1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Analysis/CGSCCPassManager.h"
11 #include "llvm/ADT/ArrayRef.h"
12 #include "llvm/ADT/Optional.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/Analysis/LazyCallGraph.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/InstIterator.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/PassManager.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <algorithm>
28 #include <cassert>
29 #include <iterator>
30 
31 #define DEBUG_TYPE "cgscc"
32 
33 using namespace llvm;
34 
35 // Explicit template instantiations and specialization definitions for core
36 // template typedefs.
37 namespace llvm {
38 
39 // Explicit instantiations for the core proxy templates.
40 template class AllAnalysesOn<LazyCallGraph::SCC>;
41 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
42 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
43                            LazyCallGraph &, CGSCCUpdateResult &>;
44 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
45 template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
46                                          LazyCallGraph::SCC, LazyCallGraph &>;
47 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
48 
49 /// Explicitly specialize the pass manager run method to handle call graph
50 /// updates.
51 template <>
52 PreservedAnalyses
53 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
run(LazyCallGraph::SCC & InitialC,CGSCCAnalysisManager & AM,LazyCallGraph & G,CGSCCUpdateResult & UR)54             CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
55                                       CGSCCAnalysisManager &AM,
56                                       LazyCallGraph &G, CGSCCUpdateResult &UR) {
57   PreservedAnalyses PA = PreservedAnalyses::all();
58 
59   if (DebugLogging)
60     dbgs() << "Starting CGSCC pass manager run.\n";
61 
62   // The SCC may be refined while we are running passes over it, so set up
63   // a pointer that we can update.
64   LazyCallGraph::SCC *C = &InitialC;
65 
66   for (auto &Pass : Passes) {
67     if (DebugLogging)
68       dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n";
69 
70     PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR);
71 
72     // Update the SCC if necessary.
73     C = UR.UpdatedC ? UR.UpdatedC : C;
74 
75     // If the CGSCC pass wasn't able to provide a valid updated SCC, the
76     // current SCC may simply need to be skipped if invalid.
77     if (UR.InvalidatedSCCs.count(C)) {
78       LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
79       break;
80     }
81     // Check that we didn't miss any update scenario.
82     assert(C->begin() != C->end() && "Cannot have an empty SCC!");
83 
84     // Update the analysis manager as each pass runs and potentially
85     // invalidates analyses.
86     AM.invalidate(*C, PassPA);
87 
88     // Finally, we intersect the final preserved analyses to compute the
89     // aggregate preserved set for this pass manager.
90     PA.intersect(std::move(PassPA));
91 
92     // FIXME: Historically, the pass managers all called the LLVM context's
93     // yield function here. We don't have a generic way to acquire the
94     // context and it isn't yet clear what the right pattern is for yielding
95     // in the new pass manager so it is currently omitted.
96     // ...getContext().yield();
97   }
98 
99   // Invalidation was handled after each pass in the above loop for the current
100   // SCC. Therefore, the remaining analysis results in the AnalysisManager are
101   // preserved. We mark this with a set so that we don't need to inspect each
102   // one individually.
103   PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
104 
105   if (DebugLogging)
106     dbgs() << "Finished CGSCC pass manager run.\n";
107 
108   return PA;
109 }
110 
invalidate(Module & M,const PreservedAnalyses & PA,ModuleAnalysisManager::Invalidator & Inv)111 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
112     Module &M, const PreservedAnalyses &PA,
113     ModuleAnalysisManager::Invalidator &Inv) {
114   // If literally everything is preserved, we're done.
115   if (PA.areAllPreserved())
116     return false; // This is still a valid proxy.
117 
118   // If this proxy or the call graph is going to be invalidated, we also need
119   // to clear all the keys coming from that analysis.
120   //
121   // We also directly invalidate the FAM's module proxy if necessary, and if
122   // that proxy isn't preserved we can't preserve this proxy either. We rely on
123   // it to handle module -> function analysis invalidation in the face of
124   // structural changes and so if it's unavailable we conservatively clear the
125   // entire SCC layer as well rather than trying to do invalidation ourselves.
126   auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>();
127   if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) ||
128       Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
129       Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
130     InnerAM->clear();
131 
132     // And the proxy itself should be marked as invalid so that we can observe
133     // the new call graph. This isn't strictly necessary because we cheat
134     // above, but is still useful.
135     return true;
136   }
137 
138   // Directly check if the relevant set is preserved so we can short circuit
139   // invalidating SCCs below.
140   bool AreSCCAnalysesPreserved =
141       PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();
142 
143   // Ok, we have a graph, so we can propagate the invalidation down into it.
144   G->buildRefSCCs();
145   for (auto &RC : G->postorder_ref_sccs())
146     for (auto &C : RC) {
147       Optional<PreservedAnalyses> InnerPA;
148 
149       // Check to see whether the preserved set needs to be adjusted based on
150       // module-level analysis invalidation triggering deferred invalidation
151       // for this SCC.
152       if (auto *OuterProxy =
153               InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C))
154         for (const auto &OuterInvalidationPair :
155              OuterProxy->getOuterInvalidations()) {
156           AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
157           const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
158           if (Inv.invalidate(OuterAnalysisID, M, PA)) {
159             if (!InnerPA)
160               InnerPA = PA;
161             for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
162               InnerPA->abandon(InnerAnalysisID);
163           }
164         }
165 
166       // Check if we needed a custom PA set. If so we'll need to run the inner
167       // invalidation.
168       if (InnerPA) {
169         InnerAM->invalidate(C, *InnerPA);
170         continue;
171       }
172 
173       // Otherwise we only need to do invalidation if the original PA set didn't
174       // preserve all SCC analyses.
175       if (!AreSCCAnalysesPreserved)
176         InnerAM->invalidate(C, PA);
177     }
178 
179   // Return false to indicate that this result is still a valid proxy.
180   return false;
181 }
182 
183 template <>
184 CGSCCAnalysisManagerModuleProxy::Result
run(Module & M,ModuleAnalysisManager & AM)185 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
186   // Force the Function analysis manager to also be available so that it can
187   // be accessed in an SCC analysis and proxied onward to function passes.
188   // FIXME: It is pretty awkward to just drop the result here and assert that
189   // we can find it again later.
190   (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);
191 
192   return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
193 }
194 
195 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;
196 
197 FunctionAnalysisManagerCGSCCProxy::Result
run(LazyCallGraph::SCC & C,CGSCCAnalysisManager & AM,LazyCallGraph & CG)198 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
199                                        CGSCCAnalysisManager &AM,
200                                        LazyCallGraph &CG) {
201   // Collect the FunctionAnalysisManager from the Module layer and use that to
202   // build the proxy result.
203   //
204   // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to
205   // invalidate the function analyses.
206   auto &MAM = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager();
207   Module &M = *C.begin()->getFunction().getParent();
208   auto *FAMProxy = MAM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M);
209   assert(FAMProxy && "The CGSCC pass manager requires that the FAM module "
210                      "proxy is run on the module prior to entering the CGSCC "
211                      "walk.");
212 
213   // Note that we special-case invalidation handling of this proxy in the CGSCC
214   // analysis manager's Module proxy. This avoids the need to do anything
215   // special here to recompute all of this if ever the FAM's module proxy goes
216   // away.
217   return Result(FAMProxy->getManager());
218 }
219 
invalidate(LazyCallGraph::SCC & C,const PreservedAnalyses & PA,CGSCCAnalysisManager::Invalidator & Inv)220 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
221     LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
222     CGSCCAnalysisManager::Invalidator &Inv) {
223   // If literally everything is preserved, we're done.
224   if (PA.areAllPreserved())
225     return false; // This is still a valid proxy.
226 
227   // If this proxy isn't marked as preserved, then even if the result remains
228   // valid, the key itself may no longer be valid, so we clear everything.
229   //
230   // Note that in order to preserve this proxy, a module pass must ensure that
231   // the FAM has been completely updated to handle the deletion of functions.
232   // Specifically, any FAM-cached results for those functions need to have been
233   // forcibly cleared. When preserved, this proxy will only invalidate results
234   // cached on functions *still in the module* at the end of the module pass.
235   auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>();
236   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) {
237     for (LazyCallGraph::Node &N : C)
238       FAM->clear(N.getFunction(), N.getFunction().getName());
239 
240     return true;
241   }
242 
243   // Directly check if the relevant set is preserved.
244   bool AreFunctionAnalysesPreserved =
245       PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>();
246 
247   // Now walk all the functions to see if any inner analysis invalidation is
248   // necessary.
249   for (LazyCallGraph::Node &N : C) {
250     Function &F = N.getFunction();
251     Optional<PreservedAnalyses> FunctionPA;
252 
253     // Check to see whether the preserved set needs to be pruned based on
254     // SCC-level analysis invalidation that triggers deferred invalidation
255     // registered with the outer analysis manager proxy for this function.
256     if (auto *OuterProxy =
257             FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F))
258       for (const auto &OuterInvalidationPair :
259            OuterProxy->getOuterInvalidations()) {
260         AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
261         const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
262         if (Inv.invalidate(OuterAnalysisID, C, PA)) {
263           if (!FunctionPA)
264             FunctionPA = PA;
265           for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
266             FunctionPA->abandon(InnerAnalysisID);
267         }
268       }
269 
270     // Check if we needed a custom PA set, and if so we'll need to run the
271     // inner invalidation.
272     if (FunctionPA) {
273       FAM->invalidate(F, *FunctionPA);
274       continue;
275     }
276 
277     // Otherwise we only need to do invalidation if the original PA set didn't
278     // preserve all function analyses.
279     if (!AreFunctionAnalysesPreserved)
280       FAM->invalidate(F, PA);
281   }
282 
283   // Return false to indicate that this result is still a valid proxy.
284   return false;
285 }
286 
287 } // end namespace llvm
288 
289 /// When a new SCC is created for the graph and there might be function
290 /// analysis results cached for the functions now in that SCC two forms of
291 /// updates are required.
292 ///
293 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
294 /// created so that any subsequent invalidation events to the SCC are
295 /// propagated to the function analysis results cached for functions within it.
296 ///
297 /// Second, if any of the functions within the SCC have analysis results with
298 /// outer analysis dependencies, then those dependencies would point to the
299 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary
300 /// function analyses so that they don't retain stale handles.
updateNewSCCFunctionAnalyses(LazyCallGraph::SCC & C,LazyCallGraph & G,CGSCCAnalysisManager & AM)301 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C,
302                                          LazyCallGraph &G,
303                                          CGSCCAnalysisManager &AM) {
304   // Get the relevant function analysis manager.
305   auto &FAM =
306       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).getManager();
307 
308   // Now walk the functions in this SCC and invalidate any function analysis
309   // results that might have outer dependencies on an SCC analysis.
310   for (LazyCallGraph::Node &N : C) {
311     Function &F = N.getFunction();
312 
313     auto *OuterProxy =
314         FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F);
315     if (!OuterProxy)
316       // No outer analyses were queried, nothing to do.
317       continue;
318 
319     // Forcibly abandon all the inner analyses with dependencies, but
320     // invalidate nothing else.
321     auto PA = PreservedAnalyses::all();
322     for (const auto &OuterInvalidationPair :
323          OuterProxy->getOuterInvalidations()) {
324       const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
325       for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
326         PA.abandon(InnerAnalysisID);
327     }
328 
329     // Now invalidate anything we found.
330     FAM.invalidate(F, PA);
331   }
332 }
333 
334 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
335 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
336 /// added SCCs.
337 ///
338 /// The range of new SCCs must be in postorder already. The SCC they were split
339 /// out of must be provided as \p C. The current node being mutated and
340 /// triggering updates must be passed as \p N.
341 ///
342 /// This function returns the SCC containing \p N. This will be either \p C if
343 /// no new SCCs have been split out, or it will be the new SCC containing \p N.
344 template <typename SCCRangeT>
345 static LazyCallGraph::SCC *
incorporateNewSCCRange(const SCCRangeT & NewSCCRange,LazyCallGraph & G,LazyCallGraph::Node & N,LazyCallGraph::SCC * C,CGSCCAnalysisManager & AM,CGSCCUpdateResult & UR)346 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
347                        LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
348                        CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
349   using SCC = LazyCallGraph::SCC;
350 
351   if (NewSCCRange.begin() == NewSCCRange.end())
352     return C;
353 
354   // Add the current SCC to the worklist as its shape has changed.
355   UR.CWorklist.insert(C);
356   LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
357                     << "\n");
358 
359   SCC *OldC = C;
360 
361   // Update the current SCC. Note that if we have new SCCs, this must actually
362   // change the SCC.
363   assert(C != &*NewSCCRange.begin() &&
364          "Cannot insert new SCCs without changing current SCC!");
365   C = &*NewSCCRange.begin();
366   assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
367 
368   // If we had a cached FAM proxy originally, we will want to create more of
369   // them for each SCC that was split off.
370   bool NeedFAMProxy =
371       AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC) != nullptr;
372 
373   // We need to propagate an invalidation call to all but the newly current SCC
374   // because the outer pass manager won't do that for us after splitting them.
375   // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
376   // there are preserved analysis we can avoid invalidating them here for
377   // split-off SCCs.
378   // We know however that this will preserve any FAM proxy so go ahead and mark
379   // that.
380   PreservedAnalyses PA;
381   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
382   AM.invalidate(*OldC, PA);
383 
384   // Ensure the now-current SCC's function analyses are updated.
385   if (NeedFAMProxy)
386     updateNewSCCFunctionAnalyses(*C, G, AM);
387 
388   for (SCC &NewC : llvm::reverse(make_range(std::next(NewSCCRange.begin()),
389                                             NewSCCRange.end()))) {
390     assert(C != &NewC && "No need to re-visit the current SCC!");
391     assert(OldC != &NewC && "Already handled the original SCC!");
392     UR.CWorklist.insert(&NewC);
393     LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n");
394 
395     // Ensure new SCCs' function analyses are updated.
396     if (NeedFAMProxy)
397       updateNewSCCFunctionAnalyses(NewC, G, AM);
398 
399     // Also propagate a normal invalidation to the new SCC as only the current
400     // will get one from the pass manager infrastructure.
401     AM.invalidate(NewC, PA);
402   }
403   return C;
404 }
405 
updateCGAndAnalysisManagerForFunctionPass(LazyCallGraph & G,LazyCallGraph::SCC & InitialC,LazyCallGraph::Node & N,CGSCCAnalysisManager & AM,CGSCCUpdateResult & UR)406 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
407     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
408     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
409   using Node = LazyCallGraph::Node;
410   using Edge = LazyCallGraph::Edge;
411   using SCC = LazyCallGraph::SCC;
412   using RefSCC = LazyCallGraph::RefSCC;
413 
414   RefSCC &InitialRC = InitialC.getOuterRefSCC();
415   SCC *C = &InitialC;
416   RefSCC *RC = &InitialRC;
417   Function &F = N.getFunction();
418 
419   // Walk the function body and build up the set of retained, promoted, and
420   // demoted edges.
421   SmallVector<Constant *, 16> Worklist;
422   SmallPtrSet<Constant *, 16> Visited;
423   SmallPtrSet<Node *, 16> RetainedEdges;
424   SmallSetVector<Node *, 4> PromotedRefTargets;
425   SmallSetVector<Node *, 4> DemotedCallTargets;
426 
427   // First walk the function and handle all called functions. We do this first
428   // because if there is a single call edge, whether there are ref edges is
429   // irrelevant.
430   for (Instruction &I : instructions(F))
431     if (auto CS = CallSite(&I))
432       if (Function *Callee = CS.getCalledFunction())
433         if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
434           Node &CalleeN = *G.lookup(*Callee);
435           Edge *E = N->lookup(CalleeN);
436           // FIXME: We should really handle adding new calls. While it will
437           // make downstream usage more complex, there is no fundamental
438           // limitation and it will allow passes within the CGSCC to be a bit
439           // more flexible in what transforms they can do. Until then, we
440           // verify that new calls haven't been introduced.
441           assert(E && "No function transformations should introduce *new* "
442                       "call edges! Any new calls should be modeled as "
443                       "promoted existing ref edges!");
444           bool Inserted = RetainedEdges.insert(&CalleeN).second;
445           (void)Inserted;
446           assert(Inserted && "We should never visit a function twice.");
447           if (!E->isCall())
448             PromotedRefTargets.insert(&CalleeN);
449         }
450 
451   // Now walk all references.
452   for (Instruction &I : instructions(F))
453     for (Value *Op : I.operand_values())
454       if (auto *C = dyn_cast<Constant>(Op))
455         if (Visited.insert(C).second)
456           Worklist.push_back(C);
457 
458   auto VisitRef = [&](Function &Referee) {
459     Node &RefereeN = *G.lookup(Referee);
460     Edge *E = N->lookup(RefereeN);
461     // FIXME: Similarly to new calls, we also currently preclude
462     // introducing new references. See above for details.
463     assert(E && "No function transformations should introduce *new* ref "
464                 "edges! Any new ref edges would require IPO which "
465                 "function passes aren't allowed to do!");
466     bool Inserted = RetainedEdges.insert(&RefereeN).second;
467     (void)Inserted;
468     assert(Inserted && "We should never visit a function twice.");
469     if (E->isCall())
470       DemotedCallTargets.insert(&RefereeN);
471   };
472   LazyCallGraph::visitReferences(Worklist, Visited, VisitRef);
473 
474   // Include synthetic reference edges to known, defined lib functions.
475   for (auto *F : G.getLibFunctions())
476     // While the list of lib functions doesn't have repeats, don't re-visit
477     // anything handled above.
478     if (!Visited.count(F))
479       VisitRef(*F);
480 
481   // First remove all of the edges that are no longer present in this function.
482   // The first step makes these edges uniformly ref edges and accumulates them
483   // into a separate data structure so removal doesn't invalidate anything.
484   SmallVector<Node *, 4> DeadTargets;
485   for (Edge &E : *N) {
486     if (RetainedEdges.count(&E.getNode()))
487       continue;
488 
489     SCC &TargetC = *G.lookupSCC(E.getNode());
490     RefSCC &TargetRC = TargetC.getOuterRefSCC();
491     if (&TargetRC == RC && E.isCall()) {
492       if (C != &TargetC) {
493         // For separate SCCs this is trivial.
494         RC->switchTrivialInternalEdgeToRef(N, E.getNode());
495       } else {
496         // Now update the call graph.
497         C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()),
498                                    G, N, C, AM, UR);
499       }
500     }
501 
502     // Now that this is ready for actual removal, put it into our list.
503     DeadTargets.push_back(&E.getNode());
504   }
505   // Remove the easy cases quickly and actually pull them out of our list.
506   DeadTargets.erase(
507       llvm::remove_if(DeadTargets,
508                       [&](Node *TargetN) {
509                         SCC &TargetC = *G.lookupSCC(*TargetN);
510                         RefSCC &TargetRC = TargetC.getOuterRefSCC();
511 
512                         // We can't trivially remove internal targets, so skip
513                         // those.
514                         if (&TargetRC == RC)
515                           return false;
516 
517                         RC->removeOutgoingEdge(N, *TargetN);
518                         LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '"
519                                           << N << "' to '" << TargetN << "'\n");
520                         return true;
521                       }),
522       DeadTargets.end());
523 
524   // Now do a batch removal of the internal ref edges left.
525   auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets);
526   if (!NewRefSCCs.empty()) {
527     // The old RefSCC is dead, mark it as such.
528     UR.InvalidatedRefSCCs.insert(RC);
529 
530     // Note that we don't bother to invalidate analyses as ref-edge
531     // connectivity is not really observable in any way and is intended
532     // exclusively to be used for ordering of transforms rather than for
533     // analysis conclusions.
534 
535     // Update RC to the "bottom".
536     assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
537     RC = &C->getOuterRefSCC();
538     assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
539 
540     // The RC worklist is in reverse postorder, so we enqueue the new ones in
541     // RPO except for the one which contains the source node as that is the
542     // "bottom" we will continue processing in the bottom-up walk.
543     assert(NewRefSCCs.front() == RC &&
544            "New current RefSCC not first in the returned list!");
545     for (RefSCC *NewRC : llvm::reverse(make_range(std::next(NewRefSCCs.begin()),
546                                                   NewRefSCCs.end()))) {
547       assert(NewRC != RC && "Should not encounter the current RefSCC further "
548                             "in the postorder list of new RefSCCs.");
549       UR.RCWorklist.insert(NewRC);
550       LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "
551                         << *NewRC << "\n");
552     }
553   }
554 
555   // Next demote all the call edges that are now ref edges. This helps make
556   // the SCCs small which should minimize the work below as we don't want to
557   // form cycles that this would break.
558   for (Node *RefTarget : DemotedCallTargets) {
559     SCC &TargetC = *G.lookupSCC(*RefTarget);
560     RefSCC &TargetRC = TargetC.getOuterRefSCC();
561 
562     // The easy case is when the target RefSCC is not this RefSCC. This is
563     // only supported when the target RefSCC is a child of this RefSCC.
564     if (&TargetRC != RC) {
565       assert(RC->isAncestorOf(TargetRC) &&
566              "Cannot potentially form RefSCC cycles here!");
567       RC->switchOutgoingEdgeToRef(N, *RefTarget);
568       LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
569                         << "' to '" << *RefTarget << "'\n");
570       continue;
571     }
572 
573     // We are switching an internal call edge to a ref edge. This may split up
574     // some SCCs.
575     if (C != &TargetC) {
576       // For separate SCCs this is trivial.
577       RC->switchTrivialInternalEdgeToRef(N, *RefTarget);
578       continue;
579     }
580 
581     // Now update the call graph.
582     C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N,
583                                C, AM, UR);
584   }
585 
586   // Now promote ref edges into call edges.
587   for (Node *CallTarget : PromotedRefTargets) {
588     SCC &TargetC = *G.lookupSCC(*CallTarget);
589     RefSCC &TargetRC = TargetC.getOuterRefSCC();
590 
591     // The easy case is when the target RefSCC is not this RefSCC. This is
592     // only supported when the target RefSCC is a child of this RefSCC.
593     if (&TargetRC != RC) {
594       assert(RC->isAncestorOf(TargetRC) &&
595              "Cannot potentially form RefSCC cycles here!");
596       RC->switchOutgoingEdgeToCall(N, *CallTarget);
597       LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
598                         << "' to '" << *CallTarget << "'\n");
599       continue;
600     }
601     LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
602                       << N << "' to '" << *CallTarget << "'\n");
603 
604     // Otherwise we are switching an internal ref edge to a call edge. This
605     // may merge away some SCCs, and we add those to the UpdateResult. We also
606     // need to make sure to update the worklist in the event SCCs have moved
607     // before the current one in the post-order sequence
608     bool HasFunctionAnalysisProxy = false;
609     auto InitialSCCIndex = RC->find(*C) - RC->begin();
610     bool FormedCycle = RC->switchInternalEdgeToCall(
611         N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) {
612           for (SCC *MergedC : MergedSCCs) {
613             assert(MergedC != &TargetC && "Cannot merge away the target SCC!");
614 
615             HasFunctionAnalysisProxy |=
616                 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(
617                     *MergedC) != nullptr;
618 
619             // Mark that this SCC will no longer be valid.
620             UR.InvalidatedSCCs.insert(MergedC);
621 
622             // FIXME: We should really do a 'clear' here to forcibly release
623             // memory, but we don't have a good way of doing that and
624             // preserving the function analyses.
625             auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
626             PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
627             AM.invalidate(*MergedC, PA);
628           }
629         });
630 
631     // If we formed a cycle by creating this call, we need to update more data
632     // structures.
633     if (FormedCycle) {
634       C = &TargetC;
635       assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
636 
637       // If one of the invalidated SCCs had a cached proxy to a function
638       // analysis manager, we need to create a proxy in the new current SCC as
639       // the invalidated SCCs had their functions moved.
640       if (HasFunctionAnalysisProxy)
641         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G);
642 
643       // Any analyses cached for this SCC are no longer precise as the shape
644       // has changed by introducing this cycle. However, we have taken care to
645       // update the proxies so it remains valide.
646       auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
647       PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
648       AM.invalidate(*C, PA);
649     }
650     auto NewSCCIndex = RC->find(*C) - RC->begin();
651     // If we have actually moved an SCC to be topologically "below" the current
652     // one due to merging, we will need to revisit the current SCC after
653     // visiting those moved SCCs.
654     //
655     // It is critical that we *do not* revisit the current SCC unless we
656     // actually move SCCs in the process of merging because otherwise we may
657     // form a cycle where an SCC is split apart, merged, split, merged and so
658     // on infinitely.
659     if (InitialSCCIndex < NewSCCIndex) {
660       // Put our current SCC back onto the worklist as we'll visit other SCCs
661       // that are now definitively ordered prior to the current one in the
662       // post-order sequence, and may end up observing more precise context to
663       // optimize the current SCC.
664       UR.CWorklist.insert(C);
665       LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
666                         << "\n");
667       // Enqueue in reverse order as we pop off the back of the worklist.
668       for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex,
669                                                   RC->begin() + NewSCCIndex))) {
670         UR.CWorklist.insert(&MovedC);
671         LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
672                           << MovedC << "\n");
673       }
674     }
675   }
676 
677   assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
678   assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
679   assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
680 
681   // Record the current RefSCC and SCC for higher layers of the CGSCC pass
682   // manager now that all the updates have been applied.
683   if (RC != &InitialRC)
684     UR.UpdatedRC = RC;
685   if (C != &InitialC)
686     UR.UpdatedC = C;
687 
688   return *C;
689 }
690