1 /*
2  * tools/testing/selftests/kvm/lib/kvm_util.c
3  *
4  * Copyright (C) 2018, Google LLC.
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2.
7  */
8 
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "kvm_util_internal.h"
12 
13 #include <assert.h>
14 #include <sys/mman.h>
15 #include <sys/types.h>
16 #include <sys/stat.h>
17 #include <linux/kernel.h>
18 
19 #define KVM_UTIL_PGS_PER_HUGEPG 512
20 #define KVM_UTIL_MIN_PFN	2
21 
22 /* Aligns x up to the next multiple of size. Size must be a power of 2. */
align(void * x,size_t size)23 static void *align(void *x, size_t size)
24 {
25 	size_t mask = size - 1;
26 	TEST_ASSERT(size != 0 && !(size & (size - 1)),
27 		    "size not a power of 2: %lu", size);
28 	return (void *) (((size_t) x + mask) & ~mask);
29 }
30 
31 /*
32  * Capability
33  *
34  * Input Args:
35  *   cap - Capability
36  *
37  * Output Args: None
38  *
39  * Return:
40  *   On success, the Value corresponding to the capability (KVM_CAP_*)
41  *   specified by the value of cap.  On failure a TEST_ASSERT failure
42  *   is produced.
43  *
44  * Looks up and returns the value corresponding to the capability
45  * (KVM_CAP_*) given by cap.
46  */
kvm_check_cap(long cap)47 int kvm_check_cap(long cap)
48 {
49 	int ret;
50 	int kvm_fd;
51 
52 	kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
53 	if (kvm_fd < 0)
54 		exit(KSFT_SKIP);
55 
56 	ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
57 	TEST_ASSERT(ret != -1, "KVM_CHECK_EXTENSION IOCTL failed,\n"
58 		"  rc: %i errno: %i", ret, errno);
59 
60 	close(kvm_fd);
61 
62 	return ret;
63 }
64 
65 /* VM Enable Capability
66  *
67  * Input Args:
68  *   vm - Virtual Machine
69  *   cap - Capability
70  *
71  * Output Args: None
72  *
73  * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
74  *
75  * Enables a capability (KVM_CAP_*) on the VM.
76  */
vm_enable_cap(struct kvm_vm * vm,struct kvm_enable_cap * cap)77 int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
78 {
79 	int ret;
80 
81 	ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
82 	TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
83 		"  rc: %i errno: %i", ret, errno);
84 
85 	return ret;
86 }
87 
vm_open(struct kvm_vm * vm,int perm)88 static void vm_open(struct kvm_vm *vm, int perm)
89 {
90 	vm->kvm_fd = open(KVM_DEV_PATH, perm);
91 	if (vm->kvm_fd < 0)
92 		exit(KSFT_SKIP);
93 
94 	vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, NULL);
95 	TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
96 		"rc: %i errno: %i", vm->fd, errno);
97 }
98 
99 const char * const vm_guest_mode_string[] = {
100 	"PA-bits:52, VA-bits:48, 4K pages",
101 	"PA-bits:52, VA-bits:48, 64K pages",
102 	"PA-bits:40, VA-bits:48, 4K pages",
103 	"PA-bits:40, VA-bits:48, 64K pages",
104 };
105 
106 /*
107  * VM Create
108  *
109  * Input Args:
110  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
111  *   phy_pages - Physical memory pages
112  *   perm - permission
113  *
114  * Output Args: None
115  *
116  * Return:
117  *   Pointer to opaque structure that describes the created VM.
118  *
119  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
120  * When phy_pages is non-zero, a memory region of phy_pages physical pages
121  * is created and mapped starting at guest physical address 0.  The file
122  * descriptor to control the created VM is created with the permissions
123  * given by perm (e.g. O_RDWR).
124  */
vm_create(enum vm_guest_mode mode,uint64_t phy_pages,int perm)125 struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
126 {
127 	struct kvm_vm *vm;
128 	int kvm_fd;
129 
130 	vm = calloc(1, sizeof(*vm));
131 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
132 
133 	vm->mode = mode;
134 	vm_open(vm, perm);
135 
136 	/* Setup mode specific traits. */
137 	switch (vm->mode) {
138 	case VM_MODE_P52V48_4K:
139 		vm->pgtable_levels = 4;
140 		vm->page_size = 0x1000;
141 		vm->page_shift = 12;
142 		vm->va_bits = 48;
143 		break;
144 	case VM_MODE_P52V48_64K:
145 		vm->pgtable_levels = 3;
146 		vm->pa_bits = 52;
147 		vm->page_size = 0x10000;
148 		vm->page_shift = 16;
149 		vm->va_bits = 48;
150 		break;
151 	case VM_MODE_P40V48_4K:
152 		vm->pgtable_levels = 4;
153 		vm->pa_bits = 40;
154 		vm->va_bits = 48;
155 		vm->page_size = 0x1000;
156 		vm->page_shift = 12;
157 		break;
158 	case VM_MODE_P40V48_64K:
159 		vm->pgtable_levels = 3;
160 		vm->pa_bits = 40;
161 		vm->va_bits = 48;
162 		vm->page_size = 0x10000;
163 		vm->page_shift = 16;
164 		break;
165 	default:
166 		TEST_ASSERT(false, "Unknown guest mode, mode: 0x%x", mode);
167 	}
168 
169 	/* Limit to VA-bit canonical virtual addresses. */
170 	vm->vpages_valid = sparsebit_alloc();
171 	sparsebit_set_num(vm->vpages_valid,
172 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
173 	sparsebit_set_num(vm->vpages_valid,
174 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
175 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
176 
177 	/* Limit physical addresses to PA-bits. */
178 	vm->max_gfn = ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
179 
180 	/* Allocate and setup memory for guest. */
181 	vm->vpages_mapped = sparsebit_alloc();
182 	if (phy_pages != 0)
183 		vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
184 					    0, 0, phy_pages, 0);
185 
186 	return vm;
187 }
188 
189 /*
190  * VM Restart
191  *
192  * Input Args:
193  *   vm - VM that has been released before
194  *   perm - permission
195  *
196  * Output Args: None
197  *
198  * Reopens the file descriptors associated to the VM and reinstates the
199  * global state, such as the irqchip and the memory regions that are mapped
200  * into the guest.
201  */
kvm_vm_restart(struct kvm_vm * vmp,int perm)202 void kvm_vm_restart(struct kvm_vm *vmp, int perm)
203 {
204 	struct userspace_mem_region *region;
205 
206 	vm_open(vmp, perm);
207 	if (vmp->has_irqchip)
208 		vm_create_irqchip(vmp);
209 
210 	for (region = vmp->userspace_mem_region_head; region;
211 		region = region->next) {
212 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
213 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
214 			    "  rc: %i errno: %i\n"
215 			    "  slot: %u flags: 0x%x\n"
216 			    "  guest_phys_addr: 0x%lx size: 0x%lx",
217 			    ret, errno, region->region.slot,
218 			    region->region.flags,
219 			    region->region.guest_phys_addr,
220 			    region->region.memory_size);
221 	}
222 }
223 
kvm_vm_get_dirty_log(struct kvm_vm * vm,int slot,void * log)224 void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
225 {
226 	struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
227 	int ret;
228 
229 	ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
230 	TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
231 		    strerror(-ret));
232 }
233 
234 /*
235  * Userspace Memory Region Find
236  *
237  * Input Args:
238  *   vm - Virtual Machine
239  *   start - Starting VM physical address
240  *   end - Ending VM physical address, inclusive.
241  *
242  * Output Args: None
243  *
244  * Return:
245  *   Pointer to overlapping region, NULL if no such region.
246  *
247  * Searches for a region with any physical memory that overlaps with
248  * any portion of the guest physical addresses from start to end
249  * inclusive.  If multiple overlapping regions exist, a pointer to any
250  * of the regions is returned.  Null is returned only when no overlapping
251  * region exists.
252  */
253 static struct userspace_mem_region *
userspace_mem_region_find(struct kvm_vm * vm,uint64_t start,uint64_t end)254 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
255 {
256 	struct userspace_mem_region *region;
257 
258 	for (region = vm->userspace_mem_region_head; region;
259 		region = region->next) {
260 		uint64_t existing_start = region->region.guest_phys_addr;
261 		uint64_t existing_end = region->region.guest_phys_addr
262 			+ region->region.memory_size - 1;
263 		if (start <= existing_end && end >= existing_start)
264 			return region;
265 	}
266 
267 	return NULL;
268 }
269 
270 /*
271  * KVM Userspace Memory Region Find
272  *
273  * Input Args:
274  *   vm - Virtual Machine
275  *   start - Starting VM physical address
276  *   end - Ending VM physical address, inclusive.
277  *
278  * Output Args: None
279  *
280  * Return:
281  *   Pointer to overlapping region, NULL if no such region.
282  *
283  * Public interface to userspace_mem_region_find. Allows tests to look up
284  * the memslot datastructure for a given range of guest physical memory.
285  */
286 struct kvm_userspace_memory_region *
kvm_userspace_memory_region_find(struct kvm_vm * vm,uint64_t start,uint64_t end)287 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
288 				 uint64_t end)
289 {
290 	struct userspace_mem_region *region;
291 
292 	region = userspace_mem_region_find(vm, start, end);
293 	if (!region)
294 		return NULL;
295 
296 	return &region->region;
297 }
298 
299 /*
300  * VCPU Find
301  *
302  * Input Args:
303  *   vm - Virtual Machine
304  *   vcpuid - VCPU ID
305  *
306  * Output Args: None
307  *
308  * Return:
309  *   Pointer to VCPU structure
310  *
311  * Locates a vcpu structure that describes the VCPU specified by vcpuid and
312  * returns a pointer to it.  Returns NULL if the VM doesn't contain a VCPU
313  * for the specified vcpuid.
314  */
vcpu_find(struct kvm_vm * vm,uint32_t vcpuid)315 struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
316 {
317 	struct vcpu *vcpup;
318 
319 	for (vcpup = vm->vcpu_head; vcpup; vcpup = vcpup->next) {
320 		if (vcpup->id == vcpuid)
321 			return vcpup;
322 	}
323 
324 	return NULL;
325 }
326 
327 /*
328  * VM VCPU Remove
329  *
330  * Input Args:
331  *   vm - Virtual Machine
332  *   vcpuid - VCPU ID
333  *
334  * Output Args: None
335  *
336  * Return: None, TEST_ASSERT failures for all error conditions
337  *
338  * Within the VM specified by vm, removes the VCPU given by vcpuid.
339  */
vm_vcpu_rm(struct kvm_vm * vm,uint32_t vcpuid)340 static void vm_vcpu_rm(struct kvm_vm *vm, uint32_t vcpuid)
341 {
342 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
343 	int ret;
344 
345 	ret = munmap(vcpu->state, sizeof(*vcpu->state));
346 	TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
347 		"errno: %i", ret, errno);
348 	close(vcpu->fd);
349 	TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
350 		"errno: %i", ret, errno);
351 
352 	if (vcpu->next)
353 		vcpu->next->prev = vcpu->prev;
354 	if (vcpu->prev)
355 		vcpu->prev->next = vcpu->next;
356 	else
357 		vm->vcpu_head = vcpu->next;
358 	free(vcpu);
359 }
360 
kvm_vm_release(struct kvm_vm * vmp)361 void kvm_vm_release(struct kvm_vm *vmp)
362 {
363 	int ret;
364 
365 	while (vmp->vcpu_head)
366 		vm_vcpu_rm(vmp, vmp->vcpu_head->id);
367 
368 	ret = close(vmp->fd);
369 	TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
370 		"  vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
371 
372 	close(vmp->kvm_fd);
373 	TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
374 		"  vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
375 }
376 
377 /*
378  * Destroys and frees the VM pointed to by vmp.
379  */
kvm_vm_free(struct kvm_vm * vmp)380 void kvm_vm_free(struct kvm_vm *vmp)
381 {
382 	int ret;
383 
384 	if (vmp == NULL)
385 		return;
386 
387 	/* Free userspace_mem_regions. */
388 	while (vmp->userspace_mem_region_head) {
389 		struct userspace_mem_region *region
390 			= vmp->userspace_mem_region_head;
391 
392 		region->region.memory_size = 0;
393 		ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION,
394 			&region->region);
395 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
396 			"rc: %i errno: %i", ret, errno);
397 
398 		vmp->userspace_mem_region_head = region->next;
399 		sparsebit_free(&region->unused_phy_pages);
400 		ret = munmap(region->mmap_start, region->mmap_size);
401 		TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i",
402 			    ret, errno);
403 
404 		free(region);
405 	}
406 
407 	/* Free sparsebit arrays. */
408 	sparsebit_free(&vmp->vpages_valid);
409 	sparsebit_free(&vmp->vpages_mapped);
410 
411 	kvm_vm_release(vmp);
412 
413 	/* Free the structure describing the VM. */
414 	free(vmp);
415 }
416 
417 /*
418  * Memory Compare, host virtual to guest virtual
419  *
420  * Input Args:
421  *   hva - Starting host virtual address
422  *   vm - Virtual Machine
423  *   gva - Starting guest virtual address
424  *   len - number of bytes to compare
425  *
426  * Output Args: None
427  *
428  * Input/Output Args: None
429  *
430  * Return:
431  *   Returns 0 if the bytes starting at hva for a length of len
432  *   are equal the guest virtual bytes starting at gva.  Returns
433  *   a value < 0, if bytes at hva are less than those at gva.
434  *   Otherwise a value > 0 is returned.
435  *
436  * Compares the bytes starting at the host virtual address hva, for
437  * a length of len, to the guest bytes starting at the guest virtual
438  * address given by gva.
439  */
kvm_memcmp_hva_gva(void * hva,struct kvm_vm * vm,vm_vaddr_t gva,size_t len)440 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
441 {
442 	size_t amt;
443 
444 	/*
445 	 * Compare a batch of bytes until either a match is found
446 	 * or all the bytes have been compared.
447 	 */
448 	for (uintptr_t offset = 0; offset < len; offset += amt) {
449 		uintptr_t ptr1 = (uintptr_t)hva + offset;
450 
451 		/*
452 		 * Determine host address for guest virtual address
453 		 * at offset.
454 		 */
455 		uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
456 
457 		/*
458 		 * Determine amount to compare on this pass.
459 		 * Don't allow the comparsion to cross a page boundary.
460 		 */
461 		amt = len - offset;
462 		if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
463 			amt = vm->page_size - (ptr1 % vm->page_size);
464 		if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
465 			amt = vm->page_size - (ptr2 % vm->page_size);
466 
467 		assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
468 		assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
469 
470 		/*
471 		 * Perform the comparison.  If there is a difference
472 		 * return that result to the caller, otherwise need
473 		 * to continue on looking for a mismatch.
474 		 */
475 		int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
476 		if (ret != 0)
477 			return ret;
478 	}
479 
480 	/*
481 	 * No mismatch found.  Let the caller know the two memory
482 	 * areas are equal.
483 	 */
484 	return 0;
485 }
486 
487 /*
488  * VM Userspace Memory Region Add
489  *
490  * Input Args:
491  *   vm - Virtual Machine
492  *   backing_src - Storage source for this region.
493  *                 NULL to use anonymous memory.
494  *   guest_paddr - Starting guest physical address
495  *   slot - KVM region slot
496  *   npages - Number of physical pages
497  *   flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
498  *
499  * Output Args: None
500  *
501  * Return: None
502  *
503  * Allocates a memory area of the number of pages specified by npages
504  * and maps it to the VM specified by vm, at a starting physical address
505  * given by guest_paddr.  The region is created with a KVM region slot
506  * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM.  The
507  * region is created with the flags given by flags.
508  */
vm_userspace_mem_region_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t guest_paddr,uint32_t slot,uint64_t npages,uint32_t flags)509 void vm_userspace_mem_region_add(struct kvm_vm *vm,
510 	enum vm_mem_backing_src_type src_type,
511 	uint64_t guest_paddr, uint32_t slot, uint64_t npages,
512 	uint32_t flags)
513 {
514 	int ret;
515 	unsigned long pmem_size = 0;
516 	struct userspace_mem_region *region;
517 	size_t huge_page_size = KVM_UTIL_PGS_PER_HUGEPG * vm->page_size;
518 
519 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
520 		"address not on a page boundary.\n"
521 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
522 		guest_paddr, vm->page_size);
523 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
524 		<= vm->max_gfn, "Physical range beyond maximum "
525 		"supported physical address,\n"
526 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
527 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
528 		guest_paddr, npages, vm->max_gfn, vm->page_size);
529 
530 	/*
531 	 * Confirm a mem region with an overlapping address doesn't
532 	 * already exist.
533 	 */
534 	region = (struct userspace_mem_region *) userspace_mem_region_find(
535 		vm, guest_paddr, guest_paddr + npages * vm->page_size);
536 	if (region != NULL)
537 		TEST_ASSERT(false, "overlapping userspace_mem_region already "
538 			"exists\n"
539 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
540 			"page_size: 0x%x\n"
541 			"  existing guest_paddr: 0x%lx size: 0x%lx",
542 			guest_paddr, npages, vm->page_size,
543 			(uint64_t) region->region.guest_phys_addr,
544 			(uint64_t) region->region.memory_size);
545 
546 	/* Confirm no region with the requested slot already exists. */
547 	for (region = vm->userspace_mem_region_head; region;
548 		region = region->next) {
549 		if (region->region.slot == slot)
550 			break;
551 		if ((guest_paddr <= (region->region.guest_phys_addr
552 				+ region->region.memory_size))
553 			&& ((guest_paddr + npages * vm->page_size)
554 				>= region->region.guest_phys_addr))
555 			break;
556 	}
557 	if (region != NULL)
558 		TEST_ASSERT(false, "A mem region with the requested slot "
559 			"or overlapping physical memory range already exists.\n"
560 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
561 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
562 			slot, guest_paddr, npages,
563 			region->region.slot,
564 			(uint64_t) region->region.guest_phys_addr,
565 			(uint64_t) region->region.memory_size);
566 
567 	/* Allocate and initialize new mem region structure. */
568 	region = calloc(1, sizeof(*region));
569 	TEST_ASSERT(region != NULL, "Insufficient Memory");
570 	region->mmap_size = npages * vm->page_size;
571 
572 	/* Enough memory to align up to a huge page. */
573 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
574 		region->mmap_size += huge_page_size;
575 	region->mmap_start = mmap(NULL, region->mmap_size,
576 				  PROT_READ | PROT_WRITE,
577 				  MAP_PRIVATE | MAP_ANONYMOUS
578 				  | (src_type == VM_MEM_SRC_ANONYMOUS_HUGETLB ? MAP_HUGETLB : 0),
579 				  -1, 0);
580 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
581 		    "test_malloc failed, mmap_start: %p errno: %i",
582 		    region->mmap_start, errno);
583 
584 	/* Align THP allocation up to start of a huge page. */
585 	region->host_mem = align(region->mmap_start,
586 				 src_type == VM_MEM_SRC_ANONYMOUS_THP ?  huge_page_size : 1);
587 
588 	/* As needed perform madvise */
589 	if (src_type == VM_MEM_SRC_ANONYMOUS || src_type == VM_MEM_SRC_ANONYMOUS_THP) {
590 		ret = madvise(region->host_mem, npages * vm->page_size,
591 			     src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
592 		TEST_ASSERT(ret == 0, "madvise failed,\n"
593 			    "  addr: %p\n"
594 			    "  length: 0x%lx\n"
595 			    "  src_type: %x",
596 			    region->host_mem, npages * vm->page_size, src_type);
597 	}
598 
599 	region->unused_phy_pages = sparsebit_alloc();
600 	sparsebit_set_num(region->unused_phy_pages,
601 		guest_paddr >> vm->page_shift, npages);
602 	region->region.slot = slot;
603 	region->region.flags = flags;
604 	region->region.guest_phys_addr = guest_paddr;
605 	region->region.memory_size = npages * vm->page_size;
606 	region->region.userspace_addr = (uintptr_t) region->host_mem;
607 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
608 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
609 		"  rc: %i errno: %i\n"
610 		"  slot: %u flags: 0x%x\n"
611 		"  guest_phys_addr: 0x%lx size: 0x%lx",
612 		ret, errno, slot, flags,
613 		guest_paddr, (uint64_t) region->region.memory_size);
614 
615 	/* Add to linked-list of memory regions. */
616 	if (vm->userspace_mem_region_head)
617 		vm->userspace_mem_region_head->prev = region;
618 	region->next = vm->userspace_mem_region_head;
619 	vm->userspace_mem_region_head = region;
620 }
621 
622 /*
623  * Memslot to region
624  *
625  * Input Args:
626  *   vm - Virtual Machine
627  *   memslot - KVM memory slot ID
628  *
629  * Output Args: None
630  *
631  * Return:
632  *   Pointer to memory region structure that describe memory region
633  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
634  *   on error (e.g. currently no memory region using memslot as a KVM
635  *   memory slot ID).
636  */
637 static struct userspace_mem_region *
memslot2region(struct kvm_vm * vm,uint32_t memslot)638 memslot2region(struct kvm_vm *vm, uint32_t memslot)
639 {
640 	struct userspace_mem_region *region;
641 
642 	for (region = vm->userspace_mem_region_head; region;
643 		region = region->next) {
644 		if (region->region.slot == memslot)
645 			break;
646 	}
647 	if (region == NULL) {
648 		fprintf(stderr, "No mem region with the requested slot found,\n"
649 			"  requested slot: %u\n", memslot);
650 		fputs("---- vm dump ----\n", stderr);
651 		vm_dump(stderr, vm, 2);
652 		TEST_ASSERT(false, "Mem region not found");
653 	}
654 
655 	return region;
656 }
657 
658 /*
659  * VM Memory Region Flags Set
660  *
661  * Input Args:
662  *   vm - Virtual Machine
663  *   flags - Starting guest physical address
664  *
665  * Output Args: None
666  *
667  * Return: None
668  *
669  * Sets the flags of the memory region specified by the value of slot,
670  * to the values given by flags.
671  */
vm_mem_region_set_flags(struct kvm_vm * vm,uint32_t slot,uint32_t flags)672 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
673 {
674 	int ret;
675 	struct userspace_mem_region *region;
676 
677 	region = memslot2region(vm, slot);
678 
679 	region->region.flags = flags;
680 
681 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
682 
683 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
684 		"  rc: %i errno: %i slot: %u flags: 0x%x",
685 		ret, errno, slot, flags);
686 }
687 
688 /*
689  * VCPU mmap Size
690  *
691  * Input Args: None
692  *
693  * Output Args: None
694  *
695  * Return:
696  *   Size of VCPU state
697  *
698  * Returns the size of the structure pointed to by the return value
699  * of vcpu_state().
700  */
vcpu_mmap_sz(void)701 static int vcpu_mmap_sz(void)
702 {
703 	int dev_fd, ret;
704 
705 	dev_fd = open(KVM_DEV_PATH, O_RDONLY);
706 	if (dev_fd < 0)
707 		exit(KSFT_SKIP);
708 
709 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
710 	TEST_ASSERT(ret >= sizeof(struct kvm_run),
711 		"%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
712 		__func__, ret, errno);
713 
714 	close(dev_fd);
715 
716 	return ret;
717 }
718 
719 /*
720  * VM VCPU Add
721  *
722  * Input Args:
723  *   vm - Virtual Machine
724  *   vcpuid - VCPU ID
725  *
726  * Output Args: None
727  *
728  * Return: None
729  *
730  * Creates and adds to the VM specified by vm and virtual CPU with
731  * the ID given by vcpuid.
732  */
vm_vcpu_add(struct kvm_vm * vm,uint32_t vcpuid,int pgd_memslot,int gdt_memslot)733 void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid, int pgd_memslot,
734 		 int gdt_memslot)
735 {
736 	struct vcpu *vcpu;
737 
738 	/* Confirm a vcpu with the specified id doesn't already exist. */
739 	vcpu = vcpu_find(vm, vcpuid);
740 	if (vcpu != NULL)
741 		TEST_ASSERT(false, "vcpu with the specified id "
742 			"already exists,\n"
743 			"  requested vcpuid: %u\n"
744 			"  existing vcpuid: %u state: %p",
745 			vcpuid, vcpu->id, vcpu->state);
746 
747 	/* Allocate and initialize new vcpu structure. */
748 	vcpu = calloc(1, sizeof(*vcpu));
749 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
750 	vcpu->id = vcpuid;
751 	vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
752 	TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
753 		vcpu->fd, errno);
754 
755 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
756 		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
757 		vcpu_mmap_sz(), sizeof(*vcpu->state));
758 	vcpu->state = (struct kvm_run *) mmap(NULL, sizeof(*vcpu->state),
759 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
760 	TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
761 		"vcpu id: %u errno: %i", vcpuid, errno);
762 
763 	/* Add to linked-list of VCPUs. */
764 	if (vm->vcpu_head)
765 		vm->vcpu_head->prev = vcpu;
766 	vcpu->next = vm->vcpu_head;
767 	vm->vcpu_head = vcpu;
768 
769 	vcpu_setup(vm, vcpuid, pgd_memslot, gdt_memslot);
770 }
771 
772 /*
773  * VM Virtual Address Unused Gap
774  *
775  * Input Args:
776  *   vm - Virtual Machine
777  *   sz - Size (bytes)
778  *   vaddr_min - Minimum Virtual Address
779  *
780  * Output Args: None
781  *
782  * Return:
783  *   Lowest virtual address at or below vaddr_min, with at least
784  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
785  *   size sz is available.
786  *
787  * Within the VM specified by vm, locates the lowest starting virtual
788  * address >= vaddr_min, that has at least sz unallocated bytes.  A
789  * TEST_ASSERT failure occurs for invalid input or no area of at least
790  * sz unallocated bytes >= vaddr_min is available.
791  */
vm_vaddr_unused_gap(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)792 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
793 				      vm_vaddr_t vaddr_min)
794 {
795 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
796 
797 	/* Determine lowest permitted virtual page index. */
798 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
799 	if ((pgidx_start * vm->page_size) < vaddr_min)
800 		goto no_va_found;
801 
802 	/* Loop over section with enough valid virtual page indexes. */
803 	if (!sparsebit_is_set_num(vm->vpages_valid,
804 		pgidx_start, pages))
805 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
806 			pgidx_start, pages);
807 	do {
808 		/*
809 		 * Are there enough unused virtual pages available at
810 		 * the currently proposed starting virtual page index.
811 		 * If not, adjust proposed starting index to next
812 		 * possible.
813 		 */
814 		if (sparsebit_is_clear_num(vm->vpages_mapped,
815 			pgidx_start, pages))
816 			goto va_found;
817 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
818 			pgidx_start, pages);
819 		if (pgidx_start == 0)
820 			goto no_va_found;
821 
822 		/*
823 		 * If needed, adjust proposed starting virtual address,
824 		 * to next range of valid virtual addresses.
825 		 */
826 		if (!sparsebit_is_set_num(vm->vpages_valid,
827 			pgidx_start, pages)) {
828 			pgidx_start = sparsebit_next_set_num(
829 				vm->vpages_valid, pgidx_start, pages);
830 			if (pgidx_start == 0)
831 				goto no_va_found;
832 		}
833 	} while (pgidx_start != 0);
834 
835 no_va_found:
836 	TEST_ASSERT(false, "No vaddr of specified pages available, "
837 		"pages: 0x%lx", pages);
838 
839 	/* NOT REACHED */
840 	return -1;
841 
842 va_found:
843 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
844 		pgidx_start, pages),
845 		"Unexpected, invalid virtual page index range,\n"
846 		"  pgidx_start: 0x%lx\n"
847 		"  pages: 0x%lx",
848 		pgidx_start, pages);
849 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
850 		pgidx_start, pages),
851 		"Unexpected, pages already mapped,\n"
852 		"  pgidx_start: 0x%lx\n"
853 		"  pages: 0x%lx",
854 		pgidx_start, pages);
855 
856 	return pgidx_start * vm->page_size;
857 }
858 
859 /*
860  * VM Virtual Address Allocate
861  *
862  * Input Args:
863  *   vm - Virtual Machine
864  *   sz - Size in bytes
865  *   vaddr_min - Minimum starting virtual address
866  *   data_memslot - Memory region slot for data pages
867  *   pgd_memslot - Memory region slot for new virtual translation tables
868  *
869  * Output Args: None
870  *
871  * Return:
872  *   Starting guest virtual address
873  *
874  * Allocates at least sz bytes within the virtual address space of the vm
875  * given by vm.  The allocated bytes are mapped to a virtual address >=
876  * the address given by vaddr_min.  Note that each allocation uses a
877  * a unique set of pages, with the minimum real allocation being at least
878  * a page.
879  */
vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,uint32_t data_memslot,uint32_t pgd_memslot)880 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
881 			  uint32_t data_memslot, uint32_t pgd_memslot)
882 {
883 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
884 
885 	virt_pgd_alloc(vm, pgd_memslot);
886 
887 	/*
888 	 * Find an unused range of virtual page addresses of at least
889 	 * pages in length.
890 	 */
891 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
892 
893 	/* Map the virtual pages. */
894 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
895 		pages--, vaddr += vm->page_size) {
896 		vm_paddr_t paddr;
897 
898 		paddr = vm_phy_page_alloc(vm,
899 				KVM_UTIL_MIN_PFN * vm->page_size, data_memslot);
900 
901 		virt_pg_map(vm, vaddr, paddr, pgd_memslot);
902 
903 		sparsebit_set(vm->vpages_mapped,
904 			vaddr >> vm->page_shift);
905 	}
906 
907 	return vaddr_start;
908 }
909 
910 /*
911  * Map a range of VM virtual address to the VM's physical address
912  *
913  * Input Args:
914  *   vm - Virtual Machine
915  *   vaddr - Virtuall address to map
916  *   paddr - VM Physical Address
917  *   size - The size of the range to map
918  *   pgd_memslot - Memory region slot for new virtual translation tables
919  *
920  * Output Args: None
921  *
922  * Return: None
923  *
924  * Within the VM given by vm, creates a virtual translation for the
925  * page range starting at vaddr to the page range starting at paddr.
926  */
virt_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,size_t size,uint32_t pgd_memslot)927 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
928 	      size_t size, uint32_t pgd_memslot)
929 {
930 	size_t page_size = vm->page_size;
931 	size_t npages = size / page_size;
932 
933 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
934 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
935 
936 	while (npages--) {
937 		virt_pg_map(vm, vaddr, paddr, pgd_memslot);
938 		vaddr += page_size;
939 		paddr += page_size;
940 	}
941 }
942 
943 /*
944  * Address VM Physical to Host Virtual
945  *
946  * Input Args:
947  *   vm - Virtual Machine
948  *   gpa - VM physical address
949  *
950  * Output Args: None
951  *
952  * Return:
953  *   Equivalent host virtual address
954  *
955  * Locates the memory region containing the VM physical address given
956  * by gpa, within the VM given by vm.  When found, the host virtual
957  * address providing the memory to the vm physical address is returned.
958  * A TEST_ASSERT failure occurs if no region containing gpa exists.
959  */
addr_gpa2hva(struct kvm_vm * vm,vm_paddr_t gpa)960 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
961 {
962 	struct userspace_mem_region *region;
963 	for (region = vm->userspace_mem_region_head; region;
964 	     region = region->next) {
965 		if ((gpa >= region->region.guest_phys_addr)
966 			&& (gpa <= (region->region.guest_phys_addr
967 				+ region->region.memory_size - 1)))
968 			return (void *) ((uintptr_t) region->host_mem
969 				+ (gpa - region->region.guest_phys_addr));
970 	}
971 
972 	TEST_ASSERT(false, "No vm physical memory at 0x%lx", gpa);
973 	return NULL;
974 }
975 
976 /*
977  * Address Host Virtual to VM Physical
978  *
979  * Input Args:
980  *   vm - Virtual Machine
981  *   hva - Host virtual address
982  *
983  * Output Args: None
984  *
985  * Return:
986  *   Equivalent VM physical address
987  *
988  * Locates the memory region containing the host virtual address given
989  * by hva, within the VM given by vm.  When found, the equivalent
990  * VM physical address is returned. A TEST_ASSERT failure occurs if no
991  * region containing hva exists.
992  */
addr_hva2gpa(struct kvm_vm * vm,void * hva)993 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
994 {
995 	struct userspace_mem_region *region;
996 	for (region = vm->userspace_mem_region_head; region;
997 	     region = region->next) {
998 		if ((hva >= region->host_mem)
999 			&& (hva <= (region->host_mem
1000 				+ region->region.memory_size - 1)))
1001 			return (vm_paddr_t) ((uintptr_t)
1002 				region->region.guest_phys_addr
1003 				+ (hva - (uintptr_t) region->host_mem));
1004 	}
1005 
1006 	TEST_ASSERT(false, "No mapping to a guest physical address, "
1007 		"hva: %p", hva);
1008 	return -1;
1009 }
1010 
1011 /*
1012  * VM Create IRQ Chip
1013  *
1014  * Input Args:
1015  *   vm - Virtual Machine
1016  *
1017  * Output Args: None
1018  *
1019  * Return: None
1020  *
1021  * Creates an interrupt controller chip for the VM specified by vm.
1022  */
vm_create_irqchip(struct kvm_vm * vm)1023 void vm_create_irqchip(struct kvm_vm *vm)
1024 {
1025 	int ret;
1026 
1027 	ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
1028 	TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
1029 		"rc: %i errno: %i", ret, errno);
1030 
1031 	vm->has_irqchip = true;
1032 }
1033 
1034 /*
1035  * VM VCPU State
1036  *
1037  * Input Args:
1038  *   vm - Virtual Machine
1039  *   vcpuid - VCPU ID
1040  *
1041  * Output Args: None
1042  *
1043  * Return:
1044  *   Pointer to structure that describes the state of the VCPU.
1045  *
1046  * Locates and returns a pointer to a structure that describes the
1047  * state of the VCPU with the given vcpuid.
1048  */
vcpu_state(struct kvm_vm * vm,uint32_t vcpuid)1049 struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
1050 {
1051 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1052 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1053 
1054 	return vcpu->state;
1055 }
1056 
1057 /*
1058  * VM VCPU Run
1059  *
1060  * Input Args:
1061  *   vm - Virtual Machine
1062  *   vcpuid - VCPU ID
1063  *
1064  * Output Args: None
1065  *
1066  * Return: None
1067  *
1068  * Switch to executing the code for the VCPU given by vcpuid, within the VM
1069  * given by vm.
1070  */
vcpu_run(struct kvm_vm * vm,uint32_t vcpuid)1071 void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1072 {
1073 	int ret = _vcpu_run(vm, vcpuid);
1074 	TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1075 		"rc: %i errno: %i", ret, errno);
1076 }
1077 
_vcpu_run(struct kvm_vm * vm,uint32_t vcpuid)1078 int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1079 {
1080 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1081 	int rc;
1082 
1083 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1084 	do {
1085 		rc = ioctl(vcpu->fd, KVM_RUN, NULL);
1086 	} while (rc == -1 && errno == EINTR);
1087 	return rc;
1088 }
1089 
1090 /*
1091  * VM VCPU Set MP State
1092  *
1093  * Input Args:
1094  *   vm - Virtual Machine
1095  *   vcpuid - VCPU ID
1096  *   mp_state - mp_state to be set
1097  *
1098  * Output Args: None
1099  *
1100  * Return: None
1101  *
1102  * Sets the MP state of the VCPU given by vcpuid, to the state given
1103  * by mp_state.
1104  */
vcpu_set_mp_state(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_mp_state * mp_state)1105 void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
1106 		       struct kvm_mp_state *mp_state)
1107 {
1108 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1109 	int ret;
1110 
1111 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1112 
1113 	ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
1114 	TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
1115 		"rc: %i errno: %i", ret, errno);
1116 }
1117 
1118 /*
1119  * VM VCPU Regs Get
1120  *
1121  * Input Args:
1122  *   vm - Virtual Machine
1123  *   vcpuid - VCPU ID
1124  *
1125  * Output Args:
1126  *   regs - current state of VCPU regs
1127  *
1128  * Return: None
1129  *
1130  * Obtains the current register state for the VCPU specified by vcpuid
1131  * and stores it at the location given by regs.
1132  */
vcpu_regs_get(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_regs * regs)1133 void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1134 {
1135 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1136 	int ret;
1137 
1138 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1139 
1140 	ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
1141 	TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
1142 		ret, errno);
1143 }
1144 
1145 /*
1146  * VM VCPU Regs Set
1147  *
1148  * Input Args:
1149  *   vm - Virtual Machine
1150  *   vcpuid - VCPU ID
1151  *   regs - Values to set VCPU regs to
1152  *
1153  * Output Args: None
1154  *
1155  * Return: None
1156  *
1157  * Sets the regs of the VCPU specified by vcpuid to the values
1158  * given by regs.
1159  */
vcpu_regs_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_regs * regs)1160 void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1161 {
1162 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1163 	int ret;
1164 
1165 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1166 
1167 	ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
1168 	TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
1169 		ret, errno);
1170 }
1171 
vcpu_events_get(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_vcpu_events * events)1172 void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
1173 		     struct kvm_vcpu_events *events)
1174 {
1175 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1176 	int ret;
1177 
1178 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1179 
1180 	ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
1181 	TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
1182 		ret, errno);
1183 }
1184 
vcpu_events_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_vcpu_events * events)1185 void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
1186 		     struct kvm_vcpu_events *events)
1187 {
1188 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1189 	int ret;
1190 
1191 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1192 
1193 	ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
1194 	TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
1195 		ret, errno);
1196 }
1197 
1198 /*
1199  * VM VCPU System Regs Get
1200  *
1201  * Input Args:
1202  *   vm - Virtual Machine
1203  *   vcpuid - VCPU ID
1204  *
1205  * Output Args:
1206  *   sregs - current state of VCPU system regs
1207  *
1208  * Return: None
1209  *
1210  * Obtains the current system register state for the VCPU specified by
1211  * vcpuid and stores it at the location given by sregs.
1212  */
vcpu_sregs_get(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_sregs * sregs)1213 void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1214 {
1215 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1216 	int ret;
1217 
1218 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1219 
1220 	ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
1221 	TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
1222 		ret, errno);
1223 }
1224 
1225 /*
1226  * VM VCPU System Regs Set
1227  *
1228  * Input Args:
1229  *   vm - Virtual Machine
1230  *   vcpuid - VCPU ID
1231  *   sregs - Values to set VCPU system regs to
1232  *
1233  * Output Args: None
1234  *
1235  * Return: None
1236  *
1237  * Sets the system regs of the VCPU specified by vcpuid to the values
1238  * given by sregs.
1239  */
vcpu_sregs_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_sregs * sregs)1240 void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1241 {
1242 	int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
1243 	TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1244 		"rc: %i errno: %i", ret, errno);
1245 }
1246 
_vcpu_sregs_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_sregs * sregs)1247 int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1248 {
1249 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1250 	int ret;
1251 
1252 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1253 
1254 	return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
1255 }
1256 
1257 /*
1258  * VCPU Ioctl
1259  *
1260  * Input Args:
1261  *   vm - Virtual Machine
1262  *   vcpuid - VCPU ID
1263  *   cmd - Ioctl number
1264  *   arg - Argument to pass to the ioctl
1265  *
1266  * Return: None
1267  *
1268  * Issues an arbitrary ioctl on a VCPU fd.
1269  */
vcpu_ioctl(struct kvm_vm * vm,uint32_t vcpuid,unsigned long cmd,void * arg)1270 void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1271 		unsigned long cmd, void *arg)
1272 {
1273 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1274 	int ret;
1275 
1276 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1277 
1278 	ret = ioctl(vcpu->fd, cmd, arg);
1279 	TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
1280 		cmd, ret, errno, strerror(errno));
1281 }
1282 
1283 /*
1284  * VM Ioctl
1285  *
1286  * Input Args:
1287  *   vm - Virtual Machine
1288  *   cmd - Ioctl number
1289  *   arg - Argument to pass to the ioctl
1290  *
1291  * Return: None
1292  *
1293  * Issues an arbitrary ioctl on a VM fd.
1294  */
vm_ioctl(struct kvm_vm * vm,unsigned long cmd,void * arg)1295 void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1296 {
1297 	int ret;
1298 
1299 	ret = ioctl(vm->fd, cmd, arg);
1300 	TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
1301 		cmd, ret, errno, strerror(errno));
1302 }
1303 
1304 /*
1305  * VM Dump
1306  *
1307  * Input Args:
1308  *   vm - Virtual Machine
1309  *   indent - Left margin indent amount
1310  *
1311  * Output Args:
1312  *   stream - Output FILE stream
1313  *
1314  * Return: None
1315  *
1316  * Dumps the current state of the VM given by vm, to the FILE stream
1317  * given by stream.
1318  */
vm_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)1319 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1320 {
1321 	struct userspace_mem_region *region;
1322 	struct vcpu *vcpu;
1323 
1324 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1325 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1326 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1327 	fprintf(stream, "%*sMem Regions:\n", indent, "");
1328 	for (region = vm->userspace_mem_region_head; region;
1329 		region = region->next) {
1330 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1331 			"host_virt: %p\n", indent + 2, "",
1332 			(uint64_t) region->region.guest_phys_addr,
1333 			(uint64_t) region->region.memory_size,
1334 			region->host_mem);
1335 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1336 		sparsebit_dump(stream, region->unused_phy_pages, 0);
1337 	}
1338 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1339 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1340 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1341 		vm->pgd_created);
1342 	if (vm->pgd_created) {
1343 		fprintf(stream, "%*sVirtual Translation Tables:\n",
1344 			indent + 2, "");
1345 		virt_dump(stream, vm, indent + 4);
1346 	}
1347 	fprintf(stream, "%*sVCPUs:\n", indent, "");
1348 	for (vcpu = vm->vcpu_head; vcpu; vcpu = vcpu->next)
1349 		vcpu_dump(stream, vm, vcpu->id, indent + 2);
1350 }
1351 
1352 /* Known KVM exit reasons */
1353 static struct exit_reason {
1354 	unsigned int reason;
1355 	const char *name;
1356 } exit_reasons_known[] = {
1357 	{KVM_EXIT_UNKNOWN, "UNKNOWN"},
1358 	{KVM_EXIT_EXCEPTION, "EXCEPTION"},
1359 	{KVM_EXIT_IO, "IO"},
1360 	{KVM_EXIT_HYPERCALL, "HYPERCALL"},
1361 	{KVM_EXIT_DEBUG, "DEBUG"},
1362 	{KVM_EXIT_HLT, "HLT"},
1363 	{KVM_EXIT_MMIO, "MMIO"},
1364 	{KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
1365 	{KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
1366 	{KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
1367 	{KVM_EXIT_INTR, "INTR"},
1368 	{KVM_EXIT_SET_TPR, "SET_TPR"},
1369 	{KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
1370 	{KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
1371 	{KVM_EXIT_S390_RESET, "S390_RESET"},
1372 	{KVM_EXIT_DCR, "DCR"},
1373 	{KVM_EXIT_NMI, "NMI"},
1374 	{KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
1375 	{KVM_EXIT_OSI, "OSI"},
1376 	{KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
1377 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1378 	{KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
1379 #endif
1380 };
1381 
1382 /*
1383  * Exit Reason String
1384  *
1385  * Input Args:
1386  *   exit_reason - Exit reason
1387  *
1388  * Output Args: None
1389  *
1390  * Return:
1391  *   Constant string pointer describing the exit reason.
1392  *
1393  * Locates and returns a constant string that describes the KVM exit
1394  * reason given by exit_reason.  If no such string is found, a constant
1395  * string of "Unknown" is returned.
1396  */
exit_reason_str(unsigned int exit_reason)1397 const char *exit_reason_str(unsigned int exit_reason)
1398 {
1399 	unsigned int n1;
1400 
1401 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1402 		if (exit_reason == exit_reasons_known[n1].reason)
1403 			return exit_reasons_known[n1].name;
1404 	}
1405 
1406 	return "Unknown";
1407 }
1408 
1409 /*
1410  * Physical Contiguous Page Allocator
1411  *
1412  * Input Args:
1413  *   vm - Virtual Machine
1414  *   num - number of pages
1415  *   paddr_min - Physical address minimum
1416  *   memslot - Memory region to allocate page from
1417  *
1418  * Output Args: None
1419  *
1420  * Return:
1421  *   Starting physical address
1422  *
1423  * Within the VM specified by vm, locates a range of available physical
1424  * pages at or above paddr_min. If found, the pages are marked as in use
1425  * and thier base address is returned. A TEST_ASSERT failure occurs if
1426  * not enough pages are available at or above paddr_min.
1427  */
vm_phy_pages_alloc(struct kvm_vm * vm,size_t num,vm_paddr_t paddr_min,uint32_t memslot)1428 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
1429 			      vm_paddr_t paddr_min, uint32_t memslot)
1430 {
1431 	struct userspace_mem_region *region;
1432 	sparsebit_idx_t pg, base;
1433 
1434 	TEST_ASSERT(num > 0, "Must allocate at least one page");
1435 
1436 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
1437 		"not divisible by page size.\n"
1438 		"  paddr_min: 0x%lx page_size: 0x%x",
1439 		paddr_min, vm->page_size);
1440 
1441 	region = memslot2region(vm, memslot);
1442 	base = pg = paddr_min >> vm->page_shift;
1443 
1444 	do {
1445 		for (; pg < base + num; ++pg) {
1446 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
1447 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
1448 				break;
1449 			}
1450 		}
1451 	} while (pg && pg != base + num);
1452 
1453 	if (pg == 0) {
1454 		fprintf(stderr, "No guest physical page available, "
1455 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
1456 			paddr_min, vm->page_size, memslot);
1457 		fputs("---- vm dump ----\n", stderr);
1458 		vm_dump(stderr, vm, 2);
1459 		abort();
1460 	}
1461 
1462 	for (pg = base; pg < base + num; ++pg)
1463 		sparsebit_clear(region->unused_phy_pages, pg);
1464 
1465 	return base * vm->page_size;
1466 }
1467 
vm_phy_page_alloc(struct kvm_vm * vm,vm_paddr_t paddr_min,uint32_t memslot)1468 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
1469 			     uint32_t memslot)
1470 {
1471 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
1472 }
1473 
1474 /*
1475  * Address Guest Virtual to Host Virtual
1476  *
1477  * Input Args:
1478  *   vm - Virtual Machine
1479  *   gva - VM virtual address
1480  *
1481  * Output Args: None
1482  *
1483  * Return:
1484  *   Equivalent host virtual address
1485  */
addr_gva2hva(struct kvm_vm * vm,vm_vaddr_t gva)1486 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
1487 {
1488 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
1489 }
1490