1 /**************************************************************************
2  *
3  * Copyright 2011 Marek Olšák <maraeo@gmail.com>
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 /**
29  * This module uploads user buffers and translates the vertex buffers which
30  * contain incompatible vertices (i.e. not supported by the driver/hardware)
31  * into compatible ones, based on the Gallium CAPs.
32  *
33  * It does not upload index buffers.
34  *
35  * The module heavily uses bitmasks to represent per-buffer and
36  * per-vertex-element flags to avoid looping over the list of buffers just
37  * to see if there's a non-zero stride, or user buffer, or unsupported format,
38  * etc.
39  *
40  * There are 3 categories of vertex elements, which are processed separately:
41  * - per-vertex attribs (stride != 0, instance_divisor == 0)
42  * - instanced attribs (stride != 0, instance_divisor > 0)
43  * - constant attribs (stride == 0)
44  *
45  * All needed uploads and translations are performed every draw command, but
46  * only the subset of vertices needed for that draw command is uploaded or
47  * translated. (the module never translates whole buffers)
48  *
49  *
50  * The module consists of two main parts:
51  *
52  *
53  * 1) Translate (u_vbuf_translate_begin/end)
54  *
55  * This is pretty much a vertex fetch fallback. It translates vertices from
56  * one vertex buffer to another in an unused vertex buffer slot. It does
57  * whatever is needed to make the vertices readable by the hardware (changes
58  * vertex formats and aligns offsets and strides). The translate module is
59  * used here.
60  *
61  * Each of the 3 categories is translated to a separate buffer.
62  * Only the [min_index, max_index] range is translated. For instanced attribs,
63  * the range is [start_instance, start_instance+instance_count]. For constant
64  * attribs, the range is [0, 1].
65  *
66  *
67  * 2) User buffer uploading (u_vbuf_upload_buffers)
68  *
69  * Only the [min_index, max_index] range is uploaded (just like Translate)
70  * with a single memcpy.
71  *
72  * This method works best for non-indexed draw operations or indexed draw
73  * operations where the [min_index, max_index] range is not being way bigger
74  * than the vertex count.
75  *
76  * If the range is too big (e.g. one triangle with indices {0, 1, 10000}),
77  * the per-vertex attribs are uploaded via the translate module, all packed
78  * into one vertex buffer, and the indexed draw call is turned into
79  * a non-indexed one in the process. This adds additional complexity
80  * to the translate part, but it prevents bad apps from bringing your frame
81  * rate down.
82  *
83  *
84  * If there is nothing to do, it forwards every command to the driver.
85  * The module also has its own CSO cache of vertex element states.
86  */
87 
88 #include "util/u_vbuf.h"
89 
90 #include "util/u_dump.h"
91 #include "util/u_format.h"
92 #include "util/u_inlines.h"
93 #include "util/u_memory.h"
94 #include "util/u_upload_mgr.h"
95 #include "translate/translate.h"
96 #include "translate/translate_cache.h"
97 #include "cso_cache/cso_cache.h"
98 #include "cso_cache/cso_hash.h"
99 
100 struct u_vbuf_elements {
101    unsigned count;
102    struct pipe_vertex_element ve[PIPE_MAX_ATTRIBS];
103 
104    unsigned src_format_size[PIPE_MAX_ATTRIBS];
105 
106    /* If (velem[i].src_format != native_format[i]), the vertex buffer
107     * referenced by the vertex element cannot be used for rendering and
108     * its vertex data must be translated to native_format[i]. */
109    enum pipe_format native_format[PIPE_MAX_ATTRIBS];
110    unsigned native_format_size[PIPE_MAX_ATTRIBS];
111 
112    /* Which buffers are used by the vertex element state. */
113    uint32_t used_vb_mask;
114    /* This might mean two things:
115     * - src_format != native_format, as discussed above.
116     * - src_offset % 4 != 0 (if the caps don't allow such an offset). */
117    uint32_t incompatible_elem_mask; /* each bit describes a corresp. attrib  */
118    /* Which buffer has at least one vertex element referencing it
119     * incompatible. */
120    uint32_t incompatible_vb_mask_any;
121    /* Which buffer has all vertex elements referencing it incompatible. */
122    uint32_t incompatible_vb_mask_all;
123    /* Which buffer has at least one vertex element referencing it
124     * compatible. */
125    uint32_t compatible_vb_mask_any;
126    /* Which buffer has all vertex elements referencing it compatible. */
127    uint32_t compatible_vb_mask_all;
128 
129    /* Which buffer has at least one vertex element referencing it
130     * non-instanced. */
131    uint32_t noninstance_vb_mask_any;
132 
133    void *driver_cso;
134 };
135 
136 enum {
137    VB_VERTEX = 0,
138    VB_INSTANCE = 1,
139    VB_CONST = 2,
140    VB_NUM = 3
141 };
142 
143 struct u_vbuf {
144    struct u_vbuf_caps caps;
145    bool has_signed_vb_offset;
146 
147    struct pipe_context *pipe;
148    struct translate_cache *translate_cache;
149    struct cso_cache *cso_cache;
150 
151    /* This is what was set in set_vertex_buffers.
152     * May contain user buffers. */
153    struct pipe_vertex_buffer vertex_buffer[PIPE_MAX_ATTRIBS];
154    uint32_t enabled_vb_mask;
155 
156    /* Saved vertex buffer. */
157    unsigned aux_vertex_buffer_slot;
158    struct pipe_vertex_buffer aux_vertex_buffer_saved;
159 
160    /* Vertex buffers for the driver.
161     * There are usually no user buffers. */
162    struct pipe_vertex_buffer real_vertex_buffer[PIPE_MAX_ATTRIBS];
163    uint32_t dirty_real_vb_mask; /* which buffers are dirty since the last
164                                    call of set_vertex_buffers */
165 
166    /* Vertex elements. */
167    struct u_vbuf_elements *ve, *ve_saved;
168 
169    /* Vertex elements used for the translate fallback. */
170    struct pipe_vertex_element fallback_velems[PIPE_MAX_ATTRIBS];
171    /* If non-NULL, this is a vertex element state used for the translate
172     * fallback and therefore used for rendering too. */
173    boolean using_translate;
174    /* The vertex buffer slot index where translated vertices have been
175     * stored in. */
176    unsigned fallback_vbs[VB_NUM];
177 
178    /* Which buffer is a user buffer. */
179    uint32_t user_vb_mask; /* each bit describes a corresp. buffer */
180    /* Which buffer is incompatible (unaligned). */
181    uint32_t incompatible_vb_mask; /* each bit describes a corresp. buffer */
182    /* Which buffer has a non-zero stride. */
183    uint32_t nonzero_stride_vb_mask; /* each bit describes a corresp. buffer */
184 };
185 
186 static void *
187 u_vbuf_create_vertex_elements(struct u_vbuf *mgr, unsigned count,
188                               const struct pipe_vertex_element *attribs);
189 static void u_vbuf_delete_vertex_elements(struct u_vbuf *mgr, void *cso);
190 
191 static const struct {
192    enum pipe_format from, to;
193 } vbuf_format_fallbacks[] = {
194    { PIPE_FORMAT_R32_FIXED,            PIPE_FORMAT_R32_FLOAT },
195    { PIPE_FORMAT_R32G32_FIXED,         PIPE_FORMAT_R32G32_FLOAT },
196    { PIPE_FORMAT_R32G32B32_FIXED,      PIPE_FORMAT_R32G32B32_FLOAT },
197    { PIPE_FORMAT_R32G32B32A32_FIXED,   PIPE_FORMAT_R32G32B32A32_FLOAT },
198    { PIPE_FORMAT_R16_FLOAT,            PIPE_FORMAT_R32_FLOAT },
199    { PIPE_FORMAT_R16G16_FLOAT,         PIPE_FORMAT_R32G32_FLOAT },
200    { PIPE_FORMAT_R16G16B16_FLOAT,      PIPE_FORMAT_R32G32B32_FLOAT },
201    { PIPE_FORMAT_R16G16B16A16_FLOAT,   PIPE_FORMAT_R32G32B32A32_FLOAT },
202    { PIPE_FORMAT_R64_FLOAT,            PIPE_FORMAT_R32_FLOAT },
203    { PIPE_FORMAT_R64G64_FLOAT,         PIPE_FORMAT_R32G32_FLOAT },
204    { PIPE_FORMAT_R64G64B64_FLOAT,      PIPE_FORMAT_R32G32B32_FLOAT },
205    { PIPE_FORMAT_R64G64B64A64_FLOAT,   PIPE_FORMAT_R32G32B32A32_FLOAT },
206    { PIPE_FORMAT_R32_UNORM,            PIPE_FORMAT_R32_FLOAT },
207    { PIPE_FORMAT_R32G32_UNORM,         PIPE_FORMAT_R32G32_FLOAT },
208    { PIPE_FORMAT_R32G32B32_UNORM,      PIPE_FORMAT_R32G32B32_FLOAT },
209    { PIPE_FORMAT_R32G32B32A32_UNORM,   PIPE_FORMAT_R32G32B32A32_FLOAT },
210    { PIPE_FORMAT_R32_SNORM,            PIPE_FORMAT_R32_FLOAT },
211    { PIPE_FORMAT_R32G32_SNORM,         PIPE_FORMAT_R32G32_FLOAT },
212    { PIPE_FORMAT_R32G32B32_SNORM,      PIPE_FORMAT_R32G32B32_FLOAT },
213    { PIPE_FORMAT_R32G32B32A32_SNORM,   PIPE_FORMAT_R32G32B32A32_FLOAT },
214    { PIPE_FORMAT_R32_USCALED,          PIPE_FORMAT_R32_FLOAT },
215    { PIPE_FORMAT_R32G32_USCALED,       PIPE_FORMAT_R32G32_FLOAT },
216    { PIPE_FORMAT_R32G32B32_USCALED,    PIPE_FORMAT_R32G32B32_FLOAT },
217    { PIPE_FORMAT_R32G32B32A32_USCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
218    { PIPE_FORMAT_R32_SSCALED,          PIPE_FORMAT_R32_FLOAT },
219    { PIPE_FORMAT_R32G32_SSCALED,       PIPE_FORMAT_R32G32_FLOAT },
220    { PIPE_FORMAT_R32G32B32_SSCALED,    PIPE_FORMAT_R32G32B32_FLOAT },
221    { PIPE_FORMAT_R32G32B32A32_SSCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
222    { PIPE_FORMAT_R16_UNORM,            PIPE_FORMAT_R32_FLOAT },
223    { PIPE_FORMAT_R16G16_UNORM,         PIPE_FORMAT_R32G32_FLOAT },
224    { PIPE_FORMAT_R16G16B16_UNORM,      PIPE_FORMAT_R32G32B32_FLOAT },
225    { PIPE_FORMAT_R16G16B16A16_UNORM,   PIPE_FORMAT_R32G32B32A32_FLOAT },
226    { PIPE_FORMAT_R16_SNORM,            PIPE_FORMAT_R32_FLOAT },
227    { PIPE_FORMAT_R16G16_SNORM,         PIPE_FORMAT_R32G32_FLOAT },
228    { PIPE_FORMAT_R16G16B16_SNORM,      PIPE_FORMAT_R32G32B32_FLOAT },
229    { PIPE_FORMAT_R16G16B16A16_SNORM,   PIPE_FORMAT_R32G32B32A32_FLOAT },
230    { PIPE_FORMAT_R16_USCALED,          PIPE_FORMAT_R32_FLOAT },
231    { PIPE_FORMAT_R16G16_USCALED,       PIPE_FORMAT_R32G32_FLOAT },
232    { PIPE_FORMAT_R16G16B16_USCALED,    PIPE_FORMAT_R32G32B32_FLOAT },
233    { PIPE_FORMAT_R16G16B16A16_USCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
234    { PIPE_FORMAT_R16_SSCALED,          PIPE_FORMAT_R32_FLOAT },
235    { PIPE_FORMAT_R16G16_SSCALED,       PIPE_FORMAT_R32G32_FLOAT },
236    { PIPE_FORMAT_R16G16B16_SSCALED,    PIPE_FORMAT_R32G32B32_FLOAT },
237    { PIPE_FORMAT_R16G16B16A16_SSCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
238    { PIPE_FORMAT_R8_UNORM,             PIPE_FORMAT_R32_FLOAT },
239    { PIPE_FORMAT_R8G8_UNORM,           PIPE_FORMAT_R32G32_FLOAT },
240    { PIPE_FORMAT_R8G8B8_UNORM,         PIPE_FORMAT_R32G32B32_FLOAT },
241    { PIPE_FORMAT_R8G8B8A8_UNORM,       PIPE_FORMAT_R32G32B32A32_FLOAT },
242    { PIPE_FORMAT_R8_SNORM,             PIPE_FORMAT_R32_FLOAT },
243    { PIPE_FORMAT_R8G8_SNORM,           PIPE_FORMAT_R32G32_FLOAT },
244    { PIPE_FORMAT_R8G8B8_SNORM,         PIPE_FORMAT_R32G32B32_FLOAT },
245    { PIPE_FORMAT_R8G8B8A8_SNORM,       PIPE_FORMAT_R32G32B32A32_FLOAT },
246    { PIPE_FORMAT_R8_USCALED,           PIPE_FORMAT_R32_FLOAT },
247    { PIPE_FORMAT_R8G8_USCALED,         PIPE_FORMAT_R32G32_FLOAT },
248    { PIPE_FORMAT_R8G8B8_USCALED,       PIPE_FORMAT_R32G32B32_FLOAT },
249    { PIPE_FORMAT_R8G8B8A8_USCALED,     PIPE_FORMAT_R32G32B32A32_FLOAT },
250    { PIPE_FORMAT_R8_SSCALED,           PIPE_FORMAT_R32_FLOAT },
251    { PIPE_FORMAT_R8G8_SSCALED,         PIPE_FORMAT_R32G32_FLOAT },
252    { PIPE_FORMAT_R8G8B8_SSCALED,       PIPE_FORMAT_R32G32B32_FLOAT },
253    { PIPE_FORMAT_R8G8B8A8_SSCALED,     PIPE_FORMAT_R32G32B32A32_FLOAT },
254 };
255 
u_vbuf_get_caps(struct pipe_screen * screen,struct u_vbuf_caps * caps,unsigned flags)256 boolean u_vbuf_get_caps(struct pipe_screen *screen, struct u_vbuf_caps *caps,
257                         unsigned flags)
258 {
259    unsigned i;
260    boolean fallback = FALSE;
261 
262    /* I'd rather have a bitfield of which formats are supported and a static
263     * table of the translations indexed by format, but since we don't have C99
264     * we can't easily make a sparsely-populated table indexed by format.  So,
265     * we construct the sparse table here.
266     */
267    for (i = 0; i < PIPE_FORMAT_COUNT; i++)
268       caps->format_translation[i] = i;
269 
270    for (i = 0; i < ARRAY_SIZE(vbuf_format_fallbacks); i++) {
271       enum pipe_format format = vbuf_format_fallbacks[i].from;
272 
273       if (!screen->is_format_supported(screen, format, PIPE_BUFFER, 0,
274                                        PIPE_BIND_VERTEX_BUFFER)) {
275          caps->format_translation[format] = vbuf_format_fallbacks[i].to;
276          fallback = TRUE;
277       }
278    }
279 
280    caps->buffer_offset_unaligned =
281       !screen->get_param(screen,
282                          PIPE_CAP_VERTEX_BUFFER_OFFSET_4BYTE_ALIGNED_ONLY);
283    caps->buffer_stride_unaligned =
284      !screen->get_param(screen,
285                         PIPE_CAP_VERTEX_BUFFER_STRIDE_4BYTE_ALIGNED_ONLY);
286    caps->velem_src_offset_unaligned =
287       !screen->get_param(screen,
288                          PIPE_CAP_VERTEX_ELEMENT_SRC_OFFSET_4BYTE_ALIGNED_ONLY);
289    caps->user_vertex_buffers =
290       screen->get_param(screen, PIPE_CAP_USER_VERTEX_BUFFERS);
291 
292    if (!caps->buffer_offset_unaligned ||
293        !caps->buffer_stride_unaligned ||
294        !caps->velem_src_offset_unaligned ||
295        (!(flags & U_VBUF_FLAG_NO_USER_VBOS) && !caps->user_vertex_buffers)) {
296       fallback = TRUE;
297    }
298 
299    return fallback;
300 }
301 
302 struct u_vbuf *
u_vbuf_create(struct pipe_context * pipe,struct u_vbuf_caps * caps,unsigned aux_vertex_buffer_index)303 u_vbuf_create(struct pipe_context *pipe,
304               struct u_vbuf_caps *caps, unsigned aux_vertex_buffer_index)
305 {
306    struct u_vbuf *mgr = CALLOC_STRUCT(u_vbuf);
307 
308    mgr->caps = *caps;
309    mgr->aux_vertex_buffer_slot = aux_vertex_buffer_index;
310    mgr->pipe = pipe;
311    mgr->cso_cache = cso_cache_create();
312    mgr->translate_cache = translate_cache_create();
313    memset(mgr->fallback_vbs, ~0, sizeof(mgr->fallback_vbs));
314 
315    mgr->has_signed_vb_offset =
316       pipe->screen->get_param(pipe->screen,
317                               PIPE_CAP_SIGNED_VERTEX_BUFFER_OFFSET);
318 
319    return mgr;
320 }
321 
322 /* u_vbuf uses its own caching for vertex elements, because it needs to keep
323  * its own preprocessed state per vertex element CSO. */
324 static struct u_vbuf_elements *
u_vbuf_set_vertex_elements_internal(struct u_vbuf * mgr,unsigned count,const struct pipe_vertex_element * states)325 u_vbuf_set_vertex_elements_internal(struct u_vbuf *mgr, unsigned count,
326                                     const struct pipe_vertex_element *states)
327 {
328    struct pipe_context *pipe = mgr->pipe;
329    unsigned key_size, hash_key;
330    struct cso_hash_iter iter;
331    struct u_vbuf_elements *ve;
332    struct cso_velems_state velems_state;
333 
334    /* need to include the count into the stored state data too. */
335    key_size = sizeof(struct pipe_vertex_element) * count + sizeof(unsigned);
336    velems_state.count = count;
337    memcpy(velems_state.velems, states,
338           sizeof(struct pipe_vertex_element) * count);
339    hash_key = cso_construct_key((void*)&velems_state, key_size);
340    iter = cso_find_state_template(mgr->cso_cache, hash_key, CSO_VELEMENTS,
341                                   (void*)&velems_state, key_size);
342 
343    if (cso_hash_iter_is_null(iter)) {
344       struct cso_velements *cso = MALLOC_STRUCT(cso_velements);
345       memcpy(&cso->state, &velems_state, key_size);
346       cso->data = u_vbuf_create_vertex_elements(mgr, count, states);
347       cso->delete_state = (cso_state_callback)u_vbuf_delete_vertex_elements;
348       cso->context = (void*)mgr;
349 
350       iter = cso_insert_state(mgr->cso_cache, hash_key, CSO_VELEMENTS, cso);
351       ve = cso->data;
352    } else {
353       ve = ((struct cso_velements *)cso_hash_iter_data(iter))->data;
354    }
355 
356    assert(ve);
357 
358    if (ve != mgr->ve)
359       pipe->bind_vertex_elements_state(pipe, ve->driver_cso);
360 
361    return ve;
362 }
363 
u_vbuf_set_vertex_elements(struct u_vbuf * mgr,unsigned count,const struct pipe_vertex_element * states)364 void u_vbuf_set_vertex_elements(struct u_vbuf *mgr, unsigned count,
365                                const struct pipe_vertex_element *states)
366 {
367    mgr->ve = u_vbuf_set_vertex_elements_internal(mgr, count, states);
368 }
369 
u_vbuf_destroy(struct u_vbuf * mgr)370 void u_vbuf_destroy(struct u_vbuf *mgr)
371 {
372    struct pipe_screen *screen = mgr->pipe->screen;
373    unsigned i;
374    const unsigned num_vb = screen->get_shader_param(screen, PIPE_SHADER_VERTEX,
375                                                     PIPE_SHADER_CAP_MAX_INPUTS);
376 
377    mgr->pipe->set_vertex_buffers(mgr->pipe, 0, num_vb, NULL);
378 
379    for (i = 0; i < PIPE_MAX_ATTRIBS; i++)
380       pipe_vertex_buffer_unreference(&mgr->vertex_buffer[i]);
381    for (i = 0; i < PIPE_MAX_ATTRIBS; i++)
382       pipe_vertex_buffer_unreference(&mgr->real_vertex_buffer[i]);
383 
384    pipe_vertex_buffer_unreference(&mgr->aux_vertex_buffer_saved);
385 
386    translate_cache_destroy(mgr->translate_cache);
387    cso_cache_delete(mgr->cso_cache);
388    FREE(mgr);
389 }
390 
391 static enum pipe_error
u_vbuf_translate_buffers(struct u_vbuf * mgr,struct translate_key * key,const struct pipe_draw_info * info,unsigned vb_mask,unsigned out_vb,int start_vertex,unsigned num_vertices,int min_index,boolean unroll_indices)392 u_vbuf_translate_buffers(struct u_vbuf *mgr, struct translate_key *key,
393                          const struct pipe_draw_info *info,
394                          unsigned vb_mask, unsigned out_vb,
395                          int start_vertex, unsigned num_vertices,
396                          int min_index, boolean unroll_indices)
397 {
398    struct translate *tr;
399    struct pipe_transfer *vb_transfer[PIPE_MAX_ATTRIBS] = {0};
400    struct pipe_resource *out_buffer = NULL;
401    uint8_t *out_map;
402    unsigned out_offset, mask;
403 
404    /* Get a translate object. */
405    tr = translate_cache_find(mgr->translate_cache, key);
406 
407    /* Map buffers we want to translate. */
408    mask = vb_mask;
409    while (mask) {
410       struct pipe_vertex_buffer *vb;
411       unsigned offset;
412       uint8_t *map;
413       unsigned i = u_bit_scan(&mask);
414 
415       vb = &mgr->vertex_buffer[i];
416       offset = vb->buffer_offset + vb->stride * start_vertex;
417 
418       if (vb->is_user_buffer) {
419          map = (uint8_t*)vb->buffer.user + offset;
420       } else {
421          unsigned size = vb->stride ? num_vertices * vb->stride
422                                     : sizeof(double)*4;
423 
424          if (offset + size > vb->buffer.resource->width0) {
425             /* Don't try to map past end of buffer.  This often happens when
426              * we're translating an attribute that's at offset > 0 from the
427              * start of the vertex.  If we'd subtract attrib's offset from
428              * the size, this probably wouldn't happen.
429              */
430             size = vb->buffer.resource->width0 - offset;
431 
432             /* Also adjust num_vertices.  A common user error is to call
433              * glDrawRangeElements() with incorrect 'end' argument.  The 'end
434              * value should be the max index value, but people often
435              * accidentally add one to this value.  This adjustment avoids
436              * crashing (by reading past the end of a hardware buffer mapping)
437              * when people do that.
438              */
439             num_vertices = (size + vb->stride - 1) / vb->stride;
440          }
441 
442          map = pipe_buffer_map_range(mgr->pipe, vb->buffer.resource, offset, size,
443                                      PIPE_TRANSFER_READ, &vb_transfer[i]);
444       }
445 
446       /* Subtract min_index so that indexing with the index buffer works. */
447       if (unroll_indices) {
448          map -= (ptrdiff_t)vb->stride * min_index;
449       }
450 
451       tr->set_buffer(tr, i, map, vb->stride, ~0);
452    }
453 
454    /* Translate. */
455    if (unroll_indices) {
456       struct pipe_transfer *transfer = NULL;
457       const unsigned offset = info->start * info->index_size;
458       uint8_t *map;
459 
460       /* Create and map the output buffer. */
461       u_upload_alloc(mgr->pipe->stream_uploader, 0,
462                      key->output_stride * info->count, 4,
463                      &out_offset, &out_buffer,
464                      (void**)&out_map);
465       if (!out_buffer)
466          return PIPE_ERROR_OUT_OF_MEMORY;
467 
468       if (info->has_user_indices) {
469          map = (uint8_t*)info->index.user + offset;
470       } else {
471          map = pipe_buffer_map_range(mgr->pipe, info->index.resource, offset,
472                                      info->count * info->index_size,
473                                      PIPE_TRANSFER_READ, &transfer);
474       }
475 
476       switch (info->index_size) {
477       case 4:
478          tr->run_elts(tr, (unsigned*)map, info->count, 0, 0, out_map);
479          break;
480       case 2:
481          tr->run_elts16(tr, (uint16_t*)map, info->count, 0, 0, out_map);
482          break;
483       case 1:
484          tr->run_elts8(tr, map, info->count, 0, 0, out_map);
485          break;
486       }
487 
488       if (transfer) {
489          pipe_buffer_unmap(mgr->pipe, transfer);
490       }
491    } else {
492       /* Create and map the output buffer. */
493       u_upload_alloc(mgr->pipe->stream_uploader,
494                      mgr->has_signed_vb_offset ?
495                         0 : key->output_stride * start_vertex,
496                      key->output_stride * num_vertices, 4,
497                      &out_offset, &out_buffer,
498                      (void**)&out_map);
499       if (!out_buffer)
500          return PIPE_ERROR_OUT_OF_MEMORY;
501 
502       out_offset -= key->output_stride * start_vertex;
503 
504       tr->run(tr, 0, num_vertices, 0, 0, out_map);
505    }
506 
507    /* Unmap all buffers. */
508    mask = vb_mask;
509    while (mask) {
510       unsigned i = u_bit_scan(&mask);
511 
512       if (vb_transfer[i]) {
513          pipe_buffer_unmap(mgr->pipe, vb_transfer[i]);
514       }
515    }
516 
517    /* Setup the new vertex buffer. */
518    mgr->real_vertex_buffer[out_vb].buffer_offset = out_offset;
519    mgr->real_vertex_buffer[out_vb].stride = key->output_stride;
520 
521    /* Move the buffer reference. */
522    pipe_vertex_buffer_unreference(&mgr->real_vertex_buffer[out_vb]);
523    mgr->real_vertex_buffer[out_vb].buffer.resource = out_buffer;
524    mgr->real_vertex_buffer[out_vb].is_user_buffer = false;
525 
526    return PIPE_OK;
527 }
528 
529 static boolean
u_vbuf_translate_find_free_vb_slots(struct u_vbuf * mgr,unsigned mask[VB_NUM])530 u_vbuf_translate_find_free_vb_slots(struct u_vbuf *mgr,
531                                     unsigned mask[VB_NUM])
532 {
533    unsigned type;
534    unsigned fallback_vbs[VB_NUM];
535    /* Set the bit for each buffer which is incompatible, or isn't set. */
536    uint32_t unused_vb_mask =
537       mgr->ve->incompatible_vb_mask_all | mgr->incompatible_vb_mask |
538       ~mgr->enabled_vb_mask;
539 
540    memset(fallback_vbs, ~0, sizeof(fallback_vbs));
541 
542    /* Find free slots for each type if needed. */
543    for (type = 0; type < VB_NUM; type++) {
544       if (mask[type]) {
545          uint32_t index;
546 
547          if (!unused_vb_mask) {
548             return FALSE;
549          }
550 
551          index = ffs(unused_vb_mask) - 1;
552          fallback_vbs[type] = index;
553          unused_vb_mask &= ~(1 << index);
554          /*printf("found slot=%i for type=%i\n", index, type);*/
555       }
556    }
557 
558    for (type = 0; type < VB_NUM; type++) {
559       if (mask[type]) {
560          mgr->dirty_real_vb_mask |= 1 << fallback_vbs[type];
561       }
562    }
563 
564    memcpy(mgr->fallback_vbs, fallback_vbs, sizeof(fallback_vbs));
565    return TRUE;
566 }
567 
568 static boolean
u_vbuf_translate_begin(struct u_vbuf * mgr,const struct pipe_draw_info * info,int start_vertex,unsigned num_vertices,int min_index,boolean unroll_indices)569 u_vbuf_translate_begin(struct u_vbuf *mgr,
570                        const struct pipe_draw_info *info,
571                        int start_vertex, unsigned num_vertices,
572                        int min_index, boolean unroll_indices)
573 {
574    unsigned mask[VB_NUM] = {0};
575    struct translate_key key[VB_NUM];
576    unsigned elem_index[VB_NUM][PIPE_MAX_ATTRIBS]; /* ... into key.elements */
577    unsigned i, type;
578    const unsigned incompatible_vb_mask = mgr->incompatible_vb_mask &
579                                          mgr->ve->used_vb_mask;
580 
581    const int start[VB_NUM] = {
582       start_vertex,           /* VERTEX */
583       info->start_instance,   /* INSTANCE */
584       0                       /* CONST */
585    };
586 
587    const unsigned num[VB_NUM] = {
588       num_vertices,           /* VERTEX */
589       info->instance_count,   /* INSTANCE */
590       1                       /* CONST */
591    };
592 
593    memset(key, 0, sizeof(key));
594    memset(elem_index, ~0, sizeof(elem_index));
595 
596    /* See if there are vertex attribs of each type to translate and
597     * which ones. */
598    for (i = 0; i < mgr->ve->count; i++) {
599       unsigned vb_index = mgr->ve->ve[i].vertex_buffer_index;
600 
601       if (!mgr->vertex_buffer[vb_index].stride) {
602          if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
603              !(incompatible_vb_mask & (1 << vb_index))) {
604             continue;
605          }
606          mask[VB_CONST] |= 1 << vb_index;
607       } else if (mgr->ve->ve[i].instance_divisor) {
608          if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
609              !(incompatible_vb_mask & (1 << vb_index))) {
610             continue;
611          }
612          mask[VB_INSTANCE] |= 1 << vb_index;
613       } else {
614          if (!unroll_indices &&
615              !(mgr->ve->incompatible_elem_mask & (1 << i)) &&
616              !(incompatible_vb_mask & (1 << vb_index))) {
617             continue;
618          }
619          mask[VB_VERTEX] |= 1 << vb_index;
620       }
621    }
622 
623    assert(mask[VB_VERTEX] || mask[VB_INSTANCE] || mask[VB_CONST]);
624 
625    /* Find free vertex buffer slots. */
626    if (!u_vbuf_translate_find_free_vb_slots(mgr, mask)) {
627       return FALSE;
628    }
629 
630    /* Initialize the translate keys. */
631    for (i = 0; i < mgr->ve->count; i++) {
632       struct translate_key *k;
633       struct translate_element *te;
634       enum pipe_format output_format = mgr->ve->native_format[i];
635       unsigned bit, vb_index = mgr->ve->ve[i].vertex_buffer_index;
636       bit = 1 << vb_index;
637 
638       if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
639           !(incompatible_vb_mask & (1 << vb_index)) &&
640           (!unroll_indices || !(mask[VB_VERTEX] & bit))) {
641          continue;
642       }
643 
644       /* Set type to what we will translate.
645        * Whether vertex, instance, or constant attribs. */
646       for (type = 0; type < VB_NUM; type++) {
647          if (mask[type] & bit) {
648             break;
649          }
650       }
651       assert(type < VB_NUM);
652       if (mgr->ve->ve[i].src_format != output_format)
653          assert(translate_is_output_format_supported(output_format));
654       /*printf("velem=%i type=%i\n", i, type);*/
655 
656       /* Add the vertex element. */
657       k = &key[type];
658       elem_index[type][i] = k->nr_elements;
659 
660       te = &k->element[k->nr_elements];
661       te->type = TRANSLATE_ELEMENT_NORMAL;
662       te->instance_divisor = 0;
663       te->input_buffer = vb_index;
664       te->input_format = mgr->ve->ve[i].src_format;
665       te->input_offset = mgr->ve->ve[i].src_offset;
666       te->output_format = output_format;
667       te->output_offset = k->output_stride;
668 
669       k->output_stride += mgr->ve->native_format_size[i];
670       k->nr_elements++;
671    }
672 
673    /* Translate buffers. */
674    for (type = 0; type < VB_NUM; type++) {
675       if (key[type].nr_elements) {
676          enum pipe_error err;
677          err = u_vbuf_translate_buffers(mgr, &key[type], info, mask[type],
678                                         mgr->fallback_vbs[type],
679                                         start[type], num[type], min_index,
680                                         unroll_indices && type == VB_VERTEX);
681          if (err != PIPE_OK)
682             return FALSE;
683 
684          /* Fixup the stride for constant attribs. */
685          if (type == VB_CONST) {
686             mgr->real_vertex_buffer[mgr->fallback_vbs[VB_CONST]].stride = 0;
687          }
688       }
689    }
690 
691    /* Setup new vertex elements. */
692    for (i = 0; i < mgr->ve->count; i++) {
693       for (type = 0; type < VB_NUM; type++) {
694          if (elem_index[type][i] < key[type].nr_elements) {
695             struct translate_element *te = &key[type].element[elem_index[type][i]];
696             mgr->fallback_velems[i].instance_divisor = mgr->ve->ve[i].instance_divisor;
697             mgr->fallback_velems[i].src_format = te->output_format;
698             mgr->fallback_velems[i].src_offset = te->output_offset;
699             mgr->fallback_velems[i].vertex_buffer_index = mgr->fallback_vbs[type];
700 
701             /* elem_index[type][i] can only be set for one type. */
702             assert(type > VB_INSTANCE || elem_index[type+1][i] == ~0u);
703             assert(type > VB_VERTEX   || elem_index[type+2][i] == ~0u);
704             break;
705          }
706       }
707       /* No translating, just copy the original vertex element over. */
708       if (type == VB_NUM) {
709          memcpy(&mgr->fallback_velems[i], &mgr->ve->ve[i],
710                 sizeof(struct pipe_vertex_element));
711       }
712    }
713 
714    u_vbuf_set_vertex_elements_internal(mgr, mgr->ve->count,
715                                        mgr->fallback_velems);
716    mgr->using_translate = TRUE;
717    return TRUE;
718 }
719 
u_vbuf_translate_end(struct u_vbuf * mgr)720 static void u_vbuf_translate_end(struct u_vbuf *mgr)
721 {
722    unsigned i;
723 
724    /* Restore vertex elements. */
725    mgr->pipe->bind_vertex_elements_state(mgr->pipe, mgr->ve->driver_cso);
726    mgr->using_translate = FALSE;
727 
728    /* Unreference the now-unused VBOs. */
729    for (i = 0; i < VB_NUM; i++) {
730       unsigned vb = mgr->fallback_vbs[i];
731       if (vb != ~0u) {
732          pipe_resource_reference(&mgr->real_vertex_buffer[vb].buffer.resource, NULL);
733          mgr->fallback_vbs[i] = ~0;
734 
735          /* This will cause the buffer to be unbound in the driver later. */
736          mgr->dirty_real_vb_mask |= 1 << vb;
737       }
738    }
739 }
740 
741 static void *
u_vbuf_create_vertex_elements(struct u_vbuf * mgr,unsigned count,const struct pipe_vertex_element * attribs)742 u_vbuf_create_vertex_elements(struct u_vbuf *mgr, unsigned count,
743                               const struct pipe_vertex_element *attribs)
744 {
745    struct pipe_context *pipe = mgr->pipe;
746    unsigned i;
747    struct pipe_vertex_element driver_attribs[PIPE_MAX_ATTRIBS];
748    struct u_vbuf_elements *ve = CALLOC_STRUCT(u_vbuf_elements);
749    uint32_t used_buffers = 0;
750 
751    ve->count = count;
752 
753    memcpy(ve->ve, attribs, sizeof(struct pipe_vertex_element) * count);
754    memcpy(driver_attribs, attribs, sizeof(struct pipe_vertex_element) * count);
755 
756    /* Set the best native format in case the original format is not
757     * supported. */
758    for (i = 0; i < count; i++) {
759       enum pipe_format format = ve->ve[i].src_format;
760 
761       ve->src_format_size[i] = util_format_get_blocksize(format);
762 
763       used_buffers |= 1 << ve->ve[i].vertex_buffer_index;
764 
765       if (!ve->ve[i].instance_divisor) {
766          ve->noninstance_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
767       }
768 
769       format = mgr->caps.format_translation[format];
770 
771       driver_attribs[i].src_format = format;
772       ve->native_format[i] = format;
773       ve->native_format_size[i] =
774             util_format_get_blocksize(ve->native_format[i]);
775 
776       if (ve->ve[i].src_format != format ||
777           (!mgr->caps.velem_src_offset_unaligned &&
778            ve->ve[i].src_offset % 4 != 0)) {
779          ve->incompatible_elem_mask |= 1 << i;
780          ve->incompatible_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
781       } else {
782          ve->compatible_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
783       }
784    }
785 
786    ve->used_vb_mask = used_buffers;
787    ve->compatible_vb_mask_all = ~ve->incompatible_vb_mask_any & used_buffers;
788    ve->incompatible_vb_mask_all = ~ve->compatible_vb_mask_any & used_buffers;
789 
790    /* Align the formats and offsets to the size of DWORD if needed. */
791    if (!mgr->caps.velem_src_offset_unaligned) {
792       for (i = 0; i < count; i++) {
793          ve->native_format_size[i] = align(ve->native_format_size[i], 4);
794          driver_attribs[i].src_offset = align(ve->ve[i].src_offset, 4);
795       }
796    }
797 
798    ve->driver_cso =
799       pipe->create_vertex_elements_state(pipe, count, driver_attribs);
800    return ve;
801 }
802 
u_vbuf_delete_vertex_elements(struct u_vbuf * mgr,void * cso)803 static void u_vbuf_delete_vertex_elements(struct u_vbuf *mgr, void *cso)
804 {
805    struct pipe_context *pipe = mgr->pipe;
806    struct u_vbuf_elements *ve = cso;
807 
808    pipe->delete_vertex_elements_state(pipe, ve->driver_cso);
809    FREE(ve);
810 }
811 
u_vbuf_set_vertex_buffers(struct u_vbuf * mgr,unsigned start_slot,unsigned count,const struct pipe_vertex_buffer * bufs)812 void u_vbuf_set_vertex_buffers(struct u_vbuf *mgr,
813                                unsigned start_slot, unsigned count,
814                                const struct pipe_vertex_buffer *bufs)
815 {
816    unsigned i;
817    /* which buffers are enabled */
818    uint32_t enabled_vb_mask = 0;
819    /* which buffers are in user memory */
820    uint32_t user_vb_mask = 0;
821    /* which buffers are incompatible with the driver */
822    uint32_t incompatible_vb_mask = 0;
823    /* which buffers have a non-zero stride */
824    uint32_t nonzero_stride_vb_mask = 0;
825    const uint32_t mask = ~(((1ull << count) - 1) << start_slot);
826 
827    /* Zero out the bits we are going to rewrite completely. */
828    mgr->user_vb_mask &= mask;
829    mgr->incompatible_vb_mask &= mask;
830    mgr->nonzero_stride_vb_mask &= mask;
831    mgr->enabled_vb_mask &= mask;
832 
833    if (!bufs) {
834       struct pipe_context *pipe = mgr->pipe;
835       /* Unbind. */
836       mgr->dirty_real_vb_mask &= mask;
837 
838       for (i = 0; i < count; i++) {
839          unsigned dst_index = start_slot + i;
840 
841          pipe_vertex_buffer_unreference(&mgr->vertex_buffer[dst_index]);
842          pipe_vertex_buffer_unreference(&mgr->real_vertex_buffer[dst_index]);
843       }
844 
845       pipe->set_vertex_buffers(pipe, start_slot, count, NULL);
846       return;
847    }
848 
849    for (i = 0; i < count; i++) {
850       unsigned dst_index = start_slot + i;
851       const struct pipe_vertex_buffer *vb = &bufs[i];
852       struct pipe_vertex_buffer *orig_vb = &mgr->vertex_buffer[dst_index];
853       struct pipe_vertex_buffer *real_vb = &mgr->real_vertex_buffer[dst_index];
854 
855       if (!vb->buffer.resource) {
856          pipe_vertex_buffer_unreference(orig_vb);
857          pipe_vertex_buffer_unreference(real_vb);
858          continue;
859       }
860 
861       pipe_vertex_buffer_reference(orig_vb, vb);
862 
863       if (vb->stride) {
864          nonzero_stride_vb_mask |= 1 << dst_index;
865       }
866       enabled_vb_mask |= 1 << dst_index;
867 
868       if ((!mgr->caps.buffer_offset_unaligned && vb->buffer_offset % 4 != 0) ||
869           (!mgr->caps.buffer_stride_unaligned && vb->stride % 4 != 0)) {
870          incompatible_vb_mask |= 1 << dst_index;
871          real_vb->buffer_offset = vb->buffer_offset;
872          real_vb->stride = vb->stride;
873          pipe_vertex_buffer_unreference(real_vb);
874          real_vb->is_user_buffer = false;
875          continue;
876       }
877 
878       if (!mgr->caps.user_vertex_buffers && vb->is_user_buffer) {
879          user_vb_mask |= 1 << dst_index;
880          real_vb->buffer_offset = vb->buffer_offset;
881          real_vb->stride = vb->stride;
882          pipe_vertex_buffer_unreference(real_vb);
883          real_vb->is_user_buffer = false;
884          continue;
885       }
886 
887       pipe_vertex_buffer_reference(real_vb, vb);
888    }
889 
890    mgr->user_vb_mask |= user_vb_mask;
891    mgr->incompatible_vb_mask |= incompatible_vb_mask;
892    mgr->nonzero_stride_vb_mask |= nonzero_stride_vb_mask;
893    mgr->enabled_vb_mask |= enabled_vb_mask;
894 
895    /* All changed buffers are marked as dirty, even the NULL ones,
896     * which will cause the NULL buffers to be unbound in the driver later. */
897    mgr->dirty_real_vb_mask |= ~mask;
898 }
899 
900 static enum pipe_error
u_vbuf_upload_buffers(struct u_vbuf * mgr,int start_vertex,unsigned num_vertices,int start_instance,unsigned num_instances)901 u_vbuf_upload_buffers(struct u_vbuf *mgr,
902                       int start_vertex, unsigned num_vertices,
903                       int start_instance, unsigned num_instances)
904 {
905    unsigned i;
906    unsigned nr_velems = mgr->ve->count;
907    const struct pipe_vertex_element *velems =
908          mgr->using_translate ? mgr->fallback_velems : mgr->ve->ve;
909    unsigned start_offset[PIPE_MAX_ATTRIBS];
910    unsigned end_offset[PIPE_MAX_ATTRIBS];
911    uint32_t buffer_mask = 0;
912 
913    /* Determine how much data needs to be uploaded. */
914    for (i = 0; i < nr_velems; i++) {
915       const struct pipe_vertex_element *velem = &velems[i];
916       unsigned index = velem->vertex_buffer_index;
917       struct pipe_vertex_buffer *vb = &mgr->vertex_buffer[index];
918       unsigned instance_div, first, size, index_bit;
919 
920       /* Skip the buffers generated by translate. */
921       if (index == mgr->fallback_vbs[VB_VERTEX] ||
922           index == mgr->fallback_vbs[VB_INSTANCE] ||
923           index == mgr->fallback_vbs[VB_CONST]) {
924          continue;
925       }
926 
927       if (!vb->is_user_buffer) {
928          continue;
929       }
930 
931       instance_div = velem->instance_divisor;
932       first = vb->buffer_offset + velem->src_offset;
933 
934       if (!vb->stride) {
935          /* Constant attrib. */
936          size = mgr->ve->src_format_size[i];
937       } else if (instance_div) {
938          /* Per-instance attrib. */
939          unsigned count = (num_instances + instance_div - 1) / instance_div;
940          first += vb->stride * start_instance;
941          size = vb->stride * (count - 1) + mgr->ve->src_format_size[i];
942       } else {
943          /* Per-vertex attrib. */
944          first += vb->stride * start_vertex;
945          size = vb->stride * (num_vertices - 1) + mgr->ve->src_format_size[i];
946       }
947 
948       index_bit = 1 << index;
949 
950       /* Update offsets. */
951       if (!(buffer_mask & index_bit)) {
952          start_offset[index] = first;
953          end_offset[index] = first + size;
954       } else {
955          if (first < start_offset[index])
956             start_offset[index] = first;
957          if (first + size > end_offset[index])
958             end_offset[index] = first + size;
959       }
960 
961       buffer_mask |= index_bit;
962    }
963 
964    /* Upload buffers. */
965    while (buffer_mask) {
966       unsigned start, end;
967       struct pipe_vertex_buffer *real_vb;
968       const uint8_t *ptr;
969 
970       i = u_bit_scan(&buffer_mask);
971 
972       start = start_offset[i];
973       end = end_offset[i];
974       assert(start < end);
975 
976       real_vb = &mgr->real_vertex_buffer[i];
977       ptr = mgr->vertex_buffer[i].buffer.user;
978 
979       u_upload_data(mgr->pipe->stream_uploader,
980                     mgr->has_signed_vb_offset ? 0 : start,
981                     end - start, 4,
982                     ptr + start, &real_vb->buffer_offset, &real_vb->buffer.resource);
983       if (!real_vb->buffer.resource)
984          return PIPE_ERROR_OUT_OF_MEMORY;
985 
986       real_vb->buffer_offset -= start;
987    }
988 
989    return PIPE_OK;
990 }
991 
u_vbuf_need_minmax_index(const struct u_vbuf * mgr)992 static boolean u_vbuf_need_minmax_index(const struct u_vbuf *mgr)
993 {
994    /* See if there are any per-vertex attribs which will be uploaded or
995     * translated. Use bitmasks to get the info instead of looping over vertex
996     * elements. */
997    return (mgr->ve->used_vb_mask &
998            ((mgr->user_vb_mask |
999              mgr->incompatible_vb_mask |
1000              mgr->ve->incompatible_vb_mask_any) &
1001             mgr->ve->noninstance_vb_mask_any &
1002             mgr->nonzero_stride_vb_mask)) != 0;
1003 }
1004 
u_vbuf_mapping_vertex_buffer_blocks(const struct u_vbuf * mgr)1005 static boolean u_vbuf_mapping_vertex_buffer_blocks(const struct u_vbuf *mgr)
1006 {
1007    /* Return true if there are hw buffers which don't need to be translated.
1008     *
1009     * We could query whether each buffer is busy, but that would
1010     * be way more costly than this. */
1011    return (mgr->ve->used_vb_mask &
1012            (~mgr->user_vb_mask &
1013             ~mgr->incompatible_vb_mask &
1014             mgr->ve->compatible_vb_mask_all &
1015             mgr->ve->noninstance_vb_mask_any &
1016             mgr->nonzero_stride_vb_mask)) != 0;
1017 }
1018 
u_vbuf_get_minmax_index(struct pipe_context * pipe,const struct pipe_draw_info * info,int * out_min_index,int * out_max_index)1019 static void u_vbuf_get_minmax_index(struct pipe_context *pipe,
1020                                     const struct pipe_draw_info *info,
1021                                     int *out_min_index, int *out_max_index)
1022 {
1023    struct pipe_transfer *transfer = NULL;
1024    const void *indices;
1025    unsigned i;
1026 
1027    if (info->has_user_indices) {
1028       indices = (uint8_t*)info->index.user +
1029                 info->start * info->index_size;
1030    } else {
1031       indices = pipe_buffer_map_range(pipe, info->index.resource,
1032                                       info->start * info->index_size,
1033                                       info->count * info->index_size,
1034                                       PIPE_TRANSFER_READ, &transfer);
1035    }
1036 
1037    switch (info->index_size) {
1038    case 4: {
1039       const unsigned *ui_indices = (const unsigned*)indices;
1040       unsigned max_ui = 0;
1041       unsigned min_ui = ~0U;
1042       if (info->primitive_restart) {
1043          for (i = 0; i < info->count; i++) {
1044             if (ui_indices[i] != info->restart_index) {
1045                if (ui_indices[i] > max_ui) max_ui = ui_indices[i];
1046                if (ui_indices[i] < min_ui) min_ui = ui_indices[i];
1047             }
1048          }
1049       }
1050       else {
1051          for (i = 0; i < info->count; i++) {
1052             if (ui_indices[i] > max_ui) max_ui = ui_indices[i];
1053             if (ui_indices[i] < min_ui) min_ui = ui_indices[i];
1054          }
1055       }
1056       *out_min_index = min_ui;
1057       *out_max_index = max_ui;
1058       break;
1059    }
1060    case 2: {
1061       const unsigned short *us_indices = (const unsigned short*)indices;
1062       unsigned max_us = 0;
1063       unsigned min_us = ~0U;
1064       if (info->primitive_restart) {
1065          for (i = 0; i < info->count; i++) {
1066             if (us_indices[i] != info->restart_index) {
1067                if (us_indices[i] > max_us) max_us = us_indices[i];
1068                if (us_indices[i] < min_us) min_us = us_indices[i];
1069             }
1070          }
1071       }
1072       else {
1073          for (i = 0; i < info->count; i++) {
1074             if (us_indices[i] > max_us) max_us = us_indices[i];
1075             if (us_indices[i] < min_us) min_us = us_indices[i];
1076          }
1077       }
1078       *out_min_index = min_us;
1079       *out_max_index = max_us;
1080       break;
1081    }
1082    case 1: {
1083       const unsigned char *ub_indices = (const unsigned char*)indices;
1084       unsigned max_ub = 0;
1085       unsigned min_ub = ~0U;
1086       if (info->primitive_restart) {
1087          for (i = 0; i < info->count; i++) {
1088             if (ub_indices[i] != info->restart_index) {
1089                if (ub_indices[i] > max_ub) max_ub = ub_indices[i];
1090                if (ub_indices[i] < min_ub) min_ub = ub_indices[i];
1091             }
1092          }
1093       }
1094       else {
1095          for (i = 0; i < info->count; i++) {
1096             if (ub_indices[i] > max_ub) max_ub = ub_indices[i];
1097             if (ub_indices[i] < min_ub) min_ub = ub_indices[i];
1098          }
1099       }
1100       *out_min_index = min_ub;
1101       *out_max_index = max_ub;
1102       break;
1103    }
1104    default:
1105       assert(0);
1106       *out_min_index = 0;
1107       *out_max_index = 0;
1108    }
1109 
1110    if (transfer) {
1111       pipe_buffer_unmap(pipe, transfer);
1112    }
1113 }
1114 
u_vbuf_set_driver_vertex_buffers(struct u_vbuf * mgr)1115 static void u_vbuf_set_driver_vertex_buffers(struct u_vbuf *mgr)
1116 {
1117    struct pipe_context *pipe = mgr->pipe;
1118    unsigned start_slot, count;
1119 
1120    start_slot = ffs(mgr->dirty_real_vb_mask) - 1;
1121    count = util_last_bit(mgr->dirty_real_vb_mask >> start_slot);
1122 
1123    pipe->set_vertex_buffers(pipe, start_slot, count,
1124                             mgr->real_vertex_buffer + start_slot);
1125    mgr->dirty_real_vb_mask = 0;
1126 }
1127 
u_vbuf_draw_vbo(struct u_vbuf * mgr,const struct pipe_draw_info * info)1128 void u_vbuf_draw_vbo(struct u_vbuf *mgr, const struct pipe_draw_info *info)
1129 {
1130    struct pipe_context *pipe = mgr->pipe;
1131    int start_vertex, min_index;
1132    unsigned num_vertices;
1133    boolean unroll_indices = FALSE;
1134    const uint32_t used_vb_mask = mgr->ve->used_vb_mask;
1135    uint32_t user_vb_mask = mgr->user_vb_mask & used_vb_mask;
1136    const uint32_t incompatible_vb_mask =
1137       mgr->incompatible_vb_mask & used_vb_mask;
1138    struct pipe_draw_info new_info;
1139 
1140    /* Normal draw. No fallback and no user buffers. */
1141    if (!incompatible_vb_mask &&
1142        !mgr->ve->incompatible_elem_mask &&
1143        !user_vb_mask) {
1144 
1145       /* Set vertex buffers if needed. */
1146       if (mgr->dirty_real_vb_mask & used_vb_mask) {
1147          u_vbuf_set_driver_vertex_buffers(mgr);
1148       }
1149 
1150       pipe->draw_vbo(pipe, info);
1151       return;
1152    }
1153 
1154    new_info = *info;
1155 
1156    /* Fallback. We need to know all the parameters. */
1157    if (new_info.indirect) {
1158       struct pipe_transfer *transfer = NULL;
1159       int *data;
1160 
1161       if (new_info.index_size) {
1162          data = pipe_buffer_map_range(pipe, new_info.indirect->buffer,
1163                                       new_info.indirect->offset, 20,
1164                                       PIPE_TRANSFER_READ, &transfer);
1165          new_info.index_bias = data[3];
1166          new_info.start_instance = data[4];
1167       }
1168       else {
1169          data = pipe_buffer_map_range(pipe, new_info.indirect->buffer,
1170                                       new_info.indirect->offset, 16,
1171                                       PIPE_TRANSFER_READ, &transfer);
1172          new_info.start_instance = data[3];
1173       }
1174 
1175       new_info.count = data[0];
1176       new_info.instance_count = data[1];
1177       new_info.start = data[2];
1178       pipe_buffer_unmap(pipe, transfer);
1179       new_info.indirect = NULL;
1180    }
1181 
1182    if (new_info.index_size) {
1183       /* See if anything needs to be done for per-vertex attribs. */
1184       if (u_vbuf_need_minmax_index(mgr)) {
1185          int max_index;
1186 
1187          if (new_info.max_index != ~0u) {
1188             min_index = new_info.min_index;
1189             max_index = new_info.max_index;
1190          } else {
1191             u_vbuf_get_minmax_index(mgr->pipe, &new_info,
1192                                     &min_index, &max_index);
1193          }
1194 
1195          assert(min_index <= max_index);
1196 
1197          start_vertex = min_index + new_info.index_bias;
1198          num_vertices = max_index + 1 - min_index;
1199 
1200          /* Primitive restart doesn't work when unrolling indices.
1201           * We would have to break this drawing operation into several ones. */
1202          /* Use some heuristic to see if unrolling indices improves
1203           * performance. */
1204          if (!new_info.primitive_restart &&
1205              num_vertices > new_info.count*2 &&
1206              num_vertices - new_info.count > 32 &&
1207              !u_vbuf_mapping_vertex_buffer_blocks(mgr)) {
1208             unroll_indices = TRUE;
1209             user_vb_mask &= ~(mgr->nonzero_stride_vb_mask &
1210                               mgr->ve->noninstance_vb_mask_any);
1211          }
1212       } else {
1213          /* Nothing to do for per-vertex attribs. */
1214          start_vertex = 0;
1215          num_vertices = 0;
1216          min_index = 0;
1217       }
1218    } else {
1219       start_vertex = new_info.start;
1220       num_vertices = new_info.count;
1221       min_index = 0;
1222    }
1223 
1224    /* Translate vertices with non-native layouts or formats. */
1225    if (unroll_indices ||
1226        incompatible_vb_mask ||
1227        mgr->ve->incompatible_elem_mask) {
1228       if (!u_vbuf_translate_begin(mgr, &new_info, start_vertex, num_vertices,
1229                                   min_index, unroll_indices)) {
1230          debug_warn_once("u_vbuf_translate_begin() failed");
1231          return;
1232       }
1233 
1234       if (unroll_indices) {
1235          new_info.index_size = 0;
1236          new_info.index_bias = 0;
1237          new_info.min_index = 0;
1238          new_info.max_index = new_info.count - 1;
1239          new_info.start = 0;
1240       }
1241 
1242       user_vb_mask &= ~(incompatible_vb_mask |
1243                         mgr->ve->incompatible_vb_mask_all);
1244    }
1245 
1246    /* Upload user buffers. */
1247    if (user_vb_mask) {
1248       if (u_vbuf_upload_buffers(mgr, start_vertex, num_vertices,
1249                                 new_info.start_instance,
1250                                 new_info.instance_count) != PIPE_OK) {
1251          debug_warn_once("u_vbuf_upload_buffers() failed");
1252          return;
1253       }
1254 
1255       mgr->dirty_real_vb_mask |= user_vb_mask;
1256    }
1257 
1258    /*
1259    if (unroll_indices) {
1260       printf("unrolling indices: start_vertex = %i, num_vertices = %i\n",
1261              start_vertex, num_vertices);
1262       util_dump_draw_info(stdout, info);
1263       printf("\n");
1264    }
1265 
1266    unsigned i;
1267    for (i = 0; i < mgr->nr_vertex_buffers; i++) {
1268       printf("input %i: ", i);
1269       util_dump_vertex_buffer(stdout, mgr->vertex_buffer+i);
1270       printf("\n");
1271    }
1272    for (i = 0; i < mgr->nr_real_vertex_buffers; i++) {
1273       printf("real %i: ", i);
1274       util_dump_vertex_buffer(stdout, mgr->real_vertex_buffer+i);
1275       printf("\n");
1276    }
1277    */
1278 
1279    u_upload_unmap(pipe->stream_uploader);
1280    u_vbuf_set_driver_vertex_buffers(mgr);
1281 
1282    pipe->draw_vbo(pipe, &new_info);
1283 
1284    if (mgr->using_translate) {
1285       u_vbuf_translate_end(mgr);
1286    }
1287 }
1288 
u_vbuf_save_vertex_elements(struct u_vbuf * mgr)1289 void u_vbuf_save_vertex_elements(struct u_vbuf *mgr)
1290 {
1291    assert(!mgr->ve_saved);
1292    mgr->ve_saved = mgr->ve;
1293 }
1294 
u_vbuf_restore_vertex_elements(struct u_vbuf * mgr)1295 void u_vbuf_restore_vertex_elements(struct u_vbuf *mgr)
1296 {
1297    if (mgr->ve != mgr->ve_saved) {
1298       struct pipe_context *pipe = mgr->pipe;
1299 
1300       mgr->ve = mgr->ve_saved;
1301       pipe->bind_vertex_elements_state(pipe,
1302                                        mgr->ve ? mgr->ve->driver_cso : NULL);
1303    }
1304    mgr->ve_saved = NULL;
1305 }
1306 
u_vbuf_save_aux_vertex_buffer_slot(struct u_vbuf * mgr)1307 void u_vbuf_save_aux_vertex_buffer_slot(struct u_vbuf *mgr)
1308 {
1309    pipe_vertex_buffer_reference(&mgr->aux_vertex_buffer_saved,
1310                            &mgr->vertex_buffer[mgr->aux_vertex_buffer_slot]);
1311 }
1312 
u_vbuf_restore_aux_vertex_buffer_slot(struct u_vbuf * mgr)1313 void u_vbuf_restore_aux_vertex_buffer_slot(struct u_vbuf *mgr)
1314 {
1315    u_vbuf_set_vertex_buffers(mgr, mgr->aux_vertex_buffer_slot, 1,
1316                              &mgr->aux_vertex_buffer_saved);
1317    pipe_vertex_buffer_unreference(&mgr->aux_vertex_buffer_saved);
1318 }
1319