1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
12 //
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
15 //
16 //  * Both of a binary operator's parameters are of the same type
17 //  * Verify that the indices of mem access instructions match other operands
18 //  * Verify that arithmetic and other things are only performed on first-class
19 //    types.  Verify that shifts & logicals only happen on integrals f.e.
20 //  * All of the constants in a switch statement are of the correct type
21 //  * The code is in valid SSA form
22 //  * It should be illegal to put a label into any other type (like a structure)
23 //    or to return one. [except constant arrays!]
24 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 //  * PHI nodes must have an entry for each predecessor, with no extras.
26 //  * PHI nodes must be the first thing in a basic block, all grouped together
27 //  * PHI nodes must have at least one entry
28 //  * All basic blocks should only end with terminator insts, not contain them
29 //  * The entry node to a function must not have predecessors
30 //  * All Instructions must be embedded into a basic block
31 //  * Functions cannot take a void-typed parameter
32 //  * Verify that a function's argument list agrees with it's declared type.
33 //  * It is illegal to specify a name for a void value.
34 //  * It is illegal to have a internal global value with no initializer
35 //  * It is illegal to have a ret instruction that returns a value that does not
36 //    agree with the function return value type.
37 //  * Function call argument types match the function prototype
38 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
39 //    only by the unwind edge of an invoke instruction.
40 //  * A landingpad instruction must be the first non-PHI instruction in the
41 //    block.
42 //  * Landingpad instructions must be in a function with a personality function.
43 //  * All other things that are tested by asserts spread about the code...
44 //
45 //===----------------------------------------------------------------------===//
46 
47 #include "llvm/IR/Verifier.h"
48 #include "llvm/ADT/APFloat.h"
49 #include "llvm/ADT/APInt.h"
50 #include "llvm/ADT/ArrayRef.h"
51 #include "llvm/ADT/DenseMap.h"
52 #include "llvm/ADT/MapVector.h"
53 #include "llvm/ADT/Optional.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/SmallPtrSet.h"
56 #include "llvm/ADT/SmallSet.h"
57 #include "llvm/ADT/SmallVector.h"
58 #include "llvm/ADT/StringExtras.h"
59 #include "llvm/ADT/StringMap.h"
60 #include "llvm/ADT/StringRef.h"
61 #include "llvm/ADT/Twine.h"
62 #include "llvm/ADT/ilist.h"
63 #include "llvm/BinaryFormat/Dwarf.h"
64 #include "llvm/IR/Argument.h"
65 #include "llvm/IR/Attributes.h"
66 #include "llvm/IR/BasicBlock.h"
67 #include "llvm/IR/CFG.h"
68 #include "llvm/IR/CallSite.h"
69 #include "llvm/IR/CallingConv.h"
70 #include "llvm/IR/Comdat.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfo.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Dominators.h"
80 #include "llvm/IR/Function.h"
81 #include "llvm/IR/GlobalAlias.h"
82 #include "llvm/IR/GlobalValue.h"
83 #include "llvm/IR/GlobalVariable.h"
84 #include "llvm/IR/InlineAsm.h"
85 #include "llvm/IR/InstVisitor.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/Metadata.h"
93 #include "llvm/IR/Module.h"
94 #include "llvm/IR/ModuleSlotTracker.h"
95 #include "llvm/IR/PassManager.h"
96 #include "llvm/IR/Statepoint.h"
97 #include "llvm/IR/Type.h"
98 #include "llvm/IR/Use.h"
99 #include "llvm/IR/User.h"
100 #include "llvm/IR/Value.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Debug.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include <algorithm>
110 #include <cassert>
111 #include <cstdint>
112 #include <memory>
113 #include <string>
114 #include <utility>
115 
116 using namespace llvm;
117 
118 namespace llvm {
119 
120 struct VerifierSupport {
121   raw_ostream *OS;
122   const Module &M;
123   ModuleSlotTracker MST;
124   const DataLayout &DL;
125   LLVMContext &Context;
126 
127   /// Track the brokenness of the module while recursively visiting.
128   bool Broken = false;
129   /// Broken debug info can be "recovered" from by stripping the debug info.
130   bool BrokenDebugInfo = false;
131   /// Whether to treat broken debug info as an error.
132   bool TreatBrokenDebugInfoAsError = true;
133 
VerifierSupportllvm::VerifierSupport134   explicit VerifierSupport(raw_ostream *OS, const Module &M)
135       : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
136 
137 private:
Writellvm::VerifierSupport138   void Write(const Module *M) {
139     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
140   }
141 
Writellvm::VerifierSupport142   void Write(const Value *V) {
143     if (!V)
144       return;
145     if (isa<Instruction>(V)) {
146       V->print(*OS, MST);
147       *OS << '\n';
148     } else {
149       V->printAsOperand(*OS, true, MST);
150       *OS << '\n';
151     }
152   }
153 
Writellvm::VerifierSupport154   void Write(ImmutableCallSite CS) {
155     Write(CS.getInstruction());
156   }
157 
Writellvm::VerifierSupport158   void Write(const Metadata *MD) {
159     if (!MD)
160       return;
161     MD->print(*OS, MST, &M);
162     *OS << '\n';
163   }
164 
Writellvm::VerifierSupport165   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
166     Write(MD.get());
167   }
168 
Writellvm::VerifierSupport169   void Write(const NamedMDNode *NMD) {
170     if (!NMD)
171       return;
172     NMD->print(*OS, MST);
173     *OS << '\n';
174   }
175 
Writellvm::VerifierSupport176   void Write(Type *T) {
177     if (!T)
178       return;
179     *OS << ' ' << *T;
180   }
181 
Writellvm::VerifierSupport182   void Write(const Comdat *C) {
183     if (!C)
184       return;
185     *OS << *C;
186   }
187 
Writellvm::VerifierSupport188   void Write(const APInt *AI) {
189     if (!AI)
190       return;
191     *OS << *AI << '\n';
192   }
193 
Writellvm::VerifierSupport194   void Write(const unsigned i) { *OS << i << '\n'; }
195 
Writellvm::VerifierSupport196   template <typename T> void Write(ArrayRef<T> Vs) {
197     for (const T &V : Vs)
198       Write(V);
199   }
200 
201   template <typename T1, typename... Ts>
WriteTsllvm::VerifierSupport202   void WriteTs(const T1 &V1, const Ts &... Vs) {
203     Write(V1);
204     WriteTs(Vs...);
205   }
206 
WriteTsllvm::VerifierSupport207   template <typename... Ts> void WriteTs() {}
208 
209 public:
210   /// A check failed, so printout out the condition and the message.
211   ///
212   /// This provides a nice place to put a breakpoint if you want to see why
213   /// something is not correct.
CheckFailedllvm::VerifierSupport214   void CheckFailed(const Twine &Message) {
215     if (OS)
216       *OS << Message << '\n';
217     Broken = true;
218   }
219 
220   /// A check failed (with values to print).
221   ///
222   /// This calls the Message-only version so that the above is easier to set a
223   /// breakpoint on.
224   template <typename T1, typename... Ts>
CheckFailedllvm::VerifierSupport225   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
226     CheckFailed(Message);
227     if (OS)
228       WriteTs(V1, Vs...);
229   }
230 
231   /// A debug info check failed.
DebugInfoCheckFailedllvm::VerifierSupport232   void DebugInfoCheckFailed(const Twine &Message) {
233     if (OS)
234       *OS << Message << '\n';
235     Broken |= TreatBrokenDebugInfoAsError;
236     BrokenDebugInfo = true;
237   }
238 
239   /// A debug info check failed (with values to print).
240   template <typename T1, typename... Ts>
DebugInfoCheckFailedllvm::VerifierSupport241   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
242                             const Ts &... Vs) {
243     DebugInfoCheckFailed(Message);
244     if (OS)
245       WriteTs(V1, Vs...);
246   }
247 };
248 
249 } // namespace llvm
250 
251 namespace {
252 
253 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
254   friend class InstVisitor<Verifier>;
255 
256   DominatorTree DT;
257 
258   /// When verifying a basic block, keep track of all of the
259   /// instructions we have seen so far.
260   ///
261   /// This allows us to do efficient dominance checks for the case when an
262   /// instruction has an operand that is an instruction in the same block.
263   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
264 
265   /// Keep track of the metadata nodes that have been checked already.
266   SmallPtrSet<const Metadata *, 32> MDNodes;
267 
268   /// Keep track which DISubprogram is attached to which function.
269   DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
270 
271   /// Track all DICompileUnits visited.
272   SmallPtrSet<const Metadata *, 2> CUVisited;
273 
274   /// The result type for a landingpad.
275   Type *LandingPadResultTy;
276 
277   /// Whether we've seen a call to @llvm.localescape in this function
278   /// already.
279   bool SawFrameEscape;
280 
281   /// Whether the current function has a DISubprogram attached to it.
282   bool HasDebugInfo = false;
283 
284   /// Stores the count of how many objects were passed to llvm.localescape for a
285   /// given function and the largest index passed to llvm.localrecover.
286   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
287 
288   // Maps catchswitches and cleanuppads that unwind to siblings to the
289   // terminators that indicate the unwind, used to detect cycles therein.
290   MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo;
291 
292   /// Cache of constants visited in search of ConstantExprs.
293   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
294 
295   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
296   SmallVector<const Function *, 4> DeoptimizeDeclarations;
297 
298   // Verify that this GlobalValue is only used in this module.
299   // This map is used to avoid visiting uses twice. We can arrive at a user
300   // twice, if they have multiple operands. In particular for very large
301   // constant expressions, we can arrive at a particular user many times.
302   SmallPtrSet<const Value *, 32> GlobalValueVisited;
303 
304   // Keeps track of duplicate function argument debug info.
305   SmallVector<const DILocalVariable *, 16> DebugFnArgs;
306 
307   TBAAVerifier TBAAVerifyHelper;
308 
309   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
310 
311 public:
Verifier(raw_ostream * OS,bool ShouldTreatBrokenDebugInfoAsError,const Module & M)312   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
313                     const Module &M)
314       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
315         SawFrameEscape(false), TBAAVerifyHelper(this) {
316     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
317   }
318 
hasBrokenDebugInfo() const319   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
320 
verify(const Function & F)321   bool verify(const Function &F) {
322     assert(F.getParent() == &M &&
323            "An instance of this class only works with a specific module!");
324 
325     // First ensure the function is well-enough formed to compute dominance
326     // information, and directly compute a dominance tree. We don't rely on the
327     // pass manager to provide this as it isolates us from a potentially
328     // out-of-date dominator tree and makes it significantly more complex to run
329     // this code outside of a pass manager.
330     // FIXME: It's really gross that we have to cast away constness here.
331     if (!F.empty())
332       DT.recalculate(const_cast<Function &>(F));
333 
334     for (const BasicBlock &BB : F) {
335       if (!BB.empty() && BB.back().isTerminator())
336         continue;
337 
338       if (OS) {
339         *OS << "Basic Block in function '" << F.getName()
340             << "' does not have terminator!\n";
341         BB.printAsOperand(*OS, true, MST);
342         *OS << "\n";
343       }
344       return false;
345     }
346 
347     Broken = false;
348     // FIXME: We strip const here because the inst visitor strips const.
349     visit(const_cast<Function &>(F));
350     verifySiblingFuncletUnwinds();
351     InstsInThisBlock.clear();
352     DebugFnArgs.clear();
353     LandingPadResultTy = nullptr;
354     SawFrameEscape = false;
355     SiblingFuncletInfo.clear();
356 
357     return !Broken;
358   }
359 
360   /// Verify the module that this instance of \c Verifier was initialized with.
verify()361   bool verify() {
362     Broken = false;
363 
364     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
365     for (const Function &F : M)
366       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
367         DeoptimizeDeclarations.push_back(&F);
368 
369     // Now that we've visited every function, verify that we never asked to
370     // recover a frame index that wasn't escaped.
371     verifyFrameRecoverIndices();
372     for (const GlobalVariable &GV : M.globals())
373       visitGlobalVariable(GV);
374 
375     for (const GlobalAlias &GA : M.aliases())
376       visitGlobalAlias(GA);
377 
378     for (const NamedMDNode &NMD : M.named_metadata())
379       visitNamedMDNode(NMD);
380 
381     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
382       visitComdat(SMEC.getValue());
383 
384     visitModuleFlags(M);
385     visitModuleIdents(M);
386 
387     verifyCompileUnits();
388 
389     verifyDeoptimizeCallingConvs();
390     DISubprogramAttachments.clear();
391     return !Broken;
392   }
393 
394 private:
395   // Verification methods...
396   void visitGlobalValue(const GlobalValue &GV);
397   void visitGlobalVariable(const GlobalVariable &GV);
398   void visitGlobalAlias(const GlobalAlias &GA);
399   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
400   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
401                            const GlobalAlias &A, const Constant &C);
402   void visitNamedMDNode(const NamedMDNode &NMD);
403   void visitMDNode(const MDNode &MD);
404   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
405   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
406   void visitComdat(const Comdat &C);
407   void visitModuleIdents(const Module &M);
408   void visitModuleFlags(const Module &M);
409   void visitModuleFlag(const MDNode *Op,
410                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
411                        SmallVectorImpl<const MDNode *> &Requirements);
412   void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
413   void visitFunction(const Function &F);
414   void visitBasicBlock(BasicBlock &BB);
415   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
416   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
417 
418   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
419 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
420 #include "llvm/IR/Metadata.def"
421   void visitDIScope(const DIScope &N);
422   void visitDIVariable(const DIVariable &N);
423   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
424   void visitDITemplateParameter(const DITemplateParameter &N);
425 
426   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
427 
428   // InstVisitor overrides...
429   using InstVisitor<Verifier>::visit;
430   void visit(Instruction &I);
431 
432   void visitTruncInst(TruncInst &I);
433   void visitZExtInst(ZExtInst &I);
434   void visitSExtInst(SExtInst &I);
435   void visitFPTruncInst(FPTruncInst &I);
436   void visitFPExtInst(FPExtInst &I);
437   void visitFPToUIInst(FPToUIInst &I);
438   void visitFPToSIInst(FPToSIInst &I);
439   void visitUIToFPInst(UIToFPInst &I);
440   void visitSIToFPInst(SIToFPInst &I);
441   void visitIntToPtrInst(IntToPtrInst &I);
442   void visitPtrToIntInst(PtrToIntInst &I);
443   void visitBitCastInst(BitCastInst &I);
444   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
445   void visitPHINode(PHINode &PN);
446   void visitBinaryOperator(BinaryOperator &B);
447   void visitICmpInst(ICmpInst &IC);
448   void visitFCmpInst(FCmpInst &FC);
449   void visitExtractElementInst(ExtractElementInst &EI);
450   void visitInsertElementInst(InsertElementInst &EI);
451   void visitShuffleVectorInst(ShuffleVectorInst &EI);
visitVAArgInst(VAArgInst & VAA)452   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
453   void visitCallInst(CallInst &CI);
454   void visitInvokeInst(InvokeInst &II);
455   void visitGetElementPtrInst(GetElementPtrInst &GEP);
456   void visitLoadInst(LoadInst &LI);
457   void visitStoreInst(StoreInst &SI);
458   void verifyDominatesUse(Instruction &I, unsigned i);
459   void visitInstruction(Instruction &I);
460   void visitTerminatorInst(TerminatorInst &I);
461   void visitBranchInst(BranchInst &BI);
462   void visitReturnInst(ReturnInst &RI);
463   void visitSwitchInst(SwitchInst &SI);
464   void visitIndirectBrInst(IndirectBrInst &BI);
465   void visitSelectInst(SelectInst &SI);
466   void visitUserOp1(Instruction &I);
visitUserOp2(Instruction & I)467   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
468   void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
469   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
470   void visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII);
471   void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
472   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
473   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
474   void visitFenceInst(FenceInst &FI);
475   void visitAllocaInst(AllocaInst &AI);
476   void visitExtractValueInst(ExtractValueInst &EVI);
477   void visitInsertValueInst(InsertValueInst &IVI);
478   void visitEHPadPredecessors(Instruction &I);
479   void visitLandingPadInst(LandingPadInst &LPI);
480   void visitResumeInst(ResumeInst &RI);
481   void visitCatchPadInst(CatchPadInst &CPI);
482   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
483   void visitCleanupPadInst(CleanupPadInst &CPI);
484   void visitFuncletPadInst(FuncletPadInst &FPI);
485   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
486   void visitCleanupReturnInst(CleanupReturnInst &CRI);
487 
488   void verifyCallSite(CallSite CS);
489   void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
490   void verifySwiftErrorValue(const Value *SwiftErrorVal);
491   void verifyMustTailCall(CallInst &CI);
492   bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
493                         unsigned ArgNo, std::string &Suffix);
494   bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
495   void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
496                             const Value *V);
497   void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
498   void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
499                            const Value *V);
500   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
501 
502   void visitConstantExprsRecursively(const Constant *EntryC);
503   void visitConstantExpr(const ConstantExpr *CE);
504   void verifyStatepoint(ImmutableCallSite CS);
505   void verifyFrameRecoverIndices();
506   void verifySiblingFuncletUnwinds();
507 
508   void verifyFragmentExpression(const DbgInfoIntrinsic &I);
509   template <typename ValueOrMetadata>
510   void verifyFragmentExpression(const DIVariable &V,
511                                 DIExpression::FragmentInfo Fragment,
512                                 ValueOrMetadata *Desc);
513   void verifyFnArgs(const DbgInfoIntrinsic &I);
514 
515   /// Module-level debug info verification...
516   void verifyCompileUnits();
517 
518   /// Module-level verification that all @llvm.experimental.deoptimize
519   /// declarations share the same calling convention.
520   void verifyDeoptimizeCallingConvs();
521 };
522 
523 } // end anonymous namespace
524 
525 /// We know that cond should be true, if not print an error message.
526 #define Assert(C, ...) \
527   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
528 
529 /// We know that a debug info condition should be true, if not print
530 /// an error message.
531 #define AssertDI(C, ...) \
532   do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
533 
visit(Instruction & I)534 void Verifier::visit(Instruction &I) {
535   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
536     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
537   InstVisitor<Verifier>::visit(I);
538 }
539 
540 // Helper to recursively iterate over indirect users. By
541 // returning false, the callback can ask to stop recursing
542 // further.
forEachUser(const Value * User,SmallPtrSet<const Value *,32> & Visited,llvm::function_ref<bool (const Value *)> Callback)543 static void forEachUser(const Value *User,
544                         SmallPtrSet<const Value *, 32> &Visited,
545                         llvm::function_ref<bool(const Value *)> Callback) {
546   if (!Visited.insert(User).second)
547     return;
548   for (const Value *TheNextUser : User->materialized_users())
549     if (Callback(TheNextUser))
550       forEachUser(TheNextUser, Visited, Callback);
551 }
552 
visitGlobalValue(const GlobalValue & GV)553 void Verifier::visitGlobalValue(const GlobalValue &GV) {
554   Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
555          "Global is external, but doesn't have external or weak linkage!", &GV);
556 
557   Assert(GV.getAlignment() <= Value::MaximumAlignment,
558          "huge alignment values are unsupported", &GV);
559   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
560          "Only global variables can have appending linkage!", &GV);
561 
562   if (GV.hasAppendingLinkage()) {
563     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
564     Assert(GVar && GVar->getValueType()->isArrayTy(),
565            "Only global arrays can have appending linkage!", GVar);
566   }
567 
568   if (GV.isDeclarationForLinker())
569     Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
570 
571   if (GV.hasDLLImportStorageClass()) {
572     Assert(!GV.isDSOLocal(),
573            "GlobalValue with DLLImport Storage is dso_local!", &GV);
574 
575     Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||
576                GV.hasAvailableExternallyLinkage(),
577            "Global is marked as dllimport, but not external", &GV);
578   }
579 
580   if (GV.hasLocalLinkage())
581     Assert(GV.isDSOLocal(),
582            "GlobalValue with private or internal linkage must be dso_local!",
583            &GV);
584 
585   if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage())
586     Assert(GV.isDSOLocal(),
587            "GlobalValue with non default visibility must be dso_local!", &GV);
588 
589   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
590     if (const Instruction *I = dyn_cast<Instruction>(V)) {
591       if (!I->getParent() || !I->getParent()->getParent())
592         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
593                     I);
594       else if (I->getParent()->getParent()->getParent() != &M)
595         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
596                     I->getParent()->getParent(),
597                     I->getParent()->getParent()->getParent());
598       return false;
599     } else if (const Function *F = dyn_cast<Function>(V)) {
600       if (F->getParent() != &M)
601         CheckFailed("Global is used by function in a different module", &GV, &M,
602                     F, F->getParent());
603       return false;
604     }
605     return true;
606   });
607 }
608 
visitGlobalVariable(const GlobalVariable & GV)609 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
610   if (GV.hasInitializer()) {
611     Assert(GV.getInitializer()->getType() == GV.getValueType(),
612            "Global variable initializer type does not match global "
613            "variable type!",
614            &GV);
615     // If the global has common linkage, it must have a zero initializer and
616     // cannot be constant.
617     if (GV.hasCommonLinkage()) {
618       Assert(GV.getInitializer()->isNullValue(),
619              "'common' global must have a zero initializer!", &GV);
620       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
621              &GV);
622       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
623     }
624   }
625 
626   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
627                        GV.getName() == "llvm.global_dtors")) {
628     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
629            "invalid linkage for intrinsic global variable", &GV);
630     // Don't worry about emitting an error for it not being an array,
631     // visitGlobalValue will complain on appending non-array.
632     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
633       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
634       PointerType *FuncPtrTy =
635           FunctionType::get(Type::getVoidTy(Context), false)->getPointerTo();
636       // FIXME: Reject the 2-field form in LLVM 4.0.
637       Assert(STy &&
638                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
639                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
640                  STy->getTypeAtIndex(1) == FuncPtrTy,
641              "wrong type for intrinsic global variable", &GV);
642       if (STy->getNumElements() == 3) {
643         Type *ETy = STy->getTypeAtIndex(2);
644         Assert(ETy->isPointerTy() &&
645                    cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
646                "wrong type for intrinsic global variable", &GV);
647       }
648     }
649   }
650 
651   if (GV.hasName() && (GV.getName() == "llvm.used" ||
652                        GV.getName() == "llvm.compiler.used")) {
653     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
654            "invalid linkage for intrinsic global variable", &GV);
655     Type *GVType = GV.getValueType();
656     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
657       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
658       Assert(PTy, "wrong type for intrinsic global variable", &GV);
659       if (GV.hasInitializer()) {
660         const Constant *Init = GV.getInitializer();
661         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
662         Assert(InitArray, "wrong initalizer for intrinsic global variable",
663                Init);
664         for (Value *Op : InitArray->operands()) {
665           Value *V = Op->stripPointerCastsNoFollowAliases();
666           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
667                      isa<GlobalAlias>(V),
668                  "invalid llvm.used member", V);
669           Assert(V->hasName(), "members of llvm.used must be named", V);
670         }
671       }
672     }
673   }
674 
675   // Visit any debug info attachments.
676   SmallVector<MDNode *, 1> MDs;
677   GV.getMetadata(LLVMContext::MD_dbg, MDs);
678   for (auto *MD : MDs) {
679     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
680       visitDIGlobalVariableExpression(*GVE);
681     else
682       AssertDI(false, "!dbg attachment of global variable must be a "
683                       "DIGlobalVariableExpression");
684   }
685 
686   if (!GV.hasInitializer()) {
687     visitGlobalValue(GV);
688     return;
689   }
690 
691   // Walk any aggregate initializers looking for bitcasts between address spaces
692   visitConstantExprsRecursively(GV.getInitializer());
693 
694   visitGlobalValue(GV);
695 }
696 
visitAliaseeSubExpr(const GlobalAlias & GA,const Constant & C)697 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
698   SmallPtrSet<const GlobalAlias*, 4> Visited;
699   Visited.insert(&GA);
700   visitAliaseeSubExpr(Visited, GA, C);
701 }
702 
visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias * > & Visited,const GlobalAlias & GA,const Constant & C)703 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
704                                    const GlobalAlias &GA, const Constant &C) {
705   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
706     Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
707            &GA);
708 
709     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
710       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
711 
712       Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
713              &GA);
714     } else {
715       // Only continue verifying subexpressions of GlobalAliases.
716       // Do not recurse into global initializers.
717       return;
718     }
719   }
720 
721   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
722     visitConstantExprsRecursively(CE);
723 
724   for (const Use &U : C.operands()) {
725     Value *V = &*U;
726     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
727       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
728     else if (const auto *C2 = dyn_cast<Constant>(V))
729       visitAliaseeSubExpr(Visited, GA, *C2);
730   }
731 }
732 
visitGlobalAlias(const GlobalAlias & GA)733 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
734   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
735          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
736          "weak_odr, or external linkage!",
737          &GA);
738   const Constant *Aliasee = GA.getAliasee();
739   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
740   Assert(GA.getType() == Aliasee->getType(),
741          "Alias and aliasee types should match!", &GA);
742 
743   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
744          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
745 
746   visitAliaseeSubExpr(GA, *Aliasee);
747 
748   visitGlobalValue(GA);
749 }
750 
visitNamedMDNode(const NamedMDNode & NMD)751 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
752   // There used to be various other llvm.dbg.* nodes, but we don't support
753   // upgrading them and we want to reserve the namespace for future uses.
754   if (NMD.getName().startswith("llvm.dbg."))
755     AssertDI(NMD.getName() == "llvm.dbg.cu",
756              "unrecognized named metadata node in the llvm.dbg namespace",
757              &NMD);
758   for (const MDNode *MD : NMD.operands()) {
759     if (NMD.getName() == "llvm.dbg.cu")
760       AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
761 
762     if (!MD)
763       continue;
764 
765     visitMDNode(*MD);
766   }
767 }
768 
visitMDNode(const MDNode & MD)769 void Verifier::visitMDNode(const MDNode &MD) {
770   // Only visit each node once.  Metadata can be mutually recursive, so this
771   // avoids infinite recursion here, as well as being an optimization.
772   if (!MDNodes.insert(&MD).second)
773     return;
774 
775   switch (MD.getMetadataID()) {
776   default:
777     llvm_unreachable("Invalid MDNode subclass");
778   case Metadata::MDTupleKind:
779     break;
780 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
781   case Metadata::CLASS##Kind:                                                  \
782     visit##CLASS(cast<CLASS>(MD));                                             \
783     break;
784 #include "llvm/IR/Metadata.def"
785   }
786 
787   for (const Metadata *Op : MD.operands()) {
788     if (!Op)
789       continue;
790     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
791            &MD, Op);
792     if (auto *N = dyn_cast<MDNode>(Op)) {
793       visitMDNode(*N);
794       continue;
795     }
796     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
797       visitValueAsMetadata(*V, nullptr);
798       continue;
799     }
800   }
801 
802   // Check these last, so we diagnose problems in operands first.
803   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
804   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
805 }
806 
visitValueAsMetadata(const ValueAsMetadata & MD,Function * F)807 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
808   Assert(MD.getValue(), "Expected valid value", &MD);
809   Assert(!MD.getValue()->getType()->isMetadataTy(),
810          "Unexpected metadata round-trip through values", &MD, MD.getValue());
811 
812   auto *L = dyn_cast<LocalAsMetadata>(&MD);
813   if (!L)
814     return;
815 
816   Assert(F, "function-local metadata used outside a function", L);
817 
818   // If this was an instruction, bb, or argument, verify that it is in the
819   // function that we expect.
820   Function *ActualF = nullptr;
821   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
822     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
823     ActualF = I->getParent()->getParent();
824   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
825     ActualF = BB->getParent();
826   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
827     ActualF = A->getParent();
828   assert(ActualF && "Unimplemented function local metadata case!");
829 
830   Assert(ActualF == F, "function-local metadata used in wrong function", L);
831 }
832 
visitMetadataAsValue(const MetadataAsValue & MDV,Function * F)833 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
834   Metadata *MD = MDV.getMetadata();
835   if (auto *N = dyn_cast<MDNode>(MD)) {
836     visitMDNode(*N);
837     return;
838   }
839 
840   // Only visit each node once.  Metadata can be mutually recursive, so this
841   // avoids infinite recursion here, as well as being an optimization.
842   if (!MDNodes.insert(MD).second)
843     return;
844 
845   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
846     visitValueAsMetadata(*V, F);
847 }
848 
isType(const Metadata * MD)849 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
isScope(const Metadata * MD)850 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
isDINode(const Metadata * MD)851 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
852 
visitDILocation(const DILocation & N)853 void Verifier::visitDILocation(const DILocation &N) {
854   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
855            "location requires a valid scope", &N, N.getRawScope());
856   if (auto *IA = N.getRawInlinedAt())
857     AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
858   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
859     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
860 }
861 
visitGenericDINode(const GenericDINode & N)862 void Verifier::visitGenericDINode(const GenericDINode &N) {
863   AssertDI(N.getTag(), "invalid tag", &N);
864 }
865 
visitDIScope(const DIScope & N)866 void Verifier::visitDIScope(const DIScope &N) {
867   if (auto *F = N.getRawFile())
868     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
869 }
870 
visitDISubrange(const DISubrange & N)871 void Verifier::visitDISubrange(const DISubrange &N) {
872   AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
873   auto Count = N.getCount();
874   AssertDI(Count, "Count must either be a signed constant or a DIVariable",
875            &N);
876   AssertDI(!Count.is<ConstantInt*>() ||
877                Count.get<ConstantInt*>()->getSExtValue() >= -1,
878            "invalid subrange count", &N);
879 }
880 
visitDIEnumerator(const DIEnumerator & N)881 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
882   AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
883 }
884 
visitDIBasicType(const DIBasicType & N)885 void Verifier::visitDIBasicType(const DIBasicType &N) {
886   AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
887                N.getTag() == dwarf::DW_TAG_unspecified_type,
888            "invalid tag", &N);
889 }
890 
visitDIDerivedType(const DIDerivedType & N)891 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
892   // Common scope checks.
893   visitDIScope(N);
894 
895   AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
896                N.getTag() == dwarf::DW_TAG_pointer_type ||
897                N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
898                N.getTag() == dwarf::DW_TAG_reference_type ||
899                N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
900                N.getTag() == dwarf::DW_TAG_const_type ||
901                N.getTag() == dwarf::DW_TAG_volatile_type ||
902                N.getTag() == dwarf::DW_TAG_restrict_type ||
903                N.getTag() == dwarf::DW_TAG_atomic_type ||
904                N.getTag() == dwarf::DW_TAG_member ||
905                N.getTag() == dwarf::DW_TAG_inheritance ||
906                N.getTag() == dwarf::DW_TAG_friend,
907            "invalid tag", &N);
908   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
909     AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
910              N.getRawExtraData());
911   }
912 
913   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
914   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
915            N.getRawBaseType());
916 
917   if (N.getDWARFAddressSpace()) {
918     AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
919                  N.getTag() == dwarf::DW_TAG_reference_type,
920              "DWARF address space only applies to pointer or reference types",
921              &N);
922   }
923 }
924 
925 /// Detect mutually exclusive flags.
hasConflictingReferenceFlags(unsigned Flags)926 static bool hasConflictingReferenceFlags(unsigned Flags) {
927   return ((Flags & DINode::FlagLValueReference) &&
928           (Flags & DINode::FlagRValueReference)) ||
929          ((Flags & DINode::FlagTypePassByValue) &&
930           (Flags & DINode::FlagTypePassByReference));
931 }
932 
visitTemplateParams(const MDNode & N,const Metadata & RawParams)933 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
934   auto *Params = dyn_cast<MDTuple>(&RawParams);
935   AssertDI(Params, "invalid template params", &N, &RawParams);
936   for (Metadata *Op : Params->operands()) {
937     AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
938              &N, Params, Op);
939   }
940 }
941 
visitDICompositeType(const DICompositeType & N)942 void Verifier::visitDICompositeType(const DICompositeType &N) {
943   // Common scope checks.
944   visitDIScope(N);
945 
946   AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
947                N.getTag() == dwarf::DW_TAG_structure_type ||
948                N.getTag() == dwarf::DW_TAG_union_type ||
949                N.getTag() == dwarf::DW_TAG_enumeration_type ||
950                N.getTag() == dwarf::DW_TAG_class_type ||
951                N.getTag() == dwarf::DW_TAG_variant_part,
952            "invalid tag", &N);
953 
954   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
955   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
956            N.getRawBaseType());
957 
958   AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
959            "invalid composite elements", &N, N.getRawElements());
960   AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
961            N.getRawVTableHolder());
962   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
963            "invalid reference flags", &N);
964 
965   if (N.isVector()) {
966     const DINodeArray Elements = N.getElements();
967     AssertDI(Elements.size() == 1 &&
968              Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
969              "invalid vector, expected one element of type subrange", &N);
970   }
971 
972   if (auto *Params = N.getRawTemplateParams())
973     visitTemplateParams(N, *Params);
974 
975   if (N.getTag() == dwarf::DW_TAG_class_type ||
976       N.getTag() == dwarf::DW_TAG_union_type) {
977     AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
978              "class/union requires a filename", &N, N.getFile());
979   }
980 
981   if (auto *D = N.getRawDiscriminator()) {
982     AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
983              "discriminator can only appear on variant part");
984   }
985 }
986 
visitDISubroutineType(const DISubroutineType & N)987 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
988   AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
989   if (auto *Types = N.getRawTypeArray()) {
990     AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
991     for (Metadata *Ty : N.getTypeArray()->operands()) {
992       AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
993     }
994   }
995   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
996            "invalid reference flags", &N);
997 }
998 
visitDIFile(const DIFile & N)999 void Verifier::visitDIFile(const DIFile &N) {
1000   AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1001   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1002   if (Checksum) {
1003     AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1004              "invalid checksum kind", &N);
1005     size_t Size;
1006     switch (Checksum->Kind) {
1007     case DIFile::CSK_MD5:
1008       Size = 32;
1009       break;
1010     case DIFile::CSK_SHA1:
1011       Size = 40;
1012       break;
1013     }
1014     AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1015     AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1016              "invalid checksum", &N);
1017   }
1018 }
1019 
visitDICompileUnit(const DICompileUnit & N)1020 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1021   AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1022   AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1023 
1024   // Don't bother verifying the compilation directory or producer string
1025   // as those could be empty.
1026   AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1027            N.getRawFile());
1028   AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1029            N.getFile());
1030 
1031   AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1032            "invalid emission kind", &N);
1033 
1034   if (auto *Array = N.getRawEnumTypes()) {
1035     AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1036     for (Metadata *Op : N.getEnumTypes()->operands()) {
1037       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1038       AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1039                "invalid enum type", &N, N.getEnumTypes(), Op);
1040     }
1041   }
1042   if (auto *Array = N.getRawRetainedTypes()) {
1043     AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1044     for (Metadata *Op : N.getRetainedTypes()->operands()) {
1045       AssertDI(Op && (isa<DIType>(Op) ||
1046                       (isa<DISubprogram>(Op) &&
1047                        !cast<DISubprogram>(Op)->isDefinition())),
1048                "invalid retained type", &N, Op);
1049     }
1050   }
1051   if (auto *Array = N.getRawGlobalVariables()) {
1052     AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1053     for (Metadata *Op : N.getGlobalVariables()->operands()) {
1054       AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1055                "invalid global variable ref", &N, Op);
1056     }
1057   }
1058   if (auto *Array = N.getRawImportedEntities()) {
1059     AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1060     for (Metadata *Op : N.getImportedEntities()->operands()) {
1061       AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1062                &N, Op);
1063     }
1064   }
1065   if (auto *Array = N.getRawMacros()) {
1066     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1067     for (Metadata *Op : N.getMacros()->operands()) {
1068       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1069     }
1070   }
1071   CUVisited.insert(&N);
1072 }
1073 
visitDISubprogram(const DISubprogram & N)1074 void Verifier::visitDISubprogram(const DISubprogram &N) {
1075   AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1076   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1077   if (auto *F = N.getRawFile())
1078     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1079   else
1080     AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1081   if (auto *T = N.getRawType())
1082     AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1083   AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1084            N.getRawContainingType());
1085   if (auto *Params = N.getRawTemplateParams())
1086     visitTemplateParams(N, *Params);
1087   if (auto *S = N.getRawDeclaration())
1088     AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1089              "invalid subprogram declaration", &N, S);
1090   if (auto *RawNode = N.getRawRetainedNodes()) {
1091     auto *Node = dyn_cast<MDTuple>(RawNode);
1092     AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1093     for (Metadata *Op : Node->operands()) {
1094       AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1095                "invalid retained nodes, expected DILocalVariable or DILabel",
1096                &N, Node, Op);
1097     }
1098   }
1099   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1100            "invalid reference flags", &N);
1101 
1102   auto *Unit = N.getRawUnit();
1103   if (N.isDefinition()) {
1104     // Subprogram definitions (not part of the type hierarchy).
1105     AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1106     AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1107     AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1108   } else {
1109     // Subprogram declarations (part of the type hierarchy).
1110     AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1111   }
1112 
1113   if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1114     auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1115     AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1116     for (Metadata *Op : ThrownTypes->operands())
1117       AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1118                Op);
1119   }
1120 }
1121 
visitDILexicalBlockBase(const DILexicalBlockBase & N)1122 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1123   AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1124   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1125            "invalid local scope", &N, N.getRawScope());
1126   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1127     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1128 }
1129 
visitDILexicalBlock(const DILexicalBlock & N)1130 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1131   visitDILexicalBlockBase(N);
1132 
1133   AssertDI(N.getLine() || !N.getColumn(),
1134            "cannot have column info without line info", &N);
1135 }
1136 
visitDILexicalBlockFile(const DILexicalBlockFile & N)1137 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1138   visitDILexicalBlockBase(N);
1139 }
1140 
visitDINamespace(const DINamespace & N)1141 void Verifier::visitDINamespace(const DINamespace &N) {
1142   AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1143   if (auto *S = N.getRawScope())
1144     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1145 }
1146 
visitDIMacro(const DIMacro & N)1147 void Verifier::visitDIMacro(const DIMacro &N) {
1148   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1149                N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1150            "invalid macinfo type", &N);
1151   AssertDI(!N.getName().empty(), "anonymous macro", &N);
1152   if (!N.getValue().empty()) {
1153     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1154   }
1155 }
1156 
visitDIMacroFile(const DIMacroFile & N)1157 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1158   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1159            "invalid macinfo type", &N);
1160   if (auto *F = N.getRawFile())
1161     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1162 
1163   if (auto *Array = N.getRawElements()) {
1164     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1165     for (Metadata *Op : N.getElements()->operands()) {
1166       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1167     }
1168   }
1169 }
1170 
visitDIModule(const DIModule & N)1171 void Verifier::visitDIModule(const DIModule &N) {
1172   AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1173   AssertDI(!N.getName().empty(), "anonymous module", &N);
1174 }
1175 
visitDITemplateParameter(const DITemplateParameter & N)1176 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1177   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1178 }
1179 
visitDITemplateTypeParameter(const DITemplateTypeParameter & N)1180 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1181   visitDITemplateParameter(N);
1182 
1183   AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1184            &N);
1185 }
1186 
visitDITemplateValueParameter(const DITemplateValueParameter & N)1187 void Verifier::visitDITemplateValueParameter(
1188     const DITemplateValueParameter &N) {
1189   visitDITemplateParameter(N);
1190 
1191   AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1192                N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1193                N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1194            "invalid tag", &N);
1195 }
1196 
visitDIVariable(const DIVariable & N)1197 void Verifier::visitDIVariable(const DIVariable &N) {
1198   if (auto *S = N.getRawScope())
1199     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1200   if (auto *F = N.getRawFile())
1201     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1202 }
1203 
visitDIGlobalVariable(const DIGlobalVariable & N)1204 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1205   // Checks common to all variables.
1206   visitDIVariable(N);
1207 
1208   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1209   AssertDI(!N.getName().empty(), "missing global variable name", &N);
1210   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1211   AssertDI(N.getType(), "missing global variable type", &N);
1212   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1213     AssertDI(isa<DIDerivedType>(Member),
1214              "invalid static data member declaration", &N, Member);
1215   }
1216 }
1217 
visitDILocalVariable(const DILocalVariable & N)1218 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1219   // Checks common to all variables.
1220   visitDIVariable(N);
1221 
1222   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1223   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1224   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1225            "local variable requires a valid scope", &N, N.getRawScope());
1226 }
1227 
visitDILabel(const DILabel & N)1228 void Verifier::visitDILabel(const DILabel &N) {
1229   if (auto *S = N.getRawScope())
1230     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1231   if (auto *F = N.getRawFile())
1232     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1233 
1234   AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1235   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1236            "label requires a valid scope", &N, N.getRawScope());
1237 }
1238 
visitDIExpression(const DIExpression & N)1239 void Verifier::visitDIExpression(const DIExpression &N) {
1240   AssertDI(N.isValid(), "invalid expression", &N);
1241 }
1242 
visitDIGlobalVariableExpression(const DIGlobalVariableExpression & GVE)1243 void Verifier::visitDIGlobalVariableExpression(
1244     const DIGlobalVariableExpression &GVE) {
1245   AssertDI(GVE.getVariable(), "missing variable");
1246   if (auto *Var = GVE.getVariable())
1247     visitDIGlobalVariable(*Var);
1248   if (auto *Expr = GVE.getExpression()) {
1249     visitDIExpression(*Expr);
1250     if (auto Fragment = Expr->getFragmentInfo())
1251       verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1252   }
1253 }
1254 
visitDIObjCProperty(const DIObjCProperty & N)1255 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1256   AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1257   if (auto *T = N.getRawType())
1258     AssertDI(isType(T), "invalid type ref", &N, T);
1259   if (auto *F = N.getRawFile())
1260     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1261 }
1262 
visitDIImportedEntity(const DIImportedEntity & N)1263 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1264   AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1265                N.getTag() == dwarf::DW_TAG_imported_declaration,
1266            "invalid tag", &N);
1267   if (auto *S = N.getRawScope())
1268     AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1269   AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1270            N.getRawEntity());
1271 }
1272 
visitComdat(const Comdat & C)1273 void Verifier::visitComdat(const Comdat &C) {
1274   // The Module is invalid if the GlobalValue has private linkage.  Entities
1275   // with private linkage don't have entries in the symbol table.
1276   if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1277     Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1278            GV);
1279 }
1280 
visitModuleIdents(const Module & M)1281 void Verifier::visitModuleIdents(const Module &M) {
1282   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1283   if (!Idents)
1284     return;
1285 
1286   // llvm.ident takes a list of metadata entry. Each entry has only one string.
1287   // Scan each llvm.ident entry and make sure that this requirement is met.
1288   for (const MDNode *N : Idents->operands()) {
1289     Assert(N->getNumOperands() == 1,
1290            "incorrect number of operands in llvm.ident metadata", N);
1291     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1292            ("invalid value for llvm.ident metadata entry operand"
1293             "(the operand should be a string)"),
1294            N->getOperand(0));
1295   }
1296 }
1297 
visitModuleFlags(const Module & M)1298 void Verifier::visitModuleFlags(const Module &M) {
1299   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1300   if (!Flags) return;
1301 
1302   // Scan each flag, and track the flags and requirements.
1303   DenseMap<const MDString*, const MDNode*> SeenIDs;
1304   SmallVector<const MDNode*, 16> Requirements;
1305   for (const MDNode *MDN : Flags->operands())
1306     visitModuleFlag(MDN, SeenIDs, Requirements);
1307 
1308   // Validate that the requirements in the module are valid.
1309   for (const MDNode *Requirement : Requirements) {
1310     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1311     const Metadata *ReqValue = Requirement->getOperand(1);
1312 
1313     const MDNode *Op = SeenIDs.lookup(Flag);
1314     if (!Op) {
1315       CheckFailed("invalid requirement on flag, flag is not present in module",
1316                   Flag);
1317       continue;
1318     }
1319 
1320     if (Op->getOperand(2) != ReqValue) {
1321       CheckFailed(("invalid requirement on flag, "
1322                    "flag does not have the required value"),
1323                   Flag);
1324       continue;
1325     }
1326   }
1327 }
1328 
1329 void
visitModuleFlag(const MDNode * Op,DenseMap<const MDString *,const MDNode * > & SeenIDs,SmallVectorImpl<const MDNode * > & Requirements)1330 Verifier::visitModuleFlag(const MDNode *Op,
1331                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
1332                           SmallVectorImpl<const MDNode *> &Requirements) {
1333   // Each module flag should have three arguments, the merge behavior (a
1334   // constant int), the flag ID (an MDString), and the value.
1335   Assert(Op->getNumOperands() == 3,
1336          "incorrect number of operands in module flag", Op);
1337   Module::ModFlagBehavior MFB;
1338   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1339     Assert(
1340         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1341         "invalid behavior operand in module flag (expected constant integer)",
1342         Op->getOperand(0));
1343     Assert(false,
1344            "invalid behavior operand in module flag (unexpected constant)",
1345            Op->getOperand(0));
1346   }
1347   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1348   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1349          Op->getOperand(1));
1350 
1351   // Sanity check the values for behaviors with additional requirements.
1352   switch (MFB) {
1353   case Module::Error:
1354   case Module::Warning:
1355   case Module::Override:
1356     // These behavior types accept any value.
1357     break;
1358 
1359   case Module::Max: {
1360     Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1361            "invalid value for 'max' module flag (expected constant integer)",
1362            Op->getOperand(2));
1363     break;
1364   }
1365 
1366   case Module::Require: {
1367     // The value should itself be an MDNode with two operands, a flag ID (an
1368     // MDString), and a value.
1369     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1370     Assert(Value && Value->getNumOperands() == 2,
1371            "invalid value for 'require' module flag (expected metadata pair)",
1372            Op->getOperand(2));
1373     Assert(isa<MDString>(Value->getOperand(0)),
1374            ("invalid value for 'require' module flag "
1375             "(first value operand should be a string)"),
1376            Value->getOperand(0));
1377 
1378     // Append it to the list of requirements, to check once all module flags are
1379     // scanned.
1380     Requirements.push_back(Value);
1381     break;
1382   }
1383 
1384   case Module::Append:
1385   case Module::AppendUnique: {
1386     // These behavior types require the operand be an MDNode.
1387     Assert(isa<MDNode>(Op->getOperand(2)),
1388            "invalid value for 'append'-type module flag "
1389            "(expected a metadata node)",
1390            Op->getOperand(2));
1391     break;
1392   }
1393   }
1394 
1395   // Unless this is a "requires" flag, check the ID is unique.
1396   if (MFB != Module::Require) {
1397     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1398     Assert(Inserted,
1399            "module flag identifiers must be unique (or of 'require' type)", ID);
1400   }
1401 
1402   if (ID->getString() == "wchar_size") {
1403     ConstantInt *Value
1404       = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1405     Assert(Value, "wchar_size metadata requires constant integer argument");
1406   }
1407 
1408   if (ID->getString() == "Linker Options") {
1409     // If the llvm.linker.options named metadata exists, we assume that the
1410     // bitcode reader has upgraded the module flag. Otherwise the flag might
1411     // have been created by a client directly.
1412     Assert(M.getNamedMetadata("llvm.linker.options"),
1413            "'Linker Options' named metadata no longer supported");
1414   }
1415 
1416   if (ID->getString() == "CG Profile") {
1417     for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1418       visitModuleFlagCGProfileEntry(MDO);
1419   }
1420 }
1421 
visitModuleFlagCGProfileEntry(const MDOperand & MDO)1422 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1423   auto CheckFunction = [&](const MDOperand &FuncMDO) {
1424     if (!FuncMDO)
1425       return;
1426     auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1427     Assert(F && isa<Function>(F->getValue()), "expected a Function or null",
1428            FuncMDO);
1429   };
1430   auto Node = dyn_cast_or_null<MDNode>(MDO);
1431   Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1432   CheckFunction(Node->getOperand(0));
1433   CheckFunction(Node->getOperand(1));
1434   auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1435   Assert(Count && Count->getType()->isIntegerTy(),
1436          "expected an integer constant", Node->getOperand(2));
1437 }
1438 
1439 /// Return true if this attribute kind only applies to functions.
isFuncOnlyAttr(Attribute::AttrKind Kind)1440 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1441   switch (Kind) {
1442   case Attribute::NoReturn:
1443   case Attribute::NoCfCheck:
1444   case Attribute::NoUnwind:
1445   case Attribute::NoInline:
1446   case Attribute::AlwaysInline:
1447   case Attribute::OptimizeForSize:
1448   case Attribute::StackProtect:
1449   case Attribute::StackProtectReq:
1450   case Attribute::StackProtectStrong:
1451   case Attribute::SafeStack:
1452   case Attribute::ShadowCallStack:
1453   case Attribute::NoRedZone:
1454   case Attribute::NoImplicitFloat:
1455   case Attribute::Naked:
1456   case Attribute::InlineHint:
1457   case Attribute::StackAlignment:
1458   case Attribute::UWTable:
1459   case Attribute::NonLazyBind:
1460   case Attribute::ReturnsTwice:
1461   case Attribute::SanitizeAddress:
1462   case Attribute::SanitizeHWAddress:
1463   case Attribute::SanitizeThread:
1464   case Attribute::SanitizeMemory:
1465   case Attribute::MinSize:
1466   case Attribute::NoDuplicate:
1467   case Attribute::Builtin:
1468   case Attribute::NoBuiltin:
1469   case Attribute::Cold:
1470   case Attribute::OptForFuzzing:
1471   case Attribute::OptimizeNone:
1472   case Attribute::JumpTable:
1473   case Attribute::Convergent:
1474   case Attribute::ArgMemOnly:
1475   case Attribute::NoRecurse:
1476   case Attribute::InaccessibleMemOnly:
1477   case Attribute::InaccessibleMemOrArgMemOnly:
1478   case Attribute::AllocSize:
1479   case Attribute::Speculatable:
1480   case Attribute::StrictFP:
1481     return true;
1482   default:
1483     break;
1484   }
1485   return false;
1486 }
1487 
1488 /// Return true if this is a function attribute that can also appear on
1489 /// arguments.
isFuncOrArgAttr(Attribute::AttrKind Kind)1490 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1491   return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1492          Kind == Attribute::ReadNone;
1493 }
1494 
verifyAttributeTypes(AttributeSet Attrs,bool IsFunction,const Value * V)1495 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1496                                     const Value *V) {
1497   for (Attribute A : Attrs) {
1498     if (A.isStringAttribute())
1499       continue;
1500 
1501     if (isFuncOnlyAttr(A.getKindAsEnum())) {
1502       if (!IsFunction) {
1503         CheckFailed("Attribute '" + A.getAsString() +
1504                         "' only applies to functions!",
1505                     V);
1506         return;
1507       }
1508     } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1509       CheckFailed("Attribute '" + A.getAsString() +
1510                       "' does not apply to functions!",
1511                   V);
1512       return;
1513     }
1514   }
1515 }
1516 
1517 // VerifyParameterAttrs - Check the given attributes for an argument or return
1518 // value of the specified type.  The value V is printed in error messages.
verifyParameterAttrs(AttributeSet Attrs,Type * Ty,const Value * V)1519 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1520                                     const Value *V) {
1521   if (!Attrs.hasAttributes())
1522     return;
1523 
1524   verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1525 
1526   // Check for mutually incompatible attributes.  Only inreg is compatible with
1527   // sret.
1528   unsigned AttrCount = 0;
1529   AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1530   AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1531   AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1532                Attrs.hasAttribute(Attribute::InReg);
1533   AttrCount += Attrs.hasAttribute(Attribute::Nest);
1534   Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1535                          "and 'sret' are incompatible!",
1536          V);
1537 
1538   Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1539            Attrs.hasAttribute(Attribute::ReadOnly)),
1540          "Attributes "
1541          "'inalloca and readonly' are incompatible!",
1542          V);
1543 
1544   Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1545            Attrs.hasAttribute(Attribute::Returned)),
1546          "Attributes "
1547          "'sret and returned' are incompatible!",
1548          V);
1549 
1550   Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1551            Attrs.hasAttribute(Attribute::SExt)),
1552          "Attributes "
1553          "'zeroext and signext' are incompatible!",
1554          V);
1555 
1556   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1557            Attrs.hasAttribute(Attribute::ReadOnly)),
1558          "Attributes "
1559          "'readnone and readonly' are incompatible!",
1560          V);
1561 
1562   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1563            Attrs.hasAttribute(Attribute::WriteOnly)),
1564          "Attributes "
1565          "'readnone and writeonly' are incompatible!",
1566          V);
1567 
1568   Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1569            Attrs.hasAttribute(Attribute::WriteOnly)),
1570          "Attributes "
1571          "'readonly and writeonly' are incompatible!",
1572          V);
1573 
1574   Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1575            Attrs.hasAttribute(Attribute::AlwaysInline)),
1576          "Attributes "
1577          "'noinline and alwaysinline' are incompatible!",
1578          V);
1579 
1580   AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1581   Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1582          "Wrong types for attribute: " +
1583              AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1584          V);
1585 
1586   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1587     SmallPtrSet<Type*, 4> Visited;
1588     if (!PTy->getElementType()->isSized(&Visited)) {
1589       Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1590                  !Attrs.hasAttribute(Attribute::InAlloca),
1591              "Attributes 'byval' and 'inalloca' do not support unsized types!",
1592              V);
1593     }
1594     if (!isa<PointerType>(PTy->getElementType()))
1595       Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1596              "Attribute 'swifterror' only applies to parameters "
1597              "with pointer to pointer type!",
1598              V);
1599   } else {
1600     Assert(!Attrs.hasAttribute(Attribute::ByVal),
1601            "Attribute 'byval' only applies to parameters with pointer type!",
1602            V);
1603     Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1604            "Attribute 'swifterror' only applies to parameters "
1605            "with pointer type!",
1606            V);
1607   }
1608 }
1609 
1610 // Check parameter attributes against a function type.
1611 // The value V is printed in error messages.
verifyFunctionAttrs(FunctionType * FT,AttributeList Attrs,const Value * V)1612 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1613                                    const Value *V) {
1614   if (Attrs.isEmpty())
1615     return;
1616 
1617   bool SawNest = false;
1618   bool SawReturned = false;
1619   bool SawSRet = false;
1620   bool SawSwiftSelf = false;
1621   bool SawSwiftError = false;
1622 
1623   // Verify return value attributes.
1624   AttributeSet RetAttrs = Attrs.getRetAttributes();
1625   Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1626           !RetAttrs.hasAttribute(Attribute::Nest) &&
1627           !RetAttrs.hasAttribute(Attribute::StructRet) &&
1628           !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1629           !RetAttrs.hasAttribute(Attribute::Returned) &&
1630           !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1631           !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1632           !RetAttrs.hasAttribute(Attribute::SwiftError)),
1633          "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1634          "'returned', 'swiftself', and 'swifterror' do not apply to return "
1635          "values!",
1636          V);
1637   Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1638           !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1639           !RetAttrs.hasAttribute(Attribute::ReadNone)),
1640          "Attribute '" + RetAttrs.getAsString() +
1641              "' does not apply to function returns",
1642          V);
1643   verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1644 
1645   // Verify parameter attributes.
1646   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1647     Type *Ty = FT->getParamType(i);
1648     AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1649 
1650     verifyParameterAttrs(ArgAttrs, Ty, V);
1651 
1652     if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1653       Assert(!SawNest, "More than one parameter has attribute nest!", V);
1654       SawNest = true;
1655     }
1656 
1657     if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1658       Assert(!SawReturned, "More than one parameter has attribute returned!",
1659              V);
1660       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1661              "Incompatible argument and return types for 'returned' attribute",
1662              V);
1663       SawReturned = true;
1664     }
1665 
1666     if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1667       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1668       Assert(i == 0 || i == 1,
1669              "Attribute 'sret' is not on first or second parameter!", V);
1670       SawSRet = true;
1671     }
1672 
1673     if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1674       Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1675       SawSwiftSelf = true;
1676     }
1677 
1678     if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1679       Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1680              V);
1681       SawSwiftError = true;
1682     }
1683 
1684     if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1685       Assert(i == FT->getNumParams() - 1,
1686              "inalloca isn't on the last parameter!", V);
1687     }
1688   }
1689 
1690   if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1691     return;
1692 
1693   verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1694 
1695   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1696            Attrs.hasFnAttribute(Attribute::ReadOnly)),
1697          "Attributes 'readnone and readonly' are incompatible!", V);
1698 
1699   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1700            Attrs.hasFnAttribute(Attribute::WriteOnly)),
1701          "Attributes 'readnone and writeonly' are incompatible!", V);
1702 
1703   Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1704            Attrs.hasFnAttribute(Attribute::WriteOnly)),
1705          "Attributes 'readonly and writeonly' are incompatible!", V);
1706 
1707   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1708            Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1709          "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1710          "incompatible!",
1711          V);
1712 
1713   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1714            Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1715          "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1716 
1717   Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1718            Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1719          "Attributes 'noinline and alwaysinline' are incompatible!", V);
1720 
1721   if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1722     Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1723            "Attribute 'optnone' requires 'noinline'!", V);
1724 
1725     Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1726            "Attributes 'optsize and optnone' are incompatible!", V);
1727 
1728     Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1729            "Attributes 'minsize and optnone' are incompatible!", V);
1730   }
1731 
1732   if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1733     const GlobalValue *GV = cast<GlobalValue>(V);
1734     Assert(GV->hasGlobalUnnamedAddr(),
1735            "Attribute 'jumptable' requires 'unnamed_addr'", V);
1736   }
1737 
1738   if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1739     std::pair<unsigned, Optional<unsigned>> Args =
1740         Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1741 
1742     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1743       if (ParamNo >= FT->getNumParams()) {
1744         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1745         return false;
1746       }
1747 
1748       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1749         CheckFailed("'allocsize' " + Name +
1750                         " argument must refer to an integer parameter",
1751                     V);
1752         return false;
1753       }
1754 
1755       return true;
1756     };
1757 
1758     if (!CheckParam("element size", Args.first))
1759       return;
1760 
1761     if (Args.second && !CheckParam("number of elements", *Args.second))
1762       return;
1763   }
1764 }
1765 
verifyFunctionMetadata(ArrayRef<std::pair<unsigned,MDNode * >> MDs)1766 void Verifier::verifyFunctionMetadata(
1767     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1768   for (const auto &Pair : MDs) {
1769     if (Pair.first == LLVMContext::MD_prof) {
1770       MDNode *MD = Pair.second;
1771       Assert(MD->getNumOperands() >= 2,
1772              "!prof annotations should have no less than 2 operands", MD);
1773 
1774       // Check first operand.
1775       Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1776              MD);
1777       Assert(isa<MDString>(MD->getOperand(0)),
1778              "expected string with name of the !prof annotation", MD);
1779       MDString *MDS = cast<MDString>(MD->getOperand(0));
1780       StringRef ProfName = MDS->getString();
1781       Assert(ProfName.equals("function_entry_count") ||
1782                  ProfName.equals("synthetic_function_entry_count"),
1783              "first operand should be 'function_entry_count'"
1784              " or 'synthetic_function_entry_count'",
1785              MD);
1786 
1787       // Check second operand.
1788       Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1789              MD);
1790       Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1791              "expected integer argument to function_entry_count", MD);
1792     }
1793   }
1794 }
1795 
visitConstantExprsRecursively(const Constant * EntryC)1796 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1797   if (!ConstantExprVisited.insert(EntryC).second)
1798     return;
1799 
1800   SmallVector<const Constant *, 16> Stack;
1801   Stack.push_back(EntryC);
1802 
1803   while (!Stack.empty()) {
1804     const Constant *C = Stack.pop_back_val();
1805 
1806     // Check this constant expression.
1807     if (const auto *CE = dyn_cast<ConstantExpr>(C))
1808       visitConstantExpr(CE);
1809 
1810     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1811       // Global Values get visited separately, but we do need to make sure
1812       // that the global value is in the correct module
1813       Assert(GV->getParent() == &M, "Referencing global in another module!",
1814              EntryC, &M, GV, GV->getParent());
1815       continue;
1816     }
1817 
1818     // Visit all sub-expressions.
1819     for (const Use &U : C->operands()) {
1820       const auto *OpC = dyn_cast<Constant>(U);
1821       if (!OpC)
1822         continue;
1823       if (!ConstantExprVisited.insert(OpC).second)
1824         continue;
1825       Stack.push_back(OpC);
1826     }
1827   }
1828 }
1829 
visitConstantExpr(const ConstantExpr * CE)1830 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1831   if (CE->getOpcode() == Instruction::BitCast)
1832     Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1833                                  CE->getType()),
1834            "Invalid bitcast", CE);
1835 
1836   if (CE->getOpcode() == Instruction::IntToPtr ||
1837       CE->getOpcode() == Instruction::PtrToInt) {
1838     auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1839                       ? CE->getType()
1840                       : CE->getOperand(0)->getType();
1841     StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1842                         ? "inttoptr not supported for non-integral pointers"
1843                         : "ptrtoint not supported for non-integral pointers";
1844     Assert(
1845         !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
1846         Msg);
1847   }
1848 }
1849 
verifyAttributeCount(AttributeList Attrs,unsigned Params)1850 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1851   // There shouldn't be more attribute sets than there are parameters plus the
1852   // function and return value.
1853   return Attrs.getNumAttrSets() <= Params + 2;
1854 }
1855 
1856 /// Verify that statepoint intrinsic is well formed.
verifyStatepoint(ImmutableCallSite CS)1857 void Verifier::verifyStatepoint(ImmutableCallSite CS) {
1858   assert(CS.getCalledFunction() &&
1859          CS.getCalledFunction()->getIntrinsicID() ==
1860            Intrinsic::experimental_gc_statepoint);
1861 
1862   const Instruction &CI = *CS.getInstruction();
1863 
1864   Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
1865          !CS.onlyAccessesArgMemory(),
1866          "gc.statepoint must read and write all memory to preserve "
1867          "reordering restrictions required by safepoint semantics",
1868          &CI);
1869 
1870   const Value *IDV = CS.getArgument(0);
1871   Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
1872          &CI);
1873 
1874   const Value *NumPatchBytesV = CS.getArgument(1);
1875   Assert(isa<ConstantInt>(NumPatchBytesV),
1876          "gc.statepoint number of patchable bytes must be a constant integer",
1877          &CI);
1878   const int64_t NumPatchBytes =
1879       cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1880   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1881   Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
1882                              "positive",
1883          &CI);
1884 
1885   const Value *Target = CS.getArgument(2);
1886   auto *PT = dyn_cast<PointerType>(Target->getType());
1887   Assert(PT && PT->getElementType()->isFunctionTy(),
1888          "gc.statepoint callee must be of function pointer type", &CI, Target);
1889   FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1890 
1891   const Value *NumCallArgsV = CS.getArgument(3);
1892   Assert(isa<ConstantInt>(NumCallArgsV),
1893          "gc.statepoint number of arguments to underlying call "
1894          "must be constant integer",
1895          &CI);
1896   const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1897   Assert(NumCallArgs >= 0,
1898          "gc.statepoint number of arguments to underlying call "
1899          "must be positive",
1900          &CI);
1901   const int NumParams = (int)TargetFuncType->getNumParams();
1902   if (TargetFuncType->isVarArg()) {
1903     Assert(NumCallArgs >= NumParams,
1904            "gc.statepoint mismatch in number of vararg call args", &CI);
1905 
1906     // TODO: Remove this limitation
1907     Assert(TargetFuncType->getReturnType()->isVoidTy(),
1908            "gc.statepoint doesn't support wrapping non-void "
1909            "vararg functions yet",
1910            &CI);
1911   } else
1912     Assert(NumCallArgs == NumParams,
1913            "gc.statepoint mismatch in number of call args", &CI);
1914 
1915   const Value *FlagsV = CS.getArgument(4);
1916   Assert(isa<ConstantInt>(FlagsV),
1917          "gc.statepoint flags must be constant integer", &CI);
1918   const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1919   Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1920          "unknown flag used in gc.statepoint flags argument", &CI);
1921 
1922   // Verify that the types of the call parameter arguments match
1923   // the type of the wrapped callee.
1924   for (int i = 0; i < NumParams; i++) {
1925     Type *ParamType = TargetFuncType->getParamType(i);
1926     Type *ArgType = CS.getArgument(5 + i)->getType();
1927     Assert(ArgType == ParamType,
1928            "gc.statepoint call argument does not match wrapped "
1929            "function type",
1930            &CI);
1931   }
1932 
1933   const int EndCallArgsInx = 4 + NumCallArgs;
1934 
1935   const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1936   Assert(isa<ConstantInt>(NumTransitionArgsV),
1937          "gc.statepoint number of transition arguments "
1938          "must be constant integer",
1939          &CI);
1940   const int NumTransitionArgs =
1941       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1942   Assert(NumTransitionArgs >= 0,
1943          "gc.statepoint number of transition arguments must be positive", &CI);
1944   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1945 
1946   const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1947   Assert(isa<ConstantInt>(NumDeoptArgsV),
1948          "gc.statepoint number of deoptimization arguments "
1949          "must be constant integer",
1950          &CI);
1951   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1952   Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
1953                             "must be positive",
1954          &CI);
1955 
1956   const int ExpectedNumArgs =
1957       7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1958   Assert(ExpectedNumArgs <= (int)CS.arg_size(),
1959          "gc.statepoint too few arguments according to length fields", &CI);
1960 
1961   // Check that the only uses of this gc.statepoint are gc.result or
1962   // gc.relocate calls which are tied to this statepoint and thus part
1963   // of the same statepoint sequence
1964   for (const User *U : CI.users()) {
1965     const CallInst *Call = dyn_cast<const CallInst>(U);
1966     Assert(Call, "illegal use of statepoint token", &CI, U);
1967     if (!Call) continue;
1968     Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),
1969            "gc.result or gc.relocate are the only value uses "
1970            "of a gc.statepoint",
1971            &CI, U);
1972     if (isa<GCResultInst>(Call)) {
1973       Assert(Call->getArgOperand(0) == &CI,
1974              "gc.result connected to wrong gc.statepoint", &CI, Call);
1975     } else if (isa<GCRelocateInst>(Call)) {
1976       Assert(Call->getArgOperand(0) == &CI,
1977              "gc.relocate connected to wrong gc.statepoint", &CI, Call);
1978     }
1979   }
1980 
1981   // Note: It is legal for a single derived pointer to be listed multiple
1982   // times.  It's non-optimal, but it is legal.  It can also happen after
1983   // insertion if we strip a bitcast away.
1984   // Note: It is really tempting to check that each base is relocated and
1985   // that a derived pointer is never reused as a base pointer.  This turns
1986   // out to be problematic since optimizations run after safepoint insertion
1987   // can recognize equality properties that the insertion logic doesn't know
1988   // about.  See example statepoint.ll in the verifier subdirectory
1989 }
1990 
verifyFrameRecoverIndices()1991 void Verifier::verifyFrameRecoverIndices() {
1992   for (auto &Counts : FrameEscapeInfo) {
1993     Function *F = Counts.first;
1994     unsigned EscapedObjectCount = Counts.second.first;
1995     unsigned MaxRecoveredIndex = Counts.second.second;
1996     Assert(MaxRecoveredIndex <= EscapedObjectCount,
1997            "all indices passed to llvm.localrecover must be less than the "
1998            "number of arguments passed ot llvm.localescape in the parent "
1999            "function",
2000            F);
2001   }
2002 }
2003 
getSuccPad(TerminatorInst * Terminator)2004 static Instruction *getSuccPad(TerminatorInst *Terminator) {
2005   BasicBlock *UnwindDest;
2006   if (auto *II = dyn_cast<InvokeInst>(Terminator))
2007     UnwindDest = II->getUnwindDest();
2008   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2009     UnwindDest = CSI->getUnwindDest();
2010   else
2011     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2012   return UnwindDest->getFirstNonPHI();
2013 }
2014 
verifySiblingFuncletUnwinds()2015 void Verifier::verifySiblingFuncletUnwinds() {
2016   SmallPtrSet<Instruction *, 8> Visited;
2017   SmallPtrSet<Instruction *, 8> Active;
2018   for (const auto &Pair : SiblingFuncletInfo) {
2019     Instruction *PredPad = Pair.first;
2020     if (Visited.count(PredPad))
2021       continue;
2022     Active.insert(PredPad);
2023     TerminatorInst *Terminator = Pair.second;
2024     do {
2025       Instruction *SuccPad = getSuccPad(Terminator);
2026       if (Active.count(SuccPad)) {
2027         // Found a cycle; report error
2028         Instruction *CyclePad = SuccPad;
2029         SmallVector<Instruction *, 8> CycleNodes;
2030         do {
2031           CycleNodes.push_back(CyclePad);
2032           TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
2033           if (CycleTerminator != CyclePad)
2034             CycleNodes.push_back(CycleTerminator);
2035           CyclePad = getSuccPad(CycleTerminator);
2036         } while (CyclePad != SuccPad);
2037         Assert(false, "EH pads can't handle each other's exceptions",
2038                ArrayRef<Instruction *>(CycleNodes));
2039       }
2040       // Don't re-walk a node we've already checked
2041       if (!Visited.insert(SuccPad).second)
2042         break;
2043       // Walk to this successor if it has a map entry.
2044       PredPad = SuccPad;
2045       auto TermI = SiblingFuncletInfo.find(PredPad);
2046       if (TermI == SiblingFuncletInfo.end())
2047         break;
2048       Terminator = TermI->second;
2049       Active.insert(PredPad);
2050     } while (true);
2051     // Each node only has one successor, so we've walked all the active
2052     // nodes' successors.
2053     Active.clear();
2054   }
2055 }
2056 
2057 // visitFunction - Verify that a function is ok.
2058 //
visitFunction(const Function & F)2059 void Verifier::visitFunction(const Function &F) {
2060   visitGlobalValue(F);
2061 
2062   // Check function arguments.
2063   FunctionType *FT = F.getFunctionType();
2064   unsigned NumArgs = F.arg_size();
2065 
2066   Assert(&Context == &F.getContext(),
2067          "Function context does not match Module context!", &F);
2068 
2069   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2070   Assert(FT->getNumParams() == NumArgs,
2071          "# formal arguments must match # of arguments for function type!", &F,
2072          FT);
2073   Assert(F.getReturnType()->isFirstClassType() ||
2074              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2075          "Functions cannot return aggregate values!", &F);
2076 
2077   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2078          "Invalid struct return type!", &F);
2079 
2080   AttributeList Attrs = F.getAttributes();
2081 
2082   Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2083          "Attribute after last parameter!", &F);
2084 
2085   // Check function attributes.
2086   verifyFunctionAttrs(FT, Attrs, &F);
2087 
2088   // On function declarations/definitions, we do not support the builtin
2089   // attribute. We do not check this in VerifyFunctionAttrs since that is
2090   // checking for Attributes that can/can not ever be on functions.
2091   Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2092          "Attribute 'builtin' can only be applied to a callsite.", &F);
2093 
2094   // Check that this function meets the restrictions on this calling convention.
2095   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2096   // restrictions can be lifted.
2097   switch (F.getCallingConv()) {
2098   default:
2099   case CallingConv::C:
2100     break;
2101   case CallingConv::AMDGPU_KERNEL:
2102   case CallingConv::SPIR_KERNEL:
2103     Assert(F.getReturnType()->isVoidTy(),
2104            "Calling convention requires void return type", &F);
2105     LLVM_FALLTHROUGH;
2106   case CallingConv::AMDGPU_VS:
2107   case CallingConv::AMDGPU_HS:
2108   case CallingConv::AMDGPU_GS:
2109   case CallingConv::AMDGPU_PS:
2110   case CallingConv::AMDGPU_CS:
2111     Assert(!F.hasStructRetAttr(),
2112            "Calling convention does not allow sret", &F);
2113     LLVM_FALLTHROUGH;
2114   case CallingConv::Fast:
2115   case CallingConv::Cold:
2116   case CallingConv::Intel_OCL_BI:
2117   case CallingConv::PTX_Kernel:
2118   case CallingConv::PTX_Device:
2119     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2120                           "perfect forwarding!",
2121            &F);
2122     break;
2123   }
2124 
2125   bool isLLVMdotName = F.getName().size() >= 5 &&
2126                        F.getName().substr(0, 5) == "llvm.";
2127 
2128   // Check that the argument values match the function type for this function...
2129   unsigned i = 0;
2130   for (const Argument &Arg : F.args()) {
2131     Assert(Arg.getType() == FT->getParamType(i),
2132            "Argument value does not match function argument type!", &Arg,
2133            FT->getParamType(i));
2134     Assert(Arg.getType()->isFirstClassType(),
2135            "Function arguments must have first-class types!", &Arg);
2136     if (!isLLVMdotName) {
2137       Assert(!Arg.getType()->isMetadataTy(),
2138              "Function takes metadata but isn't an intrinsic", &Arg, &F);
2139       Assert(!Arg.getType()->isTokenTy(),
2140              "Function takes token but isn't an intrinsic", &Arg, &F);
2141     }
2142 
2143     // Check that swifterror argument is only used by loads and stores.
2144     if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2145       verifySwiftErrorValue(&Arg);
2146     }
2147     ++i;
2148   }
2149 
2150   if (!isLLVMdotName)
2151     Assert(!F.getReturnType()->isTokenTy(),
2152            "Functions returns a token but isn't an intrinsic", &F);
2153 
2154   // Get the function metadata attachments.
2155   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2156   F.getAllMetadata(MDs);
2157   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2158   verifyFunctionMetadata(MDs);
2159 
2160   // Check validity of the personality function
2161   if (F.hasPersonalityFn()) {
2162     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2163     if (Per)
2164       Assert(Per->getParent() == F.getParent(),
2165              "Referencing personality function in another module!",
2166              &F, F.getParent(), Per, Per->getParent());
2167   }
2168 
2169   if (F.isMaterializable()) {
2170     // Function has a body somewhere we can't see.
2171     Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2172            MDs.empty() ? nullptr : MDs.front().second);
2173   } else if (F.isDeclaration()) {
2174     for (const auto &I : MDs) {
2175       AssertDI(I.first != LLVMContext::MD_dbg,
2176                "function declaration may not have a !dbg attachment", &F);
2177       Assert(I.first != LLVMContext::MD_prof,
2178              "function declaration may not have a !prof attachment", &F);
2179 
2180       // Verify the metadata itself.
2181       visitMDNode(*I.second);
2182     }
2183     Assert(!F.hasPersonalityFn(),
2184            "Function declaration shouldn't have a personality routine", &F);
2185   } else {
2186     // Verify that this function (which has a body) is not named "llvm.*".  It
2187     // is not legal to define intrinsics.
2188     Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2189 
2190     // Check the entry node
2191     const BasicBlock *Entry = &F.getEntryBlock();
2192     Assert(pred_empty(Entry),
2193            "Entry block to function must not have predecessors!", Entry);
2194 
2195     // The address of the entry block cannot be taken, unless it is dead.
2196     if (Entry->hasAddressTaken()) {
2197       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2198              "blockaddress may not be used with the entry block!", Entry);
2199     }
2200 
2201     unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2202     // Visit metadata attachments.
2203     for (const auto &I : MDs) {
2204       // Verify that the attachment is legal.
2205       switch (I.first) {
2206       default:
2207         break;
2208       case LLVMContext::MD_dbg: {
2209         ++NumDebugAttachments;
2210         AssertDI(NumDebugAttachments == 1,
2211                  "function must have a single !dbg attachment", &F, I.second);
2212         AssertDI(isa<DISubprogram>(I.second),
2213                  "function !dbg attachment must be a subprogram", &F, I.second);
2214         auto *SP = cast<DISubprogram>(I.second);
2215         const Function *&AttachedTo = DISubprogramAttachments[SP];
2216         AssertDI(!AttachedTo || AttachedTo == &F,
2217                  "DISubprogram attached to more than one function", SP, &F);
2218         AttachedTo = &F;
2219         break;
2220       }
2221       case LLVMContext::MD_prof:
2222         ++NumProfAttachments;
2223         Assert(NumProfAttachments == 1,
2224                "function must have a single !prof attachment", &F, I.second);
2225         break;
2226       }
2227 
2228       // Verify the metadata itself.
2229       visitMDNode(*I.second);
2230     }
2231   }
2232 
2233   // If this function is actually an intrinsic, verify that it is only used in
2234   // direct call/invokes, never having its "address taken".
2235   // Only do this if the module is materialized, otherwise we don't have all the
2236   // uses.
2237   if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2238     const User *U;
2239     if (F.hasAddressTaken(&U))
2240       Assert(false, "Invalid user of intrinsic instruction!", U);
2241   }
2242 
2243   auto *N = F.getSubprogram();
2244   HasDebugInfo = (N != nullptr);
2245   if (!HasDebugInfo)
2246     return;
2247 
2248   // Check that all !dbg attachments lead to back to N (or, at least, another
2249   // subprogram that describes the same function).
2250   //
2251   // FIXME: Check this incrementally while visiting !dbg attachments.
2252   // FIXME: Only check when N is the canonical subprogram for F.
2253   SmallPtrSet<const MDNode *, 32> Seen;
2254   for (auto &BB : F)
2255     for (auto &I : BB) {
2256       // Be careful about using DILocation here since we might be dealing with
2257       // broken code (this is the Verifier after all).
2258       DILocation *DL =
2259           dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2260       if (!DL)
2261         continue;
2262       if (!Seen.insert(DL).second)
2263         continue;
2264 
2265       DILocalScope *Scope = DL->getInlinedAtScope();
2266       if (Scope && !Seen.insert(Scope).second)
2267         continue;
2268 
2269       DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2270 
2271       // Scope and SP could be the same MDNode and we don't want to skip
2272       // validation in that case
2273       if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2274         continue;
2275 
2276       // FIXME: Once N is canonical, check "SP == &N".
2277       AssertDI(SP->describes(&F),
2278                "!dbg attachment points at wrong subprogram for function", N, &F,
2279                &I, DL, Scope, SP);
2280     }
2281 }
2282 
2283 // verifyBasicBlock - Verify that a basic block is well formed...
2284 //
visitBasicBlock(BasicBlock & BB)2285 void Verifier::visitBasicBlock(BasicBlock &BB) {
2286   InstsInThisBlock.clear();
2287 
2288   // Ensure that basic blocks have terminators!
2289   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2290 
2291   // Check constraints that this basic block imposes on all of the PHI nodes in
2292   // it.
2293   if (isa<PHINode>(BB.front())) {
2294     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2295     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2296     llvm::sort(Preds.begin(), Preds.end());
2297     for (const PHINode &PN : BB.phis()) {
2298       // Ensure that PHI nodes have at least one entry!
2299       Assert(PN.getNumIncomingValues() != 0,
2300              "PHI nodes must have at least one entry.  If the block is dead, "
2301              "the PHI should be removed!",
2302              &PN);
2303       Assert(PN.getNumIncomingValues() == Preds.size(),
2304              "PHINode should have one entry for each predecessor of its "
2305              "parent basic block!",
2306              &PN);
2307 
2308       // Get and sort all incoming values in the PHI node...
2309       Values.clear();
2310       Values.reserve(PN.getNumIncomingValues());
2311       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2312         Values.push_back(
2313             std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2314       llvm::sort(Values.begin(), Values.end());
2315 
2316       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2317         // Check to make sure that if there is more than one entry for a
2318         // particular basic block in this PHI node, that the incoming values are
2319         // all identical.
2320         //
2321         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2322                    Values[i].second == Values[i - 1].second,
2323                "PHI node has multiple entries for the same basic block with "
2324                "different incoming values!",
2325                &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2326 
2327         // Check to make sure that the predecessors and PHI node entries are
2328         // matched up.
2329         Assert(Values[i].first == Preds[i],
2330                "PHI node entries do not match predecessors!", &PN,
2331                Values[i].first, Preds[i]);
2332       }
2333     }
2334   }
2335 
2336   // Check that all instructions have their parent pointers set up correctly.
2337   for (auto &I : BB)
2338   {
2339     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2340   }
2341 }
2342 
visitTerminatorInst(TerminatorInst & I)2343 void Verifier::visitTerminatorInst(TerminatorInst &I) {
2344   // Ensure that terminators only exist at the end of the basic block.
2345   Assert(&I == I.getParent()->getTerminator(),
2346          "Terminator found in the middle of a basic block!", I.getParent());
2347   visitInstruction(I);
2348 }
2349 
visitBranchInst(BranchInst & BI)2350 void Verifier::visitBranchInst(BranchInst &BI) {
2351   if (BI.isConditional()) {
2352     Assert(BI.getCondition()->getType()->isIntegerTy(1),
2353            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2354   }
2355   visitTerminatorInst(BI);
2356 }
2357 
visitReturnInst(ReturnInst & RI)2358 void Verifier::visitReturnInst(ReturnInst &RI) {
2359   Function *F = RI.getParent()->getParent();
2360   unsigned N = RI.getNumOperands();
2361   if (F->getReturnType()->isVoidTy())
2362     Assert(N == 0,
2363            "Found return instr that returns non-void in Function of void "
2364            "return type!",
2365            &RI, F->getReturnType());
2366   else
2367     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2368            "Function return type does not match operand "
2369            "type of return inst!",
2370            &RI, F->getReturnType());
2371 
2372   // Check to make sure that the return value has necessary properties for
2373   // terminators...
2374   visitTerminatorInst(RI);
2375 }
2376 
visitSwitchInst(SwitchInst & SI)2377 void Verifier::visitSwitchInst(SwitchInst &SI) {
2378   // Check to make sure that all of the constants in the switch instruction
2379   // have the same type as the switched-on value.
2380   Type *SwitchTy = SI.getCondition()->getType();
2381   SmallPtrSet<ConstantInt*, 32> Constants;
2382   for (auto &Case : SI.cases()) {
2383     Assert(Case.getCaseValue()->getType() == SwitchTy,
2384            "Switch constants must all be same type as switch value!", &SI);
2385     Assert(Constants.insert(Case.getCaseValue()).second,
2386            "Duplicate integer as switch case", &SI, Case.getCaseValue());
2387   }
2388 
2389   visitTerminatorInst(SI);
2390 }
2391 
visitIndirectBrInst(IndirectBrInst & BI)2392 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2393   Assert(BI.getAddress()->getType()->isPointerTy(),
2394          "Indirectbr operand must have pointer type!", &BI);
2395   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2396     Assert(BI.getDestination(i)->getType()->isLabelTy(),
2397            "Indirectbr destinations must all have pointer type!", &BI);
2398 
2399   visitTerminatorInst(BI);
2400 }
2401 
visitSelectInst(SelectInst & SI)2402 void Verifier::visitSelectInst(SelectInst &SI) {
2403   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2404                                          SI.getOperand(2)),
2405          "Invalid operands for select instruction!", &SI);
2406 
2407   Assert(SI.getTrueValue()->getType() == SI.getType(),
2408          "Select values must have same type as select instruction!", &SI);
2409   visitInstruction(SI);
2410 }
2411 
2412 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2413 /// a pass, if any exist, it's an error.
2414 ///
visitUserOp1(Instruction & I)2415 void Verifier::visitUserOp1(Instruction &I) {
2416   Assert(false, "User-defined operators should not live outside of a pass!", &I);
2417 }
2418 
visitTruncInst(TruncInst & I)2419 void Verifier::visitTruncInst(TruncInst &I) {
2420   // Get the source and destination types
2421   Type *SrcTy = I.getOperand(0)->getType();
2422   Type *DestTy = I.getType();
2423 
2424   // Get the size of the types in bits, we'll need this later
2425   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2426   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2427 
2428   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2429   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2430   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2431          "trunc source and destination must both be a vector or neither", &I);
2432   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2433 
2434   visitInstruction(I);
2435 }
2436 
visitZExtInst(ZExtInst & I)2437 void Verifier::visitZExtInst(ZExtInst &I) {
2438   // Get the source and destination types
2439   Type *SrcTy = I.getOperand(0)->getType();
2440   Type *DestTy = I.getType();
2441 
2442   // Get the size of the types in bits, we'll need this later
2443   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2444   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2445   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2446          "zext source and destination must both be a vector or neither", &I);
2447   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2448   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2449 
2450   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2451 
2452   visitInstruction(I);
2453 }
2454 
visitSExtInst(SExtInst & I)2455 void Verifier::visitSExtInst(SExtInst &I) {
2456   // Get the source and destination types
2457   Type *SrcTy = I.getOperand(0)->getType();
2458   Type *DestTy = I.getType();
2459 
2460   // Get the size of the types in bits, we'll need this later
2461   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2462   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2463 
2464   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2465   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2466   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2467          "sext source and destination must both be a vector or neither", &I);
2468   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2469 
2470   visitInstruction(I);
2471 }
2472 
visitFPTruncInst(FPTruncInst & I)2473 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2474   // Get the source and destination types
2475   Type *SrcTy = I.getOperand(0)->getType();
2476   Type *DestTy = I.getType();
2477   // Get the size of the types in bits, we'll need this later
2478   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2479   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2480 
2481   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2482   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2483   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2484          "fptrunc source and destination must both be a vector or neither", &I);
2485   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2486 
2487   visitInstruction(I);
2488 }
2489 
visitFPExtInst(FPExtInst & I)2490 void Verifier::visitFPExtInst(FPExtInst &I) {
2491   // Get the source and destination types
2492   Type *SrcTy = I.getOperand(0)->getType();
2493   Type *DestTy = I.getType();
2494 
2495   // Get the size of the types in bits, we'll need this later
2496   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2497   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2498 
2499   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2500   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2501   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2502          "fpext source and destination must both be a vector or neither", &I);
2503   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2504 
2505   visitInstruction(I);
2506 }
2507 
visitUIToFPInst(UIToFPInst & I)2508 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2509   // Get the source and destination types
2510   Type *SrcTy = I.getOperand(0)->getType();
2511   Type *DestTy = I.getType();
2512 
2513   bool SrcVec = SrcTy->isVectorTy();
2514   bool DstVec = DestTy->isVectorTy();
2515 
2516   Assert(SrcVec == DstVec,
2517          "UIToFP source and dest must both be vector or scalar", &I);
2518   Assert(SrcTy->isIntOrIntVectorTy(),
2519          "UIToFP source must be integer or integer vector", &I);
2520   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2521          &I);
2522 
2523   if (SrcVec && DstVec)
2524     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2525                cast<VectorType>(DestTy)->getNumElements(),
2526            "UIToFP source and dest vector length mismatch", &I);
2527 
2528   visitInstruction(I);
2529 }
2530 
visitSIToFPInst(SIToFPInst & I)2531 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2532   // Get the source and destination types
2533   Type *SrcTy = I.getOperand(0)->getType();
2534   Type *DestTy = I.getType();
2535 
2536   bool SrcVec = SrcTy->isVectorTy();
2537   bool DstVec = DestTy->isVectorTy();
2538 
2539   Assert(SrcVec == DstVec,
2540          "SIToFP source and dest must both be vector or scalar", &I);
2541   Assert(SrcTy->isIntOrIntVectorTy(),
2542          "SIToFP source must be integer or integer vector", &I);
2543   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2544          &I);
2545 
2546   if (SrcVec && DstVec)
2547     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2548                cast<VectorType>(DestTy)->getNumElements(),
2549            "SIToFP source and dest vector length mismatch", &I);
2550 
2551   visitInstruction(I);
2552 }
2553 
visitFPToUIInst(FPToUIInst & I)2554 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2555   // Get the source and destination types
2556   Type *SrcTy = I.getOperand(0)->getType();
2557   Type *DestTy = I.getType();
2558 
2559   bool SrcVec = SrcTy->isVectorTy();
2560   bool DstVec = DestTy->isVectorTy();
2561 
2562   Assert(SrcVec == DstVec,
2563          "FPToUI source and dest must both be vector or scalar", &I);
2564   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2565          &I);
2566   Assert(DestTy->isIntOrIntVectorTy(),
2567          "FPToUI result must be integer or integer vector", &I);
2568 
2569   if (SrcVec && DstVec)
2570     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2571                cast<VectorType>(DestTy)->getNumElements(),
2572            "FPToUI source and dest vector length mismatch", &I);
2573 
2574   visitInstruction(I);
2575 }
2576 
visitFPToSIInst(FPToSIInst & I)2577 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2578   // Get the source and destination types
2579   Type *SrcTy = I.getOperand(0)->getType();
2580   Type *DestTy = I.getType();
2581 
2582   bool SrcVec = SrcTy->isVectorTy();
2583   bool DstVec = DestTy->isVectorTy();
2584 
2585   Assert(SrcVec == DstVec,
2586          "FPToSI source and dest must both be vector or scalar", &I);
2587   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2588          &I);
2589   Assert(DestTy->isIntOrIntVectorTy(),
2590          "FPToSI result must be integer or integer vector", &I);
2591 
2592   if (SrcVec && DstVec)
2593     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2594                cast<VectorType>(DestTy)->getNumElements(),
2595            "FPToSI source and dest vector length mismatch", &I);
2596 
2597   visitInstruction(I);
2598 }
2599 
visitPtrToIntInst(PtrToIntInst & I)2600 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2601   // Get the source and destination types
2602   Type *SrcTy = I.getOperand(0)->getType();
2603   Type *DestTy = I.getType();
2604 
2605   Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2606 
2607   if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2608     Assert(!DL.isNonIntegralPointerType(PTy),
2609            "ptrtoint not supported for non-integral pointers");
2610 
2611   Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2612   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2613          &I);
2614 
2615   if (SrcTy->isVectorTy()) {
2616     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2617     VectorType *VDest = dyn_cast<VectorType>(DestTy);
2618     Assert(VSrc->getNumElements() == VDest->getNumElements(),
2619            "PtrToInt Vector width mismatch", &I);
2620   }
2621 
2622   visitInstruction(I);
2623 }
2624 
visitIntToPtrInst(IntToPtrInst & I)2625 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2626   // Get the source and destination types
2627   Type *SrcTy = I.getOperand(0)->getType();
2628   Type *DestTy = I.getType();
2629 
2630   Assert(SrcTy->isIntOrIntVectorTy(),
2631          "IntToPtr source must be an integral", &I);
2632   Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2633 
2634   if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2635     Assert(!DL.isNonIntegralPointerType(PTy),
2636            "inttoptr not supported for non-integral pointers");
2637 
2638   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2639          &I);
2640   if (SrcTy->isVectorTy()) {
2641     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2642     VectorType *VDest = dyn_cast<VectorType>(DestTy);
2643     Assert(VSrc->getNumElements() == VDest->getNumElements(),
2644            "IntToPtr Vector width mismatch", &I);
2645   }
2646   visitInstruction(I);
2647 }
2648 
visitBitCastInst(BitCastInst & I)2649 void Verifier::visitBitCastInst(BitCastInst &I) {
2650   Assert(
2651       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2652       "Invalid bitcast", &I);
2653   visitInstruction(I);
2654 }
2655 
visitAddrSpaceCastInst(AddrSpaceCastInst & I)2656 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2657   Type *SrcTy = I.getOperand(0)->getType();
2658   Type *DestTy = I.getType();
2659 
2660   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2661          &I);
2662   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2663          &I);
2664   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2665          "AddrSpaceCast must be between different address spaces", &I);
2666   if (SrcTy->isVectorTy())
2667     Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2668            "AddrSpaceCast vector pointer number of elements mismatch", &I);
2669   visitInstruction(I);
2670 }
2671 
2672 /// visitPHINode - Ensure that a PHI node is well formed.
2673 ///
visitPHINode(PHINode & PN)2674 void Verifier::visitPHINode(PHINode &PN) {
2675   // Ensure that the PHI nodes are all grouped together at the top of the block.
2676   // This can be tested by checking whether the instruction before this is
2677   // either nonexistent (because this is begin()) or is a PHI node.  If not,
2678   // then there is some other instruction before a PHI.
2679   Assert(&PN == &PN.getParent()->front() ||
2680              isa<PHINode>(--BasicBlock::iterator(&PN)),
2681          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2682 
2683   // Check that a PHI doesn't yield a Token.
2684   Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2685 
2686   // Check that all of the values of the PHI node have the same type as the
2687   // result, and that the incoming blocks are really basic blocks.
2688   for (Value *IncValue : PN.incoming_values()) {
2689     Assert(PN.getType() == IncValue->getType(),
2690            "PHI node operands are not the same type as the result!", &PN);
2691   }
2692 
2693   // All other PHI node constraints are checked in the visitBasicBlock method.
2694 
2695   visitInstruction(PN);
2696 }
2697 
verifyCallSite(CallSite CS)2698 void Verifier::verifyCallSite(CallSite CS) {
2699   Instruction *I = CS.getInstruction();
2700 
2701   Assert(CS.getCalledValue()->getType()->isPointerTy(),
2702          "Called function must be a pointer!", I);
2703   PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2704 
2705   Assert(FPTy->getElementType()->isFunctionTy(),
2706          "Called function is not pointer to function type!", I);
2707 
2708   Assert(FPTy->getElementType() == CS.getFunctionType(),
2709          "Called function is not the same type as the call!", I);
2710 
2711   FunctionType *FTy = CS.getFunctionType();
2712 
2713   // Verify that the correct number of arguments are being passed
2714   if (FTy->isVarArg())
2715     Assert(CS.arg_size() >= FTy->getNumParams(),
2716            "Called function requires more parameters than were provided!", I);
2717   else
2718     Assert(CS.arg_size() == FTy->getNumParams(),
2719            "Incorrect number of arguments passed to called function!", I);
2720 
2721   // Verify that all arguments to the call match the function type.
2722   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2723     Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
2724            "Call parameter type does not match function signature!",
2725            CS.getArgument(i), FTy->getParamType(i), I);
2726 
2727   AttributeList Attrs = CS.getAttributes();
2728 
2729   Assert(verifyAttributeCount(Attrs, CS.arg_size()),
2730          "Attribute after last parameter!", I);
2731 
2732   if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2733     // Don't allow speculatable on call sites, unless the underlying function
2734     // declaration is also speculatable.
2735     Function *Callee
2736       = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
2737     Assert(Callee && Callee->isSpeculatable(),
2738            "speculatable attribute may not apply to call sites", I);
2739   }
2740 
2741   // Verify call attributes.
2742   verifyFunctionAttrs(FTy, Attrs, I);
2743 
2744   // Conservatively check the inalloca argument.
2745   // We have a bug if we can find that there is an underlying alloca without
2746   // inalloca.
2747   if (CS.hasInAllocaArgument()) {
2748     Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2749     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2750       Assert(AI->isUsedWithInAlloca(),
2751              "inalloca argument for call has mismatched alloca", AI, I);
2752   }
2753 
2754   // For each argument of the callsite, if it has the swifterror argument,
2755   // make sure the underlying alloca/parameter it comes from has a swifterror as
2756   // well.
2757   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2758     if (CS.paramHasAttr(i, Attribute::SwiftError)) {
2759       Value *SwiftErrorArg = CS.getArgument(i);
2760       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2761         Assert(AI->isSwiftError(),
2762                "swifterror argument for call has mismatched alloca", AI, I);
2763         continue;
2764       }
2765       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2766       Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I);
2767       Assert(ArgI->hasSwiftErrorAttr(),
2768              "swifterror argument for call has mismatched parameter", ArgI, I);
2769     }
2770 
2771   if (FTy->isVarArg()) {
2772     // FIXME? is 'nest' even legal here?
2773     bool SawNest = false;
2774     bool SawReturned = false;
2775 
2776     for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2777       if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2778         SawNest = true;
2779       if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2780         SawReturned = true;
2781     }
2782 
2783     // Check attributes on the varargs part.
2784     for (unsigned Idx = FTy->getNumParams(); Idx < CS.arg_size(); ++Idx) {
2785       Type *Ty = CS.getArgument(Idx)->getType();
2786       AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2787       verifyParameterAttrs(ArgAttrs, Ty, I);
2788 
2789       if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2790         Assert(!SawNest, "More than one parameter has attribute nest!", I);
2791         SawNest = true;
2792       }
2793 
2794       if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2795         Assert(!SawReturned, "More than one parameter has attribute returned!",
2796                I);
2797         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2798                "Incompatible argument and return types for 'returned' "
2799                "attribute",
2800                I);
2801         SawReturned = true;
2802       }
2803 
2804       Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2805              "Attribute 'sret' cannot be used for vararg call arguments!", I);
2806 
2807       if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2808         Assert(Idx == CS.arg_size() - 1, "inalloca isn't on the last argument!",
2809                I);
2810     }
2811   }
2812 
2813   // Verify that there's no metadata unless it's a direct call to an intrinsic.
2814   if (CS.getCalledFunction() == nullptr ||
2815       !CS.getCalledFunction()->getName().startswith("llvm.")) {
2816     for (Type *ParamTy : FTy->params()) {
2817       Assert(!ParamTy->isMetadataTy(),
2818              "Function has metadata parameter but isn't an intrinsic", I);
2819       Assert(!ParamTy->isTokenTy(),
2820              "Function has token parameter but isn't an intrinsic", I);
2821     }
2822   }
2823 
2824   // Verify that indirect calls don't return tokens.
2825   if (CS.getCalledFunction() == nullptr)
2826     Assert(!FTy->getReturnType()->isTokenTy(),
2827            "Return type cannot be token for indirect call!");
2828 
2829   if (Function *F = CS.getCalledFunction())
2830     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2831       visitIntrinsicCallSite(ID, CS);
2832 
2833   // Verify that a callsite has at most one "deopt", at most one "funclet" and
2834   // at most one "gc-transition" operand bundle.
2835   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2836        FoundGCTransitionBundle = false;
2837   for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2838     OperandBundleUse BU = CS.getOperandBundleAt(i);
2839     uint32_t Tag = BU.getTagID();
2840     if (Tag == LLVMContext::OB_deopt) {
2841       Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I);
2842       FoundDeoptBundle = true;
2843     } else if (Tag == LLVMContext::OB_gc_transition) {
2844       Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
2845              I);
2846       FoundGCTransitionBundle = true;
2847     } else if (Tag == LLVMContext::OB_funclet) {
2848       Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I);
2849       FoundFuncletBundle = true;
2850       Assert(BU.Inputs.size() == 1,
2851              "Expected exactly one funclet bundle operand", I);
2852       Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2853              "Funclet bundle operands should correspond to a FuncletPadInst",
2854              I);
2855     }
2856   }
2857 
2858   // Verify that each inlinable callsite of a debug-info-bearing function in a
2859   // debug-info-bearing function has a debug location attached to it. Failure to
2860   // do so causes assertion failures when the inliner sets up inline scope info.
2861   if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
2862       CS.getCalledFunction()->getSubprogram())
2863     AssertDI(I->getDebugLoc(), "inlinable function call in a function with "
2864                                "debug info must have a !dbg location",
2865              I);
2866 
2867   visitInstruction(*I);
2868 }
2869 
2870 /// Two types are "congruent" if they are identical, or if they are both pointer
2871 /// types with different pointee types and the same address space.
isTypeCongruent(Type * L,Type * R)2872 static bool isTypeCongruent(Type *L, Type *R) {
2873   if (L == R)
2874     return true;
2875   PointerType *PL = dyn_cast<PointerType>(L);
2876   PointerType *PR = dyn_cast<PointerType>(R);
2877   if (!PL || !PR)
2878     return false;
2879   return PL->getAddressSpace() == PR->getAddressSpace();
2880 }
2881 
getParameterABIAttributes(int I,AttributeList Attrs)2882 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
2883   static const Attribute::AttrKind ABIAttrs[] = {
2884       Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2885       Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2886       Attribute::SwiftError};
2887   AttrBuilder Copy;
2888   for (auto AK : ABIAttrs) {
2889     if (Attrs.hasParamAttribute(I, AK))
2890       Copy.addAttribute(AK);
2891   }
2892   if (Attrs.hasParamAttribute(I, Attribute::Alignment))
2893     Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
2894   return Copy;
2895 }
2896 
verifyMustTailCall(CallInst & CI)2897 void Verifier::verifyMustTailCall(CallInst &CI) {
2898   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
2899 
2900   // - The caller and callee prototypes must match.  Pointer types of
2901   //   parameters or return types may differ in pointee type, but not
2902   //   address space.
2903   Function *F = CI.getParent()->getParent();
2904   FunctionType *CallerTy = F->getFunctionType();
2905   FunctionType *CalleeTy = CI.getFunctionType();
2906   if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
2907     Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
2908            "cannot guarantee tail call due to mismatched parameter counts",
2909            &CI);
2910     for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2911       Assert(
2912           isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
2913           "cannot guarantee tail call due to mismatched parameter types", &CI);
2914     }
2915   }
2916   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
2917          "cannot guarantee tail call due to mismatched varargs", &CI);
2918   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
2919          "cannot guarantee tail call due to mismatched return types", &CI);
2920 
2921   // - The calling conventions of the caller and callee must match.
2922   Assert(F->getCallingConv() == CI.getCallingConv(),
2923          "cannot guarantee tail call due to mismatched calling conv", &CI);
2924 
2925   // - All ABI-impacting function attributes, such as sret, byval, inreg,
2926   //   returned, and inalloca, must match.
2927   AttributeList CallerAttrs = F->getAttributes();
2928   AttributeList CalleeAttrs = CI.getAttributes();
2929   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2930     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2931     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2932     Assert(CallerABIAttrs == CalleeABIAttrs,
2933            "cannot guarantee tail call due to mismatched ABI impacting "
2934            "function attributes",
2935            &CI, CI.getOperand(I));
2936   }
2937 
2938   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2939   //   or a pointer bitcast followed by a ret instruction.
2940   // - The ret instruction must return the (possibly bitcasted) value
2941   //   produced by the call or void.
2942   Value *RetVal = &CI;
2943   Instruction *Next = CI.getNextNode();
2944 
2945   // Handle the optional bitcast.
2946   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2947     Assert(BI->getOperand(0) == RetVal,
2948            "bitcast following musttail call must use the call", BI);
2949     RetVal = BI;
2950     Next = BI->getNextNode();
2951   }
2952 
2953   // Check the return.
2954   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2955   Assert(Ret, "musttail call must precede a ret with an optional bitcast",
2956          &CI);
2957   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
2958          "musttail call result must be returned", Ret);
2959 }
2960 
visitCallInst(CallInst & CI)2961 void Verifier::visitCallInst(CallInst &CI) {
2962   verifyCallSite(&CI);
2963 
2964   if (CI.isMustTailCall())
2965     verifyMustTailCall(CI);
2966 }
2967 
visitInvokeInst(InvokeInst & II)2968 void Verifier::visitInvokeInst(InvokeInst &II) {
2969   verifyCallSite(&II);
2970 
2971   // Verify that the first non-PHI instruction of the unwind destination is an
2972   // exception handling instruction.
2973   Assert(
2974       II.getUnwindDest()->isEHPad(),
2975       "The unwind destination does not have an exception handling instruction!",
2976       &II);
2977 
2978   visitTerminatorInst(II);
2979 }
2980 
2981 /// visitBinaryOperator - Check that both arguments to the binary operator are
2982 /// of the same type!
2983 ///
visitBinaryOperator(BinaryOperator & B)2984 void Verifier::visitBinaryOperator(BinaryOperator &B) {
2985   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
2986          "Both operands to a binary operator are not of the same type!", &B);
2987 
2988   switch (B.getOpcode()) {
2989   // Check that integer arithmetic operators are only used with
2990   // integral operands.
2991   case Instruction::Add:
2992   case Instruction::Sub:
2993   case Instruction::Mul:
2994   case Instruction::SDiv:
2995   case Instruction::UDiv:
2996   case Instruction::SRem:
2997   case Instruction::URem:
2998     Assert(B.getType()->isIntOrIntVectorTy(),
2999            "Integer arithmetic operators only work with integral types!", &B);
3000     Assert(B.getType() == B.getOperand(0)->getType(),
3001            "Integer arithmetic operators must have same type "
3002            "for operands and result!",
3003            &B);
3004     break;
3005   // Check that floating-point arithmetic operators are only used with
3006   // floating-point operands.
3007   case Instruction::FAdd:
3008   case Instruction::FSub:
3009   case Instruction::FMul:
3010   case Instruction::FDiv:
3011   case Instruction::FRem:
3012     Assert(B.getType()->isFPOrFPVectorTy(),
3013            "Floating-point arithmetic operators only work with "
3014            "floating-point types!",
3015            &B);
3016     Assert(B.getType() == B.getOperand(0)->getType(),
3017            "Floating-point arithmetic operators must have same type "
3018            "for operands and result!",
3019            &B);
3020     break;
3021   // Check that logical operators are only used with integral operands.
3022   case Instruction::And:
3023   case Instruction::Or:
3024   case Instruction::Xor:
3025     Assert(B.getType()->isIntOrIntVectorTy(),
3026            "Logical operators only work with integral types!", &B);
3027     Assert(B.getType() == B.getOperand(0)->getType(),
3028            "Logical operators must have same type for operands and result!",
3029            &B);
3030     break;
3031   case Instruction::Shl:
3032   case Instruction::LShr:
3033   case Instruction::AShr:
3034     Assert(B.getType()->isIntOrIntVectorTy(),
3035            "Shifts only work with integral types!", &B);
3036     Assert(B.getType() == B.getOperand(0)->getType(),
3037            "Shift return type must be same as operands!", &B);
3038     break;
3039   default:
3040     llvm_unreachable("Unknown BinaryOperator opcode!");
3041   }
3042 
3043   visitInstruction(B);
3044 }
3045 
visitICmpInst(ICmpInst & IC)3046 void Verifier::visitICmpInst(ICmpInst &IC) {
3047   // Check that the operands are the same type
3048   Type *Op0Ty = IC.getOperand(0)->getType();
3049   Type *Op1Ty = IC.getOperand(1)->getType();
3050   Assert(Op0Ty == Op1Ty,
3051          "Both operands to ICmp instruction are not of the same type!", &IC);
3052   // Check that the operands are the right type
3053   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3054          "Invalid operand types for ICmp instruction", &IC);
3055   // Check that the predicate is valid.
3056   Assert(IC.isIntPredicate(),
3057          "Invalid predicate in ICmp instruction!", &IC);
3058 
3059   visitInstruction(IC);
3060 }
3061 
visitFCmpInst(FCmpInst & FC)3062 void Verifier::visitFCmpInst(FCmpInst &FC) {
3063   // Check that the operands are the same type
3064   Type *Op0Ty = FC.getOperand(0)->getType();
3065   Type *Op1Ty = FC.getOperand(1)->getType();
3066   Assert(Op0Ty == Op1Ty,
3067          "Both operands to FCmp instruction are not of the same type!", &FC);
3068   // Check that the operands are the right type
3069   Assert(Op0Ty->isFPOrFPVectorTy(),
3070          "Invalid operand types for FCmp instruction", &FC);
3071   // Check that the predicate is valid.
3072   Assert(FC.isFPPredicate(),
3073          "Invalid predicate in FCmp instruction!", &FC);
3074 
3075   visitInstruction(FC);
3076 }
3077 
visitExtractElementInst(ExtractElementInst & EI)3078 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3079   Assert(
3080       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3081       "Invalid extractelement operands!", &EI);
3082   visitInstruction(EI);
3083 }
3084 
visitInsertElementInst(InsertElementInst & IE)3085 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3086   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3087                                             IE.getOperand(2)),
3088          "Invalid insertelement operands!", &IE);
3089   visitInstruction(IE);
3090 }
3091 
visitShuffleVectorInst(ShuffleVectorInst & SV)3092 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3093   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3094                                             SV.getOperand(2)),
3095          "Invalid shufflevector operands!", &SV);
3096   visitInstruction(SV);
3097 }
3098 
visitGetElementPtrInst(GetElementPtrInst & GEP)3099 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3100   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3101 
3102   Assert(isa<PointerType>(TargetTy),
3103          "GEP base pointer is not a vector or a vector of pointers", &GEP);
3104   Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3105 
3106   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3107   Assert(all_of(
3108       Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3109       "GEP indexes must be integers", &GEP);
3110   Type *ElTy =
3111       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3112   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3113 
3114   Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3115              GEP.getResultElementType() == ElTy,
3116          "GEP is not of right type for indices!", &GEP, ElTy);
3117 
3118   if (GEP.getType()->isVectorTy()) {
3119     // Additional checks for vector GEPs.
3120     unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3121     if (GEP.getPointerOperandType()->isVectorTy())
3122       Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
3123              "Vector GEP result width doesn't match operand's", &GEP);
3124     for (Value *Idx : Idxs) {
3125       Type *IndexTy = Idx->getType();
3126       if (IndexTy->isVectorTy()) {
3127         unsigned IndexWidth = IndexTy->getVectorNumElements();
3128         Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3129       }
3130       Assert(IndexTy->isIntOrIntVectorTy(),
3131              "All GEP indices should be of integer type");
3132     }
3133   }
3134   visitInstruction(GEP);
3135 }
3136 
isContiguous(const ConstantRange & A,const ConstantRange & B)3137 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3138   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3139 }
3140 
visitRangeMetadata(Instruction & I,MDNode * Range,Type * Ty)3141 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3142   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3143          "precondition violation");
3144 
3145   unsigned NumOperands = Range->getNumOperands();
3146   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3147   unsigned NumRanges = NumOperands / 2;
3148   Assert(NumRanges >= 1, "It should have at least one range!", Range);
3149 
3150   ConstantRange LastRange(1); // Dummy initial value
3151   for (unsigned i = 0; i < NumRanges; ++i) {
3152     ConstantInt *Low =
3153         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3154     Assert(Low, "The lower limit must be an integer!", Low);
3155     ConstantInt *High =
3156         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3157     Assert(High, "The upper limit must be an integer!", High);
3158     Assert(High->getType() == Low->getType() && High->getType() == Ty,
3159            "Range types must match instruction type!", &I);
3160 
3161     APInt HighV = High->getValue();
3162     APInt LowV = Low->getValue();
3163     ConstantRange CurRange(LowV, HighV);
3164     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3165            "Range must not be empty!", Range);
3166     if (i != 0) {
3167       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3168              "Intervals are overlapping", Range);
3169       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3170              Range);
3171       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3172              Range);
3173     }
3174     LastRange = ConstantRange(LowV, HighV);
3175   }
3176   if (NumRanges > 2) {
3177     APInt FirstLow =
3178         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3179     APInt FirstHigh =
3180         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3181     ConstantRange FirstRange(FirstLow, FirstHigh);
3182     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3183            "Intervals are overlapping", Range);
3184     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3185            Range);
3186   }
3187 }
3188 
checkAtomicMemAccessSize(Type * Ty,const Instruction * I)3189 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3190   unsigned Size = DL.getTypeSizeInBits(Ty);
3191   Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3192   Assert(!(Size & (Size - 1)),
3193          "atomic memory access' operand must have a power-of-two size", Ty, I);
3194 }
3195 
visitLoadInst(LoadInst & LI)3196 void Verifier::visitLoadInst(LoadInst &LI) {
3197   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3198   Assert(PTy, "Load operand must be a pointer.", &LI);
3199   Type *ElTy = LI.getType();
3200   Assert(LI.getAlignment() <= Value::MaximumAlignment,
3201          "huge alignment values are unsupported", &LI);
3202   Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3203   if (LI.isAtomic()) {
3204     Assert(LI.getOrdering() != AtomicOrdering::Release &&
3205                LI.getOrdering() != AtomicOrdering::AcquireRelease,
3206            "Load cannot have Release ordering", &LI);
3207     Assert(LI.getAlignment() != 0,
3208            "Atomic load must specify explicit alignment", &LI);
3209     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3210            "atomic load operand must have integer, pointer, or floating point "
3211            "type!",
3212            ElTy, &LI);
3213     checkAtomicMemAccessSize(ElTy, &LI);
3214   } else {
3215     Assert(LI.getSyncScopeID() == SyncScope::System,
3216            "Non-atomic load cannot have SynchronizationScope specified", &LI);
3217   }
3218 
3219   visitInstruction(LI);
3220 }
3221 
visitStoreInst(StoreInst & SI)3222 void Verifier::visitStoreInst(StoreInst &SI) {
3223   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3224   Assert(PTy, "Store operand must be a pointer.", &SI);
3225   Type *ElTy = PTy->getElementType();
3226   Assert(ElTy == SI.getOperand(0)->getType(),
3227          "Stored value type does not match pointer operand type!", &SI, ElTy);
3228   Assert(SI.getAlignment() <= Value::MaximumAlignment,
3229          "huge alignment values are unsupported", &SI);
3230   Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3231   if (SI.isAtomic()) {
3232     Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3233                SI.getOrdering() != AtomicOrdering::AcquireRelease,
3234            "Store cannot have Acquire ordering", &SI);
3235     Assert(SI.getAlignment() != 0,
3236            "Atomic store must specify explicit alignment", &SI);
3237     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3238            "atomic store operand must have integer, pointer, or floating point "
3239            "type!",
3240            ElTy, &SI);
3241     checkAtomicMemAccessSize(ElTy, &SI);
3242   } else {
3243     Assert(SI.getSyncScopeID() == SyncScope::System,
3244            "Non-atomic store cannot have SynchronizationScope specified", &SI);
3245   }
3246   visitInstruction(SI);
3247 }
3248 
3249 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
verifySwiftErrorCallSite(CallSite CS,const Value * SwiftErrorVal)3250 void Verifier::verifySwiftErrorCallSite(CallSite CS,
3251                                         const Value *SwiftErrorVal) {
3252   unsigned Idx = 0;
3253   for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
3254        I != E; ++I, ++Idx) {
3255     if (*I == SwiftErrorVal) {
3256       Assert(CS.paramHasAttr(Idx, Attribute::SwiftError),
3257              "swifterror value when used in a callsite should be marked "
3258              "with swifterror attribute",
3259               SwiftErrorVal, CS);
3260     }
3261   }
3262 }
3263 
verifySwiftErrorValue(const Value * SwiftErrorVal)3264 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3265   // Check that swifterror value is only used by loads, stores, or as
3266   // a swifterror argument.
3267   for (const User *U : SwiftErrorVal->users()) {
3268     Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3269            isa<InvokeInst>(U),
3270            "swifterror value can only be loaded and stored from, or "
3271            "as a swifterror argument!",
3272            SwiftErrorVal, U);
3273     // If it is used by a store, check it is the second operand.
3274     if (auto StoreI = dyn_cast<StoreInst>(U))
3275       Assert(StoreI->getOperand(1) == SwiftErrorVal,
3276              "swifterror value should be the second operand when used "
3277              "by stores", SwiftErrorVal, U);
3278     if (auto CallI = dyn_cast<CallInst>(U))
3279       verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
3280     if (auto II = dyn_cast<InvokeInst>(U))
3281       verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
3282   }
3283 }
3284 
visitAllocaInst(AllocaInst & AI)3285 void Verifier::visitAllocaInst(AllocaInst &AI) {
3286   SmallPtrSet<Type*, 4> Visited;
3287   PointerType *PTy = AI.getType();
3288   // TODO: Relax this restriction?
3289   Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),
3290          "Allocation instruction pointer not in the stack address space!",
3291          &AI);
3292   Assert(AI.getAllocatedType()->isSized(&Visited),
3293          "Cannot allocate unsized type", &AI);
3294   Assert(AI.getArraySize()->getType()->isIntegerTy(),
3295          "Alloca array size must have integer type", &AI);
3296   Assert(AI.getAlignment() <= Value::MaximumAlignment,
3297          "huge alignment values are unsupported", &AI);
3298 
3299   if (AI.isSwiftError()) {
3300     verifySwiftErrorValue(&AI);
3301   }
3302 
3303   visitInstruction(AI);
3304 }
3305 
visitAtomicCmpXchgInst(AtomicCmpXchgInst & CXI)3306 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3307 
3308   // FIXME: more conditions???
3309   Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
3310          "cmpxchg instructions must be atomic.", &CXI);
3311   Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
3312          "cmpxchg instructions must be atomic.", &CXI);
3313   Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
3314          "cmpxchg instructions cannot be unordered.", &CXI);
3315   Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
3316          "cmpxchg instructions cannot be unordered.", &CXI);
3317   Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
3318          "cmpxchg instructions failure argument shall be no stronger than the "
3319          "success argument",
3320          &CXI);
3321   Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
3322              CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
3323          "cmpxchg failure ordering cannot include release semantics", &CXI);
3324 
3325   PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3326   Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3327   Type *ElTy = PTy->getElementType();
3328   Assert(ElTy->isIntOrPtrTy(),
3329          "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3330   checkAtomicMemAccessSize(ElTy, &CXI);
3331   Assert(ElTy == CXI.getOperand(1)->getType(),
3332          "Expected value type does not match pointer operand type!", &CXI,
3333          ElTy);
3334   Assert(ElTy == CXI.getOperand(2)->getType(),
3335          "Stored value type does not match pointer operand type!", &CXI, ElTy);
3336   visitInstruction(CXI);
3337 }
3338 
visitAtomicRMWInst(AtomicRMWInst & RMWI)3339 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3340   Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
3341          "atomicrmw instructions must be atomic.", &RMWI);
3342   Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3343          "atomicrmw instructions cannot be unordered.", &RMWI);
3344   PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3345   Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3346   Type *ElTy = PTy->getElementType();
3347   Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
3348          &RMWI, ElTy);
3349   checkAtomicMemAccessSize(ElTy, &RMWI);
3350   Assert(ElTy == RMWI.getOperand(1)->getType(),
3351          "Argument value type does not match pointer operand type!", &RMWI,
3352          ElTy);
3353   Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
3354              RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
3355          "Invalid binary operation!", &RMWI);
3356   visitInstruction(RMWI);
3357 }
3358 
visitFenceInst(FenceInst & FI)3359 void Verifier::visitFenceInst(FenceInst &FI) {
3360   const AtomicOrdering Ordering = FI.getOrdering();
3361   Assert(Ordering == AtomicOrdering::Acquire ||
3362              Ordering == AtomicOrdering::Release ||
3363              Ordering == AtomicOrdering::AcquireRelease ||
3364              Ordering == AtomicOrdering::SequentiallyConsistent,
3365          "fence instructions may only have acquire, release, acq_rel, or "
3366          "seq_cst ordering.",
3367          &FI);
3368   visitInstruction(FI);
3369 }
3370 
visitExtractValueInst(ExtractValueInst & EVI)3371 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3372   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3373                                           EVI.getIndices()) == EVI.getType(),
3374          "Invalid ExtractValueInst operands!", &EVI);
3375 
3376   visitInstruction(EVI);
3377 }
3378 
visitInsertValueInst(InsertValueInst & IVI)3379 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3380   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3381                                           IVI.getIndices()) ==
3382              IVI.getOperand(1)->getType(),
3383          "Invalid InsertValueInst operands!", &IVI);
3384 
3385   visitInstruction(IVI);
3386 }
3387 
getParentPad(Value * EHPad)3388 static Value *getParentPad(Value *EHPad) {
3389   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3390     return FPI->getParentPad();
3391 
3392   return cast<CatchSwitchInst>(EHPad)->getParentPad();
3393 }
3394 
visitEHPadPredecessors(Instruction & I)3395 void Verifier::visitEHPadPredecessors(Instruction &I) {
3396   assert(I.isEHPad());
3397 
3398   BasicBlock *BB = I.getParent();
3399   Function *F = BB->getParent();
3400 
3401   Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3402 
3403   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3404     // The landingpad instruction defines its parent as a landing pad block. The
3405     // landing pad block may be branched to only by the unwind edge of an
3406     // invoke.
3407     for (BasicBlock *PredBB : predecessors(BB)) {
3408       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3409       Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3410              "Block containing LandingPadInst must be jumped to "
3411              "only by the unwind edge of an invoke.",
3412              LPI);
3413     }
3414     return;
3415   }
3416   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3417     if (!pred_empty(BB))
3418       Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3419              "Block containg CatchPadInst must be jumped to "
3420              "only by its catchswitch.",
3421              CPI);
3422     Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3423            "Catchswitch cannot unwind to one of its catchpads",
3424            CPI->getCatchSwitch(), CPI);
3425     return;
3426   }
3427 
3428   // Verify that each pred has a legal terminator with a legal to/from EH
3429   // pad relationship.
3430   Instruction *ToPad = &I;
3431   Value *ToPadParent = getParentPad(ToPad);
3432   for (BasicBlock *PredBB : predecessors(BB)) {
3433     TerminatorInst *TI = PredBB->getTerminator();
3434     Value *FromPad;
3435     if (auto *II = dyn_cast<InvokeInst>(TI)) {
3436       Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3437              "EH pad must be jumped to via an unwind edge", ToPad, II);
3438       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3439         FromPad = Bundle->Inputs[0];
3440       else
3441         FromPad = ConstantTokenNone::get(II->getContext());
3442     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3443       FromPad = CRI->getOperand(0);
3444       Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3445     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3446       FromPad = CSI;
3447     } else {
3448       Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3449     }
3450 
3451     // The edge may exit from zero or more nested pads.
3452     SmallSet<Value *, 8> Seen;
3453     for (;; FromPad = getParentPad(FromPad)) {
3454       Assert(FromPad != ToPad,
3455              "EH pad cannot handle exceptions raised within it", FromPad, TI);
3456       if (FromPad == ToPadParent) {
3457         // This is a legal unwind edge.
3458         break;
3459       }
3460       Assert(!isa<ConstantTokenNone>(FromPad),
3461              "A single unwind edge may only enter one EH pad", TI);
3462       Assert(Seen.insert(FromPad).second,
3463              "EH pad jumps through a cycle of pads", FromPad);
3464     }
3465   }
3466 }
3467 
visitLandingPadInst(LandingPadInst & LPI)3468 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3469   // The landingpad instruction is ill-formed if it doesn't have any clauses and
3470   // isn't a cleanup.
3471   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3472          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3473 
3474   visitEHPadPredecessors(LPI);
3475 
3476   if (!LandingPadResultTy)
3477     LandingPadResultTy = LPI.getType();
3478   else
3479     Assert(LandingPadResultTy == LPI.getType(),
3480            "The landingpad instruction should have a consistent result type "
3481            "inside a function.",
3482            &LPI);
3483 
3484   Function *F = LPI.getParent()->getParent();
3485   Assert(F->hasPersonalityFn(),
3486          "LandingPadInst needs to be in a function with a personality.", &LPI);
3487 
3488   // The landingpad instruction must be the first non-PHI instruction in the
3489   // block.
3490   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3491          "LandingPadInst not the first non-PHI instruction in the block.",
3492          &LPI);
3493 
3494   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3495     Constant *Clause = LPI.getClause(i);
3496     if (LPI.isCatch(i)) {
3497       Assert(isa<PointerType>(Clause->getType()),
3498              "Catch operand does not have pointer type!", &LPI);
3499     } else {
3500       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3501       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3502              "Filter operand is not an array of constants!", &LPI);
3503     }
3504   }
3505 
3506   visitInstruction(LPI);
3507 }
3508 
visitResumeInst(ResumeInst & RI)3509 void Verifier::visitResumeInst(ResumeInst &RI) {
3510   Assert(RI.getFunction()->hasPersonalityFn(),
3511          "ResumeInst needs to be in a function with a personality.", &RI);
3512 
3513   if (!LandingPadResultTy)
3514     LandingPadResultTy = RI.getValue()->getType();
3515   else
3516     Assert(LandingPadResultTy == RI.getValue()->getType(),
3517            "The resume instruction should have a consistent result type "
3518            "inside a function.",
3519            &RI);
3520 
3521   visitTerminatorInst(RI);
3522 }
3523 
visitCatchPadInst(CatchPadInst & CPI)3524 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3525   BasicBlock *BB = CPI.getParent();
3526 
3527   Function *F = BB->getParent();
3528   Assert(F->hasPersonalityFn(),
3529          "CatchPadInst needs to be in a function with a personality.", &CPI);
3530 
3531   Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3532          "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3533          CPI.getParentPad());
3534 
3535   // The catchpad instruction must be the first non-PHI instruction in the
3536   // block.
3537   Assert(BB->getFirstNonPHI() == &CPI,
3538          "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3539 
3540   visitEHPadPredecessors(CPI);
3541   visitFuncletPadInst(CPI);
3542 }
3543 
visitCatchReturnInst(CatchReturnInst & CatchReturn)3544 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3545   Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3546          "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3547          CatchReturn.getOperand(0));
3548 
3549   visitTerminatorInst(CatchReturn);
3550 }
3551 
visitCleanupPadInst(CleanupPadInst & CPI)3552 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3553   BasicBlock *BB = CPI.getParent();
3554 
3555   Function *F = BB->getParent();
3556   Assert(F->hasPersonalityFn(),
3557          "CleanupPadInst needs to be in a function with a personality.", &CPI);
3558 
3559   // The cleanuppad instruction must be the first non-PHI instruction in the
3560   // block.
3561   Assert(BB->getFirstNonPHI() == &CPI,
3562          "CleanupPadInst not the first non-PHI instruction in the block.",
3563          &CPI);
3564 
3565   auto *ParentPad = CPI.getParentPad();
3566   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3567          "CleanupPadInst has an invalid parent.", &CPI);
3568 
3569   visitEHPadPredecessors(CPI);
3570   visitFuncletPadInst(CPI);
3571 }
3572 
visitFuncletPadInst(FuncletPadInst & FPI)3573 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3574   User *FirstUser = nullptr;
3575   Value *FirstUnwindPad = nullptr;
3576   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3577   SmallSet<FuncletPadInst *, 8> Seen;
3578 
3579   while (!Worklist.empty()) {
3580     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3581     Assert(Seen.insert(CurrentPad).second,
3582            "FuncletPadInst must not be nested within itself", CurrentPad);
3583     Value *UnresolvedAncestorPad = nullptr;
3584     for (User *U : CurrentPad->users()) {
3585       BasicBlock *UnwindDest;
3586       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3587         UnwindDest = CRI->getUnwindDest();
3588       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3589         // We allow catchswitch unwind to caller to nest
3590         // within an outer pad that unwinds somewhere else,
3591         // because catchswitch doesn't have a nounwind variant.
3592         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3593         if (CSI->unwindsToCaller())
3594           continue;
3595         UnwindDest = CSI->getUnwindDest();
3596       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3597         UnwindDest = II->getUnwindDest();
3598       } else if (isa<CallInst>(U)) {
3599         // Calls which don't unwind may be found inside funclet
3600         // pads that unwind somewhere else.  We don't *require*
3601         // such calls to be annotated nounwind.
3602         continue;
3603       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3604         // The unwind dest for a cleanup can only be found by
3605         // recursive search.  Add it to the worklist, and we'll
3606         // search for its first use that determines where it unwinds.
3607         Worklist.push_back(CPI);
3608         continue;
3609       } else {
3610         Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3611         continue;
3612       }
3613 
3614       Value *UnwindPad;
3615       bool ExitsFPI;
3616       if (UnwindDest) {
3617         UnwindPad = UnwindDest->getFirstNonPHI();
3618         if (!cast<Instruction>(UnwindPad)->isEHPad())
3619           continue;
3620         Value *UnwindParent = getParentPad(UnwindPad);
3621         // Ignore unwind edges that don't exit CurrentPad.
3622         if (UnwindParent == CurrentPad)
3623           continue;
3624         // Determine whether the original funclet pad is exited,
3625         // and if we are scanning nested pads determine how many
3626         // of them are exited so we can stop searching their
3627         // children.
3628         Value *ExitedPad = CurrentPad;
3629         ExitsFPI = false;
3630         do {
3631           if (ExitedPad == &FPI) {
3632             ExitsFPI = true;
3633             // Now we can resolve any ancestors of CurrentPad up to
3634             // FPI, but not including FPI since we need to make sure
3635             // to check all direct users of FPI for consistency.
3636             UnresolvedAncestorPad = &FPI;
3637             break;
3638           }
3639           Value *ExitedParent = getParentPad(ExitedPad);
3640           if (ExitedParent == UnwindParent) {
3641             // ExitedPad is the ancestor-most pad which this unwind
3642             // edge exits, so we can resolve up to it, meaning that
3643             // ExitedParent is the first ancestor still unresolved.
3644             UnresolvedAncestorPad = ExitedParent;
3645             break;
3646           }
3647           ExitedPad = ExitedParent;
3648         } while (!isa<ConstantTokenNone>(ExitedPad));
3649       } else {
3650         // Unwinding to caller exits all pads.
3651         UnwindPad = ConstantTokenNone::get(FPI.getContext());
3652         ExitsFPI = true;
3653         UnresolvedAncestorPad = &FPI;
3654       }
3655 
3656       if (ExitsFPI) {
3657         // This unwind edge exits FPI.  Make sure it agrees with other
3658         // such edges.
3659         if (FirstUser) {
3660           Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3661                                               "pad must have the same unwind "
3662                                               "dest",
3663                  &FPI, U, FirstUser);
3664         } else {
3665           FirstUser = U;
3666           FirstUnwindPad = UnwindPad;
3667           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3668           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3669               getParentPad(UnwindPad) == getParentPad(&FPI))
3670             SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3671         }
3672       }
3673       // Make sure we visit all uses of FPI, but for nested pads stop as
3674       // soon as we know where they unwind to.
3675       if (CurrentPad != &FPI)
3676         break;
3677     }
3678     if (UnresolvedAncestorPad) {
3679       if (CurrentPad == UnresolvedAncestorPad) {
3680         // When CurrentPad is FPI itself, we don't mark it as resolved even if
3681         // we've found an unwind edge that exits it, because we need to verify
3682         // all direct uses of FPI.
3683         assert(CurrentPad == &FPI);
3684         continue;
3685       }
3686       // Pop off the worklist any nested pads that we've found an unwind
3687       // destination for.  The pads on the worklist are the uncles,
3688       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
3689       // for all ancestors of CurrentPad up to but not including
3690       // UnresolvedAncestorPad.
3691       Value *ResolvedPad = CurrentPad;
3692       while (!Worklist.empty()) {
3693         Value *UnclePad = Worklist.back();
3694         Value *AncestorPad = getParentPad(UnclePad);
3695         // Walk ResolvedPad up the ancestor list until we either find the
3696         // uncle's parent or the last resolved ancestor.
3697         while (ResolvedPad != AncestorPad) {
3698           Value *ResolvedParent = getParentPad(ResolvedPad);
3699           if (ResolvedParent == UnresolvedAncestorPad) {
3700             break;
3701           }
3702           ResolvedPad = ResolvedParent;
3703         }
3704         // If the resolved ancestor search didn't find the uncle's parent,
3705         // then the uncle is not yet resolved.
3706         if (ResolvedPad != AncestorPad)
3707           break;
3708         // This uncle is resolved, so pop it from the worklist.
3709         Worklist.pop_back();
3710       }
3711     }
3712   }
3713 
3714   if (FirstUnwindPad) {
3715     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3716       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3717       Value *SwitchUnwindPad;
3718       if (SwitchUnwindDest)
3719         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3720       else
3721         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3722       Assert(SwitchUnwindPad == FirstUnwindPad,
3723              "Unwind edges out of a catch must have the same unwind dest as "
3724              "the parent catchswitch",
3725              &FPI, FirstUser, CatchSwitch);
3726     }
3727   }
3728 
3729   visitInstruction(FPI);
3730 }
3731 
visitCatchSwitchInst(CatchSwitchInst & CatchSwitch)3732 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3733   BasicBlock *BB = CatchSwitch.getParent();
3734 
3735   Function *F = BB->getParent();
3736   Assert(F->hasPersonalityFn(),
3737          "CatchSwitchInst needs to be in a function with a personality.",
3738          &CatchSwitch);
3739 
3740   // The catchswitch instruction must be the first non-PHI instruction in the
3741   // block.
3742   Assert(BB->getFirstNonPHI() == &CatchSwitch,
3743          "CatchSwitchInst not the first non-PHI instruction in the block.",
3744          &CatchSwitch);
3745 
3746   auto *ParentPad = CatchSwitch.getParentPad();
3747   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3748          "CatchSwitchInst has an invalid parent.", ParentPad);
3749 
3750   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3751     Instruction *I = UnwindDest->getFirstNonPHI();
3752     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3753            "CatchSwitchInst must unwind to an EH block which is not a "
3754            "landingpad.",
3755            &CatchSwitch);
3756 
3757     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3758     if (getParentPad(I) == ParentPad)
3759       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3760   }
3761 
3762   Assert(CatchSwitch.getNumHandlers() != 0,
3763          "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3764 
3765   for (BasicBlock *Handler : CatchSwitch.handlers()) {
3766     Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3767            "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3768   }
3769 
3770   visitEHPadPredecessors(CatchSwitch);
3771   visitTerminatorInst(CatchSwitch);
3772 }
3773 
visitCleanupReturnInst(CleanupReturnInst & CRI)3774 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3775   Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3776          "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3777          CRI.getOperand(0));
3778 
3779   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3780     Instruction *I = UnwindDest->getFirstNonPHI();
3781     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3782            "CleanupReturnInst must unwind to an EH block which is not a "
3783            "landingpad.",
3784            &CRI);
3785   }
3786 
3787   visitTerminatorInst(CRI);
3788 }
3789 
verifyDominatesUse(Instruction & I,unsigned i)3790 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3791   Instruction *Op = cast<Instruction>(I.getOperand(i));
3792   // If the we have an invalid invoke, don't try to compute the dominance.
3793   // We already reject it in the invoke specific checks and the dominance
3794   // computation doesn't handle multiple edges.
3795   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3796     if (II->getNormalDest() == II->getUnwindDest())
3797       return;
3798   }
3799 
3800   // Quick check whether the def has already been encountered in the same block.
3801   // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
3802   // uses are defined to happen on the incoming edge, not at the instruction.
3803   //
3804   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3805   // wrapping an SSA value, assert that we've already encountered it.  See
3806   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3807   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3808     return;
3809 
3810   const Use &U = I.getOperandUse(i);
3811   Assert(DT.dominates(Op, U),
3812          "Instruction does not dominate all uses!", Op, &I);
3813 }
3814 
visitDereferenceableMetadata(Instruction & I,MDNode * MD)3815 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3816   Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3817          "apply only to pointer types", &I);
3818   Assert(isa<LoadInst>(I),
3819          "dereferenceable, dereferenceable_or_null apply only to load"
3820          " instructions, use attributes for calls or invokes", &I);
3821   Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3822          "take one operand!", &I);
3823   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3824   Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3825          "dereferenceable_or_null metadata value must be an i64!", &I);
3826 }
3827 
3828 /// verifyInstruction - Verify that an instruction is well formed.
3829 ///
visitInstruction(Instruction & I)3830 void Verifier::visitInstruction(Instruction &I) {
3831   BasicBlock *BB = I.getParent();
3832   Assert(BB, "Instruction not embedded in basic block!", &I);
3833 
3834   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
3835     for (User *U : I.users()) {
3836       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
3837              "Only PHI nodes may reference their own value!", &I);
3838     }
3839   }
3840 
3841   // Check that void typed values don't have names
3842   Assert(!I.getType()->isVoidTy() || !I.hasName(),
3843          "Instruction has a name, but provides a void value!", &I);
3844 
3845   // Check that the return value of the instruction is either void or a legal
3846   // value type.
3847   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
3848          "Instruction returns a non-scalar type!", &I);
3849 
3850   // Check that the instruction doesn't produce metadata. Calls are already
3851   // checked against the callee type.
3852   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
3853          "Invalid use of metadata!", &I);
3854 
3855   // Check that all uses of the instruction, if they are instructions
3856   // themselves, actually have parent basic blocks.  If the use is not an
3857   // instruction, it is an error!
3858   for (Use &U : I.uses()) {
3859     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3860       Assert(Used->getParent() != nullptr,
3861              "Instruction referencing"
3862              " instruction not embedded in a basic block!",
3863              &I, Used);
3864     else {
3865       CheckFailed("Use of instruction is not an instruction!", U);
3866       return;
3867     }
3868   }
3869 
3870   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3871     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
3872 
3873     // Check to make sure that only first-class-values are operands to
3874     // instructions.
3875     if (!I.getOperand(i)->getType()->isFirstClassType()) {
3876       Assert(false, "Instruction operands must be first-class values!", &I);
3877     }
3878 
3879     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3880       // Check to make sure that the "address of" an intrinsic function is never
3881       // taken.
3882       Assert(
3883           !F->isIntrinsic() ||
3884               i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
3885           "Cannot take the address of an intrinsic!", &I);
3886       Assert(
3887           !F->isIntrinsic() || isa<CallInst>(I) ||
3888               F->getIntrinsicID() == Intrinsic::donothing ||
3889               F->getIntrinsicID() == Intrinsic::coro_resume ||
3890               F->getIntrinsicID() == Intrinsic::coro_destroy ||
3891               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
3892               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
3893               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
3894           "Cannot invoke an intrinsic other than donothing, patchpoint, "
3895           "statepoint, coro_resume or coro_destroy",
3896           &I);
3897       Assert(F->getParent() == &M, "Referencing function in another module!",
3898              &I, &M, F, F->getParent());
3899     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3900       Assert(OpBB->getParent() == BB->getParent(),
3901              "Referring to a basic block in another function!", &I);
3902     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3903       Assert(OpArg->getParent() == BB->getParent(),
3904              "Referring to an argument in another function!", &I);
3905     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3906       Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
3907              &M, GV, GV->getParent());
3908     } else if (isa<Instruction>(I.getOperand(i))) {
3909       verifyDominatesUse(I, i);
3910     } else if (isa<InlineAsm>(I.getOperand(i))) {
3911       Assert((i + 1 == e && isa<CallInst>(I)) ||
3912                  (i + 3 == e && isa<InvokeInst>(I)),
3913              "Cannot take the address of an inline asm!", &I);
3914     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3915       if (CE->getType()->isPtrOrPtrVectorTy() ||
3916           !DL.getNonIntegralAddressSpaces().empty()) {
3917         // If we have a ConstantExpr pointer, we need to see if it came from an
3918         // illegal bitcast.  If the datalayout string specifies non-integral
3919         // address spaces then we also need to check for illegal ptrtoint and
3920         // inttoptr expressions.
3921         visitConstantExprsRecursively(CE);
3922       }
3923     }
3924   }
3925 
3926   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3927     Assert(I.getType()->isFPOrFPVectorTy(),
3928            "fpmath requires a floating point result!", &I);
3929     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
3930     if (ConstantFP *CFP0 =
3931             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3932       const APFloat &Accuracy = CFP0->getValueAPF();
3933       Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
3934              "fpmath accuracy must have float type", &I);
3935       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
3936              "fpmath accuracy not a positive number!", &I);
3937     } else {
3938       Assert(false, "invalid fpmath accuracy!", &I);
3939     }
3940   }
3941 
3942   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3943     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
3944            "Ranges are only for loads, calls and invokes!", &I);
3945     visitRangeMetadata(I, Range, I.getType());
3946   }
3947 
3948   if (I.getMetadata(LLVMContext::MD_nonnull)) {
3949     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
3950            &I);
3951     Assert(isa<LoadInst>(I),
3952            "nonnull applies only to load instructions, use attributes"
3953            " for calls or invokes",
3954            &I);
3955   }
3956 
3957   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
3958     visitDereferenceableMetadata(I, MD);
3959 
3960   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
3961     visitDereferenceableMetadata(I, MD);
3962 
3963   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
3964     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
3965 
3966   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3967     Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
3968            &I);
3969     Assert(isa<LoadInst>(I), "align applies only to load instructions, "
3970            "use attributes for calls or invokes", &I);
3971     Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
3972     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3973     Assert(CI && CI->getType()->isIntegerTy(64),
3974            "align metadata value must be an i64!", &I);
3975     uint64_t Align = CI->getZExtValue();
3976     Assert(isPowerOf2_64(Align),
3977            "align metadata value must be a power of 2!", &I);
3978     Assert(Align <= Value::MaximumAlignment,
3979            "alignment is larger that implementation defined limit", &I);
3980   }
3981 
3982   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3983     AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
3984     visitMDNode(*N);
3985   }
3986 
3987   if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3988     verifyFragmentExpression(*DII);
3989 
3990   InstsInThisBlock.insert(&I);
3991 }
3992 
3993 /// Allow intrinsics to be verified in different ways.
visitIntrinsicCallSite(Intrinsic::ID ID,CallSite CS)3994 void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3995   Function *IF = CS.getCalledFunction();
3996   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
3997          IF);
3998 
3999   // Verify that the intrinsic prototype lines up with what the .td files
4000   // describe.
4001   FunctionType *IFTy = IF->getFunctionType();
4002   bool IsVarArg = IFTy->isVarArg();
4003 
4004   SmallVector<Intrinsic::IITDescriptor, 8> Table;
4005   getIntrinsicInfoTableEntries(ID, Table);
4006   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4007 
4008   SmallVector<Type *, 4> ArgTys;
4009   Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),
4010                                         TableRef, ArgTys),
4011          "Intrinsic has incorrect return type!", IF);
4012   for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
4013     Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),
4014                                           TableRef, ArgTys),
4015            "Intrinsic has incorrect argument type!", IF);
4016 
4017   // Verify if the intrinsic call matches the vararg property.
4018   if (IsVarArg)
4019     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4020            "Intrinsic was not defined with variable arguments!", IF);
4021   else
4022     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4023            "Callsite was not defined with variable arguments!", IF);
4024 
4025   // All descriptors should be absorbed by now.
4026   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4027 
4028   // Now that we have the intrinsic ID and the actual argument types (and we
4029   // know they are legal for the intrinsic!) get the intrinsic name through the
4030   // usual means.  This allows us to verify the mangling of argument types into
4031   // the name.
4032   const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
4033   Assert(ExpectedName == IF->getName(),
4034          "Intrinsic name not mangled correctly for type arguments! "
4035          "Should be: " +
4036              ExpectedName,
4037          IF);
4038 
4039   // If the intrinsic takes MDNode arguments, verify that they are either global
4040   // or are local to *this* function.
4041   for (Value *V : CS.args())
4042     if (auto *MD = dyn_cast<MetadataAsValue>(V))
4043       visitMetadataAsValue(*MD, CS.getCaller());
4044 
4045   switch (ID) {
4046   default:
4047     break;
4048   case Intrinsic::coro_id: {
4049     auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts();
4050     if (isa<ConstantPointerNull>(InfoArg))
4051       break;
4052     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4053     Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4054       "info argument of llvm.coro.begin must refer to an initialized "
4055       "constant");
4056     Constant *Init = GV->getInitializer();
4057     Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4058       "info argument of llvm.coro.begin must refer to either a struct or "
4059       "an array");
4060     break;
4061   }
4062   case Intrinsic::ctlz:  // llvm.ctlz
4063   case Intrinsic::cttz:  // llvm.cttz
4064     Assert(isa<ConstantInt>(CS.getArgOperand(1)),
4065            "is_zero_undef argument of bit counting intrinsics must be a "
4066            "constant int",
4067            CS);
4068     break;
4069   case Intrinsic::experimental_constrained_fadd:
4070   case Intrinsic::experimental_constrained_fsub:
4071   case Intrinsic::experimental_constrained_fmul:
4072   case Intrinsic::experimental_constrained_fdiv:
4073   case Intrinsic::experimental_constrained_frem:
4074   case Intrinsic::experimental_constrained_fma:
4075   case Intrinsic::experimental_constrained_sqrt:
4076   case Intrinsic::experimental_constrained_pow:
4077   case Intrinsic::experimental_constrained_powi:
4078   case Intrinsic::experimental_constrained_sin:
4079   case Intrinsic::experimental_constrained_cos:
4080   case Intrinsic::experimental_constrained_exp:
4081   case Intrinsic::experimental_constrained_exp2:
4082   case Intrinsic::experimental_constrained_log:
4083   case Intrinsic::experimental_constrained_log10:
4084   case Intrinsic::experimental_constrained_log2:
4085   case Intrinsic::experimental_constrained_rint:
4086   case Intrinsic::experimental_constrained_nearbyint:
4087     visitConstrainedFPIntrinsic(
4088         cast<ConstrainedFPIntrinsic>(*CS.getInstruction()));
4089     break;
4090   case Intrinsic::dbg_declare: // llvm.dbg.declare
4091     Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
4092            "invalid llvm.dbg.declare intrinsic call 1", CS);
4093     visitDbgIntrinsic("declare", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4094     break;
4095   case Intrinsic::dbg_addr: // llvm.dbg.addr
4096     visitDbgIntrinsic("addr", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4097     break;
4098   case Intrinsic::dbg_value: // llvm.dbg.value
4099     visitDbgIntrinsic("value", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4100     break;
4101   case Intrinsic::dbg_label: // llvm.dbg.label
4102     visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(*CS.getInstruction()));
4103     break;
4104   case Intrinsic::memcpy:
4105   case Intrinsic::memmove:
4106   case Intrinsic::memset: {
4107     const auto *MI = cast<MemIntrinsic>(CS.getInstruction());
4108     auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4109       return Alignment == 0 || isPowerOf2_32(Alignment);
4110     };
4111     Assert(IsValidAlignment(MI->getDestAlignment()),
4112            "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4113            CS);
4114     if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4115       Assert(IsValidAlignment(MTI->getSourceAlignment()),
4116              "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4117              CS);
4118     }
4119     Assert(isa<ConstantInt>(CS.getArgOperand(3)),
4120            "isvolatile argument of memory intrinsics must be a constant int",
4121            CS);
4122     break;
4123   }
4124   case Intrinsic::memcpy_element_unordered_atomic:
4125   case Intrinsic::memmove_element_unordered_atomic:
4126   case Intrinsic::memset_element_unordered_atomic: {
4127     const auto *AMI = cast<AtomicMemIntrinsic>(CS.getInstruction());
4128 
4129     ConstantInt *ElementSizeCI =
4130         dyn_cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4131     Assert(ElementSizeCI,
4132            "element size of the element-wise unordered atomic memory "
4133            "intrinsic must be a constant int",
4134            CS);
4135     const APInt &ElementSizeVal = ElementSizeCI->getValue();
4136     Assert(ElementSizeVal.isPowerOf2(),
4137            "element size of the element-wise atomic memory intrinsic "
4138            "must be a power of 2",
4139            CS);
4140 
4141     if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) {
4142       uint64_t Length = LengthCI->getZExtValue();
4143       uint64_t ElementSize = AMI->getElementSizeInBytes();
4144       Assert((Length % ElementSize) == 0,
4145              "constant length must be a multiple of the element size in the "
4146              "element-wise atomic memory intrinsic",
4147              CS);
4148     }
4149 
4150     auto IsValidAlignment = [&](uint64_t Alignment) {
4151       return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4152     };
4153     uint64_t DstAlignment = AMI->getDestAlignment();
4154     Assert(IsValidAlignment(DstAlignment),
4155            "incorrect alignment of the destination argument", CS);
4156     if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4157       uint64_t SrcAlignment = AMT->getSourceAlignment();
4158       Assert(IsValidAlignment(SrcAlignment),
4159              "incorrect alignment of the source argument", CS);
4160     }
4161     break;
4162   }
4163   case Intrinsic::gcroot:
4164   case Intrinsic::gcwrite:
4165   case Intrinsic::gcread:
4166     if (ID == Intrinsic::gcroot) {
4167       AllocaInst *AI =
4168         dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
4169       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
4170       Assert(isa<Constant>(CS.getArgOperand(1)),
4171              "llvm.gcroot parameter #2 must be a constant.", CS);
4172       if (!AI->getAllocatedType()->isPointerTy()) {
4173         Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
4174                "llvm.gcroot parameter #1 must either be a pointer alloca, "
4175                "or argument #2 must be a non-null constant.",
4176                CS);
4177       }
4178     }
4179 
4180     Assert(CS.getParent()->getParent()->hasGC(),
4181            "Enclosing function does not use GC.", CS);
4182     break;
4183   case Intrinsic::init_trampoline:
4184     Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
4185            "llvm.init_trampoline parameter #2 must resolve to a function.",
4186            CS);
4187     break;
4188   case Intrinsic::prefetch:
4189     Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
4190                isa<ConstantInt>(CS.getArgOperand(2)) &&
4191                cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
4192                cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
4193            "invalid arguments to llvm.prefetch", CS);
4194     break;
4195   case Intrinsic::stackprotector:
4196     Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
4197            "llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
4198     break;
4199   case Intrinsic::lifetime_start:
4200   case Intrinsic::lifetime_end:
4201   case Intrinsic::invariant_start:
4202     Assert(isa<ConstantInt>(CS.getArgOperand(0)),
4203            "size argument of memory use markers must be a constant integer",
4204            CS);
4205     break;
4206   case Intrinsic::invariant_end:
4207     Assert(isa<ConstantInt>(CS.getArgOperand(1)),
4208            "llvm.invariant.end parameter #2 must be a constant integer", CS);
4209     break;
4210 
4211   case Intrinsic::localescape: {
4212     BasicBlock *BB = CS.getParent();
4213     Assert(BB == &BB->getParent()->front(),
4214            "llvm.localescape used outside of entry block", CS);
4215     Assert(!SawFrameEscape,
4216            "multiple calls to llvm.localescape in one function", CS);
4217     for (Value *Arg : CS.args()) {
4218       if (isa<ConstantPointerNull>(Arg))
4219         continue; // Null values are allowed as placeholders.
4220       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4221       Assert(AI && AI->isStaticAlloca(),
4222              "llvm.localescape only accepts static allocas", CS);
4223     }
4224     FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
4225     SawFrameEscape = true;
4226     break;
4227   }
4228   case Intrinsic::localrecover: {
4229     Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
4230     Function *Fn = dyn_cast<Function>(FnArg);
4231     Assert(Fn && !Fn->isDeclaration(),
4232            "llvm.localrecover first "
4233            "argument must be function defined in this module",
4234            CS);
4235     auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
4236     Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
4237            CS);
4238     auto &Entry = FrameEscapeInfo[Fn];
4239     Entry.second = unsigned(
4240         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4241     break;
4242   }
4243 
4244   case Intrinsic::experimental_gc_statepoint:
4245     Assert(!CS.isInlineAsm(),
4246            "gc.statepoint support for inline assembly unimplemented", CS);
4247     Assert(CS.getParent()->getParent()->hasGC(),
4248            "Enclosing function does not use GC.", CS);
4249 
4250     verifyStatepoint(CS);
4251     break;
4252   case Intrinsic::experimental_gc_result: {
4253     Assert(CS.getParent()->getParent()->hasGC(),
4254            "Enclosing function does not use GC.", CS);
4255     // Are we tied to a statepoint properly?
4256     CallSite StatepointCS(CS.getArgOperand(0));
4257     const Function *StatepointFn =
4258       StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
4259     Assert(StatepointFn && StatepointFn->isDeclaration() &&
4260                StatepointFn->getIntrinsicID() ==
4261                    Intrinsic::experimental_gc_statepoint,
4262            "gc.result operand #1 must be from a statepoint", CS,
4263            CS.getArgOperand(0));
4264 
4265     // Assert that result type matches wrapped callee.
4266     const Value *Target = StatepointCS.getArgument(2);
4267     auto *PT = cast<PointerType>(Target->getType());
4268     auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4269     Assert(CS.getType() == TargetFuncType->getReturnType(),
4270            "gc.result result type does not match wrapped callee", CS);
4271     break;
4272   }
4273   case Intrinsic::experimental_gc_relocate: {
4274     Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
4275 
4276     Assert(isa<PointerType>(CS.getType()->getScalarType()),
4277            "gc.relocate must return a pointer or a vector of pointers", CS);
4278 
4279     // Check that this relocate is correctly tied to the statepoint
4280 
4281     // This is case for relocate on the unwinding path of an invoke statepoint
4282     if (LandingPadInst *LandingPad =
4283           dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
4284 
4285       const BasicBlock *InvokeBB =
4286           LandingPad->getParent()->getUniquePredecessor();
4287 
4288       // Landingpad relocates should have only one predecessor with invoke
4289       // statepoint terminator
4290       Assert(InvokeBB, "safepoints should have unique landingpads",
4291              LandingPad->getParent());
4292       Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4293              InvokeBB);
4294       Assert(isStatepoint(InvokeBB->getTerminator()),
4295              "gc relocate should be linked to a statepoint", InvokeBB);
4296     }
4297     else {
4298       // In all other cases relocate should be tied to the statepoint directly.
4299       // This covers relocates on a normal return path of invoke statepoint and
4300       // relocates of a call statepoint.
4301       auto Token = CS.getArgOperand(0);
4302       Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
4303              "gc relocate is incorrectly tied to the statepoint", CS, Token);
4304     }
4305 
4306     // Verify rest of the relocate arguments.
4307 
4308     ImmutableCallSite StatepointCS(
4309         cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
4310 
4311     // Both the base and derived must be piped through the safepoint.
4312     Value* Base = CS.getArgOperand(1);
4313     Assert(isa<ConstantInt>(Base),
4314            "gc.relocate operand #2 must be integer offset", CS);
4315 
4316     Value* Derived = CS.getArgOperand(2);
4317     Assert(isa<ConstantInt>(Derived),
4318            "gc.relocate operand #3 must be integer offset", CS);
4319 
4320     const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4321     const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4322     // Check the bounds
4323     Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
4324            "gc.relocate: statepoint base index out of bounds", CS);
4325     Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
4326            "gc.relocate: statepoint derived index out of bounds", CS);
4327 
4328     // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4329     // section of the statepoint's argument.
4330     Assert(StatepointCS.arg_size() > 0,
4331            "gc.statepoint: insufficient arguments");
4332     Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
4333            "gc.statement: number of call arguments must be constant integer");
4334     const unsigned NumCallArgs =
4335         cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
4336     Assert(StatepointCS.arg_size() > NumCallArgs + 5,
4337            "gc.statepoint: mismatch in number of call arguments");
4338     Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
4339            "gc.statepoint: number of transition arguments must be "
4340            "a constant integer");
4341     const int NumTransitionArgs =
4342         cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
4343             ->getZExtValue();
4344     const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4345     Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
4346            "gc.statepoint: number of deoptimization arguments must be "
4347            "a constant integer");
4348     const int NumDeoptArgs =
4349         cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
4350             ->getZExtValue();
4351     const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4352     const int GCParamArgsEnd = StatepointCS.arg_size();
4353     Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4354            "gc.relocate: statepoint base index doesn't fall within the "
4355            "'gc parameters' section of the statepoint call",
4356            CS);
4357     Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4358            "gc.relocate: statepoint derived index doesn't fall within the "
4359            "'gc parameters' section of the statepoint call",
4360            CS);
4361 
4362     // Relocated value must be either a pointer type or vector-of-pointer type,
4363     // but gc_relocate does not need to return the same pointer type as the
4364     // relocated pointer. It can be casted to the correct type later if it's
4365     // desired. However, they must have the same address space and 'vectorness'
4366     GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
4367     Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
4368            "gc.relocate: relocated value must be a gc pointer", CS);
4369 
4370     auto ResultType = CS.getType();
4371     auto DerivedType = Relocate.getDerivedPtr()->getType();
4372     Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4373            "gc.relocate: vector relocates to vector and pointer to pointer",
4374            CS);
4375     Assert(
4376         ResultType->getPointerAddressSpace() ==
4377             DerivedType->getPointerAddressSpace(),
4378         "gc.relocate: relocating a pointer shouldn't change its address space",
4379         CS);
4380     break;
4381   }
4382   case Intrinsic::eh_exceptioncode:
4383   case Intrinsic::eh_exceptionpointer: {
4384     Assert(isa<CatchPadInst>(CS.getArgOperand(0)),
4385            "eh.exceptionpointer argument must be a catchpad", CS);
4386     break;
4387   }
4388   case Intrinsic::masked_load: {
4389     Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS);
4390 
4391     Value *Ptr = CS.getArgOperand(0);
4392     //Value *Alignment = CS.getArgOperand(1);
4393     Value *Mask = CS.getArgOperand(2);
4394     Value *PassThru = CS.getArgOperand(3);
4395     Assert(Mask->getType()->isVectorTy(),
4396            "masked_load: mask must be vector", CS);
4397 
4398     // DataTy is the overloaded type
4399     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4400     Assert(DataTy == CS.getType(),
4401            "masked_load: return must match pointer type", CS);
4402     Assert(PassThru->getType() == DataTy,
4403            "masked_load: pass through and data type must match", CS);
4404     Assert(Mask->getType()->getVectorNumElements() ==
4405            DataTy->getVectorNumElements(),
4406            "masked_load: vector mask must be same length as data", CS);
4407     break;
4408   }
4409   case Intrinsic::masked_store: {
4410     Value *Val = CS.getArgOperand(0);
4411     Value *Ptr = CS.getArgOperand(1);
4412     //Value *Alignment = CS.getArgOperand(2);
4413     Value *Mask = CS.getArgOperand(3);
4414     Assert(Mask->getType()->isVectorTy(),
4415            "masked_store: mask must be vector", CS);
4416 
4417     // DataTy is the overloaded type
4418     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4419     Assert(DataTy == Val->getType(),
4420            "masked_store: storee must match pointer type", CS);
4421     Assert(Mask->getType()->getVectorNumElements() ==
4422            DataTy->getVectorNumElements(),
4423            "masked_store: vector mask must be same length as data", CS);
4424     break;
4425   }
4426 
4427   case Intrinsic::experimental_guard: {
4428     Assert(CS.isCall(), "experimental_guard cannot be invoked", CS);
4429     Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4430            "experimental_guard must have exactly one "
4431            "\"deopt\" operand bundle");
4432     break;
4433   }
4434 
4435   case Intrinsic::experimental_deoptimize: {
4436     Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS);
4437     Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4438            "experimental_deoptimize must have exactly one "
4439            "\"deopt\" operand bundle");
4440     Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(),
4441            "experimental_deoptimize return type must match caller return type");
4442 
4443     if (CS.isCall()) {
4444       auto *DeoptCI = CS.getInstruction();
4445       auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
4446       Assert(RI,
4447              "calls to experimental_deoptimize must be followed by a return");
4448 
4449       if (!CS.getType()->isVoidTy() && RI)
4450         Assert(RI->getReturnValue() == DeoptCI,
4451                "calls to experimental_deoptimize must be followed by a return "
4452                "of the value computed by experimental_deoptimize");
4453     }
4454 
4455     break;
4456   }
4457   };
4458 }
4459 
4460 /// Carefully grab the subprogram from a local scope.
4461 ///
4462 /// This carefully grabs the subprogram from a local scope, avoiding the
4463 /// built-in assertions that would typically fire.
getSubprogram(Metadata * LocalScope)4464 static DISubprogram *getSubprogram(Metadata *LocalScope) {
4465   if (!LocalScope)
4466     return nullptr;
4467 
4468   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4469     return SP;
4470 
4471   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4472     return getSubprogram(LB->getRawScope());
4473 
4474   // Just return null; broken scope chains are checked elsewhere.
4475   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4476   return nullptr;
4477 }
4478 
visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic & FPI)4479 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4480   unsigned NumOperands = FPI.getNumArgOperands();
4481   Assert(((NumOperands == 5 && FPI.isTernaryOp()) ||
4482           (NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands == 4)),
4483            "invalid arguments for constrained FP intrinsic", &FPI);
4484   Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-1)),
4485          "invalid exception behavior argument", &FPI);
4486   Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-2)),
4487          "invalid rounding mode argument", &FPI);
4488   Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid,
4489          "invalid rounding mode argument", &FPI);
4490   Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid,
4491          "invalid exception behavior argument", &FPI);
4492 }
4493 
visitDbgIntrinsic(StringRef Kind,DbgInfoIntrinsic & DII)4494 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII) {
4495   auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4496   AssertDI(isa<ValueAsMetadata>(MD) ||
4497              (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4498          "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4499   AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4500          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4501          DII.getRawVariable());
4502   AssertDI(isa<DIExpression>(DII.getRawExpression()),
4503          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4504          DII.getRawExpression());
4505 
4506   // Ignore broken !dbg attachments; they're checked elsewhere.
4507   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4508     if (!isa<DILocation>(N))
4509       return;
4510 
4511   BasicBlock *BB = DII.getParent();
4512   Function *F = BB ? BB->getParent() : nullptr;
4513 
4514   // The scopes for variables and !dbg attachments must agree.
4515   DILocalVariable *Var = DII.getVariable();
4516   DILocation *Loc = DII.getDebugLoc();
4517   AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4518            &DII, BB, F);
4519 
4520   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4521   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4522   if (!VarSP || !LocSP)
4523     return; // Broken scope chains are checked elsewhere.
4524 
4525   AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4526                                " variable and !dbg attachment",
4527            &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4528            Loc->getScope()->getSubprogram());
4529 
4530   verifyFnArgs(DII);
4531 }
4532 
visitDbgLabelIntrinsic(StringRef Kind,DbgLabelInst & DLI)4533 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
4534   AssertDI(isa<DILabel>(DLI.getRawVariable()),
4535          "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
4536          DLI.getRawVariable());
4537 
4538   // Ignore broken !dbg attachments; they're checked elsewhere.
4539   if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
4540     if (!isa<DILocation>(N))
4541       return;
4542 
4543   BasicBlock *BB = DLI.getParent();
4544   Function *F = BB ? BB->getParent() : nullptr;
4545 
4546   // The scopes for variables and !dbg attachments must agree.
4547   DILabel *Label = DLI.getLabel();
4548   DILocation *Loc = DLI.getDebugLoc();
4549   Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4550          &DLI, BB, F);
4551 
4552   DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
4553   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4554   if (!LabelSP || !LocSP)
4555     return;
4556 
4557   AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4558                              " label and !dbg attachment",
4559            &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
4560            Loc->getScope()->getSubprogram());
4561 }
4562 
verifyFragmentExpression(const DbgInfoIntrinsic & I)4563 void Verifier::verifyFragmentExpression(const DbgInfoIntrinsic &I) {
4564   if (dyn_cast<DbgLabelInst>(&I))
4565     return;
4566 
4567   DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
4568   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
4569 
4570   // We don't know whether this intrinsic verified correctly.
4571   if (!V || !E || !E->isValid())
4572     return;
4573 
4574   // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4575   auto Fragment = E->getFragmentInfo();
4576   if (!Fragment)
4577     return;
4578 
4579   // The frontend helps out GDB by emitting the members of local anonymous
4580   // unions as artificial local variables with shared storage. When SROA splits
4581   // the storage for artificial local variables that are smaller than the entire
4582   // union, the overhang piece will be outside of the allotted space for the
4583   // variable and this check fails.
4584   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4585   if (V->isArtificial())
4586     return;
4587 
4588   verifyFragmentExpression(*V, *Fragment, &I);
4589 }
4590 
4591 template <typename ValueOrMetadata>
verifyFragmentExpression(const DIVariable & V,DIExpression::FragmentInfo Fragment,ValueOrMetadata * Desc)4592 void Verifier::verifyFragmentExpression(const DIVariable &V,
4593                                         DIExpression::FragmentInfo Fragment,
4594                                         ValueOrMetadata *Desc) {
4595   // If there's no size, the type is broken, but that should be checked
4596   // elsewhere.
4597   auto VarSize = V.getSizeInBits();
4598   if (!VarSize)
4599     return;
4600 
4601   unsigned FragSize = Fragment.SizeInBits;
4602   unsigned FragOffset = Fragment.OffsetInBits;
4603   AssertDI(FragSize + FragOffset <= *VarSize,
4604          "fragment is larger than or outside of variable", Desc, &V);
4605   AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
4606 }
4607 
verifyFnArgs(const DbgInfoIntrinsic & I)4608 void Verifier::verifyFnArgs(const DbgInfoIntrinsic &I) {
4609   // This function does not take the scope of noninlined function arguments into
4610   // account. Don't run it if current function is nodebug, because it may
4611   // contain inlined debug intrinsics.
4612   if (!HasDebugInfo)
4613     return;
4614 
4615   // For performance reasons only check non-inlined ones.
4616   if (I.getDebugLoc()->getInlinedAt())
4617     return;
4618 
4619   DILocalVariable *Var = I.getVariable();
4620   AssertDI(Var, "dbg intrinsic without variable");
4621 
4622   unsigned ArgNo = Var->getArg();
4623   if (!ArgNo)
4624     return;
4625 
4626   // Verify there are no duplicate function argument debug info entries.
4627   // These will cause hard-to-debug assertions in the DWARF backend.
4628   if (DebugFnArgs.size() < ArgNo)
4629     DebugFnArgs.resize(ArgNo, nullptr);
4630 
4631   auto *Prev = DebugFnArgs[ArgNo - 1];
4632   DebugFnArgs[ArgNo - 1] = Var;
4633   AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
4634            Prev, Var);
4635 }
4636 
verifyCompileUnits()4637 void Verifier::verifyCompileUnits() {
4638   // When more than one Module is imported into the same context, such as during
4639   // an LTO build before linking the modules, ODR type uniquing may cause types
4640   // to point to a different CU. This check does not make sense in this case.
4641   if (M.getContext().isODRUniquingDebugTypes())
4642     return;
4643   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4644   SmallPtrSet<const Metadata *, 2> Listed;
4645   if (CUs)
4646     Listed.insert(CUs->op_begin(), CUs->op_end());
4647   for (auto *CU : CUVisited)
4648     AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
4649   CUVisited.clear();
4650 }
4651 
verifyDeoptimizeCallingConvs()4652 void Verifier::verifyDeoptimizeCallingConvs() {
4653   if (DeoptimizeDeclarations.empty())
4654     return;
4655 
4656   const Function *First = DeoptimizeDeclarations[0];
4657   for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4658     Assert(First->getCallingConv() == F->getCallingConv(),
4659            "All llvm.experimental.deoptimize declarations must have the same "
4660            "calling convention",
4661            First, F);
4662   }
4663 }
4664 
4665 //===----------------------------------------------------------------------===//
4666 //  Implement the public interfaces to this file...
4667 //===----------------------------------------------------------------------===//
4668 
verifyFunction(const Function & f,raw_ostream * OS)4669 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4670   Function &F = const_cast<Function &>(f);
4671 
4672   // Don't use a raw_null_ostream.  Printing IR is expensive.
4673   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4674 
4675   // Note that this function's return value is inverted from what you would
4676   // expect of a function called "verify".
4677   return !V.verify(F);
4678 }
4679 
verifyModule(const Module & M,raw_ostream * OS,bool * BrokenDebugInfo)4680 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
4681                         bool *BrokenDebugInfo) {
4682   // Don't use a raw_null_ostream.  Printing IR is expensive.
4683   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4684 
4685   bool Broken = false;
4686   for (const Function &F : M)
4687     Broken |= !V.verify(F);
4688 
4689   Broken |= !V.verify();
4690   if (BrokenDebugInfo)
4691     *BrokenDebugInfo = V.hasBrokenDebugInfo();
4692   // Note that this function's return value is inverted from what you would
4693   // expect of a function called "verify".
4694   return Broken;
4695 }
4696 
4697 namespace {
4698 
4699 struct VerifierLegacyPass : public FunctionPass {
4700   static char ID;
4701 
4702   std::unique_ptr<Verifier> V;
4703   bool FatalErrors = true;
4704 
VerifierLegacyPass__anonc39f54d00811::VerifierLegacyPass4705   VerifierLegacyPass() : FunctionPass(ID) {
4706     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4707   }
VerifierLegacyPass__anonc39f54d00811::VerifierLegacyPass4708   explicit VerifierLegacyPass(bool FatalErrors)
4709       : FunctionPass(ID),
4710         FatalErrors(FatalErrors) {
4711     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4712   }
4713 
doInitialization__anonc39f54d00811::VerifierLegacyPass4714   bool doInitialization(Module &M) override {
4715     V = llvm::make_unique<Verifier>(
4716         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
4717     return false;
4718   }
4719 
runOnFunction__anonc39f54d00811::VerifierLegacyPass4720   bool runOnFunction(Function &F) override {
4721     if (!V->verify(F) && FatalErrors)
4722       report_fatal_error("Broken function found, compilation aborted!");
4723 
4724     return false;
4725   }
4726 
doFinalization__anonc39f54d00811::VerifierLegacyPass4727   bool doFinalization(Module &M) override {
4728     bool HasErrors = false;
4729     for (Function &F : M)
4730       if (F.isDeclaration())
4731         HasErrors |= !V->verify(F);
4732 
4733     HasErrors |= !V->verify();
4734     if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
4735       report_fatal_error("Broken module found, compilation aborted!");
4736     return false;
4737   }
4738 
getAnalysisUsage__anonc39f54d00811::VerifierLegacyPass4739   void getAnalysisUsage(AnalysisUsage &AU) const override {
4740     AU.setPreservesAll();
4741   }
4742 };
4743 
4744 } // end anonymous namespace
4745 
4746 /// Helper to issue failure from the TBAA verification
CheckFailed(Tys &&...Args)4747 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
4748   if (Diagnostic)
4749     return Diagnostic->CheckFailed(Args...);
4750 }
4751 
4752 #define AssertTBAA(C, ...)                                                     \
4753   do {                                                                         \
4754     if (!(C)) {                                                                \
4755       CheckFailed(__VA_ARGS__);                                                \
4756       return false;                                                            \
4757     }                                                                          \
4758   } while (false)
4759 
4760 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
4761 /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
4762 /// struct-type node describing an aggregate data structure (like a struct).
4763 TBAAVerifier::TBAABaseNodeSummary
verifyTBAABaseNode(Instruction & I,const MDNode * BaseNode,bool IsNewFormat)4764 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
4765                                  bool IsNewFormat) {
4766   if (BaseNode->getNumOperands() < 2) {
4767     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
4768     return {true, ~0u};
4769   }
4770 
4771   auto Itr = TBAABaseNodes.find(BaseNode);
4772   if (Itr != TBAABaseNodes.end())
4773     return Itr->second;
4774 
4775   auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
4776   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
4777   (void)InsertResult;
4778   assert(InsertResult.second && "We just checked!");
4779   return Result;
4780 }
4781 
4782 TBAAVerifier::TBAABaseNodeSummary
verifyTBAABaseNodeImpl(Instruction & I,const MDNode * BaseNode,bool IsNewFormat)4783 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
4784                                      bool IsNewFormat) {
4785   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
4786 
4787   if (BaseNode->getNumOperands() == 2) {
4788     // Scalar nodes can only be accessed at offset 0.
4789     return isValidScalarTBAANode(BaseNode)
4790                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
4791                : InvalidNode;
4792   }
4793 
4794   if (IsNewFormat) {
4795     if (BaseNode->getNumOperands() % 3 != 0) {
4796       CheckFailed("Access tag nodes must have the number of operands that is a "
4797                   "multiple of 3!", BaseNode);
4798       return InvalidNode;
4799     }
4800   } else {
4801     if (BaseNode->getNumOperands() % 2 != 1) {
4802       CheckFailed("Struct tag nodes must have an odd number of operands!",
4803                   BaseNode);
4804       return InvalidNode;
4805     }
4806   }
4807 
4808   // Check the type size field.
4809   if (IsNewFormat) {
4810     auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
4811         BaseNode->getOperand(1));
4812     if (!TypeSizeNode) {
4813       CheckFailed("Type size nodes must be constants!", &I, BaseNode);
4814       return InvalidNode;
4815     }
4816   }
4817 
4818   // Check the type name field. In the new format it can be anything.
4819   if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
4820     CheckFailed("Struct tag nodes have a string as their first operand",
4821                 BaseNode);
4822     return InvalidNode;
4823   }
4824 
4825   bool Failed = false;
4826 
4827   Optional<APInt> PrevOffset;
4828   unsigned BitWidth = ~0u;
4829 
4830   // We've already checked that BaseNode is not a degenerate root node with one
4831   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
4832   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
4833   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
4834   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
4835            Idx += NumOpsPerField) {
4836     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
4837     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
4838     if (!isa<MDNode>(FieldTy)) {
4839       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
4840       Failed = true;
4841       continue;
4842     }
4843 
4844     auto *OffsetEntryCI =
4845         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
4846     if (!OffsetEntryCI) {
4847       CheckFailed("Offset entries must be constants!", &I, BaseNode);
4848       Failed = true;
4849       continue;
4850     }
4851 
4852     if (BitWidth == ~0u)
4853       BitWidth = OffsetEntryCI->getBitWidth();
4854 
4855     if (OffsetEntryCI->getBitWidth() != BitWidth) {
4856       CheckFailed(
4857           "Bitwidth between the offsets and struct type entries must match", &I,
4858           BaseNode);
4859       Failed = true;
4860       continue;
4861     }
4862 
4863     // NB! As far as I can tell, we generate a non-strictly increasing offset
4864     // sequence only from structs that have zero size bit fields.  When
4865     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
4866     // pick the field lexically the latest in struct type metadata node.  This
4867     // mirrors the actual behavior of the alias analysis implementation.
4868     bool IsAscending =
4869         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
4870 
4871     if (!IsAscending) {
4872       CheckFailed("Offsets must be increasing!", &I, BaseNode);
4873       Failed = true;
4874     }
4875 
4876     PrevOffset = OffsetEntryCI->getValue();
4877 
4878     if (IsNewFormat) {
4879       auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
4880           BaseNode->getOperand(Idx + 2));
4881       if (!MemberSizeNode) {
4882         CheckFailed("Member size entries must be constants!", &I, BaseNode);
4883         Failed = true;
4884         continue;
4885       }
4886     }
4887   }
4888 
4889   return Failed ? InvalidNode
4890                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
4891 }
4892 
IsRootTBAANode(const MDNode * MD)4893 static bool IsRootTBAANode(const MDNode *MD) {
4894   return MD->getNumOperands() < 2;
4895 }
4896 
IsScalarTBAANodeImpl(const MDNode * MD,SmallPtrSetImpl<const MDNode * > & Visited)4897 static bool IsScalarTBAANodeImpl(const MDNode *MD,
4898                                  SmallPtrSetImpl<const MDNode *> &Visited) {
4899   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
4900     return false;
4901 
4902   if (!isa<MDString>(MD->getOperand(0)))
4903     return false;
4904 
4905   if (MD->getNumOperands() == 3) {
4906     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
4907     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
4908       return false;
4909   }
4910 
4911   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4912   return Parent && Visited.insert(Parent).second &&
4913          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
4914 }
4915 
isValidScalarTBAANode(const MDNode * MD)4916 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
4917   auto ResultIt = TBAAScalarNodes.find(MD);
4918   if (ResultIt != TBAAScalarNodes.end())
4919     return ResultIt->second;
4920 
4921   SmallPtrSet<const MDNode *, 4> Visited;
4922   bool Result = IsScalarTBAANodeImpl(MD, Visited);
4923   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
4924   (void)InsertResult;
4925   assert(InsertResult.second && "Just checked!");
4926 
4927   return Result;
4928 }
4929 
4930 /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
4931 /// Offset in place to be the offset within the field node returned.
4932 ///
4933 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
getFieldNodeFromTBAABaseNode(Instruction & I,const MDNode * BaseNode,APInt & Offset,bool IsNewFormat)4934 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
4935                                                    const MDNode *BaseNode,
4936                                                    APInt &Offset,
4937                                                    bool IsNewFormat) {
4938   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
4939 
4940   // Scalar nodes have only one possible "field" -- their parent in the access
4941   // hierarchy.  Offset must be zero at this point, but our caller is supposed
4942   // to Assert that.
4943   if (BaseNode->getNumOperands() == 2)
4944     return cast<MDNode>(BaseNode->getOperand(1));
4945 
4946   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
4947   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
4948   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
4949            Idx += NumOpsPerField) {
4950     auto *OffsetEntryCI =
4951         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
4952     if (OffsetEntryCI->getValue().ugt(Offset)) {
4953       if (Idx == FirstFieldOpNo) {
4954         CheckFailed("Could not find TBAA parent in struct type node", &I,
4955                     BaseNode, &Offset);
4956         return nullptr;
4957       }
4958 
4959       unsigned PrevIdx = Idx - NumOpsPerField;
4960       auto *PrevOffsetEntryCI =
4961           mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
4962       Offset -= PrevOffsetEntryCI->getValue();
4963       return cast<MDNode>(BaseNode->getOperand(PrevIdx));
4964     }
4965   }
4966 
4967   unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
4968   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
4969       BaseNode->getOperand(LastIdx + 1));
4970   Offset -= LastOffsetEntryCI->getValue();
4971   return cast<MDNode>(BaseNode->getOperand(LastIdx));
4972 }
4973 
isNewFormatTBAATypeNode(llvm::MDNode * Type)4974 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
4975   if (!Type || Type->getNumOperands() < 3)
4976     return false;
4977 
4978   // In the new format type nodes shall have a reference to the parent type as
4979   // its first operand.
4980   MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
4981   if (!Parent)
4982     return false;
4983 
4984   return true;
4985 }
4986 
visitTBAAMetadata(Instruction & I,const MDNode * MD)4987 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
4988   AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
4989                  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
4990                  isa<AtomicCmpXchgInst>(I),
4991              "This instruction shall not have a TBAA access tag!", &I);
4992 
4993   bool IsStructPathTBAA =
4994       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
4995 
4996   AssertTBAA(
4997       IsStructPathTBAA,
4998       "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
4999 
5000   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
5001   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5002 
5003   bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
5004 
5005   if (IsNewFormat) {
5006     AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
5007                "Access tag metadata must have either 4 or 5 operands", &I, MD);
5008   } else {
5009     AssertTBAA(MD->getNumOperands() < 5,
5010                "Struct tag metadata must have either 3 or 4 operands", &I, MD);
5011   }
5012 
5013   // Check the access size field.
5014   if (IsNewFormat) {
5015     auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5016         MD->getOperand(3));
5017     AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
5018   }
5019 
5020   // Check the immutability flag.
5021   unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
5022   if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
5023     auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
5024         MD->getOperand(ImmutabilityFlagOpNo));
5025     AssertTBAA(IsImmutableCI,
5026                "Immutability tag on struct tag metadata must be a constant",
5027                &I, MD);
5028     AssertTBAA(
5029         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
5030         "Immutability part of the struct tag metadata must be either 0 or 1",
5031         &I, MD);
5032   }
5033 
5034   AssertTBAA(BaseNode && AccessType,
5035              "Malformed struct tag metadata: base and access-type "
5036              "should be non-null and point to Metadata nodes",
5037              &I, MD, BaseNode, AccessType);
5038 
5039   if (!IsNewFormat) {
5040     AssertTBAA(isValidScalarTBAANode(AccessType),
5041                "Access type node must be a valid scalar type", &I, MD,
5042                AccessType);
5043   }
5044 
5045   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
5046   AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
5047 
5048   APInt Offset = OffsetCI->getValue();
5049   bool SeenAccessTypeInPath = false;
5050 
5051   SmallPtrSet<MDNode *, 4> StructPath;
5052 
5053   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
5054        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
5055                                                IsNewFormat)) {
5056     if (!StructPath.insert(BaseNode).second) {
5057       CheckFailed("Cycle detected in struct path", &I, MD);
5058       return false;
5059     }
5060 
5061     bool Invalid;
5062     unsigned BaseNodeBitWidth;
5063     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
5064                                                              IsNewFormat);
5065 
5066     // If the base node is invalid in itself, then we've already printed all the
5067     // errors we wanted to print.
5068     if (Invalid)
5069       return false;
5070 
5071     SeenAccessTypeInPath |= BaseNode == AccessType;
5072 
5073     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
5074       AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
5075                  &I, MD, &Offset);
5076 
5077     AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
5078                    (BaseNodeBitWidth == 0 && Offset == 0) ||
5079                    (IsNewFormat && BaseNodeBitWidth == ~0u),
5080                "Access bit-width not the same as description bit-width", &I, MD,
5081                BaseNodeBitWidth, Offset.getBitWidth());
5082 
5083     if (IsNewFormat && SeenAccessTypeInPath)
5084       break;
5085   }
5086 
5087   AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
5088              &I, MD);
5089   return true;
5090 }
5091 
5092 char VerifierLegacyPass::ID = 0;
5093 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
5094 
createVerifierPass(bool FatalErrors)5095 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
5096   return new VerifierLegacyPass(FatalErrors);
5097 }
5098 
5099 AnalysisKey VerifierAnalysis::Key;
run(Module & M,ModuleAnalysisManager &)5100 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
5101                                                ModuleAnalysisManager &) {
5102   Result Res;
5103   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
5104   return Res;
5105 }
5106 
run(Function & F,FunctionAnalysisManager &)5107 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
5108                                                FunctionAnalysisManager &) {
5109   return { llvm::verifyFunction(F, &dbgs()), false };
5110 }
5111 
run(Module & M,ModuleAnalysisManager & AM)5112 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
5113   auto Res = AM.getResult<VerifierAnalysis>(M);
5114   if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
5115     report_fatal_error("Broken module found, compilation aborted!");
5116 
5117   return PreservedAnalyses::all();
5118 }
5119 
run(Function & F,FunctionAnalysisManager & AM)5120 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
5121   auto res = AM.getResult<VerifierAnalysis>(F);
5122   if (res.IRBroken && FatalErrors)
5123     report_fatal_error("Broken function found, compilation aborted!");
5124 
5125   return PreservedAnalyses::all();
5126 }
5127