "8.2 31.274 912.04 16.745 1.2047".split()): 376 self.do_exactly_equal_test(d, 0, 0) 377 378 def test_exactly_equal_absolute(self): 379 # Test that equal values are exactly equal with an absolute error. 380 for n in [16, 1013, 1372, 1198, 971, 4]: 381 # Test as ints. 382 self.do_exactly_equal_test(n, 0.01, 0) 383 # Test as floats. 384 self.do_exactly_equal_test(n/10, 0.01, 0) 385 # Test as Fractions. 386 f = Fraction(n, 1234) 387 self.do_exactly_equal_test(f, 0.01, 0) 388 389 def test_exactly_equal_absolute_decimals(self): 390 # Test equal Decimal values are exactly equal with an absolute error. 391 self.do_exactly_equal_test(Decimal("3.571"), Decimal("0.01"), 0) 392 self.do_exactly_equal_test(-Decimal("81.3971"), Decimal("0.01"), 0) 393 394 def test_exactly_equal_relative(self): 395 # Test that equal values are exactly equal with a relative error. 396 for x in [8347, 101.3, -7910.28, Fraction(5, 21)]: 397 self.do_exactly_equal_test(x, 0, 0.01) 398 self.do_exactly_equal_test(Decimal("11.68"), 0, Decimal("0.01")) 399 400 def test_exactly_equal_both(self): 401 # Test that equal values are equal when both tol and rel are given. 402 for x in [41017, 16.742, -813.02, Fraction(3, 8)]: 403 self.do_exactly_equal_test(x, 0.1, 0.01) 404 D = Decimal 405 self.do_exactly_equal_test(D("7.2"), D("0.1"), D("0.01")) 406 407 408class ApproxEqualUnequalTest(unittest.TestCase): 409 # Unequal values should compare unequal with zero error tolerances. 410 # Test cases for unequal values, with exact equality test. 411 412 def do_exactly_unequal_test(self, x): 413 for a in (x, -x): 414 result = approx_equal(a, a+1, tol=0, rel=0) 415 self.assertFalse(result, 'inequality failure for x=%r' % a) 416 417 def test_exactly_unequal_ints(self): 418 # Test unequal int values are unequal with zero error tolerance. 419 for n in [951, 572305, 478, 917, 17240]: 420 self.do_exactly_unequal_test(n) 421 422 def test_exactly_unequal_floats(self): 423 # Test unequal float values are unequal with zero error tolerance. 424 for x in [9.51, 5723.05, 47.8, 9.17, 17.24]: 425 self.do_exactly_unequal_test(x) 426 427 def test_exactly_unequal_fractions(self): 428 # Test that unequal Fractions are unequal with zero error tolerance. 429 F = Fraction 430 for f in [F(1, 5), F(7, 9), F(12, 11), F(101, 99023)]: 431 self.do_exactly_unequal_test(f) 432 433 def test_exactly_unequal_decimals(self): 434 # Test that unequal Decimals are unequal with zero error tolerance. 435 for d in map(Decimal, "3.1415 298.12 3.47 18.996 0.00245".split()): 436 self.do_exactly_unequal_test(d) 437 438 439class ApproxEqualInexactTest(unittest.TestCase): 440 # Inexact test cases for approx_error. 441 # Test cases when comparing two values that are not exactly equal. 442 443 # === Absolute error tests === 444 445 def do_approx_equal_abs_test(self, x, delta): 446 template = "Test failure for x={!r}, y={!r}" 447 for y in (x + delta, x - delta): 448 msg = template.format(x, y) 449 self.assertTrue(approx_equal(x, y, tol=2*delta, rel=0), msg) 450 self.assertFalse(approx_equal(x, y, tol=delta/2, rel=0), msg) 451 452 def test_approx_equal_absolute_ints(self): 453 # Test approximate equality of ints with an absolute error. 454 for n in [-10737, -1975, -7, -2, 0, 1, 9, 37, 423, 9874, 23789110]: 455 self.do_approx_equal_abs_test(n, 10) 456 self.do_approx_equal_abs_test(n, 2) 457 458 def test_approx_equal_absolute_floats(self): 459 # Test approximate equality of floats with an absolute error. 460 for x in [-284.126, -97.1, -3.4, -2.15, 0.5, 1.0, 7.8, 4.23, 3817.4]: 461 self.do_approx_equal_abs_test(x, 1.5) 462 self.do_approx_equal_abs_test(x, 0.01) 463 self.do_approx_equal_abs_test(x, 0.0001) 464 465 def test_approx_equal_absolute_fractions(self): 466 # Test approximate equality of Fractions with an absolute error. 467 delta = Fraction(1, 29) 468 numerators = [-84, -15, -2, -1, 0, 1, 5, 17, 23, 34, 71] 469 for f in (Fraction(n, 29) for n in numerators): 470 self.do_approx_equal_abs_test(f, delta) 471 self.do_approx_equal_abs_test(f, float(delta)) 472 473 def test_approx_equal_absolute_decimals(self): 474 # Test approximate equality of Decimals with an absolute error. 475 delta = Decimal("0.01") 476 for d in map(Decimal, "1.0 3.5 36.08 61.79 7912.3648".split()): 477 self.do_approx_equal_abs_test(d, delta) 478 self.do_approx_equal_abs_test(-d, delta) 479 480 def test_cross_zero(self): 481 # Test for the case of the two values having opposite signs. 482 self.assertTrue(approx_equal(1e-5, -1e-5, tol=1e-4, rel=0)) 483 484 # === Relative error tests === 485 486 def do_approx_equal_rel_test(self, x, delta): 487 template = "Test failure for x={!r}, y={!r}" 488 for y in (x*(1+delta), x*(1-delta)): 489 msg = template.format(x, y) 490 self.assertTrue(approx_equal(x, y, tol=0, rel=2*delta), msg) 491 self.assertFalse(approx_equal(x, y, tol=0, rel=delta/2), msg) 492 493 def test_approx_equal_relative_ints(self): 494 # Test approximate equality of ints with a relative error. 495 self.assertTrue(approx_equal(64, 47, tol=0, rel=0.36)) 496 self.assertTrue(approx_equal(64, 47, tol=0, rel=0.37)) 497 # --- 498 self.assertTrue(approx_equal(449, 512, tol=0, rel=0.125)) 499 self.assertTrue(approx_equal(448, 512, tol=0, rel=0.125)) 500 self.assertFalse(approx_equal(447, 512, tol=0, rel=0.125)) 501 502 def test_approx_equal_relative_floats(self): 503 # Test approximate equality of floats with a relative error. 504 for x in [-178.34, -0.1, 0.1, 1.0, 36.97, 2847.136, 9145.074]: 505 self.do_approx_equal_rel_test(x, 0.02) 506 self.do_approx_equal_rel_test(x, 0.0001) 507 508 def test_approx_equal_relative_fractions(self): 509 # Test approximate equality of Fractions with a relative error. 510 F = Fraction 511 delta = Fraction(3, 8) 512 for f in [F(3, 84), F(17, 30), F(49, 50), F(92, 85)]: 513 for d in (delta, float(delta)): 514 self.do_approx_equal_rel_test(f, d) 515 self.do_approx_equal_rel_test(-f, d) 516 517 def test_approx_equal_relative_decimals(self): 518 # Test approximate equality of Decimals with a relative error. 519 for d in map(Decimal, "0.02 1.0 5.7 13.67 94.138 91027.9321".split()): 520 self.do_approx_equal_rel_test(d, Decimal("0.001")) 521 self.do_approx_equal_rel_test(-d, Decimal("0.05")) 522 523 # === Both absolute and relative error tests === 524 525 # There are four cases to consider: 526 # 1) actual error <= both absolute and relative error 527 # 2) actual error <= absolute error but > relative error 528 # 3) actual error <= relative error but > absolute error 529 # 4) actual error > both absolute and relative error 530 531 def do_check_both(self, a, b, tol, rel, tol_flag, rel_flag): 532 check = self.assertTrue if tol_flag else self.assertFalse 533 check(approx_equal(a, b, tol=tol, rel=0)) 534 check = self.assertTrue if rel_flag else self.assertFalse 535 check(approx_equal(a, b, tol=0, rel=rel)) 536 check = self.assertTrue if (tol_flag or rel_flag) else self.assertFalse 537 check(approx_equal(a, b, tol=tol, rel=rel)) 538 539 def test_approx_equal_both1(self): 540 # Test actual error <= both absolute and relative error. 541 self.do_check_both(7.955, 7.952, 0.004, 3.8e-4, True, True) 542 self.do_check_both(-7.387, -7.386, 0.002, 0.0002, True, True) 543 544 def test_approx_equal_both2(self): 545 # Test actual error <= absolute error but > relative error. 546 self.do_check_both(7.955, 7.952, 0.004, 3.7e-4, True, False) 547 548 def test_approx_equal_both3(self): 549 # Test actual error <= relative error but > absolute error. 550 self.do_check_both(7.955, 7.952, 0.001, 3.8e-4, False, True) 551 552 def test_approx_equal_both4(self): 553 # Test actual error > both absolute and relative error. 554 self.do_check_both(2.78, 2.75, 0.01, 0.001, False, False) 555 self.do_check_both(971.44, 971.47, 0.02, 3e-5, False, False) 556 557 558class ApproxEqualSpecialsTest(unittest.TestCase): 559 # Test approx_equal with NANs and INFs and zeroes. 560 561 def test_inf(self): 562 for type_ in (float, Decimal): 563 inf = type_('inf') 564 self.assertTrue(approx_equal(inf, inf)) 565 self.assertTrue(approx_equal(inf, inf, 0, 0)) 566 self.assertTrue(approx_equal(inf, inf, 1, 0.01)) 567 self.assertTrue(approx_equal(-inf, -inf)) 568 self.assertFalse(approx_equal(inf, -inf)) 569 self.assertFalse(approx_equal(inf, 1000)) 570 571 def test_nan(self): 572 for type_ in (float, Decimal): 573 nan = type_('nan') 574 for other in (nan, type_('inf'), 1000): 575 self.assertFalse(approx_equal(nan, other)) 576 577 def test_float_zeroes(self): 578 nzero = math.copysign(0.0, -1) 579 self.assertTrue(approx_equal(nzero, 0.0, tol=0.1, rel=0.1)) 580 581 def test_decimal_zeroes(self): 582 nzero = Decimal("-0.0") 583 self.assertTrue(approx_equal(nzero, Decimal(0), tol=0.1, rel=0.1)) 584 585 586class TestApproxEqualErrors(unittest.TestCase): 587 # Test error conditions of approx_equal. 588 589 def test_bad_tol(self): 590 # Test negative tol raises. 591 self.assertRaises(ValueError, approx_equal, 100, 100, -1, 0.1) 592 593 def test_bad_rel(self): 594 # Test negative rel raises. 595 self.assertRaises(ValueError, approx_equal, 100, 100, 1, -0.1) 596 597 598# --- Tests for NumericTestCase --- 599 600# The formatting routine that generates the error messages is complex enough 601# that it too needs testing. 602 603class TestNumericTestCase(unittest.TestCase): 604 # The exact wording of NumericTestCase error messages is *not* guaranteed, 605 # but we need to give them some sort of test to ensure that they are 606 # generated correctly. As a compromise, we look for specific substrings 607 # that are expected to be found even if the overall error message changes. 608 609 def do_test(self, args): 610 actual_msg = NumericTestCase._make_std_err_msg(*args) 611 expected = self.generate_substrings(*args) 612 for substring in expected: 613 self.assertIn(substring, actual_msg) 614 615 def test_numerictestcase_is_testcase(self): 616 # Ensure that NumericTestCase actually is a TestCase. 617 self.assertTrue(issubclass(NumericTestCase, unittest.TestCase)) 618 619 def test_error_msg_numeric(self): 620 # Test the error message generated for numeric comparisons. 621 args = (2.5, 4.0, 0.5, 0.25, None) 622 self.do_test(args) 623 624 def test_error_msg_sequence(self): 625 # Test the error message generated for sequence comparisons. 626 args = (3.75, 8.25, 1.25, 0.5, 7) 627 self.do_test(args) 628 629 def generate_substrings(self, first, second, tol, rel, idx): 630 """Return substrings we expect to see in error messages.""" 631 abs_err, rel_err = _calc_errors(first, second) 632 substrings = [ 633 'tol=%r' % tol, 634 'rel=%r' % rel, 635 'absolute error = %r' % abs_err, 636 'relative error = %r' % rel_err, 637 ] 638 if idx is not None: 639 substrings.append('differ at index %d' % idx) 640 return substrings 641 642 643# ======================================= 644# === Tests for the statistics module === 645# ======================================= 646 647 648class GlobalsTest(unittest.TestCase): 649 module = statistics 650 expected_metadata = ["__doc__", "__all__"] 651 652 def test_meta(self): 653 # Test for the existence of metadata. 654 for meta in self.expected_metadata: 655 self.assertTrue(hasattr(self.module, meta), 656 "%s not present" % meta) 657 658 def test_check_all(self): 659 # Check everything in __all__ exists and is public. 660 module = self.module 661 for name in module.__all__: 662 # No private names in __all__: 663 self.assertFalse(name.startswith("_"), 664 'private name "%s" in __all__' % name) 665 # And anything in __all__ must exist: 666 self.assertTrue(hasattr(module, name), 667 'missing name "%s" in __all__' % name) 668 669 670class DocTests(unittest.TestCase): 671 @unittest.skipIf(sys.flags.optimize >= 2, 672 "Docstrings are omitted with -OO and above") 673 def test_doc_tests(self): 674 failed, tried = doctest.testmod(statistics, optionflags=doctest.ELLIPSIS) 675 self.assertGreater(tried, 0) 676 self.assertEqual(failed, 0) 677 678class StatisticsErrorTest(unittest.TestCase): 679 def test_has_exception(self): 680 errmsg = ( 681 "Expected StatisticsError to be a ValueError, but got a" 682 " subclass of %r instead." 683 ) 684 self.assertTrue(hasattr(statistics, 'StatisticsError')) 685 self.assertTrue( 686 issubclass(statistics.StatisticsError, ValueError), 687 errmsg % statistics.StatisticsError.__base__ 688 ) 689 690 691# === Tests for private utility functions === 692 693class ExactRatioTest(unittest.TestCase): 694 # Test _exact_ratio utility. 695 696 def test_int(self): 697 for i in (-20, -3, 0, 5, 99, 10**20): 698 self.assertEqual(statistics._exact_ratio(i), (i, 1)) 699 700 def test_fraction(self): 701 numerators = (-5, 1, 12, 38) 702 for n in numerators: 703 f = Fraction(n, 37) 704 self.assertEqual(statistics._exact_ratio(f), (n, 37)) 705 706 def test_float(self): 707 self.assertEqual(statistics._exact_ratio(0.125), (1, 8)) 708 self.assertEqual(statistics._exact_ratio(1.125), (9, 8)) 709 data = [random.uniform(-100, 100) for _ in range(100)] 710 for x in data: 711 num, den = statistics._exact_ratio(x) 712 self.assertEqual(x, num/den) 713 714 def test_decimal(self): 715 D = Decimal 716 _exact_ratio = statistics._exact_ratio 717 self.assertEqual(_exact_ratio(D("0.125")), (1, 8)) 718 self.assertEqual(_exact_ratio(D("12.345")), (2469, 200)) 719 self.assertEqual(_exact_ratio(D("-1.98")), (-99, 50)) 720 721 def test_inf(self): 722 INF = float("INF") 723 class MyFloat(float): 724 pass 725 class MyDecimal(Decimal): 726 pass 727 for inf in (INF, -INF): 728 for type_ in (float, MyFloat, Decimal, MyDecimal): 729 x = type_(inf) 730 ratio = statistics._exact_ratio(x) 731 self.assertEqual(ratio, (x, None)) 732 self.assertEqual(type(ratio[0]), type_) 733 self.assertTrue(math.isinf(ratio[0])) 734 735 def test_float_nan(self): 736 NAN = float("NAN") 737 class MyFloat(float): 738 pass 739 for nan in (NAN, MyFloat(NAN)): 740 ratio = statistics._exact_ratio(nan) 741 self.assertTrue(math.isnan(ratio[0])) 742 self.assertIs(ratio[1], None) 743 self.assertEqual(type(ratio[0]), type(nan)) 744 745 def test_decimal_nan(self): 746 NAN = Decimal("NAN") 747 sNAN = Decimal("sNAN") 748 class MyDecimal(Decimal): 749 pass 750 for nan in (NAN, MyDecimal(NAN), sNAN, MyDecimal(sNAN)): 751 ratio = statistics._exact_ratio(nan) 752 self.assertTrue(_nan_equal(ratio[0], nan)) 753 self.assertIs(ratio[1], None) 754 self.assertEqual(type(ratio[0]), type(nan)) 755 756 757class DecimalToRatioTest(unittest.TestCase): 758 # Test _exact_ratio private function. 759 760 def test_infinity(self): 761 # Test that INFs are handled correctly. 762 inf = Decimal('INF') 763 self.assertEqual(statistics._exact_ratio(inf), (inf, None)) 764 self.assertEqual(statistics._exact_ratio(-inf), (-inf, None)) 765 766 def test_nan(self): 767 # Test that NANs are handled correctly. 768 for nan in (Decimal('NAN'), Decimal('sNAN')): 769 num, den = statistics._exact_ratio(nan) 770 # Because NANs always compare non-equal, we cannot use assertEqual. 771 # Nor can we use an identity test, as we don't guarantee anything 772 # about the object identity. 773 self.assertTrue(_nan_equal(num, nan)) 774 self.assertIs(den, None) 775 776 def test_sign(self): 777 # Test sign is calculated correctly. 778 numbers = [Decimal("9.8765e12"), Decimal("9.8765e-12")] 779 for d in numbers: 780 # First test positive decimals. 781 assert d > 0 782 num, den = statistics._exact_ratio(d) 783 self.assertGreaterEqual(num, 0) 784 self.assertGreater(den, 0) 785 # Then test negative decimals. 786 num, den = statistics._exact_ratio(-d) 787 self.assertLessEqual(num, 0) 788 self.assertGreater(den, 0) 789 790 def test_negative_exponent(self): 791 # Test result when the exponent is negative. 792 t = statistics._exact_ratio(Decimal("0.1234")) 793 self.assertEqual(t, (617, 5000)) 794 795 def test_positive_exponent(self): 796 # Test results when the exponent is positive. 797 t = statistics._exact_ratio(Decimal("1.234e7")) 798 self.assertEqual(t, (12340000, 1)) 799 800 def test_regression_20536(self): 801 # Regression test for issue 20536. 802 # See http://bugs.python.org/issue20536 803 t = statistics._exact_ratio(Decimal("1e2")) 804 self.assertEqual(t, (100, 1)) 805 t = statistics._exact_ratio(Decimal("1.47e5")) 806 self.assertEqual(t, (147000, 1)) 807 808 809class IsFiniteTest(unittest.TestCase): 810 # Test _isfinite private function. 811 812 def test_finite(self): 813 # Test that finite numbers are recognised as finite. 814 for x in (5, Fraction(1, 3), 2.5, Decimal("5.5")): 815 self.assertTrue(statistics._isfinite(x)) 816 817 def test_infinity(self): 818 # Test that INFs are not recognised as finite. 819 for x in (float("inf"), Decimal("inf")): 820 self.assertFalse(statistics._isfinite(x)) 821 822 def test_nan(self): 823 # Test that NANs are not recognised as finite. 824 for x in (float("nan"), Decimal("NAN"), Decimal("sNAN")): 825 self.assertFalse(statistics._isfinite(x)) 826 827 828class CoerceTest(unittest.TestCase): 829 # Test that private function _coerce correctly deals with types. 830 831 # The coercion rules are currently an implementation detail, although at 832 # some point that should change. The tests and comments here define the 833 # correct implementation. 834 835 # Pre-conditions of _coerce: 836 # 837 # - The first time _sum calls _coerce, the 838 # - coerce(T, S) will never be called with bool as the first argument; 839 # this is a pre-condition, guarded with an assertion. 840 841 # 842 # - coerce(T, T) will always return T; we assume T is a valid numeric 843 # type. Violate this assumption at your own risk. 844 # 845 # - Apart from as above, bool is treated as if it were actually int. 846 # 847 # - coerce(int, X) and coerce(X, int) return X. 848 # - 849 def test_bool(self): 850 # bool is somewhat special, due to the pre-condition that it is 851 # never given as the first argument to _coerce, and that it cannot 852 # be subclassed. So we test it specially. 853 for T in (int, float, Fraction, Decimal): 854 self.assertIs(statistics._coerce(T, bool), T) 855 class MyClass(T): pass 856 self.assertIs(statistics._coerce(MyClass, bool), MyClass) 857 858 def assertCoerceTo(self, A, B): 859 """Assert that type A coerces to B.""" 860 self.assertIs(statistics._coerce(A, B), B) 861 self.assertIs(statistics._coerce(B, A), B) 862 863 def check_coerce_to(self, A, B): 864 """Checks that type A coerces to B, including subclasses.""" 865 # Assert that type A is coerced to B. 866 self.assertCoerceTo(A, B) 867 # Subclasses of A are also coerced to B. 868 class SubclassOfA(A): pass 869 self.assertCoerceTo(SubclassOfA, B) 870 # A, and subclasses of A, are coerced to subclasses of B. 871 class SubclassOfB(B): pass 872 self.assertCoerceTo(A, SubclassOfB) 873 self.assertCoerceTo(SubclassOfA, SubclassOfB) 874 875 def assertCoerceRaises(self, A, B): 876 """Assert that coercing A to B, or vice versa, raises TypeError.""" 877 self.assertRaises(TypeError, statistics._coerce, (A, B)) 878 self.assertRaises(TypeError, statistics._coerce, (B, A)) 879 880 def check_type_coercions(self, T): 881 """Check that type T coerces correctly with subclasses of itself.""" 882 assert T is not bool 883 # Coercing a type with itself returns the same type. 884 self.assertIs(statistics._coerce(T, T), T) 885 # Coercing a type with a subclass of itself returns the subclass. 886 class U(T): pass 887 class V(T): pass 888 class W(U): pass 889 for typ in (U, V, W): 890 self.assertCoerceTo(T, typ) 891 self.assertCoerceTo(U, W) 892 # Coercing two subclasses that aren't parent/child is an error. 893 self.assertCoerceRaises(U, V) 894 self.assertCoerceRaises(V, W) 895 896 def test_int(self): 897 # Check that int coerces correctly. 898 self.check_type_coercions(int) 899 for typ in (float, Fraction, Decimal): 900 self.check_coerce_to(int, typ) 901 902 def test_fraction(self): 903 # Check that Fraction coerces correctly. 904 self.check_type_coercions(Fraction) 905 self.check_coerce_to(Fraction, float) 906 907 def test_decimal(self): 908 # Check that Decimal coerces correctly. 909 self.check_type_coercions(Decimal) 910 911 def test_float(self): 912 # Check that float coerces correctly. 913 self.check_type_coercions(float) 914 915 def test_non_numeric_types(self): 916 for bad_type in (str, list, type(None), tuple, dict): 917 for good_type in (int, float, Fraction, Decimal): 918 self.assertCoerceRaises(good_type, bad_type) 919 920 def test_incompatible_types(self): 921 # Test that incompatible types raise. 922 for T in (float, Fraction): 923 class MySubclass(T): pass 924 self.assertCoerceRaises(T, Decimal) 925 self.assertCoerceRaises(MySubclass, Decimal) 926 927 928class ConvertTest(unittest.TestCase): 929 # Test private _convert function. 930 931 def check_exact_equal(self, x, y): 932 """Check that x equals y, and has the same type as well.""" 933 self.assertEqual(x, y) 934 self.assertIs(type(x), type(y)) 935 936 def test_int(self): 937 # Test conversions to int. 938 x = statistics._convert(Fraction(71), int) 939 self.check_exact_equal(x, 71) 940 class MyInt(int): pass 941 x = statistics._convert(Fraction(17), MyInt) 942 self.check_exact_equal(x, MyInt(17)) 943 944 def test_fraction(self): 945 # Test conversions to Fraction. 946 x = statistics._convert(Fraction(95, 99), Fraction) 947 self.check_exact_equal(x, Fraction(95, 99)) 948 class MyFraction(Fraction): 949 def __truediv__(self, other): 950 return self.__class__(super().__truediv__(other)) 951 x = statistics._convert(Fraction(71, 13), MyFraction) 952 self.check_exact_equal(x, MyFraction(71, 13)) 953 954 def test_float(self): 955 # Test conversions to float. 956 x = statistics._convert(Fraction(-1, 2), float) 957 self.check_exact_equal(x, -0.5) 958 class MyFloat(float): 959 def __truediv__(self, other): 960 return self.__class__(super().__truediv__(other)) 961 x = statistics._convert(Fraction(9, 8), MyFloat) 962 self.check_exact_equal(x, MyFloat(1.125)) 963 964 def test_decimal(self): 965 # Test conversions to Decimal. 966 x = statistics._convert(Fraction(1, 40), Decimal) 967 self.check_exact_equal(x, Decimal("0.025")) 968 class MyDecimal(Decimal): 969 def __truediv__(self, other): 970 return self.__class__(super().__truediv__(other)) 971 x = statistics._convert(Fraction(-15, 16), MyDecimal) 972 self.check_exact_equal(x, MyDecimal("-0.9375")) 973 974 def test_inf(self): 975 for INF in (float('inf'), Decimal('inf')): 976 for inf in (INF, -INF): 977 x = statistics._convert(inf, type(inf)) 978 self.check_exact_equal(x, inf) 979 980 def test_nan(self): 981 for nan in (float('nan'), Decimal('NAN'), Decimal('sNAN')): 982 x = statistics._convert(nan, type(nan)) 983 self.assertTrue(_nan_equal(x, nan)) 984 985 986class FailNegTest(unittest.TestCase): 987 """Test _fail_neg private function.""" 988 989 def test_pass_through(self): 990 # Test that values are passed through unchanged. 991 values = [1, 2.0, Fraction(3), Decimal(4)] 992 new = list(statistics._fail_neg(values)) 993 self.assertEqual(values, new) 994 995 def test_negatives_raise(self): 996 # Test that negatives raise an exception. 997 for x in [1, 2.0, Fraction(3), Decimal(4)]: 998 seq = [-x] 999 it = statistics._fail_neg(seq) 1000 self.assertRaises(statistics.StatisticsError, next, it) 1001 1002 def test_error_msg(self): 1003 # Test that a given error message is used. 1004 msg = "badness #%d" % random.randint(10000, 99999) 1005 try: 1006 next(statistics._fail_neg([-1], msg)) 1007 except statistics.StatisticsError as e: 1008 errmsg = e.args[0] 1009 else: 1010 self.fail("expected exception, but it didn't happen") 1011 self.assertEqual(errmsg, msg) 1012 1013 1014# === Tests for public functions === 1015 1016class UnivariateCommonMixin: 1017 # Common tests for most univariate functions that take a data argument. 1018 1019 def test_no_args(self): 1020 # Fail if given no arguments. 1021 self.assertRaises(TypeError, self.func) 1022 1023 def test_empty_data(self): 1024 # Fail when the data argument (first argument) is empty. 1025 for empty in ([], (), iter([])): 1026 self.assertRaises(statistics.StatisticsError, self.func, empty) 1027 1028 def prepare_data(self): 1029 """Return int data for various tests.""" 1030 data = list(range(10)) 1031 while data == sorted(data): 1032 random.shuffle(data) 1033 return data 1034 1035 def test_no_inplace_modifications(self): 1036 # Test that the function does not modify its input data. 1037 data = self.prepare_data() 1038 assert len(data) != 1 # Necessary to avoid infinite loop. 1039 assert data != sorted(data) 1040 saved = data[:] 1041 assert data is not saved 1042 _ = self.func(data) 1043 self.assertListEqual(data, saved, "data has been modified") 1044 1045 def test_order_doesnt_matter(self): 1046 # Test that the order of data points doesn't change the result. 1047 1048 # CAUTION: due to floating point rounding errors, the result actually 1049 # may depend on the order. Consider this test representing an ideal. 1050 # To avoid this test failing, only test with exact values such as ints 1051 # or Fractions. 1052 data = [1, 2, 3, 3, 3, 4, 5, 6]*100 1053 expected = self.func(data) 1054 random.shuffle(data) 1055 actual = self.func(data) 1056 self.assertEqual(expected, actual) 1057 1058 def test_type_of_data_collection(self): 1059 # Test that the type of iterable data doesn't effect the result. 1060 class MyList(list): 1061 pass 1062 class MyTuple(tuple): 1063 pass 1064 def generator(data): 1065 return (obj for obj in data) 1066 data = self.prepare_data() 1067 expected = self.func(data) 1068 for kind in (list, tuple, iter, MyList, MyTuple, generator): 1069 result = self.func(kind(data)) 1070 self.assertEqual(result, expected) 1071 1072 def test_range_data(self): 1073 # Test that functions work with range objects. 1074 data = range(20, 50, 3) 1075 expected = self.func(list(data)) 1076 self.assertEqual(self.func(data), expected) 1077 1078 def test_bad_arg_types(self): 1079 # Test that function raises when given data of the wrong type. 1080 1081 # Don't roll the following into a loop like this: 1082 # for bad in list_of_bad: 1083 # self.check_for_type_error(bad) 1084 # 1085 # Since assertRaises doesn't show the arguments that caused the test 1086 # failure, it is very difficult to debug these test failures when the 1087 # following are in a loop. 1088 self.check_for_type_error(None) 1089 self.check_for_type_error(23) 1090 self.check_for_type_error(42.0) 1091 self.check_for_type_error(object()) 1092 1093 def check_for_type_error(self, *args): 1094 self.assertRaises(TypeError, self.func, *args) 1095 1096 def test_type_of_data_element(self): 1097 # Check the type of data elements doesn't affect the numeric result. 1098 # This is a weaker test than UnivariateTypeMixin.testTypesConserved, 1099 # because it checks the numeric result by equality, but not by type. 1100 class MyFloat(float): 1101 def __truediv__(self, other): 1102 return type(self)(super().__truediv__(other)) 1103 def __add__(self, other): 1104 return type(self)(super().__add__(other)) 1105 __radd__ = __add__ 1106 1107 raw = self.prepare_data() 1108 expected = self.func(raw) 1109 for kind in (float, MyFloat, Decimal, Fraction): 1110 data = [kind(x) for x in raw] 1111 result = type(expected)(self.func(data)) 1112 self.assertEqual(result, expected) 1113 1114 1115class UnivariateTypeMixin: 1116 """Mixin class for type-conserving functions. 1117 1118 This mixin class holds test(s) for functions which conserve the type of 1119 individual data points. E.g. the mean of a list of Fractions should itself 1120 be a Fraction. 1121 1122 Not all tests to do with types need go in this class. Only those that 1123 rely on the function returning the same type as its input data. 1124 """ 1125 def prepare_types_for_conservation_test(self): 1126 """Return the types which are expected to be conserved.""" 1127 class MyFloat(float): 1128 def __truediv__(self, other): 1129 return type(self)(super().__truediv__(other)) 1130 def __rtruediv__(self, other): 1131 return type(self)(super().__rtruediv__(other)) 1132 def __sub__(self, other): 1133 return type(self)(super().__sub__(other)) 1134 def __rsub__(self, other): 1135 return type(self)(super().__rsub__(other)) 1136 def __pow__(self, other): 1137 return type(self)(super().__pow__(other)) 1138 def __add__(self, other): 1139 return type(self)(super().__add__(other)) 1140 __radd__ = __add__ 1141 return (float, Decimal, Fraction, MyFloat) 1142 1143 def test_types_conserved(self): 1144 # Test that functions keeps the same type as their data points. 1145 # (Excludes mixed data types.) This only tests the type of the return 1146 # result, not the value. 1147 data = self.prepare_data() 1148 for kind in self.prepare_types_for_conservation_test(): 1149 d = [kind(x) for x in data] 1150 result = self.func(d) 1151 self.assertIs(type(result), kind) 1152 1153 1154class TestSumCommon(UnivariateCommonMixin, UnivariateTypeMixin): 1155 # Common test cases for statistics._sum() function. 1156 1157 # This test suite looks only at the numeric value returned by _sum, 1158 # after conversion to the appropriate type. 1159 def setUp(self): 1160 def simplified_sum(*args): 1161 T, value, n = statistics._sum(*args) 1162 return statistics._coerce(value, T) 1163 self.func = simplified_sum 1164 1165 1166class TestSum(NumericTestCase): 1167 # Test cases for statistics._sum() function. 1168 1169 # These tests look at the entire three value tuple returned by _sum. 1170 1171 def setUp(self): 1172 self.func = statistics._sum 1173 1174 def test_empty_data(self): 1175 # Override test for empty data. 1176 for data in ([], (), iter([])): 1177 self.assertEqual(self.func(data), (int, Fraction(0), 0)) 1178 self.assertEqual(self.func(data, 23), (int, Fraction(23), 0)) 1179 self.assertEqual(self.func(data, 2.3), (float, Fraction(2.3), 0)) 1180 1181 def test_ints(self): 1182 self.assertEqual(self.func([1, 5, 3, -4, -8, 20, 42, 1]), 1183 (int, Fraction(60), 8)) 1184 self.assertEqual(self.func([4, 2, 3, -8, 7], 1000), 1185 (int, Fraction(1008), 5)) 1186 1187 def test_floats(self): 1188 self.assertEqual(self.func([0.25]*20), 1189 (float, Fraction(5.0), 20)) 1190 self.assertEqual(self.func([0.125, 0.25, 0.5, 0.75], 1.5), 1191 (float, Fraction(3.125), 4)) 1192 1193 def test_fractions(self): 1194 self.assertEqual(self.func([Fraction(1, 1000)]*500), 1195 (Fraction, Fraction(1, 2), 500)) 1196 1197 def test_decimals(self): 1198 D = Decimal 1199 data = [D("0.001"), D("5.246"), D("1.702"), D("-0.025"), 1200 D("3.974"), D("2.328"), D("4.617"), D("2.843"), 1201 ] 1202 self.assertEqual(self.func(data), 1203 (Decimal, Decimal("20.686"), 8)) 1204 1205 def test_compare_with_math_fsum(self): 1206 # Compare with the math.fsum function. 1207 # Ideally we ought to get the exact same result, but sometimes 1208 # we differ by a very slight amount :-( 1209 data = [random.uniform(-100, 1000) for _ in range(1000)] 1210 self.assertApproxEqual(float(self.func(data)[1]), math.fsum(data), rel=2e-16) 1211 1212 def test_start_argument(self): 1213 # Test that the optional start argument works correctly. 1214 data = [random.uniform(1, 1000) for _ in range(100)] 1215 t = self.func(data)[1] 1216 self.assertEqual(t+42, self.func(data, 42)[1]) 1217 self.assertEqual(t-23, self.func(data, -23)[1]) 1218 self.assertEqual(t+Fraction(1e20), self.func(data, 1e20)[1]) 1219 1220 def test_strings_fail(self): 1221 # Sum of strings should fail. 1222 self.assertRaises(TypeError, self.func, [1, 2, 3], '999') 1223 self.assertRaises(TypeError, self.func, [1, 2, 3, '999']) 1224 1225 def test_bytes_fail(self): 1226 # Sum of bytes should fail. 1227 self.assertRaises(TypeError, self.func, [1, 2, 3], b'999') 1228 self.assertRaises(TypeError, self.func, [1, 2, 3, b'999']) 1229 1230 def test_mixed_sum(self): 1231 # Mixed input types are not (currently) allowed. 1232 # Check that mixed data types fail. 1233 self.assertRaises(TypeError, self.func, [1, 2.0, Decimal(1)]) 1234 # And so does mixed start argument. 1235 self.assertRaises(TypeError, self.func, [1, 2.0], Decimal(1)) 1236 1237 1238class SumTortureTest(NumericTestCase): 1239 def test_torture(self): 1240 # Tim Peters' torture test for sum, and variants of same. 1241 self.assertEqual(statistics._sum([1, 1e100, 1, -1e100]*10000), 1242 (float, Fraction(20000.0), 40000)) 1243 self.assertEqual(statistics._sum([1e100, 1, 1, -1e100]*10000), 1244 (float, Fraction(20000.0), 40000)) 1245 T, num, count = statistics._sum([1e-100, 1, 1e-100, -1]*10000) 1246 self.assertIs(T, float) 1247 self.assertEqual(count, 40000) 1248 self.assertApproxEqual(float(num), 2.0e-96, rel=5e-16) 1249 1250 1251class SumSpecialValues(NumericTestCase): 1252 # Test that sum works correctly with IEEE-754 special values. 1253 1254 def test_nan(self): 1255 for type_ in (float, Decimal): 1256 nan = type_('nan') 1257 result = statistics._sum([1, nan, 2])[1] 1258 self.assertIs(type(result), type_) 1259 self.assertTrue(math.isnan(result)) 1260 1261 def check_infinity(self, x, inf): 1262 """Check x is an infinity of the same type and sign as inf.""" 1263 self.assertTrue(math.isinf(x)) 1264 self.assertIs(type(x), type(inf)) 1265 self.assertEqual(x > 0, inf > 0) 1266 assert x == inf 1267 1268 def do_test_inf(self, inf): 1269 # Adding a single infinity gives infinity. 1270 result = statistics._sum([1, 2, inf, 3])[1] 1271 self.check_infinity(result, inf) 1272 # Adding two infinities of the same sign also gives infinity. 1273 result = statistics._sum([1, 2, inf, 3, inf, 4])[1] 1274 self.check_infinity(result, inf) 1275 1276 def test_float_inf(self): 1277 inf = float('inf') 1278 for sign in (+1, -1): 1279 self.do_test_inf(sign*inf) 1280 1281 def test_decimal_inf(self): 1282 inf = Decimal('inf') 1283 for sign in (+1, -1): 1284 self.do_test_inf(sign*inf) 1285 1286 def test_float_mismatched_infs(self): 1287 # Test that adding two infinities of opposite sign gives a NAN. 1288 inf = float('inf') 1289 result = statistics._sum([1, 2, inf, 3, -inf, 4])[1] 1290 self.assertTrue(math.isnan(result)) 1291 1292 def test_decimal_extendedcontext_mismatched_infs_to_nan(self): 1293 # Test adding Decimal INFs with opposite sign returns NAN. 1294 inf = Decimal('inf') 1295 data = [1, 2, inf, 3, -inf, 4] 1296 with decimal.localcontext(decimal.ExtendedContext): 1297 self.assertTrue(math.isnan(statistics._sum(data)[1])) 1298 1299 def test_decimal_basiccontext_mismatched_infs_to_nan(self): 1300 # Test adding Decimal INFs with opposite sign raises InvalidOperation. 1301 inf = Decimal('inf') 1302 data = [1, 2, inf, 3, -inf, 4] 1303 with decimal.localcontext(decimal.BasicContext): 1304 self.assertRaises(decimal.InvalidOperation, statistics._sum, data) 1305 1306 def test_decimal_snan_raises(self): 1307 # Adding sNAN should raise InvalidOperation. 1308 sNAN = Decimal('sNAN') 1309 data = [1, sNAN, 2] 1310 self.assertRaises(decimal.InvalidOperation, statistics._sum, data) 1311 1312 1313# === Tests for averages === 1314 1315class AverageMixin(UnivariateCommonMixin): 1316 # Mixin class holding common tests for averages. 1317 1318 def test_single_value(self): 1319 # Average of a single value is the value itself. 1320 for x in (23, 42.5, 1.3e15, Fraction(15, 19), Decimal('0.28')): 1321 self.assertEqual(self.func([x]), x) 1322 1323 def prepare_values_for_repeated_single_test(self): 1324 return (3.5, 17, 2.5e15, Fraction(61, 67), Decimal('4.9712')) 1325 1326 def test_repeated_single_value(self): 1327 # The average of a single repeated value is the value itself. 1328 for x in self.prepare_values_for_repeated_single_test(): 1329 for count in (2, 5, 10, 20): 1330 with self.subTest(x=x, count=count): 1331 data = [x]*count 1332 self.assertEqual(self.func(data), x) 1333 1334 1335class TestMean(NumericTestCase, AverageMixin, UnivariateTypeMixin): 1336 def setUp(self): 1337 self.func = statistics.mean 1338 1339 def test_torture_pep(self): 1340 # "Torture Test" from PEP-450. 1341 self.assertEqual(self.func([1e100, 1, 3, -1e100]), 1) 1342 1343 def test_ints(self): 1344 # Test mean with ints. 1345 data = [0, 1, 2, 3, 3, 3, 4, 5, 5, 6, 7, 7, 7, 7, 8, 9] 1346 random.shuffle(data) 1347 self.assertEqual(self.func(data), 4.8125) 1348 1349 def test_floats(self): 1350 # Test mean with floats. 1351 data = [17.25, 19.75, 20.0, 21.5, 21.75, 23.25, 25.125, 27.5] 1352 random.shuffle(data) 1353 self.assertEqual(self.func(data), 22.015625) 1354 1355 def test_decimals(self): 1356 # Test mean with Decimals. 1357 D = Decimal 1358 data = [D("1.634"), D("2.517"), D("3.912"), D("4.072"), D("5.813")] 1359 random.shuffle(data) 1360 self.assertEqual(self.func(data), D("3.5896")) 1361 1362 def test_fractions(self): 1363 # Test mean with Fractions. 1364 F = Fraction 1365 data = [F(1, 2), F(2, 3), F(3, 4), F(4, 5), F(5, 6), F(6, 7), F(7, 8)] 1366 random.shuffle(data) 1367 self.assertEqual(self.func(data), F(1479, 1960)) 1368 1369 def test_inf(self): 1370 # Test mean with infinities. 1371 raw = [1, 3, 5, 7, 9] # Use only ints, to avoid TypeError later. 1372 for kind in (float, Decimal): 1373 for sign in (1, -1): 1374 inf = kind("inf")*sign 1375 data = raw + [inf] 1376 result = self.func(data) 1377 self.assertTrue(math.isinf(result)) 1378 self.assertEqual(result, inf) 1379 1380 def test_mismatched_infs(self): 1381 # Test mean with infinities of opposite sign. 1382 data = [2, 4, 6, float('inf'), 1, 3, 5, float('-inf')] 1383 result = self.func(data) 1384 self.assertTrue(math.isnan(result)) 1385 1386 def test_nan(self): 1387 # Test mean with NANs. 1388 raw = [1, 3, 5, 7, 9] # Use only ints, to avoid TypeError later. 1389 for kind in (float, Decimal): 1390 inf = kind("nan") 1391 data = raw + [inf] 1392 result = self.func(data) 1393 self.assertTrue(math.isnan(result)) 1394 1395 def test_big_data(self): 1396 # Test adding a large constant to every data point. 1397 c = 1e9 1398 data = [3.4, 4.5, 4.9, 6.7, 6.8, 7.2, 8.0, 8.1, 9.4] 1399 expected = self.func(data) + c 1400 assert expected != c 1401 result = self.func([x+c for x in data]) 1402 self.assertEqual(result, expected) 1403 1404 def test_doubled_data(self): 1405 # Mean of [a,b,c...z] should be same as for [a,a,b,b,c,c...z,z]. 1406 data = [random.uniform(-3, 5) for _ in range(1000)] 1407 expected = self.func(data) 1408 actual = self.func(data*2) 1409 self.assertApproxEqual(actual, expected) 1410 1411 def test_regression_20561(self): 1412 # Regression test for issue 20561. 1413 # See http://bugs.python.org/issue20561 1414 d = Decimal('1e4') 1415 self.assertEqual(statistics.mean([d]), d) 1416 1417 def test_regression_25177(self): 1418 # Regression test for issue 25177. 1419 # Ensure very big and very small floats don't overflow. 1420 # See http://bugs.python.org/issue25177. 1421 self.assertEqual(statistics.mean( 1422 [8.988465674311579e+307, 8.98846567431158e+307]), 1423 8.98846567431158e+307) 1424 big = 8.98846567431158e+307 1425 tiny = 5e-324 1426 for n in (2, 3, 5, 200): 1427 self.assertEqual(statistics.mean([big]*n), big) 1428 self.assertEqual(statistics.mean([tiny]*n), tiny) 1429 1430 1431class TestHarmonicMean(NumericTestCase, AverageMixin, UnivariateTypeMixin): 1432 def setUp(self): 1433 self.func = statistics.harmonic_mean 1434 1435 def prepare_data(self): 1436 # Override mixin method. 1437 values = super().prepare_data() 1438 values.remove(0) 1439 return values 1440 1441 def prepare_values_for_repeated_single_test(self): 1442 # Override mixin method. 1443 return (3.5, 17, 2.5e15, Fraction(61, 67), Decimal('4.125')) 1444 1445 def test_zero(self): 1446 # Test that harmonic mean returns zero when given zero. 1447 values = [1, 0, 2] 1448 self.assertEqual(self.func(values), 0) 1449 1450 def test_negative_error(self): 1451 # Test that harmonic mean raises when given a negative value. 1452 exc = statistics.StatisticsError 1453 for values in ([-1], [1, -2, 3]): 1454 with self.subTest(values=values): 1455 self.assertRaises(exc, self.func, values) 1456 1457 def test_ints(self): 1458 # Test harmonic mean with ints. 1459 data = [2, 4, 4, 8, 16, 16] 1460 random.shuffle(data) 1461 self.assertEqual(self.func(data), 6*4/5) 1462 1463 def test_floats_exact(self): 1464 # Test harmonic mean with some carefully chosen floats. 1465 data = [1/8, 1/4, 1/4, 1/2, 1/2] 1466 random.shuffle(data) 1467 self.assertEqual(self.func(data), 1/4) 1468 self.assertEqual(self.func([0.25, 0.5, 1.0, 1.0]), 0.5) 1469 1470 def test_singleton_lists(self): 1471 # Test that harmonic mean([x]) returns (approximately) x. 1472 for x in range(1, 101): 1473 self.assertEqual(self.func([x]), x) 1474 1475 def test_decimals_exact(self): 1476 # Test harmonic mean with some carefully chosen Decimals. 1477 D = Decimal 1478 self.assertEqual(self.func([D(15), D(30), D(60), D(60)]), D(30)) 1479 data = [D("0.05"), D("0.10"), D("0.20"), D("0.20")] 1480 random.shuffle(data) 1481 self.assertEqual(self.func(data), D("0.10")) 1482 data = [D("1.68"), D("0.32"), D("5.94"), D("2.75")] 1483 random.shuffle(data) 1484 self.assertEqual(self.func(data), D(66528)/70723) 1485 1486 def test_fractions(self): 1487 # Test harmonic mean with Fractions. 1488 F = Fraction 1489 data = [F(1, 2), F(2, 3), F(3, 4), F(4, 5), F(5, 6), F(6, 7), F(7, 8)] 1490 random.shuffle(data) 1491 self.assertEqual(self.func(data), F(7*420, 4029)) 1492 1493 def test_inf(self): 1494 # Test harmonic mean with infinity. 1495 values = [2.0, float('inf'), 1.0] 1496 self.assertEqual(self.func(values), 2.0) 1497 1498 def test_nan(self): 1499 # Test harmonic mean with NANs. 1500 values = [2.0, float('nan'), 1.0] 1501 self.assertTrue(math.isnan(self.func(values))) 1502 1503 def test_multiply_data_points(self): 1504 # Test multiplying every data point by a constant. 1505 c = 111 1506 data = [3.4, 4.5, 4.9, 6.7, 6.8, 7.2, 8.0, 8.1, 9.4] 1507 expected = self.func(data)*c 1508 result = self.func([x*c for x in data]) 1509 self.assertEqual(result, expected) 1510 1511 def test_doubled_data(self): 1512 # Harmonic mean of [a,b...z] should be same as for [a,a,b,b...z,z]. 1513 data = [random.uniform(1, 5) for _ in range(1000)] 1514 expected = self.func(data) 1515 actual = self.func(data*2) 1516 self.assertApproxEqual(actual, expected) 1517 1518 1519class TestMedian(NumericTestCase, AverageMixin): 1520 # Common tests for median and all median.* functions. 1521 def setUp(self): 1522 self.func = statistics.median 1523 1524 def prepare_data(self): 1525 """Overload method from UnivariateCommonMixin.""" 1526 data = super().prepare_data() 1527 if len(data)%2 != 1: 1528 data.append(2) 1529 return data 1530 1531 def test_even_ints(self): 1532 # Test median with an even number of int data points. 1533 data = [1, 2, 3, 4, 5, 6] 1534 assert len(data)%2 == 0 1535 self.assertEqual(self.func(data), 3.5) 1536 1537 def test_odd_ints(self): 1538 # Test median with an odd number of int data points. 1539 data = [1, 2, 3, 4, 5, 6, 9] 1540 assert len(data)%2 == 1 1541 self.assertEqual(self.func(data), 4) 1542 1543 def test_odd_fractions(self): 1544 # Test median works with an odd number of Fractions. 1545 F = Fraction 1546 data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7)] 1547 assert len(data)%2 == 1 1548 random.shuffle(data) 1549 self.assertEqual(self.func(data), F(3, 7)) 1550 1551 def test_even_fractions(self): 1552 # Test median works with an even number of Fractions. 1553 F = Fraction 1554 data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)] 1555 assert len(data)%2 == 0 1556 random.shuffle(data) 1557 self.assertEqual(self.func(data), F(1, 2)) 1558 1559 def test_odd_decimals(self): 1560 # Test median works with an odd number of Decimals. 1561 D = Decimal 1562 data = [D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')] 1563 assert len(data)%2 == 1 1564 random.shuffle(data) 1565 self.assertEqual(self.func(data), D('4.2')) 1566 1567 def test_even_decimals(self): 1568 # Test median works with an even number of Decimals. 1569 D = Decimal 1570 data = [D('1.2'), D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')] 1571 assert len(data)%2 == 0 1572 random.shuffle(data) 1573 self.assertEqual(self.func(data), D('3.65')) 1574 1575 1576class TestMedianDataType(NumericTestCase, UnivariateTypeMixin): 1577 # Test conservation of data element type for median. 1578 def setUp(self): 1579 self.func = statistics.median 1580 1581 def prepare_data(self): 1582 data = list(range(15)) 1583 assert len(data)%2 == 1 1584 while data == sorted(data): 1585 random.shuffle(data) 1586 return data 1587 1588 1589class TestMedianLow(TestMedian, UnivariateTypeMixin): 1590 def setUp(self): 1591 self.func = statistics.median_low 1592 1593 def test_even_ints(self): 1594 # Test median_low with an even number of ints. 1595 data = [1, 2, 3, 4, 5, 6] 1596 assert len(data)%2 == 0 1597 self.assertEqual(self.func(data), 3) 1598 1599 def test_even_fractions(self): 1600 # Test median_low works with an even number of Fractions. 1601 F = Fraction 1602 data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)] 1603 assert len(data)%2 == 0 1604 random.shuffle(data) 1605 self.assertEqual(self.func(data), F(3, 7)) 1606 1607 def test_even_decimals(self): 1608 # Test median_low works with an even number of Decimals. 1609 D = Decimal 1610 data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')] 1611 assert len(data)%2 == 0 1612 random.shuffle(data) 1613 self.assertEqual(self.func(data), D('3.3')) 1614 1615 1616class TestMedianHigh(TestMedian, UnivariateTypeMixin): 1617 def setUp(self): 1618 self.func = statistics.median_high 1619 1620 def test_even_ints(self): 1621 # Test median_high with an even number of ints. 1622 data = [1, 2, 3, 4, 5, 6] 1623 assert len(data)%2 == 0 1624 self.assertEqual(self.func(data), 4) 1625 1626 def test_even_fractions(self): 1627 # Test median_high works with an even number of Fractions. 1628 F = Fraction 1629 data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)] 1630 assert len(data)%2 == 0 1631 random.shuffle(data) 1632 self.assertEqual(self.func(data), F(4, 7)) 1633 1634 def test_even_decimals(self): 1635 # Test median_high works with an even number of Decimals. 1636 D = Decimal 1637 data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')] 1638 assert len(data)%2 == 0 1639 random.shuffle(data) 1640 self.assertEqual(self.func(data), D('4.4')) 1641 1642 1643class TestMedianGrouped(TestMedian): 1644 # Test median_grouped. 1645 # Doesn't conserve data element types, so don't use TestMedianType. 1646 def setUp(self): 1647 self.func = statistics.median_grouped 1648 1649 def test_odd_number_repeated(self): 1650 # Test median.grouped with repeated median values. 1651 data = [12, 13, 14, 14, 14, 15, 15] 1652 assert len(data)%2 == 1 1653 self.assertEqual(self.func(data), 14) 1654 #--- 1655 data = [12, 13, 14, 14, 14, 14, 15] 1656 assert len(data)%2 == 1 1657 self.assertEqual(self.func(data), 13.875) 1658 #--- 1659 data = [5, 10, 10, 15, 20, 20, 20, 20, 25, 25, 30] 1660 assert len(data)%2 == 1 1661 self.assertEqual(self.func(data, 5), 19.375) 1662 #--- 1663 data = [16, 18, 18, 18, 18, 20, 20, 20, 22, 22, 22, 24, 24, 26, 28] 1664 assert len(data)%2 == 1 1665 self.assertApproxEqual(self.func(data, 2), 20.66666667, tol=1e-8) 1666 1667 def test_even_number_repeated(self): 1668 # Test median.grouped with repeated median values. 1669 data = [5, 10, 10, 15, 20, 20, 20, 25, 25, 30] 1670 assert len(data)%2 == 0 1671 self.assertApproxEqual(self.func(data, 5), 19.16666667, tol=1e-8) 1672 #--- 1673 data = [2, 3, 4, 4, 4, 5] 1674 assert len(data)%2 == 0 1675 self.assertApproxEqual(self.func(data), 3.83333333, tol=1e-8) 1676 #--- 1677 data = [2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6] 1678 assert len(data)%2 == 0 1679 self.assertEqual(self.func(data), 4.5) 1680 #--- 1681 data = [3, 4, 4, 4, 5, 5, 5, 5, 6, 6] 1682 assert len(data)%2 == 0 1683 self.assertEqual(self.func(data), 4.75) 1684 1685 def test_repeated_single_value(self): 1686 # Override method from AverageMixin. 1687 # Yet again, failure of median_grouped to conserve the data type 1688 # causes me headaches :-( 1689 for x in (5.3, 68, 4.3e17, Fraction(29, 101), Decimal('32.9714')): 1690 for count in (2, 5, 10, 20): 1691 data = [x]*count 1692 self.assertEqual(self.func(data), float(x)) 1693 1694 def test_odd_fractions(self): 1695 # Test median_grouped works with an odd number of Fractions. 1696 F = Fraction 1697 data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4)] 1698 assert len(data)%2 == 1 1699 random.shuffle(data) 1700 self.assertEqual(self.func(data), 3.0) 1701 1702 def test_even_fractions(self): 1703 # Test median_grouped works with an even number of Fractions. 1704 F = Fraction 1705 data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4), F(17, 4)] 1706 assert len(data)%2 == 0 1707 random.shuffle(data) 1708 self.assertEqual(self.func(data), 3.25) 1709 1710 def test_odd_decimals(self): 1711 # Test median_grouped works with an odd number of Decimals. 1712 D = Decimal 1713 data = [D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')] 1714 assert len(data)%2 == 1 1715 random.shuffle(data) 1716 self.assertEqual(self.func(data), 6.75) 1717 1718 def test_even_decimals(self): 1719 # Test median_grouped works with an even number of Decimals. 1720 D = Decimal 1721 data = [D('5.5'), D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')] 1722 assert len(data)%2 == 0 1723 random.shuffle(data) 1724 self.assertEqual(self.func(data), 6.5) 1725 #--- 1726 data = [D('5.5'), D('5.5'), D('6.5'), D('7.5'), D('7.5'), D('8.5')] 1727 assert len(data)%2 == 0 1728 random.shuffle(data) 1729 self.assertEqual(self.func(data), 7.0) 1730 1731 def test_interval(self): 1732 # Test median_grouped with interval argument. 1733 data = [2.25, 2.5, 2.5, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75] 1734 self.assertEqual(self.func(data, 0.25), 2.875) 1735 data = [2.25, 2.5, 2.5, 2.75, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75] 1736 self.assertApproxEqual(self.func(data, 0.25), 2.83333333, tol=1e-8) 1737 data = [220, 220, 240, 260, 260, 260, 260, 280, 280, 300, 320, 340] 1738 self.assertEqual(self.func(data, 20), 265.0) 1739 1740 def test_data_type_error(self): 1741 # Test median_grouped with str, bytes data types for data and interval 1742 data = ["", "", ""] 1743 self.assertRaises(TypeError, self.func, data) 1744 #--- 1745 data = [b"", b"", b""] 1746 self.assertRaises(TypeError, self.func, data) 1747 #--- 1748 data = [1, 2, 3] 1749 interval = "" 1750 self.assertRaises(TypeError, self.func, data, interval) 1751 #--- 1752 data = [1, 2, 3] 1753 interval = b"" 1754 self.assertRaises(TypeError, self.func, data, interval) 1755 1756 1757class TestMode(NumericTestCase, AverageMixin, UnivariateTypeMixin): 1758 # Test cases for the discrete version of mode. 1759 def setUp(self): 1760 self.func = statistics.mode 1761 1762 def prepare_data(self): 1763 """Overload method from UnivariateCommonMixin.""" 1764 # Make sure test data has exactly one mode. 1765 return [1, 1, 1, 1, 3, 4, 7, 9, 0, 8, 2] 1766 1767 def test_range_data(self): 1768 # Override test from UnivariateCommonMixin. 1769 data = range(20, 50, 3) 1770 self.assertRaises(statistics.StatisticsError, self.func, data) 1771 1772 def test_nominal_data(self): 1773 # Test mode with nominal data. 1774 data = 'abcbdb' 1775 self.assertEqual(self.func(data), 'b') 1776 data = 'fe fi fo fum fi fi'.split() 1777 self.assertEqual(self.func(data), 'fi') 1778 1779 def test_discrete_data(self): 1780 # Test mode with discrete numeric data. 1781 data = list(range(10)) 1782 for i in range(10): 1783 d = data + [i] 1784 random.shuffle(d) 1785 self.assertEqual(self.func(d), i) 1786 1787 def test_bimodal_data(self): 1788 # Test mode with bimodal data. 1789 data = [1, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6, 6, 6, 7, 8, 9, 9] 1790 assert data.count(2) == data.count(6) == 4 1791 # Check for an exception. 1792 self.assertRaises(statistics.StatisticsError, self.func, data) 1793 1794 def test_unique_data_failure(self): 1795 # Test mode exception when data points are all unique. 1796 data = list(range(10)) 1797 self.assertRaises(statistics.StatisticsError, self.func, data) 1798 1799 def test_none_data(self): 1800 # Test that mode raises TypeError if given None as data. 1801 1802 # This test is necessary because the implementation of mode uses 1803 # collections.Counter, which accepts None and returns an empty dict. 1804 self.assertRaises(TypeError, self.func, None) 1805 1806 def test_counter_data(self): 1807 # Test that a Counter is treated like any other iterable. 1808 data = collections.Counter([1, 1, 1, 2]) 1809 # Since the keys of the counter are treated as data points, not the 1810 # counts, this should raise. 1811 self.assertRaises(statistics.StatisticsError, self.func, data) 1812 1813 1814 1815# === Tests for variances and standard deviations === 1816 1817class VarianceStdevMixin(UnivariateCommonMixin): 1818 # Mixin class holding common tests for variance and std dev. 1819 1820 # Subclasses should inherit from this before NumericTestClass, in order 1821 # to see the rel attribute below. See testShiftData for an explanation. 1822 1823 rel = 1e-12 1824 1825 def test_single_value(self): 1826 # Deviation of a single value is zero. 1827 for x in (11, 19.8, 4.6e14, Fraction(21, 34), Decimal('8.392')): 1828 self.assertEqual(self.func([x]), 0) 1829 1830 def test_repeated_single_value(self): 1831 # The deviation of a single repeated value is zero. 1832 for x in (7.2, 49, 8.1e15, Fraction(3, 7), Decimal('62.4802')): 1833 for count in (2, 3, 5, 15): 1834 data = [x]*count 1835 self.assertEqual(self.func(data), 0) 1836 1837 def test_domain_error_regression(self): 1838 # Regression test for a domain error exception. 1839 # (Thanks to Geremy Condra.) 1840 data = [0.123456789012345]*10000 1841 # All the items are identical, so variance should be exactly zero. 1842 # We allow some small round-off error, but not much. 1843 result = self.func(data) 1844 self.assertApproxEqual(result, 0.0, tol=5e-17) 1845 self.assertGreaterEqual(result, 0) # A negative result must fail. 1846 1847 def test_shift_data(self): 1848 # Test that shifting the data by a constant amount does not affect 1849 # the variance or stdev. Or at least not much. 1850 1851 # Due to rounding, this test should be considered an ideal. We allow 1852 # some tolerance away from "no change at all" by setting tol and/or rel 1853 # attributes. Subclasses may set tighter or looser error tolerances. 1854 raw = [1.03, 1.27, 1.94, 2.04, 2.58, 3.14, 4.75, 4.98, 5.42, 6.78] 1855 expected = self.func(raw) 1856 # Don't set shift too high, the bigger it is, the more rounding error. 1857 shift = 1e5 1858 data = [x + shift for x in raw] 1859 self.assertApproxEqual(self.func(data), expected) 1860 1861 def test_shift_data_exact(self): 1862 # Like test_shift_data, but result is always exact. 1863 raw = [1, 3, 3, 4, 5, 7, 9, 10, 11, 16] 1864 assert all(x==int(x) for x in raw) 1865 expected = self.func(raw) 1866 shift = 10**9 1867 data = [x + shift for x in raw] 1868 self.assertEqual(self.func(data), expected) 1869 1870 def test_iter_list_same(self): 1871 # Test that iter data and list data give the same result. 1872 1873 # This is an explicit test that iterators and lists are treated the 1874 # same; justification for this test over and above the similar test 1875 # in UnivariateCommonMixin is that an earlier design had variance and 1876 # friends swap between one- and two-pass algorithms, which would 1877 # sometimes give different results. 1878 data = [random.uniform(-3, 8) for _ in range(1000)] 1879 expected = self.func(data) 1880 self.assertEqual(self.func(iter(data)), expected) 1881 1882 1883class TestPVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin): 1884 # Tests for population variance. 1885 def setUp(self): 1886 self.func = statistics.pvariance 1887 1888 def test_exact_uniform(self): 1889 # Test the variance against an exact result for uniform data. 1890 data = list(range(10000)) 1891 random.shuffle(data) 1892 expected = (10000**2 - 1)/12 # Exact value. 1893 self.assertEqual(self.func(data), expected) 1894 1895 def test_ints(self): 1896 # Test population variance with int data. 1897 data = [4, 7, 13, 16] 1898 exact = 22.5 1899 self.assertEqual(self.func(data), exact) 1900 1901 def test_fractions(self): 1902 # Test population variance with Fraction data. 1903 F = Fraction 1904 data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)] 1905 exact = F(3, 8) 1906 result = self.func(data) 1907 self.assertEqual(result, exact) 1908 self.assertIsInstance(result, Fraction) 1909 1910 def test_decimals(self): 1911 # Test population variance with Decimal data. 1912 D = Decimal 1913 data = [D("12.1"), D("12.2"), D("12.5"), D("12.9")] 1914 exact = D('0.096875') 1915 result = self.func(data) 1916 self.assertEqual(result, exact) 1917 self.assertIsInstance(result, Decimal) 1918 1919 1920class TestVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin): 1921 # Tests for sample variance. 1922 def setUp(self): 1923 self.func = statistics.variance 1924 1925 def test_single_value(self): 1926 # Override method from VarianceStdevMixin. 1927 for x in (35, 24.7, 8.2e15, Fraction(19, 30), Decimal('4.2084')): 1928 self.assertRaises(statistics.StatisticsError, self.func, [x]) 1929 1930 def test_ints(self): 1931 # Test sample variance with int data. 1932 data = [4, 7, 13, 16] 1933 exact = 30 1934 self.assertEqual(self.func(data), exact) 1935 1936 def test_fractions(self): 1937 # Test sample variance with Fraction data. 1938 F = Fraction 1939 data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)] 1940 exact = F(1, 2) 1941 result = self.func(data) 1942 self.assertEqual(result, exact) 1943 self.assertIsInstance(result, Fraction) 1944 1945 def test_decimals(self): 1946 # Test sample variance with Decimal data. 1947 D = Decimal 1948 data = [D(2), D(2), D(7), D(9)] 1949 exact = 4*D('9.5')/D(3) 1950 result = self.func(data) 1951 self.assertEqual(result, exact) 1952 self.assertIsInstance(result, Decimal) 1953 1954 1955class TestPStdev(VarianceStdevMixin, NumericTestCase): 1956 # Tests for population standard deviation. 1957 def setUp(self): 1958 self.func = statistics.pstdev 1959 1960 def test_compare_to_variance(self): 1961 # Test that stdev is, in fact, the square root of variance. 1962 data = [random.uniform(-17, 24) for _ in range(1000)] 1963 expected = math.sqrt(statistics.pvariance(data)) 1964 self.assertEqual(self.func(data), expected) 1965 1966 1967class TestStdev(VarianceStdevMixin, NumericTestCase): 1968 # Tests for sample standard deviation. 1969 def setUp(self): 1970 self.func = statistics.stdev 1971 1972 def test_single_value(self): 1973 # Override method from VarianceStdevMixin. 1974 for x in (81, 203.74, 3.9e14, Fraction(5, 21), Decimal('35.719')): 1975 self.assertRaises(statistics.StatisticsError, self.func, [x]) 1976 1977 def test_compare_to_variance(self): 1978 # Test that stdev is, in fact, the square root of variance. 1979 data = [random.uniform(-2, 9) for _ in range(1000)] 1980 expected = math.sqrt(statistics.variance(data)) 1981 self.assertEqual(self.func(data), expected) 1982 1983 1984# === Run tests === 1985 1986def load_tests(loader, tests, ignore): 1987 """Used for doctest/unittest integration.""" 1988 tests.addTests(doctest.DocTestSuite()) 1989 return tests 1990 1991 1992if __name__ == "__main__": 1993 unittest.main() 1994