1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
12 //
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
15 //
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * A landing pad is defined by a landingpad instruction, and can be jumped to
39 // only by the unwind edge of an invoke instruction.
40 // * A landingpad instruction must be the first non-PHI instruction in the
41 // block.
42 // * Landingpad instructions must be in a function with a personality function.
43 // * All other things that are tested by asserts spread about the code...
44 //
45 //===----------------------------------------------------------------------===//
46
47 #include "llvm/IR/Verifier.h"
48 #include "llvm/ADT/APFloat.h"
49 #include "llvm/ADT/APInt.h"
50 #include "llvm/ADT/ArrayRef.h"
51 #include "llvm/ADT/DenseMap.h"
52 #include "llvm/ADT/MapVector.h"
53 #include "llvm/ADT/Optional.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/SmallPtrSet.h"
56 #include "llvm/ADT/SmallSet.h"
57 #include "llvm/ADT/SmallVector.h"
58 #include "llvm/ADT/StringExtras.h"
59 #include "llvm/ADT/StringMap.h"
60 #include "llvm/ADT/StringRef.h"
61 #include "llvm/ADT/Twine.h"
62 #include "llvm/ADT/ilist.h"
63 #include "llvm/BinaryFormat/Dwarf.h"
64 #include "llvm/IR/Argument.h"
65 #include "llvm/IR/Attributes.h"
66 #include "llvm/IR/BasicBlock.h"
67 #include "llvm/IR/CFG.h"
68 #include "llvm/IR/CallSite.h"
69 #include "llvm/IR/CallingConv.h"
70 #include "llvm/IR/Comdat.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfo.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Dominators.h"
80 #include "llvm/IR/Function.h"
81 #include "llvm/IR/GlobalAlias.h"
82 #include "llvm/IR/GlobalValue.h"
83 #include "llvm/IR/GlobalVariable.h"
84 #include "llvm/IR/InlineAsm.h"
85 #include "llvm/IR/InstVisitor.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/Metadata.h"
93 #include "llvm/IR/Module.h"
94 #include "llvm/IR/ModuleSlotTracker.h"
95 #include "llvm/IR/PassManager.h"
96 #include "llvm/IR/Statepoint.h"
97 #include "llvm/IR/Type.h"
98 #include "llvm/IR/Use.h"
99 #include "llvm/IR/User.h"
100 #include "llvm/IR/Value.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Debug.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include <algorithm>
110 #include <cassert>
111 #include <cstdint>
112 #include <memory>
113 #include <string>
114 #include <utility>
115
116 using namespace llvm;
117
118 namespace llvm {
119
120 struct VerifierSupport {
121 raw_ostream *OS;
122 const Module &M;
123 ModuleSlotTracker MST;
124 const DataLayout &DL;
125 LLVMContext &Context;
126
127 /// Track the brokenness of the module while recursively visiting.
128 bool Broken = false;
129 /// Broken debug info can be "recovered" from by stripping the debug info.
130 bool BrokenDebugInfo = false;
131 /// Whether to treat broken debug info as an error.
132 bool TreatBrokenDebugInfoAsError = true;
133
VerifierSupportllvm::VerifierSupport134 explicit VerifierSupport(raw_ostream *OS, const Module &M)
135 : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
136
137 private:
Writellvm::VerifierSupport138 void Write(const Module *M) {
139 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
140 }
141
Writellvm::VerifierSupport142 void Write(const Value *V) {
143 if (!V)
144 return;
145 if (isa<Instruction>(V)) {
146 V->print(*OS, MST);
147 *OS << '\n';
148 } else {
149 V->printAsOperand(*OS, true, MST);
150 *OS << '\n';
151 }
152 }
153
Writellvm::VerifierSupport154 void Write(ImmutableCallSite CS) {
155 Write(CS.getInstruction());
156 }
157
Writellvm::VerifierSupport158 void Write(const Metadata *MD) {
159 if (!MD)
160 return;
161 MD->print(*OS, MST, &M);
162 *OS << '\n';
163 }
164
Writellvm::VerifierSupport165 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
166 Write(MD.get());
167 }
168
Writellvm::VerifierSupport169 void Write(const NamedMDNode *NMD) {
170 if (!NMD)
171 return;
172 NMD->print(*OS, MST);
173 *OS << '\n';
174 }
175
Writellvm::VerifierSupport176 void Write(Type *T) {
177 if (!T)
178 return;
179 *OS << ' ' << *T;
180 }
181
Writellvm::VerifierSupport182 void Write(const Comdat *C) {
183 if (!C)
184 return;
185 *OS << *C;
186 }
187
Writellvm::VerifierSupport188 void Write(const APInt *AI) {
189 if (!AI)
190 return;
191 *OS << *AI << '\n';
192 }
193
Writellvm::VerifierSupport194 void Write(const unsigned i) { *OS << i << '\n'; }
195
Writellvm::VerifierSupport196 template <typename T> void Write(ArrayRef<T> Vs) {
197 for (const T &V : Vs)
198 Write(V);
199 }
200
201 template <typename T1, typename... Ts>
WriteTsllvm::VerifierSupport202 void WriteTs(const T1 &V1, const Ts &... Vs) {
203 Write(V1);
204 WriteTs(Vs...);
205 }
206
WriteTsllvm::VerifierSupport207 template <typename... Ts> void WriteTs() {}
208
209 public:
210 /// A check failed, so printout out the condition and the message.
211 ///
212 /// This provides a nice place to put a breakpoint if you want to see why
213 /// something is not correct.
CheckFailedllvm::VerifierSupport214 void CheckFailed(const Twine &Message) {
215 if (OS)
216 *OS << Message << '\n';
217 Broken = true;
218 }
219
220 /// A check failed (with values to print).
221 ///
222 /// This calls the Message-only version so that the above is easier to set a
223 /// breakpoint on.
224 template <typename T1, typename... Ts>
CheckFailedllvm::VerifierSupport225 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
226 CheckFailed(Message);
227 if (OS)
228 WriteTs(V1, Vs...);
229 }
230
231 /// A debug info check failed.
DebugInfoCheckFailedllvm::VerifierSupport232 void DebugInfoCheckFailed(const Twine &Message) {
233 if (OS)
234 *OS << Message << '\n';
235 Broken |= TreatBrokenDebugInfoAsError;
236 BrokenDebugInfo = true;
237 }
238
239 /// A debug info check failed (with values to print).
240 template <typename T1, typename... Ts>
DebugInfoCheckFailedllvm::VerifierSupport241 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
242 const Ts &... Vs) {
243 DebugInfoCheckFailed(Message);
244 if (OS)
245 WriteTs(V1, Vs...);
246 }
247 };
248
249 } // namespace llvm
250
251 namespace {
252
253 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
254 friend class InstVisitor<Verifier>;
255
256 DominatorTree DT;
257
258 /// When verifying a basic block, keep track of all of the
259 /// instructions we have seen so far.
260 ///
261 /// This allows us to do efficient dominance checks for the case when an
262 /// instruction has an operand that is an instruction in the same block.
263 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
264
265 /// Keep track of the metadata nodes that have been checked already.
266 SmallPtrSet<const Metadata *, 32> MDNodes;
267
268 /// Keep track which DISubprogram is attached to which function.
269 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
270
271 /// Track all DICompileUnits visited.
272 SmallPtrSet<const Metadata *, 2> CUVisited;
273
274 /// The result type for a landingpad.
275 Type *LandingPadResultTy;
276
277 /// Whether we've seen a call to @llvm.localescape in this function
278 /// already.
279 bool SawFrameEscape;
280
281 /// Whether the current function has a DISubprogram attached to it.
282 bool HasDebugInfo = false;
283
284 /// Stores the count of how many objects were passed to llvm.localescape for a
285 /// given function and the largest index passed to llvm.localrecover.
286 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
287
288 // Maps catchswitches and cleanuppads that unwind to siblings to the
289 // terminators that indicate the unwind, used to detect cycles therein.
290 MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo;
291
292 /// Cache of constants visited in search of ConstantExprs.
293 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
294
295 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
296 SmallVector<const Function *, 4> DeoptimizeDeclarations;
297
298 // Verify that this GlobalValue is only used in this module.
299 // This map is used to avoid visiting uses twice. We can arrive at a user
300 // twice, if they have multiple operands. In particular for very large
301 // constant expressions, we can arrive at a particular user many times.
302 SmallPtrSet<const Value *, 32> GlobalValueVisited;
303
304 // Keeps track of duplicate function argument debug info.
305 SmallVector<const DILocalVariable *, 16> DebugFnArgs;
306
307 TBAAVerifier TBAAVerifyHelper;
308
309 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
310
311 public:
Verifier(raw_ostream * OS,bool ShouldTreatBrokenDebugInfoAsError,const Module & M)312 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
313 const Module &M)
314 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
315 SawFrameEscape(false), TBAAVerifyHelper(this) {
316 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
317 }
318
hasBrokenDebugInfo() const319 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
320
verify(const Function & F)321 bool verify(const Function &F) {
322 assert(F.getParent() == &M &&
323 "An instance of this class only works with a specific module!");
324
325 // First ensure the function is well-enough formed to compute dominance
326 // information, and directly compute a dominance tree. We don't rely on the
327 // pass manager to provide this as it isolates us from a potentially
328 // out-of-date dominator tree and makes it significantly more complex to run
329 // this code outside of a pass manager.
330 // FIXME: It's really gross that we have to cast away constness here.
331 if (!F.empty())
332 DT.recalculate(const_cast<Function &>(F));
333
334 for (const BasicBlock &BB : F) {
335 if (!BB.empty() && BB.back().isTerminator())
336 continue;
337
338 if (OS) {
339 *OS << "Basic Block in function '" << F.getName()
340 << "' does not have terminator!\n";
341 BB.printAsOperand(*OS, true, MST);
342 *OS << "\n";
343 }
344 return false;
345 }
346
347 Broken = false;
348 // FIXME: We strip const here because the inst visitor strips const.
349 visit(const_cast<Function &>(F));
350 verifySiblingFuncletUnwinds();
351 InstsInThisBlock.clear();
352 DebugFnArgs.clear();
353 LandingPadResultTy = nullptr;
354 SawFrameEscape = false;
355 SiblingFuncletInfo.clear();
356
357 return !Broken;
358 }
359
360 /// Verify the module that this instance of \c Verifier was initialized with.
verify()361 bool verify() {
362 Broken = false;
363
364 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
365 for (const Function &F : M)
366 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
367 DeoptimizeDeclarations.push_back(&F);
368
369 // Now that we've visited every function, verify that we never asked to
370 // recover a frame index that wasn't escaped.
371 verifyFrameRecoverIndices();
372 for (const GlobalVariable &GV : M.globals())
373 visitGlobalVariable(GV);
374
375 for (const GlobalAlias &GA : M.aliases())
376 visitGlobalAlias(GA);
377
378 for (const NamedMDNode &NMD : M.named_metadata())
379 visitNamedMDNode(NMD);
380
381 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
382 visitComdat(SMEC.getValue());
383
384 visitModuleFlags(M);
385 visitModuleIdents(M);
386
387 verifyCompileUnits();
388
389 verifyDeoptimizeCallingConvs();
390 DISubprogramAttachments.clear();
391 return !Broken;
392 }
393
394 private:
395 // Verification methods...
396 void visitGlobalValue(const GlobalValue &GV);
397 void visitGlobalVariable(const GlobalVariable &GV);
398 void visitGlobalAlias(const GlobalAlias &GA);
399 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
400 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
401 const GlobalAlias &A, const Constant &C);
402 void visitNamedMDNode(const NamedMDNode &NMD);
403 void visitMDNode(const MDNode &MD);
404 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
405 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
406 void visitComdat(const Comdat &C);
407 void visitModuleIdents(const Module &M);
408 void visitModuleFlags(const Module &M);
409 void visitModuleFlag(const MDNode *Op,
410 DenseMap<const MDString *, const MDNode *> &SeenIDs,
411 SmallVectorImpl<const MDNode *> &Requirements);
412 void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
413 void visitFunction(const Function &F);
414 void visitBasicBlock(BasicBlock &BB);
415 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
416 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
417
418 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
419 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
420 #include "llvm/IR/Metadata.def"
421 void visitDIScope(const DIScope &N);
422 void visitDIVariable(const DIVariable &N);
423 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
424 void visitDITemplateParameter(const DITemplateParameter &N);
425
426 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
427
428 // InstVisitor overrides...
429 using InstVisitor<Verifier>::visit;
430 void visit(Instruction &I);
431
432 void visitTruncInst(TruncInst &I);
433 void visitZExtInst(ZExtInst &I);
434 void visitSExtInst(SExtInst &I);
435 void visitFPTruncInst(FPTruncInst &I);
436 void visitFPExtInst(FPExtInst &I);
437 void visitFPToUIInst(FPToUIInst &I);
438 void visitFPToSIInst(FPToSIInst &I);
439 void visitUIToFPInst(UIToFPInst &I);
440 void visitSIToFPInst(SIToFPInst &I);
441 void visitIntToPtrInst(IntToPtrInst &I);
442 void visitPtrToIntInst(PtrToIntInst &I);
443 void visitBitCastInst(BitCastInst &I);
444 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
445 void visitPHINode(PHINode &PN);
446 void visitBinaryOperator(BinaryOperator &B);
447 void visitICmpInst(ICmpInst &IC);
448 void visitFCmpInst(FCmpInst &FC);
449 void visitExtractElementInst(ExtractElementInst &EI);
450 void visitInsertElementInst(InsertElementInst &EI);
451 void visitShuffleVectorInst(ShuffleVectorInst &EI);
visitVAArgInst(VAArgInst & VAA)452 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
453 void visitCallInst(CallInst &CI);
454 void visitInvokeInst(InvokeInst &II);
455 void visitGetElementPtrInst(GetElementPtrInst &GEP);
456 void visitLoadInst(LoadInst &LI);
457 void visitStoreInst(StoreInst &SI);
458 void verifyDominatesUse(Instruction &I, unsigned i);
459 void visitInstruction(Instruction &I);
460 void visitTerminatorInst(TerminatorInst &I);
461 void visitBranchInst(BranchInst &BI);
462 void visitReturnInst(ReturnInst &RI);
463 void visitSwitchInst(SwitchInst &SI);
464 void visitIndirectBrInst(IndirectBrInst &BI);
465 void visitSelectInst(SelectInst &SI);
466 void visitUserOp1(Instruction &I);
visitUserOp2(Instruction & I)467 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
468 void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
469 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
470 void visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII);
471 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
472 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
473 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
474 void visitFenceInst(FenceInst &FI);
475 void visitAllocaInst(AllocaInst &AI);
476 void visitExtractValueInst(ExtractValueInst &EVI);
477 void visitInsertValueInst(InsertValueInst &IVI);
478 void visitEHPadPredecessors(Instruction &I);
479 void visitLandingPadInst(LandingPadInst &LPI);
480 void visitResumeInst(ResumeInst &RI);
481 void visitCatchPadInst(CatchPadInst &CPI);
482 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
483 void visitCleanupPadInst(CleanupPadInst &CPI);
484 void visitFuncletPadInst(FuncletPadInst &FPI);
485 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
486 void visitCleanupReturnInst(CleanupReturnInst &CRI);
487
488 void verifyCallSite(CallSite CS);
489 void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
490 void verifySwiftErrorValue(const Value *SwiftErrorVal);
491 void verifyMustTailCall(CallInst &CI);
492 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
493 unsigned ArgNo, std::string &Suffix);
494 bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
495 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
496 const Value *V);
497 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
498 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
499 const Value *V);
500 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
501
502 void visitConstantExprsRecursively(const Constant *EntryC);
503 void visitConstantExpr(const ConstantExpr *CE);
504 void verifyStatepoint(ImmutableCallSite CS);
505 void verifyFrameRecoverIndices();
506 void verifySiblingFuncletUnwinds();
507
508 void verifyFragmentExpression(const DbgInfoIntrinsic &I);
509 template <typename ValueOrMetadata>
510 void verifyFragmentExpression(const DIVariable &V,
511 DIExpression::FragmentInfo Fragment,
512 ValueOrMetadata *Desc);
513 void verifyFnArgs(const DbgInfoIntrinsic &I);
514
515 /// Module-level debug info verification...
516 void verifyCompileUnits();
517
518 /// Module-level verification that all @llvm.experimental.deoptimize
519 /// declarations share the same calling convention.
520 void verifyDeoptimizeCallingConvs();
521 };
522
523 } // end anonymous namespace
524
525 /// We know that cond should be true, if not print an error message.
526 #define Assert(C, ...) \
527 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
528
529 /// We know that a debug info condition should be true, if not print
530 /// an error message.
531 #define AssertDI(C, ...) \
532 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
533
visit(Instruction & I)534 void Verifier::visit(Instruction &I) {
535 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
536 Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
537 InstVisitor<Verifier>::visit(I);
538 }
539
540 // Helper to recursively iterate over indirect users. By
541 // returning false, the callback can ask to stop recursing
542 // further.
forEachUser(const Value * User,SmallPtrSet<const Value *,32> & Visited,llvm::function_ref<bool (const Value *)> Callback)543 static void forEachUser(const Value *User,
544 SmallPtrSet<const Value *, 32> &Visited,
545 llvm::function_ref<bool(const Value *)> Callback) {
546 if (!Visited.insert(User).second)
547 return;
548 for (const Value *TheNextUser : User->materialized_users())
549 if (Callback(TheNextUser))
550 forEachUser(TheNextUser, Visited, Callback);
551 }
552
visitGlobalValue(const GlobalValue & GV)553 void Verifier::visitGlobalValue(const GlobalValue &GV) {
554 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
555 "Global is external, but doesn't have external or weak linkage!", &GV);
556
557 Assert(GV.getAlignment() <= Value::MaximumAlignment,
558 "huge alignment values are unsupported", &GV);
559 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
560 "Only global variables can have appending linkage!", &GV);
561
562 if (GV.hasAppendingLinkage()) {
563 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
564 Assert(GVar && GVar->getValueType()->isArrayTy(),
565 "Only global arrays can have appending linkage!", GVar);
566 }
567
568 if (GV.isDeclarationForLinker())
569 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
570
571 if (GV.hasDLLImportStorageClass()) {
572 Assert(!GV.isDSOLocal(),
573 "GlobalValue with DLLImport Storage is dso_local!", &GV);
574
575 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||
576 GV.hasAvailableExternallyLinkage(),
577 "Global is marked as dllimport, but not external", &GV);
578 }
579
580 if (GV.hasLocalLinkage())
581 Assert(GV.isDSOLocal(),
582 "GlobalValue with private or internal linkage must be dso_local!",
583 &GV);
584
585 if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage())
586 Assert(GV.isDSOLocal(),
587 "GlobalValue with non default visibility must be dso_local!", &GV);
588
589 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
590 if (const Instruction *I = dyn_cast<Instruction>(V)) {
591 if (!I->getParent() || !I->getParent()->getParent())
592 CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
593 I);
594 else if (I->getParent()->getParent()->getParent() != &M)
595 CheckFailed("Global is referenced in a different module!", &GV, &M, I,
596 I->getParent()->getParent(),
597 I->getParent()->getParent()->getParent());
598 return false;
599 } else if (const Function *F = dyn_cast<Function>(V)) {
600 if (F->getParent() != &M)
601 CheckFailed("Global is used by function in a different module", &GV, &M,
602 F, F->getParent());
603 return false;
604 }
605 return true;
606 });
607 }
608
visitGlobalVariable(const GlobalVariable & GV)609 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
610 if (GV.hasInitializer()) {
611 Assert(GV.getInitializer()->getType() == GV.getValueType(),
612 "Global variable initializer type does not match global "
613 "variable type!",
614 &GV);
615 // If the global has common linkage, it must have a zero initializer and
616 // cannot be constant.
617 if (GV.hasCommonLinkage()) {
618 Assert(GV.getInitializer()->isNullValue(),
619 "'common' global must have a zero initializer!", &GV);
620 Assert(!GV.isConstant(), "'common' global may not be marked constant!",
621 &GV);
622 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
623 }
624 }
625
626 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
627 GV.getName() == "llvm.global_dtors")) {
628 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
629 "invalid linkage for intrinsic global variable", &GV);
630 // Don't worry about emitting an error for it not being an array,
631 // visitGlobalValue will complain on appending non-array.
632 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
633 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
634 PointerType *FuncPtrTy =
635 FunctionType::get(Type::getVoidTy(Context), false)->getPointerTo();
636 // FIXME: Reject the 2-field form in LLVM 4.0.
637 Assert(STy &&
638 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
639 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
640 STy->getTypeAtIndex(1) == FuncPtrTy,
641 "wrong type for intrinsic global variable", &GV);
642 if (STy->getNumElements() == 3) {
643 Type *ETy = STy->getTypeAtIndex(2);
644 Assert(ETy->isPointerTy() &&
645 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
646 "wrong type for intrinsic global variable", &GV);
647 }
648 }
649 }
650
651 if (GV.hasName() && (GV.getName() == "llvm.used" ||
652 GV.getName() == "llvm.compiler.used")) {
653 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
654 "invalid linkage for intrinsic global variable", &GV);
655 Type *GVType = GV.getValueType();
656 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
657 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
658 Assert(PTy, "wrong type for intrinsic global variable", &GV);
659 if (GV.hasInitializer()) {
660 const Constant *Init = GV.getInitializer();
661 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
662 Assert(InitArray, "wrong initalizer for intrinsic global variable",
663 Init);
664 for (Value *Op : InitArray->operands()) {
665 Value *V = Op->stripPointerCastsNoFollowAliases();
666 Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
667 isa<GlobalAlias>(V),
668 "invalid llvm.used member", V);
669 Assert(V->hasName(), "members of llvm.used must be named", V);
670 }
671 }
672 }
673 }
674
675 // Visit any debug info attachments.
676 SmallVector<MDNode *, 1> MDs;
677 GV.getMetadata(LLVMContext::MD_dbg, MDs);
678 for (auto *MD : MDs) {
679 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
680 visitDIGlobalVariableExpression(*GVE);
681 else
682 AssertDI(false, "!dbg attachment of global variable must be a "
683 "DIGlobalVariableExpression");
684 }
685
686 if (!GV.hasInitializer()) {
687 visitGlobalValue(GV);
688 return;
689 }
690
691 // Walk any aggregate initializers looking for bitcasts between address spaces
692 visitConstantExprsRecursively(GV.getInitializer());
693
694 visitGlobalValue(GV);
695 }
696
visitAliaseeSubExpr(const GlobalAlias & GA,const Constant & C)697 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
698 SmallPtrSet<const GlobalAlias*, 4> Visited;
699 Visited.insert(&GA);
700 visitAliaseeSubExpr(Visited, GA, C);
701 }
702
visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias * > & Visited,const GlobalAlias & GA,const Constant & C)703 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
704 const GlobalAlias &GA, const Constant &C) {
705 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
706 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
707 &GA);
708
709 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
710 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
711
712 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
713 &GA);
714 } else {
715 // Only continue verifying subexpressions of GlobalAliases.
716 // Do not recurse into global initializers.
717 return;
718 }
719 }
720
721 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
722 visitConstantExprsRecursively(CE);
723
724 for (const Use &U : C.operands()) {
725 Value *V = &*U;
726 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
727 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
728 else if (const auto *C2 = dyn_cast<Constant>(V))
729 visitAliaseeSubExpr(Visited, GA, *C2);
730 }
731 }
732
visitGlobalAlias(const GlobalAlias & GA)733 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
734 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
735 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
736 "weak_odr, or external linkage!",
737 &GA);
738 const Constant *Aliasee = GA.getAliasee();
739 Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
740 Assert(GA.getType() == Aliasee->getType(),
741 "Alias and aliasee types should match!", &GA);
742
743 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
744 "Aliasee should be either GlobalValue or ConstantExpr", &GA);
745
746 visitAliaseeSubExpr(GA, *Aliasee);
747
748 visitGlobalValue(GA);
749 }
750
visitNamedMDNode(const NamedMDNode & NMD)751 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
752 // There used to be various other llvm.dbg.* nodes, but we don't support
753 // upgrading them and we want to reserve the namespace for future uses.
754 if (NMD.getName().startswith("llvm.dbg."))
755 AssertDI(NMD.getName() == "llvm.dbg.cu",
756 "unrecognized named metadata node in the llvm.dbg namespace",
757 &NMD);
758 for (const MDNode *MD : NMD.operands()) {
759 if (NMD.getName() == "llvm.dbg.cu")
760 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
761
762 if (!MD)
763 continue;
764
765 visitMDNode(*MD);
766 }
767 }
768
visitMDNode(const MDNode & MD)769 void Verifier::visitMDNode(const MDNode &MD) {
770 // Only visit each node once. Metadata can be mutually recursive, so this
771 // avoids infinite recursion here, as well as being an optimization.
772 if (!MDNodes.insert(&MD).second)
773 return;
774
775 switch (MD.getMetadataID()) {
776 default:
777 llvm_unreachable("Invalid MDNode subclass");
778 case Metadata::MDTupleKind:
779 break;
780 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
781 case Metadata::CLASS##Kind: \
782 visit##CLASS(cast<CLASS>(MD)); \
783 break;
784 #include "llvm/IR/Metadata.def"
785 }
786
787 for (const Metadata *Op : MD.operands()) {
788 if (!Op)
789 continue;
790 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
791 &MD, Op);
792 if (auto *N = dyn_cast<MDNode>(Op)) {
793 visitMDNode(*N);
794 continue;
795 }
796 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
797 visitValueAsMetadata(*V, nullptr);
798 continue;
799 }
800 }
801
802 // Check these last, so we diagnose problems in operands first.
803 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
804 Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
805 }
806
visitValueAsMetadata(const ValueAsMetadata & MD,Function * F)807 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
808 Assert(MD.getValue(), "Expected valid value", &MD);
809 Assert(!MD.getValue()->getType()->isMetadataTy(),
810 "Unexpected metadata round-trip through values", &MD, MD.getValue());
811
812 auto *L = dyn_cast<LocalAsMetadata>(&MD);
813 if (!L)
814 return;
815
816 Assert(F, "function-local metadata used outside a function", L);
817
818 // If this was an instruction, bb, or argument, verify that it is in the
819 // function that we expect.
820 Function *ActualF = nullptr;
821 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
822 Assert(I->getParent(), "function-local metadata not in basic block", L, I);
823 ActualF = I->getParent()->getParent();
824 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
825 ActualF = BB->getParent();
826 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
827 ActualF = A->getParent();
828 assert(ActualF && "Unimplemented function local metadata case!");
829
830 Assert(ActualF == F, "function-local metadata used in wrong function", L);
831 }
832
visitMetadataAsValue(const MetadataAsValue & MDV,Function * F)833 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
834 Metadata *MD = MDV.getMetadata();
835 if (auto *N = dyn_cast<MDNode>(MD)) {
836 visitMDNode(*N);
837 return;
838 }
839
840 // Only visit each node once. Metadata can be mutually recursive, so this
841 // avoids infinite recursion here, as well as being an optimization.
842 if (!MDNodes.insert(MD).second)
843 return;
844
845 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
846 visitValueAsMetadata(*V, F);
847 }
848
isType(const Metadata * MD)849 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
isScope(const Metadata * MD)850 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
isDINode(const Metadata * MD)851 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
852
visitDILocation(const DILocation & N)853 void Verifier::visitDILocation(const DILocation &N) {
854 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
855 "location requires a valid scope", &N, N.getRawScope());
856 if (auto *IA = N.getRawInlinedAt())
857 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
858 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
859 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
860 }
861
visitGenericDINode(const GenericDINode & N)862 void Verifier::visitGenericDINode(const GenericDINode &N) {
863 AssertDI(N.getTag(), "invalid tag", &N);
864 }
865
visitDIScope(const DIScope & N)866 void Verifier::visitDIScope(const DIScope &N) {
867 if (auto *F = N.getRawFile())
868 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
869 }
870
visitDISubrange(const DISubrange & N)871 void Verifier::visitDISubrange(const DISubrange &N) {
872 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
873 auto Count = N.getCount();
874 AssertDI(Count, "Count must either be a signed constant or a DIVariable",
875 &N);
876 AssertDI(!Count.is<ConstantInt*>() ||
877 Count.get<ConstantInt*>()->getSExtValue() >= -1,
878 "invalid subrange count", &N);
879 }
880
visitDIEnumerator(const DIEnumerator & N)881 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
882 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
883 }
884
visitDIBasicType(const DIBasicType & N)885 void Verifier::visitDIBasicType(const DIBasicType &N) {
886 AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
887 N.getTag() == dwarf::DW_TAG_unspecified_type,
888 "invalid tag", &N);
889 }
890
visitDIDerivedType(const DIDerivedType & N)891 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
892 // Common scope checks.
893 visitDIScope(N);
894
895 AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
896 N.getTag() == dwarf::DW_TAG_pointer_type ||
897 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
898 N.getTag() == dwarf::DW_TAG_reference_type ||
899 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
900 N.getTag() == dwarf::DW_TAG_const_type ||
901 N.getTag() == dwarf::DW_TAG_volatile_type ||
902 N.getTag() == dwarf::DW_TAG_restrict_type ||
903 N.getTag() == dwarf::DW_TAG_atomic_type ||
904 N.getTag() == dwarf::DW_TAG_member ||
905 N.getTag() == dwarf::DW_TAG_inheritance ||
906 N.getTag() == dwarf::DW_TAG_friend,
907 "invalid tag", &N);
908 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
909 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
910 N.getRawExtraData());
911 }
912
913 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
914 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
915 N.getRawBaseType());
916
917 if (N.getDWARFAddressSpace()) {
918 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
919 N.getTag() == dwarf::DW_TAG_reference_type,
920 "DWARF address space only applies to pointer or reference types",
921 &N);
922 }
923 }
924
925 /// Detect mutually exclusive flags.
hasConflictingReferenceFlags(unsigned Flags)926 static bool hasConflictingReferenceFlags(unsigned Flags) {
927 return ((Flags & DINode::FlagLValueReference) &&
928 (Flags & DINode::FlagRValueReference)) ||
929 ((Flags & DINode::FlagTypePassByValue) &&
930 (Flags & DINode::FlagTypePassByReference));
931 }
932
visitTemplateParams(const MDNode & N,const Metadata & RawParams)933 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
934 auto *Params = dyn_cast<MDTuple>(&RawParams);
935 AssertDI(Params, "invalid template params", &N, &RawParams);
936 for (Metadata *Op : Params->operands()) {
937 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
938 &N, Params, Op);
939 }
940 }
941
visitDICompositeType(const DICompositeType & N)942 void Verifier::visitDICompositeType(const DICompositeType &N) {
943 // Common scope checks.
944 visitDIScope(N);
945
946 AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
947 N.getTag() == dwarf::DW_TAG_structure_type ||
948 N.getTag() == dwarf::DW_TAG_union_type ||
949 N.getTag() == dwarf::DW_TAG_enumeration_type ||
950 N.getTag() == dwarf::DW_TAG_class_type ||
951 N.getTag() == dwarf::DW_TAG_variant_part,
952 "invalid tag", &N);
953
954 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
955 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
956 N.getRawBaseType());
957
958 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
959 "invalid composite elements", &N, N.getRawElements());
960 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
961 N.getRawVTableHolder());
962 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
963 "invalid reference flags", &N);
964
965 if (N.isVector()) {
966 const DINodeArray Elements = N.getElements();
967 AssertDI(Elements.size() == 1 &&
968 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
969 "invalid vector, expected one element of type subrange", &N);
970 }
971
972 if (auto *Params = N.getRawTemplateParams())
973 visitTemplateParams(N, *Params);
974
975 if (N.getTag() == dwarf::DW_TAG_class_type ||
976 N.getTag() == dwarf::DW_TAG_union_type) {
977 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
978 "class/union requires a filename", &N, N.getFile());
979 }
980
981 if (auto *D = N.getRawDiscriminator()) {
982 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
983 "discriminator can only appear on variant part");
984 }
985 }
986
visitDISubroutineType(const DISubroutineType & N)987 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
988 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
989 if (auto *Types = N.getRawTypeArray()) {
990 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
991 for (Metadata *Ty : N.getTypeArray()->operands()) {
992 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
993 }
994 }
995 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
996 "invalid reference flags", &N);
997 }
998
visitDIFile(const DIFile & N)999 void Verifier::visitDIFile(const DIFile &N) {
1000 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1001 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1002 if (Checksum) {
1003 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1004 "invalid checksum kind", &N);
1005 size_t Size;
1006 switch (Checksum->Kind) {
1007 case DIFile::CSK_MD5:
1008 Size = 32;
1009 break;
1010 case DIFile::CSK_SHA1:
1011 Size = 40;
1012 break;
1013 }
1014 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1015 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1016 "invalid checksum", &N);
1017 }
1018 }
1019
visitDICompileUnit(const DICompileUnit & N)1020 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1021 AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1022 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1023
1024 // Don't bother verifying the compilation directory or producer string
1025 // as those could be empty.
1026 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1027 N.getRawFile());
1028 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1029 N.getFile());
1030
1031 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1032 "invalid emission kind", &N);
1033
1034 if (auto *Array = N.getRawEnumTypes()) {
1035 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1036 for (Metadata *Op : N.getEnumTypes()->operands()) {
1037 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1038 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1039 "invalid enum type", &N, N.getEnumTypes(), Op);
1040 }
1041 }
1042 if (auto *Array = N.getRawRetainedTypes()) {
1043 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1044 for (Metadata *Op : N.getRetainedTypes()->operands()) {
1045 AssertDI(Op && (isa<DIType>(Op) ||
1046 (isa<DISubprogram>(Op) &&
1047 !cast<DISubprogram>(Op)->isDefinition())),
1048 "invalid retained type", &N, Op);
1049 }
1050 }
1051 if (auto *Array = N.getRawGlobalVariables()) {
1052 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1053 for (Metadata *Op : N.getGlobalVariables()->operands()) {
1054 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1055 "invalid global variable ref", &N, Op);
1056 }
1057 }
1058 if (auto *Array = N.getRawImportedEntities()) {
1059 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1060 for (Metadata *Op : N.getImportedEntities()->operands()) {
1061 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1062 &N, Op);
1063 }
1064 }
1065 if (auto *Array = N.getRawMacros()) {
1066 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1067 for (Metadata *Op : N.getMacros()->operands()) {
1068 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1069 }
1070 }
1071 CUVisited.insert(&N);
1072 }
1073
visitDISubprogram(const DISubprogram & N)1074 void Verifier::visitDISubprogram(const DISubprogram &N) {
1075 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1076 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1077 if (auto *F = N.getRawFile())
1078 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1079 else
1080 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1081 if (auto *T = N.getRawType())
1082 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1083 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1084 N.getRawContainingType());
1085 if (auto *Params = N.getRawTemplateParams())
1086 visitTemplateParams(N, *Params);
1087 if (auto *S = N.getRawDeclaration())
1088 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1089 "invalid subprogram declaration", &N, S);
1090 if (auto *RawNode = N.getRawRetainedNodes()) {
1091 auto *Node = dyn_cast<MDTuple>(RawNode);
1092 AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1093 for (Metadata *Op : Node->operands()) {
1094 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1095 "invalid retained nodes, expected DILocalVariable or DILabel",
1096 &N, Node, Op);
1097 }
1098 }
1099 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1100 "invalid reference flags", &N);
1101
1102 auto *Unit = N.getRawUnit();
1103 if (N.isDefinition()) {
1104 // Subprogram definitions (not part of the type hierarchy).
1105 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1106 AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1107 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1108 } else {
1109 // Subprogram declarations (part of the type hierarchy).
1110 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1111 }
1112
1113 if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1114 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1115 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1116 for (Metadata *Op : ThrownTypes->operands())
1117 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1118 Op);
1119 }
1120 }
1121
visitDILexicalBlockBase(const DILexicalBlockBase & N)1122 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1123 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1124 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1125 "invalid local scope", &N, N.getRawScope());
1126 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1127 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1128 }
1129
visitDILexicalBlock(const DILexicalBlock & N)1130 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1131 visitDILexicalBlockBase(N);
1132
1133 AssertDI(N.getLine() || !N.getColumn(),
1134 "cannot have column info without line info", &N);
1135 }
1136
visitDILexicalBlockFile(const DILexicalBlockFile & N)1137 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1138 visitDILexicalBlockBase(N);
1139 }
1140
visitDINamespace(const DINamespace & N)1141 void Verifier::visitDINamespace(const DINamespace &N) {
1142 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1143 if (auto *S = N.getRawScope())
1144 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1145 }
1146
visitDIMacro(const DIMacro & N)1147 void Verifier::visitDIMacro(const DIMacro &N) {
1148 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1149 N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1150 "invalid macinfo type", &N);
1151 AssertDI(!N.getName().empty(), "anonymous macro", &N);
1152 if (!N.getValue().empty()) {
1153 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1154 }
1155 }
1156
visitDIMacroFile(const DIMacroFile & N)1157 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1158 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1159 "invalid macinfo type", &N);
1160 if (auto *F = N.getRawFile())
1161 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1162
1163 if (auto *Array = N.getRawElements()) {
1164 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1165 for (Metadata *Op : N.getElements()->operands()) {
1166 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1167 }
1168 }
1169 }
1170
visitDIModule(const DIModule & N)1171 void Verifier::visitDIModule(const DIModule &N) {
1172 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1173 AssertDI(!N.getName().empty(), "anonymous module", &N);
1174 }
1175
visitDITemplateParameter(const DITemplateParameter & N)1176 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1177 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1178 }
1179
visitDITemplateTypeParameter(const DITemplateTypeParameter & N)1180 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1181 visitDITemplateParameter(N);
1182
1183 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1184 &N);
1185 }
1186
visitDITemplateValueParameter(const DITemplateValueParameter & N)1187 void Verifier::visitDITemplateValueParameter(
1188 const DITemplateValueParameter &N) {
1189 visitDITemplateParameter(N);
1190
1191 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1192 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1193 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1194 "invalid tag", &N);
1195 }
1196
visitDIVariable(const DIVariable & N)1197 void Verifier::visitDIVariable(const DIVariable &N) {
1198 if (auto *S = N.getRawScope())
1199 AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1200 if (auto *F = N.getRawFile())
1201 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1202 }
1203
visitDIGlobalVariable(const DIGlobalVariable & N)1204 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1205 // Checks common to all variables.
1206 visitDIVariable(N);
1207
1208 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1209 AssertDI(!N.getName().empty(), "missing global variable name", &N);
1210 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1211 AssertDI(N.getType(), "missing global variable type", &N);
1212 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1213 AssertDI(isa<DIDerivedType>(Member),
1214 "invalid static data member declaration", &N, Member);
1215 }
1216 }
1217
visitDILocalVariable(const DILocalVariable & N)1218 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1219 // Checks common to all variables.
1220 visitDIVariable(N);
1221
1222 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1223 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1224 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1225 "local variable requires a valid scope", &N, N.getRawScope());
1226 }
1227
visitDILabel(const DILabel & N)1228 void Verifier::visitDILabel(const DILabel &N) {
1229 if (auto *S = N.getRawScope())
1230 AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1231 if (auto *F = N.getRawFile())
1232 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1233
1234 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1235 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1236 "label requires a valid scope", &N, N.getRawScope());
1237 }
1238
visitDIExpression(const DIExpression & N)1239 void Verifier::visitDIExpression(const DIExpression &N) {
1240 AssertDI(N.isValid(), "invalid expression", &N);
1241 }
1242
visitDIGlobalVariableExpression(const DIGlobalVariableExpression & GVE)1243 void Verifier::visitDIGlobalVariableExpression(
1244 const DIGlobalVariableExpression &GVE) {
1245 AssertDI(GVE.getVariable(), "missing variable");
1246 if (auto *Var = GVE.getVariable())
1247 visitDIGlobalVariable(*Var);
1248 if (auto *Expr = GVE.getExpression()) {
1249 visitDIExpression(*Expr);
1250 if (auto Fragment = Expr->getFragmentInfo())
1251 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1252 }
1253 }
1254
visitDIObjCProperty(const DIObjCProperty & N)1255 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1256 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1257 if (auto *T = N.getRawType())
1258 AssertDI(isType(T), "invalid type ref", &N, T);
1259 if (auto *F = N.getRawFile())
1260 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1261 }
1262
visitDIImportedEntity(const DIImportedEntity & N)1263 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1264 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1265 N.getTag() == dwarf::DW_TAG_imported_declaration,
1266 "invalid tag", &N);
1267 if (auto *S = N.getRawScope())
1268 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1269 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1270 N.getRawEntity());
1271 }
1272
visitComdat(const Comdat & C)1273 void Verifier::visitComdat(const Comdat &C) {
1274 // The Module is invalid if the GlobalValue has private linkage. Entities
1275 // with private linkage don't have entries in the symbol table.
1276 if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1277 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1278 GV);
1279 }
1280
visitModuleIdents(const Module & M)1281 void Verifier::visitModuleIdents(const Module &M) {
1282 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1283 if (!Idents)
1284 return;
1285
1286 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1287 // Scan each llvm.ident entry and make sure that this requirement is met.
1288 for (const MDNode *N : Idents->operands()) {
1289 Assert(N->getNumOperands() == 1,
1290 "incorrect number of operands in llvm.ident metadata", N);
1291 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1292 ("invalid value for llvm.ident metadata entry operand"
1293 "(the operand should be a string)"),
1294 N->getOperand(0));
1295 }
1296 }
1297
visitModuleFlags(const Module & M)1298 void Verifier::visitModuleFlags(const Module &M) {
1299 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1300 if (!Flags) return;
1301
1302 // Scan each flag, and track the flags and requirements.
1303 DenseMap<const MDString*, const MDNode*> SeenIDs;
1304 SmallVector<const MDNode*, 16> Requirements;
1305 for (const MDNode *MDN : Flags->operands())
1306 visitModuleFlag(MDN, SeenIDs, Requirements);
1307
1308 // Validate that the requirements in the module are valid.
1309 for (const MDNode *Requirement : Requirements) {
1310 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1311 const Metadata *ReqValue = Requirement->getOperand(1);
1312
1313 const MDNode *Op = SeenIDs.lookup(Flag);
1314 if (!Op) {
1315 CheckFailed("invalid requirement on flag, flag is not present in module",
1316 Flag);
1317 continue;
1318 }
1319
1320 if (Op->getOperand(2) != ReqValue) {
1321 CheckFailed(("invalid requirement on flag, "
1322 "flag does not have the required value"),
1323 Flag);
1324 continue;
1325 }
1326 }
1327 }
1328
1329 void
visitModuleFlag(const MDNode * Op,DenseMap<const MDString *,const MDNode * > & SeenIDs,SmallVectorImpl<const MDNode * > & Requirements)1330 Verifier::visitModuleFlag(const MDNode *Op,
1331 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1332 SmallVectorImpl<const MDNode *> &Requirements) {
1333 // Each module flag should have three arguments, the merge behavior (a
1334 // constant int), the flag ID (an MDString), and the value.
1335 Assert(Op->getNumOperands() == 3,
1336 "incorrect number of operands in module flag", Op);
1337 Module::ModFlagBehavior MFB;
1338 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1339 Assert(
1340 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1341 "invalid behavior operand in module flag (expected constant integer)",
1342 Op->getOperand(0));
1343 Assert(false,
1344 "invalid behavior operand in module flag (unexpected constant)",
1345 Op->getOperand(0));
1346 }
1347 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1348 Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1349 Op->getOperand(1));
1350
1351 // Sanity check the values for behaviors with additional requirements.
1352 switch (MFB) {
1353 case Module::Error:
1354 case Module::Warning:
1355 case Module::Override:
1356 // These behavior types accept any value.
1357 break;
1358
1359 case Module::Max: {
1360 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1361 "invalid value for 'max' module flag (expected constant integer)",
1362 Op->getOperand(2));
1363 break;
1364 }
1365
1366 case Module::Require: {
1367 // The value should itself be an MDNode with two operands, a flag ID (an
1368 // MDString), and a value.
1369 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1370 Assert(Value && Value->getNumOperands() == 2,
1371 "invalid value for 'require' module flag (expected metadata pair)",
1372 Op->getOperand(2));
1373 Assert(isa<MDString>(Value->getOperand(0)),
1374 ("invalid value for 'require' module flag "
1375 "(first value operand should be a string)"),
1376 Value->getOperand(0));
1377
1378 // Append it to the list of requirements, to check once all module flags are
1379 // scanned.
1380 Requirements.push_back(Value);
1381 break;
1382 }
1383
1384 case Module::Append:
1385 case Module::AppendUnique: {
1386 // These behavior types require the operand be an MDNode.
1387 Assert(isa<MDNode>(Op->getOperand(2)),
1388 "invalid value for 'append'-type module flag "
1389 "(expected a metadata node)",
1390 Op->getOperand(2));
1391 break;
1392 }
1393 }
1394
1395 // Unless this is a "requires" flag, check the ID is unique.
1396 if (MFB != Module::Require) {
1397 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1398 Assert(Inserted,
1399 "module flag identifiers must be unique (or of 'require' type)", ID);
1400 }
1401
1402 if (ID->getString() == "wchar_size") {
1403 ConstantInt *Value
1404 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1405 Assert(Value, "wchar_size metadata requires constant integer argument");
1406 }
1407
1408 if (ID->getString() == "Linker Options") {
1409 // If the llvm.linker.options named metadata exists, we assume that the
1410 // bitcode reader has upgraded the module flag. Otherwise the flag might
1411 // have been created by a client directly.
1412 Assert(M.getNamedMetadata("llvm.linker.options"),
1413 "'Linker Options' named metadata no longer supported");
1414 }
1415
1416 if (ID->getString() == "CG Profile") {
1417 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1418 visitModuleFlagCGProfileEntry(MDO);
1419 }
1420 }
1421
visitModuleFlagCGProfileEntry(const MDOperand & MDO)1422 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1423 auto CheckFunction = [&](const MDOperand &FuncMDO) {
1424 if (!FuncMDO)
1425 return;
1426 auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1427 Assert(F && isa<Function>(F->getValue()), "expected a Function or null",
1428 FuncMDO);
1429 };
1430 auto Node = dyn_cast_or_null<MDNode>(MDO);
1431 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1432 CheckFunction(Node->getOperand(0));
1433 CheckFunction(Node->getOperand(1));
1434 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1435 Assert(Count && Count->getType()->isIntegerTy(),
1436 "expected an integer constant", Node->getOperand(2));
1437 }
1438
1439 /// Return true if this attribute kind only applies to functions.
isFuncOnlyAttr(Attribute::AttrKind Kind)1440 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1441 switch (Kind) {
1442 case Attribute::NoReturn:
1443 case Attribute::NoCfCheck:
1444 case Attribute::NoUnwind:
1445 case Attribute::NoInline:
1446 case Attribute::AlwaysInline:
1447 case Attribute::OptimizeForSize:
1448 case Attribute::StackProtect:
1449 case Attribute::StackProtectReq:
1450 case Attribute::StackProtectStrong:
1451 case Attribute::SafeStack:
1452 case Attribute::ShadowCallStack:
1453 case Attribute::NoRedZone:
1454 case Attribute::NoImplicitFloat:
1455 case Attribute::Naked:
1456 case Attribute::InlineHint:
1457 case Attribute::StackAlignment:
1458 case Attribute::UWTable:
1459 case Attribute::NonLazyBind:
1460 case Attribute::ReturnsTwice:
1461 case Attribute::SanitizeAddress:
1462 case Attribute::SanitizeHWAddress:
1463 case Attribute::SanitizeThread:
1464 case Attribute::SanitizeMemory:
1465 case Attribute::MinSize:
1466 case Attribute::NoDuplicate:
1467 case Attribute::Builtin:
1468 case Attribute::NoBuiltin:
1469 case Attribute::Cold:
1470 case Attribute::OptForFuzzing:
1471 case Attribute::OptimizeNone:
1472 case Attribute::JumpTable:
1473 case Attribute::Convergent:
1474 case Attribute::ArgMemOnly:
1475 case Attribute::NoRecurse:
1476 case Attribute::InaccessibleMemOnly:
1477 case Attribute::InaccessibleMemOrArgMemOnly:
1478 case Attribute::AllocSize:
1479 case Attribute::Speculatable:
1480 case Attribute::StrictFP:
1481 return true;
1482 default:
1483 break;
1484 }
1485 return false;
1486 }
1487
1488 /// Return true if this is a function attribute that can also appear on
1489 /// arguments.
isFuncOrArgAttr(Attribute::AttrKind Kind)1490 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1491 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1492 Kind == Attribute::ReadNone;
1493 }
1494
verifyAttributeTypes(AttributeSet Attrs,bool IsFunction,const Value * V)1495 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1496 const Value *V) {
1497 for (Attribute A : Attrs) {
1498 if (A.isStringAttribute())
1499 continue;
1500
1501 if (isFuncOnlyAttr(A.getKindAsEnum())) {
1502 if (!IsFunction) {
1503 CheckFailed("Attribute '" + A.getAsString() +
1504 "' only applies to functions!",
1505 V);
1506 return;
1507 }
1508 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1509 CheckFailed("Attribute '" + A.getAsString() +
1510 "' does not apply to functions!",
1511 V);
1512 return;
1513 }
1514 }
1515 }
1516
1517 // VerifyParameterAttrs - Check the given attributes for an argument or return
1518 // value of the specified type. The value V is printed in error messages.
verifyParameterAttrs(AttributeSet Attrs,Type * Ty,const Value * V)1519 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1520 const Value *V) {
1521 if (!Attrs.hasAttributes())
1522 return;
1523
1524 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1525
1526 // Check for mutually incompatible attributes. Only inreg is compatible with
1527 // sret.
1528 unsigned AttrCount = 0;
1529 AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1530 AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1531 AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1532 Attrs.hasAttribute(Attribute::InReg);
1533 AttrCount += Attrs.hasAttribute(Attribute::Nest);
1534 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1535 "and 'sret' are incompatible!",
1536 V);
1537
1538 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1539 Attrs.hasAttribute(Attribute::ReadOnly)),
1540 "Attributes "
1541 "'inalloca and readonly' are incompatible!",
1542 V);
1543
1544 Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1545 Attrs.hasAttribute(Attribute::Returned)),
1546 "Attributes "
1547 "'sret and returned' are incompatible!",
1548 V);
1549
1550 Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1551 Attrs.hasAttribute(Attribute::SExt)),
1552 "Attributes "
1553 "'zeroext and signext' are incompatible!",
1554 V);
1555
1556 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1557 Attrs.hasAttribute(Attribute::ReadOnly)),
1558 "Attributes "
1559 "'readnone and readonly' are incompatible!",
1560 V);
1561
1562 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1563 Attrs.hasAttribute(Attribute::WriteOnly)),
1564 "Attributes "
1565 "'readnone and writeonly' are incompatible!",
1566 V);
1567
1568 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1569 Attrs.hasAttribute(Attribute::WriteOnly)),
1570 "Attributes "
1571 "'readonly and writeonly' are incompatible!",
1572 V);
1573
1574 Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1575 Attrs.hasAttribute(Attribute::AlwaysInline)),
1576 "Attributes "
1577 "'noinline and alwaysinline' are incompatible!",
1578 V);
1579
1580 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1581 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1582 "Wrong types for attribute: " +
1583 AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1584 V);
1585
1586 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1587 SmallPtrSet<Type*, 4> Visited;
1588 if (!PTy->getElementType()->isSized(&Visited)) {
1589 Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1590 !Attrs.hasAttribute(Attribute::InAlloca),
1591 "Attributes 'byval' and 'inalloca' do not support unsized types!",
1592 V);
1593 }
1594 if (!isa<PointerType>(PTy->getElementType()))
1595 Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1596 "Attribute 'swifterror' only applies to parameters "
1597 "with pointer to pointer type!",
1598 V);
1599 } else {
1600 Assert(!Attrs.hasAttribute(Attribute::ByVal),
1601 "Attribute 'byval' only applies to parameters with pointer type!",
1602 V);
1603 Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1604 "Attribute 'swifterror' only applies to parameters "
1605 "with pointer type!",
1606 V);
1607 }
1608 }
1609
1610 // Check parameter attributes against a function type.
1611 // The value V is printed in error messages.
verifyFunctionAttrs(FunctionType * FT,AttributeList Attrs,const Value * V)1612 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1613 const Value *V) {
1614 if (Attrs.isEmpty())
1615 return;
1616
1617 bool SawNest = false;
1618 bool SawReturned = false;
1619 bool SawSRet = false;
1620 bool SawSwiftSelf = false;
1621 bool SawSwiftError = false;
1622
1623 // Verify return value attributes.
1624 AttributeSet RetAttrs = Attrs.getRetAttributes();
1625 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1626 !RetAttrs.hasAttribute(Attribute::Nest) &&
1627 !RetAttrs.hasAttribute(Attribute::StructRet) &&
1628 !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1629 !RetAttrs.hasAttribute(Attribute::Returned) &&
1630 !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1631 !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1632 !RetAttrs.hasAttribute(Attribute::SwiftError)),
1633 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1634 "'returned', 'swiftself', and 'swifterror' do not apply to return "
1635 "values!",
1636 V);
1637 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1638 !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1639 !RetAttrs.hasAttribute(Attribute::ReadNone)),
1640 "Attribute '" + RetAttrs.getAsString() +
1641 "' does not apply to function returns",
1642 V);
1643 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1644
1645 // Verify parameter attributes.
1646 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1647 Type *Ty = FT->getParamType(i);
1648 AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1649
1650 verifyParameterAttrs(ArgAttrs, Ty, V);
1651
1652 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1653 Assert(!SawNest, "More than one parameter has attribute nest!", V);
1654 SawNest = true;
1655 }
1656
1657 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1658 Assert(!SawReturned, "More than one parameter has attribute returned!",
1659 V);
1660 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1661 "Incompatible argument and return types for 'returned' attribute",
1662 V);
1663 SawReturned = true;
1664 }
1665
1666 if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1667 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1668 Assert(i == 0 || i == 1,
1669 "Attribute 'sret' is not on first or second parameter!", V);
1670 SawSRet = true;
1671 }
1672
1673 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1674 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1675 SawSwiftSelf = true;
1676 }
1677
1678 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1679 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1680 V);
1681 SawSwiftError = true;
1682 }
1683
1684 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1685 Assert(i == FT->getNumParams() - 1,
1686 "inalloca isn't on the last parameter!", V);
1687 }
1688 }
1689
1690 if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1691 return;
1692
1693 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1694
1695 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1696 Attrs.hasFnAttribute(Attribute::ReadOnly)),
1697 "Attributes 'readnone and readonly' are incompatible!", V);
1698
1699 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1700 Attrs.hasFnAttribute(Attribute::WriteOnly)),
1701 "Attributes 'readnone and writeonly' are incompatible!", V);
1702
1703 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1704 Attrs.hasFnAttribute(Attribute::WriteOnly)),
1705 "Attributes 'readonly and writeonly' are incompatible!", V);
1706
1707 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1708 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1709 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1710 "incompatible!",
1711 V);
1712
1713 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1714 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1715 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1716
1717 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1718 Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1719 "Attributes 'noinline and alwaysinline' are incompatible!", V);
1720
1721 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1722 Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1723 "Attribute 'optnone' requires 'noinline'!", V);
1724
1725 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1726 "Attributes 'optsize and optnone' are incompatible!", V);
1727
1728 Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1729 "Attributes 'minsize and optnone' are incompatible!", V);
1730 }
1731
1732 if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1733 const GlobalValue *GV = cast<GlobalValue>(V);
1734 Assert(GV->hasGlobalUnnamedAddr(),
1735 "Attribute 'jumptable' requires 'unnamed_addr'", V);
1736 }
1737
1738 if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1739 std::pair<unsigned, Optional<unsigned>> Args =
1740 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1741
1742 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1743 if (ParamNo >= FT->getNumParams()) {
1744 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1745 return false;
1746 }
1747
1748 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1749 CheckFailed("'allocsize' " + Name +
1750 " argument must refer to an integer parameter",
1751 V);
1752 return false;
1753 }
1754
1755 return true;
1756 };
1757
1758 if (!CheckParam("element size", Args.first))
1759 return;
1760
1761 if (Args.second && !CheckParam("number of elements", *Args.second))
1762 return;
1763 }
1764 }
1765
verifyFunctionMetadata(ArrayRef<std::pair<unsigned,MDNode * >> MDs)1766 void Verifier::verifyFunctionMetadata(
1767 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1768 for (const auto &Pair : MDs) {
1769 if (Pair.first == LLVMContext::MD_prof) {
1770 MDNode *MD = Pair.second;
1771 Assert(MD->getNumOperands() >= 2,
1772 "!prof annotations should have no less than 2 operands", MD);
1773
1774 // Check first operand.
1775 Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1776 MD);
1777 Assert(isa<MDString>(MD->getOperand(0)),
1778 "expected string with name of the !prof annotation", MD);
1779 MDString *MDS = cast<MDString>(MD->getOperand(0));
1780 StringRef ProfName = MDS->getString();
1781 Assert(ProfName.equals("function_entry_count") ||
1782 ProfName.equals("synthetic_function_entry_count"),
1783 "first operand should be 'function_entry_count'"
1784 " or 'synthetic_function_entry_count'",
1785 MD);
1786
1787 // Check second operand.
1788 Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1789 MD);
1790 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1791 "expected integer argument to function_entry_count", MD);
1792 }
1793 }
1794 }
1795
visitConstantExprsRecursively(const Constant * EntryC)1796 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1797 if (!ConstantExprVisited.insert(EntryC).second)
1798 return;
1799
1800 SmallVector<const Constant *, 16> Stack;
1801 Stack.push_back(EntryC);
1802
1803 while (!Stack.empty()) {
1804 const Constant *C = Stack.pop_back_val();
1805
1806 // Check this constant expression.
1807 if (const auto *CE = dyn_cast<ConstantExpr>(C))
1808 visitConstantExpr(CE);
1809
1810 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1811 // Global Values get visited separately, but we do need to make sure
1812 // that the global value is in the correct module
1813 Assert(GV->getParent() == &M, "Referencing global in another module!",
1814 EntryC, &M, GV, GV->getParent());
1815 continue;
1816 }
1817
1818 // Visit all sub-expressions.
1819 for (const Use &U : C->operands()) {
1820 const auto *OpC = dyn_cast<Constant>(U);
1821 if (!OpC)
1822 continue;
1823 if (!ConstantExprVisited.insert(OpC).second)
1824 continue;
1825 Stack.push_back(OpC);
1826 }
1827 }
1828 }
1829
visitConstantExpr(const ConstantExpr * CE)1830 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1831 if (CE->getOpcode() == Instruction::BitCast)
1832 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1833 CE->getType()),
1834 "Invalid bitcast", CE);
1835
1836 if (CE->getOpcode() == Instruction::IntToPtr ||
1837 CE->getOpcode() == Instruction::PtrToInt) {
1838 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1839 ? CE->getType()
1840 : CE->getOperand(0)->getType();
1841 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1842 ? "inttoptr not supported for non-integral pointers"
1843 : "ptrtoint not supported for non-integral pointers";
1844 Assert(
1845 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
1846 Msg);
1847 }
1848 }
1849
verifyAttributeCount(AttributeList Attrs,unsigned Params)1850 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1851 // There shouldn't be more attribute sets than there are parameters plus the
1852 // function and return value.
1853 return Attrs.getNumAttrSets() <= Params + 2;
1854 }
1855
1856 /// Verify that statepoint intrinsic is well formed.
verifyStatepoint(ImmutableCallSite CS)1857 void Verifier::verifyStatepoint(ImmutableCallSite CS) {
1858 assert(CS.getCalledFunction() &&
1859 CS.getCalledFunction()->getIntrinsicID() ==
1860 Intrinsic::experimental_gc_statepoint);
1861
1862 const Instruction &CI = *CS.getInstruction();
1863
1864 Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
1865 !CS.onlyAccessesArgMemory(),
1866 "gc.statepoint must read and write all memory to preserve "
1867 "reordering restrictions required by safepoint semantics",
1868 &CI);
1869
1870 const Value *IDV = CS.getArgument(0);
1871 Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
1872 &CI);
1873
1874 const Value *NumPatchBytesV = CS.getArgument(1);
1875 Assert(isa<ConstantInt>(NumPatchBytesV),
1876 "gc.statepoint number of patchable bytes must be a constant integer",
1877 &CI);
1878 const int64_t NumPatchBytes =
1879 cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1880 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1881 Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
1882 "positive",
1883 &CI);
1884
1885 const Value *Target = CS.getArgument(2);
1886 auto *PT = dyn_cast<PointerType>(Target->getType());
1887 Assert(PT && PT->getElementType()->isFunctionTy(),
1888 "gc.statepoint callee must be of function pointer type", &CI, Target);
1889 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1890
1891 const Value *NumCallArgsV = CS.getArgument(3);
1892 Assert(isa<ConstantInt>(NumCallArgsV),
1893 "gc.statepoint number of arguments to underlying call "
1894 "must be constant integer",
1895 &CI);
1896 const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1897 Assert(NumCallArgs >= 0,
1898 "gc.statepoint number of arguments to underlying call "
1899 "must be positive",
1900 &CI);
1901 const int NumParams = (int)TargetFuncType->getNumParams();
1902 if (TargetFuncType->isVarArg()) {
1903 Assert(NumCallArgs >= NumParams,
1904 "gc.statepoint mismatch in number of vararg call args", &CI);
1905
1906 // TODO: Remove this limitation
1907 Assert(TargetFuncType->getReturnType()->isVoidTy(),
1908 "gc.statepoint doesn't support wrapping non-void "
1909 "vararg functions yet",
1910 &CI);
1911 } else
1912 Assert(NumCallArgs == NumParams,
1913 "gc.statepoint mismatch in number of call args", &CI);
1914
1915 const Value *FlagsV = CS.getArgument(4);
1916 Assert(isa<ConstantInt>(FlagsV),
1917 "gc.statepoint flags must be constant integer", &CI);
1918 const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1919 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1920 "unknown flag used in gc.statepoint flags argument", &CI);
1921
1922 // Verify that the types of the call parameter arguments match
1923 // the type of the wrapped callee.
1924 for (int i = 0; i < NumParams; i++) {
1925 Type *ParamType = TargetFuncType->getParamType(i);
1926 Type *ArgType = CS.getArgument(5 + i)->getType();
1927 Assert(ArgType == ParamType,
1928 "gc.statepoint call argument does not match wrapped "
1929 "function type",
1930 &CI);
1931 }
1932
1933 const int EndCallArgsInx = 4 + NumCallArgs;
1934
1935 const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1936 Assert(isa<ConstantInt>(NumTransitionArgsV),
1937 "gc.statepoint number of transition arguments "
1938 "must be constant integer",
1939 &CI);
1940 const int NumTransitionArgs =
1941 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1942 Assert(NumTransitionArgs >= 0,
1943 "gc.statepoint number of transition arguments must be positive", &CI);
1944 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1945
1946 const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1947 Assert(isa<ConstantInt>(NumDeoptArgsV),
1948 "gc.statepoint number of deoptimization arguments "
1949 "must be constant integer",
1950 &CI);
1951 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1952 Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
1953 "must be positive",
1954 &CI);
1955
1956 const int ExpectedNumArgs =
1957 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1958 Assert(ExpectedNumArgs <= (int)CS.arg_size(),
1959 "gc.statepoint too few arguments according to length fields", &CI);
1960
1961 // Check that the only uses of this gc.statepoint are gc.result or
1962 // gc.relocate calls which are tied to this statepoint and thus part
1963 // of the same statepoint sequence
1964 for (const User *U : CI.users()) {
1965 const CallInst *Call = dyn_cast<const CallInst>(U);
1966 Assert(Call, "illegal use of statepoint token", &CI, U);
1967 if (!Call) continue;
1968 Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),
1969 "gc.result or gc.relocate are the only value uses "
1970 "of a gc.statepoint",
1971 &CI, U);
1972 if (isa<GCResultInst>(Call)) {
1973 Assert(Call->getArgOperand(0) == &CI,
1974 "gc.result connected to wrong gc.statepoint", &CI, Call);
1975 } else if (isa<GCRelocateInst>(Call)) {
1976 Assert(Call->getArgOperand(0) == &CI,
1977 "gc.relocate connected to wrong gc.statepoint", &CI, Call);
1978 }
1979 }
1980
1981 // Note: It is legal for a single derived pointer to be listed multiple
1982 // times. It's non-optimal, but it is legal. It can also happen after
1983 // insertion if we strip a bitcast away.
1984 // Note: It is really tempting to check that each base is relocated and
1985 // that a derived pointer is never reused as a base pointer. This turns
1986 // out to be problematic since optimizations run after safepoint insertion
1987 // can recognize equality properties that the insertion logic doesn't know
1988 // about. See example statepoint.ll in the verifier subdirectory
1989 }
1990
verifyFrameRecoverIndices()1991 void Verifier::verifyFrameRecoverIndices() {
1992 for (auto &Counts : FrameEscapeInfo) {
1993 Function *F = Counts.first;
1994 unsigned EscapedObjectCount = Counts.second.first;
1995 unsigned MaxRecoveredIndex = Counts.second.second;
1996 Assert(MaxRecoveredIndex <= EscapedObjectCount,
1997 "all indices passed to llvm.localrecover must be less than the "
1998 "number of arguments passed ot llvm.localescape in the parent "
1999 "function",
2000 F);
2001 }
2002 }
2003
getSuccPad(TerminatorInst * Terminator)2004 static Instruction *getSuccPad(TerminatorInst *Terminator) {
2005 BasicBlock *UnwindDest;
2006 if (auto *II = dyn_cast<InvokeInst>(Terminator))
2007 UnwindDest = II->getUnwindDest();
2008 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2009 UnwindDest = CSI->getUnwindDest();
2010 else
2011 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2012 return UnwindDest->getFirstNonPHI();
2013 }
2014
verifySiblingFuncletUnwinds()2015 void Verifier::verifySiblingFuncletUnwinds() {
2016 SmallPtrSet<Instruction *, 8> Visited;
2017 SmallPtrSet<Instruction *, 8> Active;
2018 for (const auto &Pair : SiblingFuncletInfo) {
2019 Instruction *PredPad = Pair.first;
2020 if (Visited.count(PredPad))
2021 continue;
2022 Active.insert(PredPad);
2023 TerminatorInst *Terminator = Pair.second;
2024 do {
2025 Instruction *SuccPad = getSuccPad(Terminator);
2026 if (Active.count(SuccPad)) {
2027 // Found a cycle; report error
2028 Instruction *CyclePad = SuccPad;
2029 SmallVector<Instruction *, 8> CycleNodes;
2030 do {
2031 CycleNodes.push_back(CyclePad);
2032 TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
2033 if (CycleTerminator != CyclePad)
2034 CycleNodes.push_back(CycleTerminator);
2035 CyclePad = getSuccPad(CycleTerminator);
2036 } while (CyclePad != SuccPad);
2037 Assert(false, "EH pads can't handle each other's exceptions",
2038 ArrayRef<Instruction *>(CycleNodes));
2039 }
2040 // Don't re-walk a node we've already checked
2041 if (!Visited.insert(SuccPad).second)
2042 break;
2043 // Walk to this successor if it has a map entry.
2044 PredPad = SuccPad;
2045 auto TermI = SiblingFuncletInfo.find(PredPad);
2046 if (TermI == SiblingFuncletInfo.end())
2047 break;
2048 Terminator = TermI->second;
2049 Active.insert(PredPad);
2050 } while (true);
2051 // Each node only has one successor, so we've walked all the active
2052 // nodes' successors.
2053 Active.clear();
2054 }
2055 }
2056
2057 // visitFunction - Verify that a function is ok.
2058 //
visitFunction(const Function & F)2059 void Verifier::visitFunction(const Function &F) {
2060 visitGlobalValue(F);
2061
2062 // Check function arguments.
2063 FunctionType *FT = F.getFunctionType();
2064 unsigned NumArgs = F.arg_size();
2065
2066 Assert(&Context == &F.getContext(),
2067 "Function context does not match Module context!", &F);
2068
2069 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2070 Assert(FT->getNumParams() == NumArgs,
2071 "# formal arguments must match # of arguments for function type!", &F,
2072 FT);
2073 Assert(F.getReturnType()->isFirstClassType() ||
2074 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2075 "Functions cannot return aggregate values!", &F);
2076
2077 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2078 "Invalid struct return type!", &F);
2079
2080 AttributeList Attrs = F.getAttributes();
2081
2082 Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2083 "Attribute after last parameter!", &F);
2084
2085 // Check function attributes.
2086 verifyFunctionAttrs(FT, Attrs, &F);
2087
2088 // On function declarations/definitions, we do not support the builtin
2089 // attribute. We do not check this in VerifyFunctionAttrs since that is
2090 // checking for Attributes that can/can not ever be on functions.
2091 Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2092 "Attribute 'builtin' can only be applied to a callsite.", &F);
2093
2094 // Check that this function meets the restrictions on this calling convention.
2095 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2096 // restrictions can be lifted.
2097 switch (F.getCallingConv()) {
2098 default:
2099 case CallingConv::C:
2100 break;
2101 case CallingConv::AMDGPU_KERNEL:
2102 case CallingConv::SPIR_KERNEL:
2103 Assert(F.getReturnType()->isVoidTy(),
2104 "Calling convention requires void return type", &F);
2105 LLVM_FALLTHROUGH;
2106 case CallingConv::AMDGPU_VS:
2107 case CallingConv::AMDGPU_HS:
2108 case CallingConv::AMDGPU_GS:
2109 case CallingConv::AMDGPU_PS:
2110 case CallingConv::AMDGPU_CS:
2111 Assert(!F.hasStructRetAttr(),
2112 "Calling convention does not allow sret", &F);
2113 LLVM_FALLTHROUGH;
2114 case CallingConv::Fast:
2115 case CallingConv::Cold:
2116 case CallingConv::Intel_OCL_BI:
2117 case CallingConv::PTX_Kernel:
2118 case CallingConv::PTX_Device:
2119 Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2120 "perfect forwarding!",
2121 &F);
2122 break;
2123 }
2124
2125 bool isLLVMdotName = F.getName().size() >= 5 &&
2126 F.getName().substr(0, 5) == "llvm.";
2127
2128 // Check that the argument values match the function type for this function...
2129 unsigned i = 0;
2130 for (const Argument &Arg : F.args()) {
2131 Assert(Arg.getType() == FT->getParamType(i),
2132 "Argument value does not match function argument type!", &Arg,
2133 FT->getParamType(i));
2134 Assert(Arg.getType()->isFirstClassType(),
2135 "Function arguments must have first-class types!", &Arg);
2136 if (!isLLVMdotName) {
2137 Assert(!Arg.getType()->isMetadataTy(),
2138 "Function takes metadata but isn't an intrinsic", &Arg, &F);
2139 Assert(!Arg.getType()->isTokenTy(),
2140 "Function takes token but isn't an intrinsic", &Arg, &F);
2141 }
2142
2143 // Check that swifterror argument is only used by loads and stores.
2144 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2145 verifySwiftErrorValue(&Arg);
2146 }
2147 ++i;
2148 }
2149
2150 if (!isLLVMdotName)
2151 Assert(!F.getReturnType()->isTokenTy(),
2152 "Functions returns a token but isn't an intrinsic", &F);
2153
2154 // Get the function metadata attachments.
2155 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2156 F.getAllMetadata(MDs);
2157 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2158 verifyFunctionMetadata(MDs);
2159
2160 // Check validity of the personality function
2161 if (F.hasPersonalityFn()) {
2162 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2163 if (Per)
2164 Assert(Per->getParent() == F.getParent(),
2165 "Referencing personality function in another module!",
2166 &F, F.getParent(), Per, Per->getParent());
2167 }
2168
2169 if (F.isMaterializable()) {
2170 // Function has a body somewhere we can't see.
2171 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2172 MDs.empty() ? nullptr : MDs.front().second);
2173 } else if (F.isDeclaration()) {
2174 for (const auto &I : MDs) {
2175 AssertDI(I.first != LLVMContext::MD_dbg,
2176 "function declaration may not have a !dbg attachment", &F);
2177 Assert(I.first != LLVMContext::MD_prof,
2178 "function declaration may not have a !prof attachment", &F);
2179
2180 // Verify the metadata itself.
2181 visitMDNode(*I.second);
2182 }
2183 Assert(!F.hasPersonalityFn(),
2184 "Function declaration shouldn't have a personality routine", &F);
2185 } else {
2186 // Verify that this function (which has a body) is not named "llvm.*". It
2187 // is not legal to define intrinsics.
2188 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2189
2190 // Check the entry node
2191 const BasicBlock *Entry = &F.getEntryBlock();
2192 Assert(pred_empty(Entry),
2193 "Entry block to function must not have predecessors!", Entry);
2194
2195 // The address of the entry block cannot be taken, unless it is dead.
2196 if (Entry->hasAddressTaken()) {
2197 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2198 "blockaddress may not be used with the entry block!", Entry);
2199 }
2200
2201 unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2202 // Visit metadata attachments.
2203 for (const auto &I : MDs) {
2204 // Verify that the attachment is legal.
2205 switch (I.first) {
2206 default:
2207 break;
2208 case LLVMContext::MD_dbg: {
2209 ++NumDebugAttachments;
2210 AssertDI(NumDebugAttachments == 1,
2211 "function must have a single !dbg attachment", &F, I.second);
2212 AssertDI(isa<DISubprogram>(I.second),
2213 "function !dbg attachment must be a subprogram", &F, I.second);
2214 auto *SP = cast<DISubprogram>(I.second);
2215 const Function *&AttachedTo = DISubprogramAttachments[SP];
2216 AssertDI(!AttachedTo || AttachedTo == &F,
2217 "DISubprogram attached to more than one function", SP, &F);
2218 AttachedTo = &F;
2219 break;
2220 }
2221 case LLVMContext::MD_prof:
2222 ++NumProfAttachments;
2223 Assert(NumProfAttachments == 1,
2224 "function must have a single !prof attachment", &F, I.second);
2225 break;
2226 }
2227
2228 // Verify the metadata itself.
2229 visitMDNode(*I.second);
2230 }
2231 }
2232
2233 // If this function is actually an intrinsic, verify that it is only used in
2234 // direct call/invokes, never having its "address taken".
2235 // Only do this if the module is materialized, otherwise we don't have all the
2236 // uses.
2237 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2238 const User *U;
2239 if (F.hasAddressTaken(&U))
2240 Assert(false, "Invalid user of intrinsic instruction!", U);
2241 }
2242
2243 auto *N = F.getSubprogram();
2244 HasDebugInfo = (N != nullptr);
2245 if (!HasDebugInfo)
2246 return;
2247
2248 // Check that all !dbg attachments lead to back to N (or, at least, another
2249 // subprogram that describes the same function).
2250 //
2251 // FIXME: Check this incrementally while visiting !dbg attachments.
2252 // FIXME: Only check when N is the canonical subprogram for F.
2253 SmallPtrSet<const MDNode *, 32> Seen;
2254 for (auto &BB : F)
2255 for (auto &I : BB) {
2256 // Be careful about using DILocation here since we might be dealing with
2257 // broken code (this is the Verifier after all).
2258 DILocation *DL =
2259 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2260 if (!DL)
2261 continue;
2262 if (!Seen.insert(DL).second)
2263 continue;
2264
2265 DILocalScope *Scope = DL->getInlinedAtScope();
2266 if (Scope && !Seen.insert(Scope).second)
2267 continue;
2268
2269 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2270
2271 // Scope and SP could be the same MDNode and we don't want to skip
2272 // validation in that case
2273 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2274 continue;
2275
2276 // FIXME: Once N is canonical, check "SP == &N".
2277 AssertDI(SP->describes(&F),
2278 "!dbg attachment points at wrong subprogram for function", N, &F,
2279 &I, DL, Scope, SP);
2280 }
2281 }
2282
2283 // verifyBasicBlock - Verify that a basic block is well formed...
2284 //
visitBasicBlock(BasicBlock & BB)2285 void Verifier::visitBasicBlock(BasicBlock &BB) {
2286 InstsInThisBlock.clear();
2287
2288 // Ensure that basic blocks have terminators!
2289 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2290
2291 // Check constraints that this basic block imposes on all of the PHI nodes in
2292 // it.
2293 if (isa<PHINode>(BB.front())) {
2294 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2295 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2296 llvm::sort(Preds.begin(), Preds.end());
2297 for (const PHINode &PN : BB.phis()) {
2298 // Ensure that PHI nodes have at least one entry!
2299 Assert(PN.getNumIncomingValues() != 0,
2300 "PHI nodes must have at least one entry. If the block is dead, "
2301 "the PHI should be removed!",
2302 &PN);
2303 Assert(PN.getNumIncomingValues() == Preds.size(),
2304 "PHINode should have one entry for each predecessor of its "
2305 "parent basic block!",
2306 &PN);
2307
2308 // Get and sort all incoming values in the PHI node...
2309 Values.clear();
2310 Values.reserve(PN.getNumIncomingValues());
2311 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2312 Values.push_back(
2313 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2314 llvm::sort(Values.begin(), Values.end());
2315
2316 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2317 // Check to make sure that if there is more than one entry for a
2318 // particular basic block in this PHI node, that the incoming values are
2319 // all identical.
2320 //
2321 Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2322 Values[i].second == Values[i - 1].second,
2323 "PHI node has multiple entries for the same basic block with "
2324 "different incoming values!",
2325 &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2326
2327 // Check to make sure that the predecessors and PHI node entries are
2328 // matched up.
2329 Assert(Values[i].first == Preds[i],
2330 "PHI node entries do not match predecessors!", &PN,
2331 Values[i].first, Preds[i]);
2332 }
2333 }
2334 }
2335
2336 // Check that all instructions have their parent pointers set up correctly.
2337 for (auto &I : BB)
2338 {
2339 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2340 }
2341 }
2342
visitTerminatorInst(TerminatorInst & I)2343 void Verifier::visitTerminatorInst(TerminatorInst &I) {
2344 // Ensure that terminators only exist at the end of the basic block.
2345 Assert(&I == I.getParent()->getTerminator(),
2346 "Terminator found in the middle of a basic block!", I.getParent());
2347 visitInstruction(I);
2348 }
2349
visitBranchInst(BranchInst & BI)2350 void Verifier::visitBranchInst(BranchInst &BI) {
2351 if (BI.isConditional()) {
2352 Assert(BI.getCondition()->getType()->isIntegerTy(1),
2353 "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2354 }
2355 visitTerminatorInst(BI);
2356 }
2357
visitReturnInst(ReturnInst & RI)2358 void Verifier::visitReturnInst(ReturnInst &RI) {
2359 Function *F = RI.getParent()->getParent();
2360 unsigned N = RI.getNumOperands();
2361 if (F->getReturnType()->isVoidTy())
2362 Assert(N == 0,
2363 "Found return instr that returns non-void in Function of void "
2364 "return type!",
2365 &RI, F->getReturnType());
2366 else
2367 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2368 "Function return type does not match operand "
2369 "type of return inst!",
2370 &RI, F->getReturnType());
2371
2372 // Check to make sure that the return value has necessary properties for
2373 // terminators...
2374 visitTerminatorInst(RI);
2375 }
2376
visitSwitchInst(SwitchInst & SI)2377 void Verifier::visitSwitchInst(SwitchInst &SI) {
2378 // Check to make sure that all of the constants in the switch instruction
2379 // have the same type as the switched-on value.
2380 Type *SwitchTy = SI.getCondition()->getType();
2381 SmallPtrSet<ConstantInt*, 32> Constants;
2382 for (auto &Case : SI.cases()) {
2383 Assert(Case.getCaseValue()->getType() == SwitchTy,
2384 "Switch constants must all be same type as switch value!", &SI);
2385 Assert(Constants.insert(Case.getCaseValue()).second,
2386 "Duplicate integer as switch case", &SI, Case.getCaseValue());
2387 }
2388
2389 visitTerminatorInst(SI);
2390 }
2391
visitIndirectBrInst(IndirectBrInst & BI)2392 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2393 Assert(BI.getAddress()->getType()->isPointerTy(),
2394 "Indirectbr operand must have pointer type!", &BI);
2395 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2396 Assert(BI.getDestination(i)->getType()->isLabelTy(),
2397 "Indirectbr destinations must all have pointer type!", &BI);
2398
2399 visitTerminatorInst(BI);
2400 }
2401
visitSelectInst(SelectInst & SI)2402 void Verifier::visitSelectInst(SelectInst &SI) {
2403 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2404 SI.getOperand(2)),
2405 "Invalid operands for select instruction!", &SI);
2406
2407 Assert(SI.getTrueValue()->getType() == SI.getType(),
2408 "Select values must have same type as select instruction!", &SI);
2409 visitInstruction(SI);
2410 }
2411
2412 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2413 /// a pass, if any exist, it's an error.
2414 ///
visitUserOp1(Instruction & I)2415 void Verifier::visitUserOp1(Instruction &I) {
2416 Assert(false, "User-defined operators should not live outside of a pass!", &I);
2417 }
2418
visitTruncInst(TruncInst & I)2419 void Verifier::visitTruncInst(TruncInst &I) {
2420 // Get the source and destination types
2421 Type *SrcTy = I.getOperand(0)->getType();
2422 Type *DestTy = I.getType();
2423
2424 // Get the size of the types in bits, we'll need this later
2425 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2426 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2427
2428 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2429 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2430 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2431 "trunc source and destination must both be a vector or neither", &I);
2432 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2433
2434 visitInstruction(I);
2435 }
2436
visitZExtInst(ZExtInst & I)2437 void Verifier::visitZExtInst(ZExtInst &I) {
2438 // Get the source and destination types
2439 Type *SrcTy = I.getOperand(0)->getType();
2440 Type *DestTy = I.getType();
2441
2442 // Get the size of the types in bits, we'll need this later
2443 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2444 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2445 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2446 "zext source and destination must both be a vector or neither", &I);
2447 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2448 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2449
2450 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2451
2452 visitInstruction(I);
2453 }
2454
visitSExtInst(SExtInst & I)2455 void Verifier::visitSExtInst(SExtInst &I) {
2456 // Get the source and destination types
2457 Type *SrcTy = I.getOperand(0)->getType();
2458 Type *DestTy = I.getType();
2459
2460 // Get the size of the types in bits, we'll need this later
2461 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2462 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2463
2464 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2465 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2466 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2467 "sext source and destination must both be a vector or neither", &I);
2468 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2469
2470 visitInstruction(I);
2471 }
2472
visitFPTruncInst(FPTruncInst & I)2473 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2474 // Get the source and destination types
2475 Type *SrcTy = I.getOperand(0)->getType();
2476 Type *DestTy = I.getType();
2477 // Get the size of the types in bits, we'll need this later
2478 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2479 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2480
2481 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2482 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2483 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2484 "fptrunc source and destination must both be a vector or neither", &I);
2485 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2486
2487 visitInstruction(I);
2488 }
2489
visitFPExtInst(FPExtInst & I)2490 void Verifier::visitFPExtInst(FPExtInst &I) {
2491 // Get the source and destination types
2492 Type *SrcTy = I.getOperand(0)->getType();
2493 Type *DestTy = I.getType();
2494
2495 // Get the size of the types in bits, we'll need this later
2496 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2497 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2498
2499 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2500 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2501 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2502 "fpext source and destination must both be a vector or neither", &I);
2503 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2504
2505 visitInstruction(I);
2506 }
2507
visitUIToFPInst(UIToFPInst & I)2508 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2509 // Get the source and destination types
2510 Type *SrcTy = I.getOperand(0)->getType();
2511 Type *DestTy = I.getType();
2512
2513 bool SrcVec = SrcTy->isVectorTy();
2514 bool DstVec = DestTy->isVectorTy();
2515
2516 Assert(SrcVec == DstVec,
2517 "UIToFP source and dest must both be vector or scalar", &I);
2518 Assert(SrcTy->isIntOrIntVectorTy(),
2519 "UIToFP source must be integer or integer vector", &I);
2520 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2521 &I);
2522
2523 if (SrcVec && DstVec)
2524 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2525 cast<VectorType>(DestTy)->getNumElements(),
2526 "UIToFP source and dest vector length mismatch", &I);
2527
2528 visitInstruction(I);
2529 }
2530
visitSIToFPInst(SIToFPInst & I)2531 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2532 // Get the source and destination types
2533 Type *SrcTy = I.getOperand(0)->getType();
2534 Type *DestTy = I.getType();
2535
2536 bool SrcVec = SrcTy->isVectorTy();
2537 bool DstVec = DestTy->isVectorTy();
2538
2539 Assert(SrcVec == DstVec,
2540 "SIToFP source and dest must both be vector or scalar", &I);
2541 Assert(SrcTy->isIntOrIntVectorTy(),
2542 "SIToFP source must be integer or integer vector", &I);
2543 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2544 &I);
2545
2546 if (SrcVec && DstVec)
2547 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2548 cast<VectorType>(DestTy)->getNumElements(),
2549 "SIToFP source and dest vector length mismatch", &I);
2550
2551 visitInstruction(I);
2552 }
2553
visitFPToUIInst(FPToUIInst & I)2554 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2555 // Get the source and destination types
2556 Type *SrcTy = I.getOperand(0)->getType();
2557 Type *DestTy = I.getType();
2558
2559 bool SrcVec = SrcTy->isVectorTy();
2560 bool DstVec = DestTy->isVectorTy();
2561
2562 Assert(SrcVec == DstVec,
2563 "FPToUI source and dest must both be vector or scalar", &I);
2564 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2565 &I);
2566 Assert(DestTy->isIntOrIntVectorTy(),
2567 "FPToUI result must be integer or integer vector", &I);
2568
2569 if (SrcVec && DstVec)
2570 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2571 cast<VectorType>(DestTy)->getNumElements(),
2572 "FPToUI source and dest vector length mismatch", &I);
2573
2574 visitInstruction(I);
2575 }
2576
visitFPToSIInst(FPToSIInst & I)2577 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2578 // Get the source and destination types
2579 Type *SrcTy = I.getOperand(0)->getType();
2580 Type *DestTy = I.getType();
2581
2582 bool SrcVec = SrcTy->isVectorTy();
2583 bool DstVec = DestTy->isVectorTy();
2584
2585 Assert(SrcVec == DstVec,
2586 "FPToSI source and dest must both be vector or scalar", &I);
2587 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2588 &I);
2589 Assert(DestTy->isIntOrIntVectorTy(),
2590 "FPToSI result must be integer or integer vector", &I);
2591
2592 if (SrcVec && DstVec)
2593 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2594 cast<VectorType>(DestTy)->getNumElements(),
2595 "FPToSI source and dest vector length mismatch", &I);
2596
2597 visitInstruction(I);
2598 }
2599
visitPtrToIntInst(PtrToIntInst & I)2600 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2601 // Get the source and destination types
2602 Type *SrcTy = I.getOperand(0)->getType();
2603 Type *DestTy = I.getType();
2604
2605 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2606
2607 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2608 Assert(!DL.isNonIntegralPointerType(PTy),
2609 "ptrtoint not supported for non-integral pointers");
2610
2611 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2612 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2613 &I);
2614
2615 if (SrcTy->isVectorTy()) {
2616 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2617 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2618 Assert(VSrc->getNumElements() == VDest->getNumElements(),
2619 "PtrToInt Vector width mismatch", &I);
2620 }
2621
2622 visitInstruction(I);
2623 }
2624
visitIntToPtrInst(IntToPtrInst & I)2625 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2626 // Get the source and destination types
2627 Type *SrcTy = I.getOperand(0)->getType();
2628 Type *DestTy = I.getType();
2629
2630 Assert(SrcTy->isIntOrIntVectorTy(),
2631 "IntToPtr source must be an integral", &I);
2632 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2633
2634 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2635 Assert(!DL.isNonIntegralPointerType(PTy),
2636 "inttoptr not supported for non-integral pointers");
2637
2638 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2639 &I);
2640 if (SrcTy->isVectorTy()) {
2641 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2642 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2643 Assert(VSrc->getNumElements() == VDest->getNumElements(),
2644 "IntToPtr Vector width mismatch", &I);
2645 }
2646 visitInstruction(I);
2647 }
2648
visitBitCastInst(BitCastInst & I)2649 void Verifier::visitBitCastInst(BitCastInst &I) {
2650 Assert(
2651 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2652 "Invalid bitcast", &I);
2653 visitInstruction(I);
2654 }
2655
visitAddrSpaceCastInst(AddrSpaceCastInst & I)2656 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2657 Type *SrcTy = I.getOperand(0)->getType();
2658 Type *DestTy = I.getType();
2659
2660 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2661 &I);
2662 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2663 &I);
2664 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2665 "AddrSpaceCast must be between different address spaces", &I);
2666 if (SrcTy->isVectorTy())
2667 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2668 "AddrSpaceCast vector pointer number of elements mismatch", &I);
2669 visitInstruction(I);
2670 }
2671
2672 /// visitPHINode - Ensure that a PHI node is well formed.
2673 ///
visitPHINode(PHINode & PN)2674 void Verifier::visitPHINode(PHINode &PN) {
2675 // Ensure that the PHI nodes are all grouped together at the top of the block.
2676 // This can be tested by checking whether the instruction before this is
2677 // either nonexistent (because this is begin()) or is a PHI node. If not,
2678 // then there is some other instruction before a PHI.
2679 Assert(&PN == &PN.getParent()->front() ||
2680 isa<PHINode>(--BasicBlock::iterator(&PN)),
2681 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2682
2683 // Check that a PHI doesn't yield a Token.
2684 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2685
2686 // Check that all of the values of the PHI node have the same type as the
2687 // result, and that the incoming blocks are really basic blocks.
2688 for (Value *IncValue : PN.incoming_values()) {
2689 Assert(PN.getType() == IncValue->getType(),
2690 "PHI node operands are not the same type as the result!", &PN);
2691 }
2692
2693 // All other PHI node constraints are checked in the visitBasicBlock method.
2694
2695 visitInstruction(PN);
2696 }
2697
verifyCallSite(CallSite CS)2698 void Verifier::verifyCallSite(CallSite CS) {
2699 Instruction *I = CS.getInstruction();
2700
2701 Assert(CS.getCalledValue()->getType()->isPointerTy(),
2702 "Called function must be a pointer!", I);
2703 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2704
2705 Assert(FPTy->getElementType()->isFunctionTy(),
2706 "Called function is not pointer to function type!", I);
2707
2708 Assert(FPTy->getElementType() == CS.getFunctionType(),
2709 "Called function is not the same type as the call!", I);
2710
2711 FunctionType *FTy = CS.getFunctionType();
2712
2713 // Verify that the correct number of arguments are being passed
2714 if (FTy->isVarArg())
2715 Assert(CS.arg_size() >= FTy->getNumParams(),
2716 "Called function requires more parameters than were provided!", I);
2717 else
2718 Assert(CS.arg_size() == FTy->getNumParams(),
2719 "Incorrect number of arguments passed to called function!", I);
2720
2721 // Verify that all arguments to the call match the function type.
2722 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2723 Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
2724 "Call parameter type does not match function signature!",
2725 CS.getArgument(i), FTy->getParamType(i), I);
2726
2727 AttributeList Attrs = CS.getAttributes();
2728
2729 Assert(verifyAttributeCount(Attrs, CS.arg_size()),
2730 "Attribute after last parameter!", I);
2731
2732 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2733 // Don't allow speculatable on call sites, unless the underlying function
2734 // declaration is also speculatable.
2735 Function *Callee
2736 = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
2737 Assert(Callee && Callee->isSpeculatable(),
2738 "speculatable attribute may not apply to call sites", I);
2739 }
2740
2741 // Verify call attributes.
2742 verifyFunctionAttrs(FTy, Attrs, I);
2743
2744 // Conservatively check the inalloca argument.
2745 // We have a bug if we can find that there is an underlying alloca without
2746 // inalloca.
2747 if (CS.hasInAllocaArgument()) {
2748 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2749 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2750 Assert(AI->isUsedWithInAlloca(),
2751 "inalloca argument for call has mismatched alloca", AI, I);
2752 }
2753
2754 // For each argument of the callsite, if it has the swifterror argument,
2755 // make sure the underlying alloca/parameter it comes from has a swifterror as
2756 // well.
2757 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2758 if (CS.paramHasAttr(i, Attribute::SwiftError)) {
2759 Value *SwiftErrorArg = CS.getArgument(i);
2760 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2761 Assert(AI->isSwiftError(),
2762 "swifterror argument for call has mismatched alloca", AI, I);
2763 continue;
2764 }
2765 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2766 Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I);
2767 Assert(ArgI->hasSwiftErrorAttr(),
2768 "swifterror argument for call has mismatched parameter", ArgI, I);
2769 }
2770
2771 if (FTy->isVarArg()) {
2772 // FIXME? is 'nest' even legal here?
2773 bool SawNest = false;
2774 bool SawReturned = false;
2775
2776 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2777 if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2778 SawNest = true;
2779 if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2780 SawReturned = true;
2781 }
2782
2783 // Check attributes on the varargs part.
2784 for (unsigned Idx = FTy->getNumParams(); Idx < CS.arg_size(); ++Idx) {
2785 Type *Ty = CS.getArgument(Idx)->getType();
2786 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2787 verifyParameterAttrs(ArgAttrs, Ty, I);
2788
2789 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2790 Assert(!SawNest, "More than one parameter has attribute nest!", I);
2791 SawNest = true;
2792 }
2793
2794 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2795 Assert(!SawReturned, "More than one parameter has attribute returned!",
2796 I);
2797 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2798 "Incompatible argument and return types for 'returned' "
2799 "attribute",
2800 I);
2801 SawReturned = true;
2802 }
2803
2804 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2805 "Attribute 'sret' cannot be used for vararg call arguments!", I);
2806
2807 if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2808 Assert(Idx == CS.arg_size() - 1, "inalloca isn't on the last argument!",
2809 I);
2810 }
2811 }
2812
2813 // Verify that there's no metadata unless it's a direct call to an intrinsic.
2814 if (CS.getCalledFunction() == nullptr ||
2815 !CS.getCalledFunction()->getName().startswith("llvm.")) {
2816 for (Type *ParamTy : FTy->params()) {
2817 Assert(!ParamTy->isMetadataTy(),
2818 "Function has metadata parameter but isn't an intrinsic", I);
2819 Assert(!ParamTy->isTokenTy(),
2820 "Function has token parameter but isn't an intrinsic", I);
2821 }
2822 }
2823
2824 // Verify that indirect calls don't return tokens.
2825 if (CS.getCalledFunction() == nullptr)
2826 Assert(!FTy->getReturnType()->isTokenTy(),
2827 "Return type cannot be token for indirect call!");
2828
2829 if (Function *F = CS.getCalledFunction())
2830 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2831 visitIntrinsicCallSite(ID, CS);
2832
2833 // Verify that a callsite has at most one "deopt", at most one "funclet" and
2834 // at most one "gc-transition" operand bundle.
2835 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2836 FoundGCTransitionBundle = false;
2837 for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2838 OperandBundleUse BU = CS.getOperandBundleAt(i);
2839 uint32_t Tag = BU.getTagID();
2840 if (Tag == LLVMContext::OB_deopt) {
2841 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I);
2842 FoundDeoptBundle = true;
2843 } else if (Tag == LLVMContext::OB_gc_transition) {
2844 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
2845 I);
2846 FoundGCTransitionBundle = true;
2847 } else if (Tag == LLVMContext::OB_funclet) {
2848 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I);
2849 FoundFuncletBundle = true;
2850 Assert(BU.Inputs.size() == 1,
2851 "Expected exactly one funclet bundle operand", I);
2852 Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2853 "Funclet bundle operands should correspond to a FuncletPadInst",
2854 I);
2855 }
2856 }
2857
2858 // Verify that each inlinable callsite of a debug-info-bearing function in a
2859 // debug-info-bearing function has a debug location attached to it. Failure to
2860 // do so causes assertion failures when the inliner sets up inline scope info.
2861 if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
2862 CS.getCalledFunction()->getSubprogram())
2863 AssertDI(I->getDebugLoc(), "inlinable function call in a function with "
2864 "debug info must have a !dbg location",
2865 I);
2866
2867 visitInstruction(*I);
2868 }
2869
2870 /// Two types are "congruent" if they are identical, or if they are both pointer
2871 /// types with different pointee types and the same address space.
isTypeCongruent(Type * L,Type * R)2872 static bool isTypeCongruent(Type *L, Type *R) {
2873 if (L == R)
2874 return true;
2875 PointerType *PL = dyn_cast<PointerType>(L);
2876 PointerType *PR = dyn_cast<PointerType>(R);
2877 if (!PL || !PR)
2878 return false;
2879 return PL->getAddressSpace() == PR->getAddressSpace();
2880 }
2881
getParameterABIAttributes(int I,AttributeList Attrs)2882 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
2883 static const Attribute::AttrKind ABIAttrs[] = {
2884 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2885 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2886 Attribute::SwiftError};
2887 AttrBuilder Copy;
2888 for (auto AK : ABIAttrs) {
2889 if (Attrs.hasParamAttribute(I, AK))
2890 Copy.addAttribute(AK);
2891 }
2892 if (Attrs.hasParamAttribute(I, Attribute::Alignment))
2893 Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
2894 return Copy;
2895 }
2896
verifyMustTailCall(CallInst & CI)2897 void Verifier::verifyMustTailCall(CallInst &CI) {
2898 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
2899
2900 // - The caller and callee prototypes must match. Pointer types of
2901 // parameters or return types may differ in pointee type, but not
2902 // address space.
2903 Function *F = CI.getParent()->getParent();
2904 FunctionType *CallerTy = F->getFunctionType();
2905 FunctionType *CalleeTy = CI.getFunctionType();
2906 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
2907 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
2908 "cannot guarantee tail call due to mismatched parameter counts",
2909 &CI);
2910 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2911 Assert(
2912 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
2913 "cannot guarantee tail call due to mismatched parameter types", &CI);
2914 }
2915 }
2916 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
2917 "cannot guarantee tail call due to mismatched varargs", &CI);
2918 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
2919 "cannot guarantee tail call due to mismatched return types", &CI);
2920
2921 // - The calling conventions of the caller and callee must match.
2922 Assert(F->getCallingConv() == CI.getCallingConv(),
2923 "cannot guarantee tail call due to mismatched calling conv", &CI);
2924
2925 // - All ABI-impacting function attributes, such as sret, byval, inreg,
2926 // returned, and inalloca, must match.
2927 AttributeList CallerAttrs = F->getAttributes();
2928 AttributeList CalleeAttrs = CI.getAttributes();
2929 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2930 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2931 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2932 Assert(CallerABIAttrs == CalleeABIAttrs,
2933 "cannot guarantee tail call due to mismatched ABI impacting "
2934 "function attributes",
2935 &CI, CI.getOperand(I));
2936 }
2937
2938 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2939 // or a pointer bitcast followed by a ret instruction.
2940 // - The ret instruction must return the (possibly bitcasted) value
2941 // produced by the call or void.
2942 Value *RetVal = &CI;
2943 Instruction *Next = CI.getNextNode();
2944
2945 // Handle the optional bitcast.
2946 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2947 Assert(BI->getOperand(0) == RetVal,
2948 "bitcast following musttail call must use the call", BI);
2949 RetVal = BI;
2950 Next = BI->getNextNode();
2951 }
2952
2953 // Check the return.
2954 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2955 Assert(Ret, "musttail call must precede a ret with an optional bitcast",
2956 &CI);
2957 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
2958 "musttail call result must be returned", Ret);
2959 }
2960
visitCallInst(CallInst & CI)2961 void Verifier::visitCallInst(CallInst &CI) {
2962 verifyCallSite(&CI);
2963
2964 if (CI.isMustTailCall())
2965 verifyMustTailCall(CI);
2966 }
2967
visitInvokeInst(InvokeInst & II)2968 void Verifier::visitInvokeInst(InvokeInst &II) {
2969 verifyCallSite(&II);
2970
2971 // Verify that the first non-PHI instruction of the unwind destination is an
2972 // exception handling instruction.
2973 Assert(
2974 II.getUnwindDest()->isEHPad(),
2975 "The unwind destination does not have an exception handling instruction!",
2976 &II);
2977
2978 visitTerminatorInst(II);
2979 }
2980
2981 /// visitBinaryOperator - Check that both arguments to the binary operator are
2982 /// of the same type!
2983 ///
visitBinaryOperator(BinaryOperator & B)2984 void Verifier::visitBinaryOperator(BinaryOperator &B) {
2985 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
2986 "Both operands to a binary operator are not of the same type!", &B);
2987
2988 switch (B.getOpcode()) {
2989 // Check that integer arithmetic operators are only used with
2990 // integral operands.
2991 case Instruction::Add:
2992 case Instruction::Sub:
2993 case Instruction::Mul:
2994 case Instruction::SDiv:
2995 case Instruction::UDiv:
2996 case Instruction::SRem:
2997 case Instruction::URem:
2998 Assert(B.getType()->isIntOrIntVectorTy(),
2999 "Integer arithmetic operators only work with integral types!", &B);
3000 Assert(B.getType() == B.getOperand(0)->getType(),
3001 "Integer arithmetic operators must have same type "
3002 "for operands and result!",
3003 &B);
3004 break;
3005 // Check that floating-point arithmetic operators are only used with
3006 // floating-point operands.
3007 case Instruction::FAdd:
3008 case Instruction::FSub:
3009 case Instruction::FMul:
3010 case Instruction::FDiv:
3011 case Instruction::FRem:
3012 Assert(B.getType()->isFPOrFPVectorTy(),
3013 "Floating-point arithmetic operators only work with "
3014 "floating-point types!",
3015 &B);
3016 Assert(B.getType() == B.getOperand(0)->getType(),
3017 "Floating-point arithmetic operators must have same type "
3018 "for operands and result!",
3019 &B);
3020 break;
3021 // Check that logical operators are only used with integral operands.
3022 case Instruction::And:
3023 case Instruction::Or:
3024 case Instruction::Xor:
3025 Assert(B.getType()->isIntOrIntVectorTy(),
3026 "Logical operators only work with integral types!", &B);
3027 Assert(B.getType() == B.getOperand(0)->getType(),
3028 "Logical operators must have same type for operands and result!",
3029 &B);
3030 break;
3031 case Instruction::Shl:
3032 case Instruction::LShr:
3033 case Instruction::AShr:
3034 Assert(B.getType()->isIntOrIntVectorTy(),
3035 "Shifts only work with integral types!", &B);
3036 Assert(B.getType() == B.getOperand(0)->getType(),
3037 "Shift return type must be same as operands!", &B);
3038 break;
3039 default:
3040 llvm_unreachable("Unknown BinaryOperator opcode!");
3041 }
3042
3043 visitInstruction(B);
3044 }
3045
visitICmpInst(ICmpInst & IC)3046 void Verifier::visitICmpInst(ICmpInst &IC) {
3047 // Check that the operands are the same type
3048 Type *Op0Ty = IC.getOperand(0)->getType();
3049 Type *Op1Ty = IC.getOperand(1)->getType();
3050 Assert(Op0Ty == Op1Ty,
3051 "Both operands to ICmp instruction are not of the same type!", &IC);
3052 // Check that the operands are the right type
3053 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3054 "Invalid operand types for ICmp instruction", &IC);
3055 // Check that the predicate is valid.
3056 Assert(IC.isIntPredicate(),
3057 "Invalid predicate in ICmp instruction!", &IC);
3058
3059 visitInstruction(IC);
3060 }
3061
visitFCmpInst(FCmpInst & FC)3062 void Verifier::visitFCmpInst(FCmpInst &FC) {
3063 // Check that the operands are the same type
3064 Type *Op0Ty = FC.getOperand(0)->getType();
3065 Type *Op1Ty = FC.getOperand(1)->getType();
3066 Assert(Op0Ty == Op1Ty,
3067 "Both operands to FCmp instruction are not of the same type!", &FC);
3068 // Check that the operands are the right type
3069 Assert(Op0Ty->isFPOrFPVectorTy(),
3070 "Invalid operand types for FCmp instruction", &FC);
3071 // Check that the predicate is valid.
3072 Assert(FC.isFPPredicate(),
3073 "Invalid predicate in FCmp instruction!", &FC);
3074
3075 visitInstruction(FC);
3076 }
3077
visitExtractElementInst(ExtractElementInst & EI)3078 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3079 Assert(
3080 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3081 "Invalid extractelement operands!", &EI);
3082 visitInstruction(EI);
3083 }
3084
visitInsertElementInst(InsertElementInst & IE)3085 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3086 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3087 IE.getOperand(2)),
3088 "Invalid insertelement operands!", &IE);
3089 visitInstruction(IE);
3090 }
3091
visitShuffleVectorInst(ShuffleVectorInst & SV)3092 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3093 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3094 SV.getOperand(2)),
3095 "Invalid shufflevector operands!", &SV);
3096 visitInstruction(SV);
3097 }
3098
visitGetElementPtrInst(GetElementPtrInst & GEP)3099 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3100 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3101
3102 Assert(isa<PointerType>(TargetTy),
3103 "GEP base pointer is not a vector or a vector of pointers", &GEP);
3104 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3105
3106 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3107 Assert(all_of(
3108 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3109 "GEP indexes must be integers", &GEP);
3110 Type *ElTy =
3111 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3112 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3113
3114 Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3115 GEP.getResultElementType() == ElTy,
3116 "GEP is not of right type for indices!", &GEP, ElTy);
3117
3118 if (GEP.getType()->isVectorTy()) {
3119 // Additional checks for vector GEPs.
3120 unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3121 if (GEP.getPointerOperandType()->isVectorTy())
3122 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
3123 "Vector GEP result width doesn't match operand's", &GEP);
3124 for (Value *Idx : Idxs) {
3125 Type *IndexTy = Idx->getType();
3126 if (IndexTy->isVectorTy()) {
3127 unsigned IndexWidth = IndexTy->getVectorNumElements();
3128 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3129 }
3130 Assert(IndexTy->isIntOrIntVectorTy(),
3131 "All GEP indices should be of integer type");
3132 }
3133 }
3134 visitInstruction(GEP);
3135 }
3136
isContiguous(const ConstantRange & A,const ConstantRange & B)3137 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3138 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3139 }
3140
visitRangeMetadata(Instruction & I,MDNode * Range,Type * Ty)3141 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3142 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3143 "precondition violation");
3144
3145 unsigned NumOperands = Range->getNumOperands();
3146 Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3147 unsigned NumRanges = NumOperands / 2;
3148 Assert(NumRanges >= 1, "It should have at least one range!", Range);
3149
3150 ConstantRange LastRange(1); // Dummy initial value
3151 for (unsigned i = 0; i < NumRanges; ++i) {
3152 ConstantInt *Low =
3153 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3154 Assert(Low, "The lower limit must be an integer!", Low);
3155 ConstantInt *High =
3156 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3157 Assert(High, "The upper limit must be an integer!", High);
3158 Assert(High->getType() == Low->getType() && High->getType() == Ty,
3159 "Range types must match instruction type!", &I);
3160
3161 APInt HighV = High->getValue();
3162 APInt LowV = Low->getValue();
3163 ConstantRange CurRange(LowV, HighV);
3164 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3165 "Range must not be empty!", Range);
3166 if (i != 0) {
3167 Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3168 "Intervals are overlapping", Range);
3169 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3170 Range);
3171 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3172 Range);
3173 }
3174 LastRange = ConstantRange(LowV, HighV);
3175 }
3176 if (NumRanges > 2) {
3177 APInt FirstLow =
3178 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3179 APInt FirstHigh =
3180 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3181 ConstantRange FirstRange(FirstLow, FirstHigh);
3182 Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3183 "Intervals are overlapping", Range);
3184 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3185 Range);
3186 }
3187 }
3188
checkAtomicMemAccessSize(Type * Ty,const Instruction * I)3189 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3190 unsigned Size = DL.getTypeSizeInBits(Ty);
3191 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3192 Assert(!(Size & (Size - 1)),
3193 "atomic memory access' operand must have a power-of-two size", Ty, I);
3194 }
3195
visitLoadInst(LoadInst & LI)3196 void Verifier::visitLoadInst(LoadInst &LI) {
3197 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3198 Assert(PTy, "Load operand must be a pointer.", &LI);
3199 Type *ElTy = LI.getType();
3200 Assert(LI.getAlignment() <= Value::MaximumAlignment,
3201 "huge alignment values are unsupported", &LI);
3202 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3203 if (LI.isAtomic()) {
3204 Assert(LI.getOrdering() != AtomicOrdering::Release &&
3205 LI.getOrdering() != AtomicOrdering::AcquireRelease,
3206 "Load cannot have Release ordering", &LI);
3207 Assert(LI.getAlignment() != 0,
3208 "Atomic load must specify explicit alignment", &LI);
3209 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3210 "atomic load operand must have integer, pointer, or floating point "
3211 "type!",
3212 ElTy, &LI);
3213 checkAtomicMemAccessSize(ElTy, &LI);
3214 } else {
3215 Assert(LI.getSyncScopeID() == SyncScope::System,
3216 "Non-atomic load cannot have SynchronizationScope specified", &LI);
3217 }
3218
3219 visitInstruction(LI);
3220 }
3221
visitStoreInst(StoreInst & SI)3222 void Verifier::visitStoreInst(StoreInst &SI) {
3223 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3224 Assert(PTy, "Store operand must be a pointer.", &SI);
3225 Type *ElTy = PTy->getElementType();
3226 Assert(ElTy == SI.getOperand(0)->getType(),
3227 "Stored value type does not match pointer operand type!", &SI, ElTy);
3228 Assert(SI.getAlignment() <= Value::MaximumAlignment,
3229 "huge alignment values are unsupported", &SI);
3230 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3231 if (SI.isAtomic()) {
3232 Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3233 SI.getOrdering() != AtomicOrdering::AcquireRelease,
3234 "Store cannot have Acquire ordering", &SI);
3235 Assert(SI.getAlignment() != 0,
3236 "Atomic store must specify explicit alignment", &SI);
3237 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3238 "atomic store operand must have integer, pointer, or floating point "
3239 "type!",
3240 ElTy, &SI);
3241 checkAtomicMemAccessSize(ElTy, &SI);
3242 } else {
3243 Assert(SI.getSyncScopeID() == SyncScope::System,
3244 "Non-atomic store cannot have SynchronizationScope specified", &SI);
3245 }
3246 visitInstruction(SI);
3247 }
3248
3249 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
verifySwiftErrorCallSite(CallSite CS,const Value * SwiftErrorVal)3250 void Verifier::verifySwiftErrorCallSite(CallSite CS,
3251 const Value *SwiftErrorVal) {
3252 unsigned Idx = 0;
3253 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
3254 I != E; ++I, ++Idx) {
3255 if (*I == SwiftErrorVal) {
3256 Assert(CS.paramHasAttr(Idx, Attribute::SwiftError),
3257 "swifterror value when used in a callsite should be marked "
3258 "with swifterror attribute",
3259 SwiftErrorVal, CS);
3260 }
3261 }
3262 }
3263
verifySwiftErrorValue(const Value * SwiftErrorVal)3264 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3265 // Check that swifterror value is only used by loads, stores, or as
3266 // a swifterror argument.
3267 for (const User *U : SwiftErrorVal->users()) {
3268 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3269 isa<InvokeInst>(U),
3270 "swifterror value can only be loaded and stored from, or "
3271 "as a swifterror argument!",
3272 SwiftErrorVal, U);
3273 // If it is used by a store, check it is the second operand.
3274 if (auto StoreI = dyn_cast<StoreInst>(U))
3275 Assert(StoreI->getOperand(1) == SwiftErrorVal,
3276 "swifterror value should be the second operand when used "
3277 "by stores", SwiftErrorVal, U);
3278 if (auto CallI = dyn_cast<CallInst>(U))
3279 verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
3280 if (auto II = dyn_cast<InvokeInst>(U))
3281 verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
3282 }
3283 }
3284
visitAllocaInst(AllocaInst & AI)3285 void Verifier::visitAllocaInst(AllocaInst &AI) {
3286 SmallPtrSet<Type*, 4> Visited;
3287 PointerType *PTy = AI.getType();
3288 // TODO: Relax this restriction?
3289 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),
3290 "Allocation instruction pointer not in the stack address space!",
3291 &AI);
3292 Assert(AI.getAllocatedType()->isSized(&Visited),
3293 "Cannot allocate unsized type", &AI);
3294 Assert(AI.getArraySize()->getType()->isIntegerTy(),
3295 "Alloca array size must have integer type", &AI);
3296 Assert(AI.getAlignment() <= Value::MaximumAlignment,
3297 "huge alignment values are unsupported", &AI);
3298
3299 if (AI.isSwiftError()) {
3300 verifySwiftErrorValue(&AI);
3301 }
3302
3303 visitInstruction(AI);
3304 }
3305
visitAtomicCmpXchgInst(AtomicCmpXchgInst & CXI)3306 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3307
3308 // FIXME: more conditions???
3309 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
3310 "cmpxchg instructions must be atomic.", &CXI);
3311 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
3312 "cmpxchg instructions must be atomic.", &CXI);
3313 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
3314 "cmpxchg instructions cannot be unordered.", &CXI);
3315 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
3316 "cmpxchg instructions cannot be unordered.", &CXI);
3317 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
3318 "cmpxchg instructions failure argument shall be no stronger than the "
3319 "success argument",
3320 &CXI);
3321 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
3322 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
3323 "cmpxchg failure ordering cannot include release semantics", &CXI);
3324
3325 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3326 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3327 Type *ElTy = PTy->getElementType();
3328 Assert(ElTy->isIntOrPtrTy(),
3329 "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3330 checkAtomicMemAccessSize(ElTy, &CXI);
3331 Assert(ElTy == CXI.getOperand(1)->getType(),
3332 "Expected value type does not match pointer operand type!", &CXI,
3333 ElTy);
3334 Assert(ElTy == CXI.getOperand(2)->getType(),
3335 "Stored value type does not match pointer operand type!", &CXI, ElTy);
3336 visitInstruction(CXI);
3337 }
3338
visitAtomicRMWInst(AtomicRMWInst & RMWI)3339 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3340 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
3341 "atomicrmw instructions must be atomic.", &RMWI);
3342 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3343 "atomicrmw instructions cannot be unordered.", &RMWI);
3344 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3345 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3346 Type *ElTy = PTy->getElementType();
3347 Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
3348 &RMWI, ElTy);
3349 checkAtomicMemAccessSize(ElTy, &RMWI);
3350 Assert(ElTy == RMWI.getOperand(1)->getType(),
3351 "Argument value type does not match pointer operand type!", &RMWI,
3352 ElTy);
3353 Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
3354 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
3355 "Invalid binary operation!", &RMWI);
3356 visitInstruction(RMWI);
3357 }
3358
visitFenceInst(FenceInst & FI)3359 void Verifier::visitFenceInst(FenceInst &FI) {
3360 const AtomicOrdering Ordering = FI.getOrdering();
3361 Assert(Ordering == AtomicOrdering::Acquire ||
3362 Ordering == AtomicOrdering::Release ||
3363 Ordering == AtomicOrdering::AcquireRelease ||
3364 Ordering == AtomicOrdering::SequentiallyConsistent,
3365 "fence instructions may only have acquire, release, acq_rel, or "
3366 "seq_cst ordering.",
3367 &FI);
3368 visitInstruction(FI);
3369 }
3370
visitExtractValueInst(ExtractValueInst & EVI)3371 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3372 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3373 EVI.getIndices()) == EVI.getType(),
3374 "Invalid ExtractValueInst operands!", &EVI);
3375
3376 visitInstruction(EVI);
3377 }
3378
visitInsertValueInst(InsertValueInst & IVI)3379 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3380 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3381 IVI.getIndices()) ==
3382 IVI.getOperand(1)->getType(),
3383 "Invalid InsertValueInst operands!", &IVI);
3384
3385 visitInstruction(IVI);
3386 }
3387
getParentPad(Value * EHPad)3388 static Value *getParentPad(Value *EHPad) {
3389 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3390 return FPI->getParentPad();
3391
3392 return cast<CatchSwitchInst>(EHPad)->getParentPad();
3393 }
3394
visitEHPadPredecessors(Instruction & I)3395 void Verifier::visitEHPadPredecessors(Instruction &I) {
3396 assert(I.isEHPad());
3397
3398 BasicBlock *BB = I.getParent();
3399 Function *F = BB->getParent();
3400
3401 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3402
3403 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3404 // The landingpad instruction defines its parent as a landing pad block. The
3405 // landing pad block may be branched to only by the unwind edge of an
3406 // invoke.
3407 for (BasicBlock *PredBB : predecessors(BB)) {
3408 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3409 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3410 "Block containing LandingPadInst must be jumped to "
3411 "only by the unwind edge of an invoke.",
3412 LPI);
3413 }
3414 return;
3415 }
3416 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3417 if (!pred_empty(BB))
3418 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3419 "Block containg CatchPadInst must be jumped to "
3420 "only by its catchswitch.",
3421 CPI);
3422 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3423 "Catchswitch cannot unwind to one of its catchpads",
3424 CPI->getCatchSwitch(), CPI);
3425 return;
3426 }
3427
3428 // Verify that each pred has a legal terminator with a legal to/from EH
3429 // pad relationship.
3430 Instruction *ToPad = &I;
3431 Value *ToPadParent = getParentPad(ToPad);
3432 for (BasicBlock *PredBB : predecessors(BB)) {
3433 TerminatorInst *TI = PredBB->getTerminator();
3434 Value *FromPad;
3435 if (auto *II = dyn_cast<InvokeInst>(TI)) {
3436 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3437 "EH pad must be jumped to via an unwind edge", ToPad, II);
3438 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3439 FromPad = Bundle->Inputs[0];
3440 else
3441 FromPad = ConstantTokenNone::get(II->getContext());
3442 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3443 FromPad = CRI->getOperand(0);
3444 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3445 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3446 FromPad = CSI;
3447 } else {
3448 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3449 }
3450
3451 // The edge may exit from zero or more nested pads.
3452 SmallSet<Value *, 8> Seen;
3453 for (;; FromPad = getParentPad(FromPad)) {
3454 Assert(FromPad != ToPad,
3455 "EH pad cannot handle exceptions raised within it", FromPad, TI);
3456 if (FromPad == ToPadParent) {
3457 // This is a legal unwind edge.
3458 break;
3459 }
3460 Assert(!isa<ConstantTokenNone>(FromPad),
3461 "A single unwind edge may only enter one EH pad", TI);
3462 Assert(Seen.insert(FromPad).second,
3463 "EH pad jumps through a cycle of pads", FromPad);
3464 }
3465 }
3466 }
3467
visitLandingPadInst(LandingPadInst & LPI)3468 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3469 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3470 // isn't a cleanup.
3471 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3472 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3473
3474 visitEHPadPredecessors(LPI);
3475
3476 if (!LandingPadResultTy)
3477 LandingPadResultTy = LPI.getType();
3478 else
3479 Assert(LandingPadResultTy == LPI.getType(),
3480 "The landingpad instruction should have a consistent result type "
3481 "inside a function.",
3482 &LPI);
3483
3484 Function *F = LPI.getParent()->getParent();
3485 Assert(F->hasPersonalityFn(),
3486 "LandingPadInst needs to be in a function with a personality.", &LPI);
3487
3488 // The landingpad instruction must be the first non-PHI instruction in the
3489 // block.
3490 Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3491 "LandingPadInst not the first non-PHI instruction in the block.",
3492 &LPI);
3493
3494 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3495 Constant *Clause = LPI.getClause(i);
3496 if (LPI.isCatch(i)) {
3497 Assert(isa<PointerType>(Clause->getType()),
3498 "Catch operand does not have pointer type!", &LPI);
3499 } else {
3500 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3501 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3502 "Filter operand is not an array of constants!", &LPI);
3503 }
3504 }
3505
3506 visitInstruction(LPI);
3507 }
3508
visitResumeInst(ResumeInst & RI)3509 void Verifier::visitResumeInst(ResumeInst &RI) {
3510 Assert(RI.getFunction()->hasPersonalityFn(),
3511 "ResumeInst needs to be in a function with a personality.", &RI);
3512
3513 if (!LandingPadResultTy)
3514 LandingPadResultTy = RI.getValue()->getType();
3515 else
3516 Assert(LandingPadResultTy == RI.getValue()->getType(),
3517 "The resume instruction should have a consistent result type "
3518 "inside a function.",
3519 &RI);
3520
3521 visitTerminatorInst(RI);
3522 }
3523
visitCatchPadInst(CatchPadInst & CPI)3524 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3525 BasicBlock *BB = CPI.getParent();
3526
3527 Function *F = BB->getParent();
3528 Assert(F->hasPersonalityFn(),
3529 "CatchPadInst needs to be in a function with a personality.", &CPI);
3530
3531 Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3532 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3533 CPI.getParentPad());
3534
3535 // The catchpad instruction must be the first non-PHI instruction in the
3536 // block.
3537 Assert(BB->getFirstNonPHI() == &CPI,
3538 "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3539
3540 visitEHPadPredecessors(CPI);
3541 visitFuncletPadInst(CPI);
3542 }
3543
visitCatchReturnInst(CatchReturnInst & CatchReturn)3544 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3545 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3546 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3547 CatchReturn.getOperand(0));
3548
3549 visitTerminatorInst(CatchReturn);
3550 }
3551
visitCleanupPadInst(CleanupPadInst & CPI)3552 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3553 BasicBlock *BB = CPI.getParent();
3554
3555 Function *F = BB->getParent();
3556 Assert(F->hasPersonalityFn(),
3557 "CleanupPadInst needs to be in a function with a personality.", &CPI);
3558
3559 // The cleanuppad instruction must be the first non-PHI instruction in the
3560 // block.
3561 Assert(BB->getFirstNonPHI() == &CPI,
3562 "CleanupPadInst not the first non-PHI instruction in the block.",
3563 &CPI);
3564
3565 auto *ParentPad = CPI.getParentPad();
3566 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3567 "CleanupPadInst has an invalid parent.", &CPI);
3568
3569 visitEHPadPredecessors(CPI);
3570 visitFuncletPadInst(CPI);
3571 }
3572
visitFuncletPadInst(FuncletPadInst & FPI)3573 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3574 User *FirstUser = nullptr;
3575 Value *FirstUnwindPad = nullptr;
3576 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3577 SmallSet<FuncletPadInst *, 8> Seen;
3578
3579 while (!Worklist.empty()) {
3580 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3581 Assert(Seen.insert(CurrentPad).second,
3582 "FuncletPadInst must not be nested within itself", CurrentPad);
3583 Value *UnresolvedAncestorPad = nullptr;
3584 for (User *U : CurrentPad->users()) {
3585 BasicBlock *UnwindDest;
3586 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3587 UnwindDest = CRI->getUnwindDest();
3588 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3589 // We allow catchswitch unwind to caller to nest
3590 // within an outer pad that unwinds somewhere else,
3591 // because catchswitch doesn't have a nounwind variant.
3592 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3593 if (CSI->unwindsToCaller())
3594 continue;
3595 UnwindDest = CSI->getUnwindDest();
3596 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3597 UnwindDest = II->getUnwindDest();
3598 } else if (isa<CallInst>(U)) {
3599 // Calls which don't unwind may be found inside funclet
3600 // pads that unwind somewhere else. We don't *require*
3601 // such calls to be annotated nounwind.
3602 continue;
3603 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3604 // The unwind dest for a cleanup can only be found by
3605 // recursive search. Add it to the worklist, and we'll
3606 // search for its first use that determines where it unwinds.
3607 Worklist.push_back(CPI);
3608 continue;
3609 } else {
3610 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3611 continue;
3612 }
3613
3614 Value *UnwindPad;
3615 bool ExitsFPI;
3616 if (UnwindDest) {
3617 UnwindPad = UnwindDest->getFirstNonPHI();
3618 if (!cast<Instruction>(UnwindPad)->isEHPad())
3619 continue;
3620 Value *UnwindParent = getParentPad(UnwindPad);
3621 // Ignore unwind edges that don't exit CurrentPad.
3622 if (UnwindParent == CurrentPad)
3623 continue;
3624 // Determine whether the original funclet pad is exited,
3625 // and if we are scanning nested pads determine how many
3626 // of them are exited so we can stop searching their
3627 // children.
3628 Value *ExitedPad = CurrentPad;
3629 ExitsFPI = false;
3630 do {
3631 if (ExitedPad == &FPI) {
3632 ExitsFPI = true;
3633 // Now we can resolve any ancestors of CurrentPad up to
3634 // FPI, but not including FPI since we need to make sure
3635 // to check all direct users of FPI for consistency.
3636 UnresolvedAncestorPad = &FPI;
3637 break;
3638 }
3639 Value *ExitedParent = getParentPad(ExitedPad);
3640 if (ExitedParent == UnwindParent) {
3641 // ExitedPad is the ancestor-most pad which this unwind
3642 // edge exits, so we can resolve up to it, meaning that
3643 // ExitedParent is the first ancestor still unresolved.
3644 UnresolvedAncestorPad = ExitedParent;
3645 break;
3646 }
3647 ExitedPad = ExitedParent;
3648 } while (!isa<ConstantTokenNone>(ExitedPad));
3649 } else {
3650 // Unwinding to caller exits all pads.
3651 UnwindPad = ConstantTokenNone::get(FPI.getContext());
3652 ExitsFPI = true;
3653 UnresolvedAncestorPad = &FPI;
3654 }
3655
3656 if (ExitsFPI) {
3657 // This unwind edge exits FPI. Make sure it agrees with other
3658 // such edges.
3659 if (FirstUser) {
3660 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3661 "pad must have the same unwind "
3662 "dest",
3663 &FPI, U, FirstUser);
3664 } else {
3665 FirstUser = U;
3666 FirstUnwindPad = UnwindPad;
3667 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3668 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3669 getParentPad(UnwindPad) == getParentPad(&FPI))
3670 SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3671 }
3672 }
3673 // Make sure we visit all uses of FPI, but for nested pads stop as
3674 // soon as we know where they unwind to.
3675 if (CurrentPad != &FPI)
3676 break;
3677 }
3678 if (UnresolvedAncestorPad) {
3679 if (CurrentPad == UnresolvedAncestorPad) {
3680 // When CurrentPad is FPI itself, we don't mark it as resolved even if
3681 // we've found an unwind edge that exits it, because we need to verify
3682 // all direct uses of FPI.
3683 assert(CurrentPad == &FPI);
3684 continue;
3685 }
3686 // Pop off the worklist any nested pads that we've found an unwind
3687 // destination for. The pads on the worklist are the uncles,
3688 // great-uncles, etc. of CurrentPad. We've found an unwind destination
3689 // for all ancestors of CurrentPad up to but not including
3690 // UnresolvedAncestorPad.
3691 Value *ResolvedPad = CurrentPad;
3692 while (!Worklist.empty()) {
3693 Value *UnclePad = Worklist.back();
3694 Value *AncestorPad = getParentPad(UnclePad);
3695 // Walk ResolvedPad up the ancestor list until we either find the
3696 // uncle's parent or the last resolved ancestor.
3697 while (ResolvedPad != AncestorPad) {
3698 Value *ResolvedParent = getParentPad(ResolvedPad);
3699 if (ResolvedParent == UnresolvedAncestorPad) {
3700 break;
3701 }
3702 ResolvedPad = ResolvedParent;
3703 }
3704 // If the resolved ancestor search didn't find the uncle's parent,
3705 // then the uncle is not yet resolved.
3706 if (ResolvedPad != AncestorPad)
3707 break;
3708 // This uncle is resolved, so pop it from the worklist.
3709 Worklist.pop_back();
3710 }
3711 }
3712 }
3713
3714 if (FirstUnwindPad) {
3715 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3716 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3717 Value *SwitchUnwindPad;
3718 if (SwitchUnwindDest)
3719 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3720 else
3721 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3722 Assert(SwitchUnwindPad == FirstUnwindPad,
3723 "Unwind edges out of a catch must have the same unwind dest as "
3724 "the parent catchswitch",
3725 &FPI, FirstUser, CatchSwitch);
3726 }
3727 }
3728
3729 visitInstruction(FPI);
3730 }
3731
visitCatchSwitchInst(CatchSwitchInst & CatchSwitch)3732 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3733 BasicBlock *BB = CatchSwitch.getParent();
3734
3735 Function *F = BB->getParent();
3736 Assert(F->hasPersonalityFn(),
3737 "CatchSwitchInst needs to be in a function with a personality.",
3738 &CatchSwitch);
3739
3740 // The catchswitch instruction must be the first non-PHI instruction in the
3741 // block.
3742 Assert(BB->getFirstNonPHI() == &CatchSwitch,
3743 "CatchSwitchInst not the first non-PHI instruction in the block.",
3744 &CatchSwitch);
3745
3746 auto *ParentPad = CatchSwitch.getParentPad();
3747 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3748 "CatchSwitchInst has an invalid parent.", ParentPad);
3749
3750 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3751 Instruction *I = UnwindDest->getFirstNonPHI();
3752 Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3753 "CatchSwitchInst must unwind to an EH block which is not a "
3754 "landingpad.",
3755 &CatchSwitch);
3756
3757 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3758 if (getParentPad(I) == ParentPad)
3759 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3760 }
3761
3762 Assert(CatchSwitch.getNumHandlers() != 0,
3763 "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3764
3765 for (BasicBlock *Handler : CatchSwitch.handlers()) {
3766 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3767 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3768 }
3769
3770 visitEHPadPredecessors(CatchSwitch);
3771 visitTerminatorInst(CatchSwitch);
3772 }
3773
visitCleanupReturnInst(CleanupReturnInst & CRI)3774 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3775 Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3776 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3777 CRI.getOperand(0));
3778
3779 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3780 Instruction *I = UnwindDest->getFirstNonPHI();
3781 Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3782 "CleanupReturnInst must unwind to an EH block which is not a "
3783 "landingpad.",
3784 &CRI);
3785 }
3786
3787 visitTerminatorInst(CRI);
3788 }
3789
verifyDominatesUse(Instruction & I,unsigned i)3790 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3791 Instruction *Op = cast<Instruction>(I.getOperand(i));
3792 // If the we have an invalid invoke, don't try to compute the dominance.
3793 // We already reject it in the invoke specific checks and the dominance
3794 // computation doesn't handle multiple edges.
3795 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3796 if (II->getNormalDest() == II->getUnwindDest())
3797 return;
3798 }
3799
3800 // Quick check whether the def has already been encountered in the same block.
3801 // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
3802 // uses are defined to happen on the incoming edge, not at the instruction.
3803 //
3804 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3805 // wrapping an SSA value, assert that we've already encountered it. See
3806 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3807 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3808 return;
3809
3810 const Use &U = I.getOperandUse(i);
3811 Assert(DT.dominates(Op, U),
3812 "Instruction does not dominate all uses!", Op, &I);
3813 }
3814
visitDereferenceableMetadata(Instruction & I,MDNode * MD)3815 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3816 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3817 "apply only to pointer types", &I);
3818 Assert(isa<LoadInst>(I),
3819 "dereferenceable, dereferenceable_or_null apply only to load"
3820 " instructions, use attributes for calls or invokes", &I);
3821 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3822 "take one operand!", &I);
3823 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3824 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3825 "dereferenceable_or_null metadata value must be an i64!", &I);
3826 }
3827
3828 /// verifyInstruction - Verify that an instruction is well formed.
3829 ///
visitInstruction(Instruction & I)3830 void Verifier::visitInstruction(Instruction &I) {
3831 BasicBlock *BB = I.getParent();
3832 Assert(BB, "Instruction not embedded in basic block!", &I);
3833
3834 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
3835 for (User *U : I.users()) {
3836 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
3837 "Only PHI nodes may reference their own value!", &I);
3838 }
3839 }
3840
3841 // Check that void typed values don't have names
3842 Assert(!I.getType()->isVoidTy() || !I.hasName(),
3843 "Instruction has a name, but provides a void value!", &I);
3844
3845 // Check that the return value of the instruction is either void or a legal
3846 // value type.
3847 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
3848 "Instruction returns a non-scalar type!", &I);
3849
3850 // Check that the instruction doesn't produce metadata. Calls are already
3851 // checked against the callee type.
3852 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
3853 "Invalid use of metadata!", &I);
3854
3855 // Check that all uses of the instruction, if they are instructions
3856 // themselves, actually have parent basic blocks. If the use is not an
3857 // instruction, it is an error!
3858 for (Use &U : I.uses()) {
3859 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3860 Assert(Used->getParent() != nullptr,
3861 "Instruction referencing"
3862 " instruction not embedded in a basic block!",
3863 &I, Used);
3864 else {
3865 CheckFailed("Use of instruction is not an instruction!", U);
3866 return;
3867 }
3868 }
3869
3870 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3871 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
3872
3873 // Check to make sure that only first-class-values are operands to
3874 // instructions.
3875 if (!I.getOperand(i)->getType()->isFirstClassType()) {
3876 Assert(false, "Instruction operands must be first-class values!", &I);
3877 }
3878
3879 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3880 // Check to make sure that the "address of" an intrinsic function is never
3881 // taken.
3882 Assert(
3883 !F->isIntrinsic() ||
3884 i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
3885 "Cannot take the address of an intrinsic!", &I);
3886 Assert(
3887 !F->isIntrinsic() || isa<CallInst>(I) ||
3888 F->getIntrinsicID() == Intrinsic::donothing ||
3889 F->getIntrinsicID() == Intrinsic::coro_resume ||
3890 F->getIntrinsicID() == Intrinsic::coro_destroy ||
3891 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
3892 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
3893 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
3894 "Cannot invoke an intrinsic other than donothing, patchpoint, "
3895 "statepoint, coro_resume or coro_destroy",
3896 &I);
3897 Assert(F->getParent() == &M, "Referencing function in another module!",
3898 &I, &M, F, F->getParent());
3899 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3900 Assert(OpBB->getParent() == BB->getParent(),
3901 "Referring to a basic block in another function!", &I);
3902 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3903 Assert(OpArg->getParent() == BB->getParent(),
3904 "Referring to an argument in another function!", &I);
3905 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3906 Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
3907 &M, GV, GV->getParent());
3908 } else if (isa<Instruction>(I.getOperand(i))) {
3909 verifyDominatesUse(I, i);
3910 } else if (isa<InlineAsm>(I.getOperand(i))) {
3911 Assert((i + 1 == e && isa<CallInst>(I)) ||
3912 (i + 3 == e && isa<InvokeInst>(I)),
3913 "Cannot take the address of an inline asm!", &I);
3914 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3915 if (CE->getType()->isPtrOrPtrVectorTy() ||
3916 !DL.getNonIntegralAddressSpaces().empty()) {
3917 // If we have a ConstantExpr pointer, we need to see if it came from an
3918 // illegal bitcast. If the datalayout string specifies non-integral
3919 // address spaces then we also need to check for illegal ptrtoint and
3920 // inttoptr expressions.
3921 visitConstantExprsRecursively(CE);
3922 }
3923 }
3924 }
3925
3926 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3927 Assert(I.getType()->isFPOrFPVectorTy(),
3928 "fpmath requires a floating point result!", &I);
3929 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
3930 if (ConstantFP *CFP0 =
3931 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3932 const APFloat &Accuracy = CFP0->getValueAPF();
3933 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
3934 "fpmath accuracy must have float type", &I);
3935 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
3936 "fpmath accuracy not a positive number!", &I);
3937 } else {
3938 Assert(false, "invalid fpmath accuracy!", &I);
3939 }
3940 }
3941
3942 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3943 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
3944 "Ranges are only for loads, calls and invokes!", &I);
3945 visitRangeMetadata(I, Range, I.getType());
3946 }
3947
3948 if (I.getMetadata(LLVMContext::MD_nonnull)) {
3949 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
3950 &I);
3951 Assert(isa<LoadInst>(I),
3952 "nonnull applies only to load instructions, use attributes"
3953 " for calls or invokes",
3954 &I);
3955 }
3956
3957 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
3958 visitDereferenceableMetadata(I, MD);
3959
3960 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
3961 visitDereferenceableMetadata(I, MD);
3962
3963 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
3964 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
3965
3966 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3967 Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
3968 &I);
3969 Assert(isa<LoadInst>(I), "align applies only to load instructions, "
3970 "use attributes for calls or invokes", &I);
3971 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
3972 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3973 Assert(CI && CI->getType()->isIntegerTy(64),
3974 "align metadata value must be an i64!", &I);
3975 uint64_t Align = CI->getZExtValue();
3976 Assert(isPowerOf2_64(Align),
3977 "align metadata value must be a power of 2!", &I);
3978 Assert(Align <= Value::MaximumAlignment,
3979 "alignment is larger that implementation defined limit", &I);
3980 }
3981
3982 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3983 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
3984 visitMDNode(*N);
3985 }
3986
3987 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3988 verifyFragmentExpression(*DII);
3989
3990 InstsInThisBlock.insert(&I);
3991 }
3992
3993 /// Allow intrinsics to be verified in different ways.
visitIntrinsicCallSite(Intrinsic::ID ID,CallSite CS)3994 void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3995 Function *IF = CS.getCalledFunction();
3996 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
3997 IF);
3998
3999 // Verify that the intrinsic prototype lines up with what the .td files
4000 // describe.
4001 FunctionType *IFTy = IF->getFunctionType();
4002 bool IsVarArg = IFTy->isVarArg();
4003
4004 SmallVector<Intrinsic::IITDescriptor, 8> Table;
4005 getIntrinsicInfoTableEntries(ID, Table);
4006 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4007
4008 SmallVector<Type *, 4> ArgTys;
4009 Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),
4010 TableRef, ArgTys),
4011 "Intrinsic has incorrect return type!", IF);
4012 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
4013 Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),
4014 TableRef, ArgTys),
4015 "Intrinsic has incorrect argument type!", IF);
4016
4017 // Verify if the intrinsic call matches the vararg property.
4018 if (IsVarArg)
4019 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4020 "Intrinsic was not defined with variable arguments!", IF);
4021 else
4022 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4023 "Callsite was not defined with variable arguments!", IF);
4024
4025 // All descriptors should be absorbed by now.
4026 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4027
4028 // Now that we have the intrinsic ID and the actual argument types (and we
4029 // know they are legal for the intrinsic!) get the intrinsic name through the
4030 // usual means. This allows us to verify the mangling of argument types into
4031 // the name.
4032 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
4033 Assert(ExpectedName == IF->getName(),
4034 "Intrinsic name not mangled correctly for type arguments! "
4035 "Should be: " +
4036 ExpectedName,
4037 IF);
4038
4039 // If the intrinsic takes MDNode arguments, verify that they are either global
4040 // or are local to *this* function.
4041 for (Value *V : CS.args())
4042 if (auto *MD = dyn_cast<MetadataAsValue>(V))
4043 visitMetadataAsValue(*MD, CS.getCaller());
4044
4045 switch (ID) {
4046 default:
4047 break;
4048 case Intrinsic::coro_id: {
4049 auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts();
4050 if (isa<ConstantPointerNull>(InfoArg))
4051 break;
4052 auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4053 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4054 "info argument of llvm.coro.begin must refer to an initialized "
4055 "constant");
4056 Constant *Init = GV->getInitializer();
4057 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4058 "info argument of llvm.coro.begin must refer to either a struct or "
4059 "an array");
4060 break;
4061 }
4062 case Intrinsic::ctlz: // llvm.ctlz
4063 case Intrinsic::cttz: // llvm.cttz
4064 Assert(isa<ConstantInt>(CS.getArgOperand(1)),
4065 "is_zero_undef argument of bit counting intrinsics must be a "
4066 "constant int",
4067 CS);
4068 break;
4069 case Intrinsic::experimental_constrained_fadd:
4070 case Intrinsic::experimental_constrained_fsub:
4071 case Intrinsic::experimental_constrained_fmul:
4072 case Intrinsic::experimental_constrained_fdiv:
4073 case Intrinsic::experimental_constrained_frem:
4074 case Intrinsic::experimental_constrained_fma:
4075 case Intrinsic::experimental_constrained_sqrt:
4076 case Intrinsic::experimental_constrained_pow:
4077 case Intrinsic::experimental_constrained_powi:
4078 case Intrinsic::experimental_constrained_sin:
4079 case Intrinsic::experimental_constrained_cos:
4080 case Intrinsic::experimental_constrained_exp:
4081 case Intrinsic::experimental_constrained_exp2:
4082 case Intrinsic::experimental_constrained_log:
4083 case Intrinsic::experimental_constrained_log10:
4084 case Intrinsic::experimental_constrained_log2:
4085 case Intrinsic::experimental_constrained_rint:
4086 case Intrinsic::experimental_constrained_nearbyint:
4087 visitConstrainedFPIntrinsic(
4088 cast<ConstrainedFPIntrinsic>(*CS.getInstruction()));
4089 break;
4090 case Intrinsic::dbg_declare: // llvm.dbg.declare
4091 Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
4092 "invalid llvm.dbg.declare intrinsic call 1", CS);
4093 visitDbgIntrinsic("declare", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4094 break;
4095 case Intrinsic::dbg_addr: // llvm.dbg.addr
4096 visitDbgIntrinsic("addr", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4097 break;
4098 case Intrinsic::dbg_value: // llvm.dbg.value
4099 visitDbgIntrinsic("value", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4100 break;
4101 case Intrinsic::dbg_label: // llvm.dbg.label
4102 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(*CS.getInstruction()));
4103 break;
4104 case Intrinsic::memcpy:
4105 case Intrinsic::memmove:
4106 case Intrinsic::memset: {
4107 const auto *MI = cast<MemIntrinsic>(CS.getInstruction());
4108 auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4109 return Alignment == 0 || isPowerOf2_32(Alignment);
4110 };
4111 Assert(IsValidAlignment(MI->getDestAlignment()),
4112 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4113 CS);
4114 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4115 Assert(IsValidAlignment(MTI->getSourceAlignment()),
4116 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4117 CS);
4118 }
4119 Assert(isa<ConstantInt>(CS.getArgOperand(3)),
4120 "isvolatile argument of memory intrinsics must be a constant int",
4121 CS);
4122 break;
4123 }
4124 case Intrinsic::memcpy_element_unordered_atomic:
4125 case Intrinsic::memmove_element_unordered_atomic:
4126 case Intrinsic::memset_element_unordered_atomic: {
4127 const auto *AMI = cast<AtomicMemIntrinsic>(CS.getInstruction());
4128
4129 ConstantInt *ElementSizeCI =
4130 dyn_cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4131 Assert(ElementSizeCI,
4132 "element size of the element-wise unordered atomic memory "
4133 "intrinsic must be a constant int",
4134 CS);
4135 const APInt &ElementSizeVal = ElementSizeCI->getValue();
4136 Assert(ElementSizeVal.isPowerOf2(),
4137 "element size of the element-wise atomic memory intrinsic "
4138 "must be a power of 2",
4139 CS);
4140
4141 if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) {
4142 uint64_t Length = LengthCI->getZExtValue();
4143 uint64_t ElementSize = AMI->getElementSizeInBytes();
4144 Assert((Length % ElementSize) == 0,
4145 "constant length must be a multiple of the element size in the "
4146 "element-wise atomic memory intrinsic",
4147 CS);
4148 }
4149
4150 auto IsValidAlignment = [&](uint64_t Alignment) {
4151 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4152 };
4153 uint64_t DstAlignment = AMI->getDestAlignment();
4154 Assert(IsValidAlignment(DstAlignment),
4155 "incorrect alignment of the destination argument", CS);
4156 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4157 uint64_t SrcAlignment = AMT->getSourceAlignment();
4158 Assert(IsValidAlignment(SrcAlignment),
4159 "incorrect alignment of the source argument", CS);
4160 }
4161 break;
4162 }
4163 case Intrinsic::gcroot:
4164 case Intrinsic::gcwrite:
4165 case Intrinsic::gcread:
4166 if (ID == Intrinsic::gcroot) {
4167 AllocaInst *AI =
4168 dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
4169 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
4170 Assert(isa<Constant>(CS.getArgOperand(1)),
4171 "llvm.gcroot parameter #2 must be a constant.", CS);
4172 if (!AI->getAllocatedType()->isPointerTy()) {
4173 Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
4174 "llvm.gcroot parameter #1 must either be a pointer alloca, "
4175 "or argument #2 must be a non-null constant.",
4176 CS);
4177 }
4178 }
4179
4180 Assert(CS.getParent()->getParent()->hasGC(),
4181 "Enclosing function does not use GC.", CS);
4182 break;
4183 case Intrinsic::init_trampoline:
4184 Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
4185 "llvm.init_trampoline parameter #2 must resolve to a function.",
4186 CS);
4187 break;
4188 case Intrinsic::prefetch:
4189 Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
4190 isa<ConstantInt>(CS.getArgOperand(2)) &&
4191 cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
4192 cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
4193 "invalid arguments to llvm.prefetch", CS);
4194 break;
4195 case Intrinsic::stackprotector:
4196 Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
4197 "llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
4198 break;
4199 case Intrinsic::lifetime_start:
4200 case Intrinsic::lifetime_end:
4201 case Intrinsic::invariant_start:
4202 Assert(isa<ConstantInt>(CS.getArgOperand(0)),
4203 "size argument of memory use markers must be a constant integer",
4204 CS);
4205 break;
4206 case Intrinsic::invariant_end:
4207 Assert(isa<ConstantInt>(CS.getArgOperand(1)),
4208 "llvm.invariant.end parameter #2 must be a constant integer", CS);
4209 break;
4210
4211 case Intrinsic::localescape: {
4212 BasicBlock *BB = CS.getParent();
4213 Assert(BB == &BB->getParent()->front(),
4214 "llvm.localescape used outside of entry block", CS);
4215 Assert(!SawFrameEscape,
4216 "multiple calls to llvm.localescape in one function", CS);
4217 for (Value *Arg : CS.args()) {
4218 if (isa<ConstantPointerNull>(Arg))
4219 continue; // Null values are allowed as placeholders.
4220 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4221 Assert(AI && AI->isStaticAlloca(),
4222 "llvm.localescape only accepts static allocas", CS);
4223 }
4224 FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
4225 SawFrameEscape = true;
4226 break;
4227 }
4228 case Intrinsic::localrecover: {
4229 Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
4230 Function *Fn = dyn_cast<Function>(FnArg);
4231 Assert(Fn && !Fn->isDeclaration(),
4232 "llvm.localrecover first "
4233 "argument must be function defined in this module",
4234 CS);
4235 auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
4236 Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
4237 CS);
4238 auto &Entry = FrameEscapeInfo[Fn];
4239 Entry.second = unsigned(
4240 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4241 break;
4242 }
4243
4244 case Intrinsic::experimental_gc_statepoint:
4245 Assert(!CS.isInlineAsm(),
4246 "gc.statepoint support for inline assembly unimplemented", CS);
4247 Assert(CS.getParent()->getParent()->hasGC(),
4248 "Enclosing function does not use GC.", CS);
4249
4250 verifyStatepoint(CS);
4251 break;
4252 case Intrinsic::experimental_gc_result: {
4253 Assert(CS.getParent()->getParent()->hasGC(),
4254 "Enclosing function does not use GC.", CS);
4255 // Are we tied to a statepoint properly?
4256 CallSite StatepointCS(CS.getArgOperand(0));
4257 const Function *StatepointFn =
4258 StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
4259 Assert(StatepointFn && StatepointFn->isDeclaration() &&
4260 StatepointFn->getIntrinsicID() ==
4261 Intrinsic::experimental_gc_statepoint,
4262 "gc.result operand #1 must be from a statepoint", CS,
4263 CS.getArgOperand(0));
4264
4265 // Assert that result type matches wrapped callee.
4266 const Value *Target = StatepointCS.getArgument(2);
4267 auto *PT = cast<PointerType>(Target->getType());
4268 auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4269 Assert(CS.getType() == TargetFuncType->getReturnType(),
4270 "gc.result result type does not match wrapped callee", CS);
4271 break;
4272 }
4273 case Intrinsic::experimental_gc_relocate: {
4274 Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
4275
4276 Assert(isa<PointerType>(CS.getType()->getScalarType()),
4277 "gc.relocate must return a pointer or a vector of pointers", CS);
4278
4279 // Check that this relocate is correctly tied to the statepoint
4280
4281 // This is case for relocate on the unwinding path of an invoke statepoint
4282 if (LandingPadInst *LandingPad =
4283 dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
4284
4285 const BasicBlock *InvokeBB =
4286 LandingPad->getParent()->getUniquePredecessor();
4287
4288 // Landingpad relocates should have only one predecessor with invoke
4289 // statepoint terminator
4290 Assert(InvokeBB, "safepoints should have unique landingpads",
4291 LandingPad->getParent());
4292 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4293 InvokeBB);
4294 Assert(isStatepoint(InvokeBB->getTerminator()),
4295 "gc relocate should be linked to a statepoint", InvokeBB);
4296 }
4297 else {
4298 // In all other cases relocate should be tied to the statepoint directly.
4299 // This covers relocates on a normal return path of invoke statepoint and
4300 // relocates of a call statepoint.
4301 auto Token = CS.getArgOperand(0);
4302 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
4303 "gc relocate is incorrectly tied to the statepoint", CS, Token);
4304 }
4305
4306 // Verify rest of the relocate arguments.
4307
4308 ImmutableCallSite StatepointCS(
4309 cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
4310
4311 // Both the base and derived must be piped through the safepoint.
4312 Value* Base = CS.getArgOperand(1);
4313 Assert(isa<ConstantInt>(Base),
4314 "gc.relocate operand #2 must be integer offset", CS);
4315
4316 Value* Derived = CS.getArgOperand(2);
4317 Assert(isa<ConstantInt>(Derived),
4318 "gc.relocate operand #3 must be integer offset", CS);
4319
4320 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4321 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4322 // Check the bounds
4323 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
4324 "gc.relocate: statepoint base index out of bounds", CS);
4325 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
4326 "gc.relocate: statepoint derived index out of bounds", CS);
4327
4328 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4329 // section of the statepoint's argument.
4330 Assert(StatepointCS.arg_size() > 0,
4331 "gc.statepoint: insufficient arguments");
4332 Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
4333 "gc.statement: number of call arguments must be constant integer");
4334 const unsigned NumCallArgs =
4335 cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
4336 Assert(StatepointCS.arg_size() > NumCallArgs + 5,
4337 "gc.statepoint: mismatch in number of call arguments");
4338 Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
4339 "gc.statepoint: number of transition arguments must be "
4340 "a constant integer");
4341 const int NumTransitionArgs =
4342 cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
4343 ->getZExtValue();
4344 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4345 Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
4346 "gc.statepoint: number of deoptimization arguments must be "
4347 "a constant integer");
4348 const int NumDeoptArgs =
4349 cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
4350 ->getZExtValue();
4351 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4352 const int GCParamArgsEnd = StatepointCS.arg_size();
4353 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4354 "gc.relocate: statepoint base index doesn't fall within the "
4355 "'gc parameters' section of the statepoint call",
4356 CS);
4357 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4358 "gc.relocate: statepoint derived index doesn't fall within the "
4359 "'gc parameters' section of the statepoint call",
4360 CS);
4361
4362 // Relocated value must be either a pointer type or vector-of-pointer type,
4363 // but gc_relocate does not need to return the same pointer type as the
4364 // relocated pointer. It can be casted to the correct type later if it's
4365 // desired. However, they must have the same address space and 'vectorness'
4366 GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
4367 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
4368 "gc.relocate: relocated value must be a gc pointer", CS);
4369
4370 auto ResultType = CS.getType();
4371 auto DerivedType = Relocate.getDerivedPtr()->getType();
4372 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4373 "gc.relocate: vector relocates to vector and pointer to pointer",
4374 CS);
4375 Assert(
4376 ResultType->getPointerAddressSpace() ==
4377 DerivedType->getPointerAddressSpace(),
4378 "gc.relocate: relocating a pointer shouldn't change its address space",
4379 CS);
4380 break;
4381 }
4382 case Intrinsic::eh_exceptioncode:
4383 case Intrinsic::eh_exceptionpointer: {
4384 Assert(isa<CatchPadInst>(CS.getArgOperand(0)),
4385 "eh.exceptionpointer argument must be a catchpad", CS);
4386 break;
4387 }
4388 case Intrinsic::masked_load: {
4389 Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS);
4390
4391 Value *Ptr = CS.getArgOperand(0);
4392 //Value *Alignment = CS.getArgOperand(1);
4393 Value *Mask = CS.getArgOperand(2);
4394 Value *PassThru = CS.getArgOperand(3);
4395 Assert(Mask->getType()->isVectorTy(),
4396 "masked_load: mask must be vector", CS);
4397
4398 // DataTy is the overloaded type
4399 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4400 Assert(DataTy == CS.getType(),
4401 "masked_load: return must match pointer type", CS);
4402 Assert(PassThru->getType() == DataTy,
4403 "masked_load: pass through and data type must match", CS);
4404 Assert(Mask->getType()->getVectorNumElements() ==
4405 DataTy->getVectorNumElements(),
4406 "masked_load: vector mask must be same length as data", CS);
4407 break;
4408 }
4409 case Intrinsic::masked_store: {
4410 Value *Val = CS.getArgOperand(0);
4411 Value *Ptr = CS.getArgOperand(1);
4412 //Value *Alignment = CS.getArgOperand(2);
4413 Value *Mask = CS.getArgOperand(3);
4414 Assert(Mask->getType()->isVectorTy(),
4415 "masked_store: mask must be vector", CS);
4416
4417 // DataTy is the overloaded type
4418 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4419 Assert(DataTy == Val->getType(),
4420 "masked_store: storee must match pointer type", CS);
4421 Assert(Mask->getType()->getVectorNumElements() ==
4422 DataTy->getVectorNumElements(),
4423 "masked_store: vector mask must be same length as data", CS);
4424 break;
4425 }
4426
4427 case Intrinsic::experimental_guard: {
4428 Assert(CS.isCall(), "experimental_guard cannot be invoked", CS);
4429 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4430 "experimental_guard must have exactly one "
4431 "\"deopt\" operand bundle");
4432 break;
4433 }
4434
4435 case Intrinsic::experimental_deoptimize: {
4436 Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS);
4437 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4438 "experimental_deoptimize must have exactly one "
4439 "\"deopt\" operand bundle");
4440 Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(),
4441 "experimental_deoptimize return type must match caller return type");
4442
4443 if (CS.isCall()) {
4444 auto *DeoptCI = CS.getInstruction();
4445 auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
4446 Assert(RI,
4447 "calls to experimental_deoptimize must be followed by a return");
4448
4449 if (!CS.getType()->isVoidTy() && RI)
4450 Assert(RI->getReturnValue() == DeoptCI,
4451 "calls to experimental_deoptimize must be followed by a return "
4452 "of the value computed by experimental_deoptimize");
4453 }
4454
4455 break;
4456 }
4457 };
4458 }
4459
4460 /// Carefully grab the subprogram from a local scope.
4461 ///
4462 /// This carefully grabs the subprogram from a local scope, avoiding the
4463 /// built-in assertions that would typically fire.
getSubprogram(Metadata * LocalScope)4464 static DISubprogram *getSubprogram(Metadata *LocalScope) {
4465 if (!LocalScope)
4466 return nullptr;
4467
4468 if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4469 return SP;
4470
4471 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4472 return getSubprogram(LB->getRawScope());
4473
4474 // Just return null; broken scope chains are checked elsewhere.
4475 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4476 return nullptr;
4477 }
4478
visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic & FPI)4479 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4480 unsigned NumOperands = FPI.getNumArgOperands();
4481 Assert(((NumOperands == 5 && FPI.isTernaryOp()) ||
4482 (NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands == 4)),
4483 "invalid arguments for constrained FP intrinsic", &FPI);
4484 Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-1)),
4485 "invalid exception behavior argument", &FPI);
4486 Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-2)),
4487 "invalid rounding mode argument", &FPI);
4488 Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid,
4489 "invalid rounding mode argument", &FPI);
4490 Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid,
4491 "invalid exception behavior argument", &FPI);
4492 }
4493
visitDbgIntrinsic(StringRef Kind,DbgInfoIntrinsic & DII)4494 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII) {
4495 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4496 AssertDI(isa<ValueAsMetadata>(MD) ||
4497 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4498 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4499 AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4500 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4501 DII.getRawVariable());
4502 AssertDI(isa<DIExpression>(DII.getRawExpression()),
4503 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4504 DII.getRawExpression());
4505
4506 // Ignore broken !dbg attachments; they're checked elsewhere.
4507 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4508 if (!isa<DILocation>(N))
4509 return;
4510
4511 BasicBlock *BB = DII.getParent();
4512 Function *F = BB ? BB->getParent() : nullptr;
4513
4514 // The scopes for variables and !dbg attachments must agree.
4515 DILocalVariable *Var = DII.getVariable();
4516 DILocation *Loc = DII.getDebugLoc();
4517 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4518 &DII, BB, F);
4519
4520 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4521 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4522 if (!VarSP || !LocSP)
4523 return; // Broken scope chains are checked elsewhere.
4524
4525 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4526 " variable and !dbg attachment",
4527 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4528 Loc->getScope()->getSubprogram());
4529
4530 verifyFnArgs(DII);
4531 }
4532
visitDbgLabelIntrinsic(StringRef Kind,DbgLabelInst & DLI)4533 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
4534 AssertDI(isa<DILabel>(DLI.getRawVariable()),
4535 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
4536 DLI.getRawVariable());
4537
4538 // Ignore broken !dbg attachments; they're checked elsewhere.
4539 if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
4540 if (!isa<DILocation>(N))
4541 return;
4542
4543 BasicBlock *BB = DLI.getParent();
4544 Function *F = BB ? BB->getParent() : nullptr;
4545
4546 // The scopes for variables and !dbg attachments must agree.
4547 DILabel *Label = DLI.getLabel();
4548 DILocation *Loc = DLI.getDebugLoc();
4549 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4550 &DLI, BB, F);
4551
4552 DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
4553 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4554 if (!LabelSP || !LocSP)
4555 return;
4556
4557 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4558 " label and !dbg attachment",
4559 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
4560 Loc->getScope()->getSubprogram());
4561 }
4562
verifyFragmentExpression(const DbgInfoIntrinsic & I)4563 void Verifier::verifyFragmentExpression(const DbgInfoIntrinsic &I) {
4564 if (dyn_cast<DbgLabelInst>(&I))
4565 return;
4566
4567 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
4568 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
4569
4570 // We don't know whether this intrinsic verified correctly.
4571 if (!V || !E || !E->isValid())
4572 return;
4573
4574 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4575 auto Fragment = E->getFragmentInfo();
4576 if (!Fragment)
4577 return;
4578
4579 // The frontend helps out GDB by emitting the members of local anonymous
4580 // unions as artificial local variables with shared storage. When SROA splits
4581 // the storage for artificial local variables that are smaller than the entire
4582 // union, the overhang piece will be outside of the allotted space for the
4583 // variable and this check fails.
4584 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4585 if (V->isArtificial())
4586 return;
4587
4588 verifyFragmentExpression(*V, *Fragment, &I);
4589 }
4590
4591 template <typename ValueOrMetadata>
verifyFragmentExpression(const DIVariable & V,DIExpression::FragmentInfo Fragment,ValueOrMetadata * Desc)4592 void Verifier::verifyFragmentExpression(const DIVariable &V,
4593 DIExpression::FragmentInfo Fragment,
4594 ValueOrMetadata *Desc) {
4595 // If there's no size, the type is broken, but that should be checked
4596 // elsewhere.
4597 auto VarSize = V.getSizeInBits();
4598 if (!VarSize)
4599 return;
4600
4601 unsigned FragSize = Fragment.SizeInBits;
4602 unsigned FragOffset = Fragment.OffsetInBits;
4603 AssertDI(FragSize + FragOffset <= *VarSize,
4604 "fragment is larger than or outside of variable", Desc, &V);
4605 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
4606 }
4607
verifyFnArgs(const DbgInfoIntrinsic & I)4608 void Verifier::verifyFnArgs(const DbgInfoIntrinsic &I) {
4609 // This function does not take the scope of noninlined function arguments into
4610 // account. Don't run it if current function is nodebug, because it may
4611 // contain inlined debug intrinsics.
4612 if (!HasDebugInfo)
4613 return;
4614
4615 // For performance reasons only check non-inlined ones.
4616 if (I.getDebugLoc()->getInlinedAt())
4617 return;
4618
4619 DILocalVariable *Var = I.getVariable();
4620 AssertDI(Var, "dbg intrinsic without variable");
4621
4622 unsigned ArgNo = Var->getArg();
4623 if (!ArgNo)
4624 return;
4625
4626 // Verify there are no duplicate function argument debug info entries.
4627 // These will cause hard-to-debug assertions in the DWARF backend.
4628 if (DebugFnArgs.size() < ArgNo)
4629 DebugFnArgs.resize(ArgNo, nullptr);
4630
4631 auto *Prev = DebugFnArgs[ArgNo - 1];
4632 DebugFnArgs[ArgNo - 1] = Var;
4633 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
4634 Prev, Var);
4635 }
4636
verifyCompileUnits()4637 void Verifier::verifyCompileUnits() {
4638 // When more than one Module is imported into the same context, such as during
4639 // an LTO build before linking the modules, ODR type uniquing may cause types
4640 // to point to a different CU. This check does not make sense in this case.
4641 if (M.getContext().isODRUniquingDebugTypes())
4642 return;
4643 auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4644 SmallPtrSet<const Metadata *, 2> Listed;
4645 if (CUs)
4646 Listed.insert(CUs->op_begin(), CUs->op_end());
4647 for (auto *CU : CUVisited)
4648 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
4649 CUVisited.clear();
4650 }
4651
verifyDeoptimizeCallingConvs()4652 void Verifier::verifyDeoptimizeCallingConvs() {
4653 if (DeoptimizeDeclarations.empty())
4654 return;
4655
4656 const Function *First = DeoptimizeDeclarations[0];
4657 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4658 Assert(First->getCallingConv() == F->getCallingConv(),
4659 "All llvm.experimental.deoptimize declarations must have the same "
4660 "calling convention",
4661 First, F);
4662 }
4663 }
4664
4665 //===----------------------------------------------------------------------===//
4666 // Implement the public interfaces to this file...
4667 //===----------------------------------------------------------------------===//
4668
verifyFunction(const Function & f,raw_ostream * OS)4669 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4670 Function &F = const_cast<Function &>(f);
4671
4672 // Don't use a raw_null_ostream. Printing IR is expensive.
4673 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4674
4675 // Note that this function's return value is inverted from what you would
4676 // expect of a function called "verify".
4677 return !V.verify(F);
4678 }
4679
verifyModule(const Module & M,raw_ostream * OS,bool * BrokenDebugInfo)4680 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
4681 bool *BrokenDebugInfo) {
4682 // Don't use a raw_null_ostream. Printing IR is expensive.
4683 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4684
4685 bool Broken = false;
4686 for (const Function &F : M)
4687 Broken |= !V.verify(F);
4688
4689 Broken |= !V.verify();
4690 if (BrokenDebugInfo)
4691 *BrokenDebugInfo = V.hasBrokenDebugInfo();
4692 // Note that this function's return value is inverted from what you would
4693 // expect of a function called "verify".
4694 return Broken;
4695 }
4696
4697 namespace {
4698
4699 struct VerifierLegacyPass : public FunctionPass {
4700 static char ID;
4701
4702 std::unique_ptr<Verifier> V;
4703 bool FatalErrors = true;
4704
VerifierLegacyPass__anonc39f54d00811::VerifierLegacyPass4705 VerifierLegacyPass() : FunctionPass(ID) {
4706 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4707 }
VerifierLegacyPass__anonc39f54d00811::VerifierLegacyPass4708 explicit VerifierLegacyPass(bool FatalErrors)
4709 : FunctionPass(ID),
4710 FatalErrors(FatalErrors) {
4711 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4712 }
4713
doInitialization__anonc39f54d00811::VerifierLegacyPass4714 bool doInitialization(Module &M) override {
4715 V = llvm::make_unique<Verifier>(
4716 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
4717 return false;
4718 }
4719
runOnFunction__anonc39f54d00811::VerifierLegacyPass4720 bool runOnFunction(Function &F) override {
4721 if (!V->verify(F) && FatalErrors)
4722 report_fatal_error("Broken function found, compilation aborted!");
4723
4724 return false;
4725 }
4726
doFinalization__anonc39f54d00811::VerifierLegacyPass4727 bool doFinalization(Module &M) override {
4728 bool HasErrors = false;
4729 for (Function &F : M)
4730 if (F.isDeclaration())
4731 HasErrors |= !V->verify(F);
4732
4733 HasErrors |= !V->verify();
4734 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
4735 report_fatal_error("Broken module found, compilation aborted!");
4736 return false;
4737 }
4738
getAnalysisUsage__anonc39f54d00811::VerifierLegacyPass4739 void getAnalysisUsage(AnalysisUsage &AU) const override {
4740 AU.setPreservesAll();
4741 }
4742 };
4743
4744 } // end anonymous namespace
4745
4746 /// Helper to issue failure from the TBAA verification
CheckFailed(Tys &&...Args)4747 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
4748 if (Diagnostic)
4749 return Diagnostic->CheckFailed(Args...);
4750 }
4751
4752 #define AssertTBAA(C, ...) \
4753 do { \
4754 if (!(C)) { \
4755 CheckFailed(__VA_ARGS__); \
4756 return false; \
4757 } \
4758 } while (false)
4759
4760 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
4761 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a
4762 /// struct-type node describing an aggregate data structure (like a struct).
4763 TBAAVerifier::TBAABaseNodeSummary
verifyTBAABaseNode(Instruction & I,const MDNode * BaseNode,bool IsNewFormat)4764 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
4765 bool IsNewFormat) {
4766 if (BaseNode->getNumOperands() < 2) {
4767 CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
4768 return {true, ~0u};
4769 }
4770
4771 auto Itr = TBAABaseNodes.find(BaseNode);
4772 if (Itr != TBAABaseNodes.end())
4773 return Itr->second;
4774
4775 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
4776 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
4777 (void)InsertResult;
4778 assert(InsertResult.second && "We just checked!");
4779 return Result;
4780 }
4781
4782 TBAAVerifier::TBAABaseNodeSummary
verifyTBAABaseNodeImpl(Instruction & I,const MDNode * BaseNode,bool IsNewFormat)4783 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
4784 bool IsNewFormat) {
4785 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
4786
4787 if (BaseNode->getNumOperands() == 2) {
4788 // Scalar nodes can only be accessed at offset 0.
4789 return isValidScalarTBAANode(BaseNode)
4790 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
4791 : InvalidNode;
4792 }
4793
4794 if (IsNewFormat) {
4795 if (BaseNode->getNumOperands() % 3 != 0) {
4796 CheckFailed("Access tag nodes must have the number of operands that is a "
4797 "multiple of 3!", BaseNode);
4798 return InvalidNode;
4799 }
4800 } else {
4801 if (BaseNode->getNumOperands() % 2 != 1) {
4802 CheckFailed("Struct tag nodes must have an odd number of operands!",
4803 BaseNode);
4804 return InvalidNode;
4805 }
4806 }
4807
4808 // Check the type size field.
4809 if (IsNewFormat) {
4810 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
4811 BaseNode->getOperand(1));
4812 if (!TypeSizeNode) {
4813 CheckFailed("Type size nodes must be constants!", &I, BaseNode);
4814 return InvalidNode;
4815 }
4816 }
4817
4818 // Check the type name field. In the new format it can be anything.
4819 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
4820 CheckFailed("Struct tag nodes have a string as their first operand",
4821 BaseNode);
4822 return InvalidNode;
4823 }
4824
4825 bool Failed = false;
4826
4827 Optional<APInt> PrevOffset;
4828 unsigned BitWidth = ~0u;
4829
4830 // We've already checked that BaseNode is not a degenerate root node with one
4831 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
4832 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
4833 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
4834 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
4835 Idx += NumOpsPerField) {
4836 const MDOperand &FieldTy = BaseNode->getOperand(Idx);
4837 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
4838 if (!isa<MDNode>(FieldTy)) {
4839 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
4840 Failed = true;
4841 continue;
4842 }
4843
4844 auto *OffsetEntryCI =
4845 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
4846 if (!OffsetEntryCI) {
4847 CheckFailed("Offset entries must be constants!", &I, BaseNode);
4848 Failed = true;
4849 continue;
4850 }
4851
4852 if (BitWidth == ~0u)
4853 BitWidth = OffsetEntryCI->getBitWidth();
4854
4855 if (OffsetEntryCI->getBitWidth() != BitWidth) {
4856 CheckFailed(
4857 "Bitwidth between the offsets and struct type entries must match", &I,
4858 BaseNode);
4859 Failed = true;
4860 continue;
4861 }
4862
4863 // NB! As far as I can tell, we generate a non-strictly increasing offset
4864 // sequence only from structs that have zero size bit fields. When
4865 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
4866 // pick the field lexically the latest in struct type metadata node. This
4867 // mirrors the actual behavior of the alias analysis implementation.
4868 bool IsAscending =
4869 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
4870
4871 if (!IsAscending) {
4872 CheckFailed("Offsets must be increasing!", &I, BaseNode);
4873 Failed = true;
4874 }
4875
4876 PrevOffset = OffsetEntryCI->getValue();
4877
4878 if (IsNewFormat) {
4879 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
4880 BaseNode->getOperand(Idx + 2));
4881 if (!MemberSizeNode) {
4882 CheckFailed("Member size entries must be constants!", &I, BaseNode);
4883 Failed = true;
4884 continue;
4885 }
4886 }
4887 }
4888
4889 return Failed ? InvalidNode
4890 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
4891 }
4892
IsRootTBAANode(const MDNode * MD)4893 static bool IsRootTBAANode(const MDNode *MD) {
4894 return MD->getNumOperands() < 2;
4895 }
4896
IsScalarTBAANodeImpl(const MDNode * MD,SmallPtrSetImpl<const MDNode * > & Visited)4897 static bool IsScalarTBAANodeImpl(const MDNode *MD,
4898 SmallPtrSetImpl<const MDNode *> &Visited) {
4899 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
4900 return false;
4901
4902 if (!isa<MDString>(MD->getOperand(0)))
4903 return false;
4904
4905 if (MD->getNumOperands() == 3) {
4906 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
4907 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
4908 return false;
4909 }
4910
4911 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4912 return Parent && Visited.insert(Parent).second &&
4913 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
4914 }
4915
isValidScalarTBAANode(const MDNode * MD)4916 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
4917 auto ResultIt = TBAAScalarNodes.find(MD);
4918 if (ResultIt != TBAAScalarNodes.end())
4919 return ResultIt->second;
4920
4921 SmallPtrSet<const MDNode *, 4> Visited;
4922 bool Result = IsScalarTBAANodeImpl(MD, Visited);
4923 auto InsertResult = TBAAScalarNodes.insert({MD, Result});
4924 (void)InsertResult;
4925 assert(InsertResult.second && "Just checked!");
4926
4927 return Result;
4928 }
4929
4930 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
4931 /// Offset in place to be the offset within the field node returned.
4932 ///
4933 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
getFieldNodeFromTBAABaseNode(Instruction & I,const MDNode * BaseNode,APInt & Offset,bool IsNewFormat)4934 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
4935 const MDNode *BaseNode,
4936 APInt &Offset,
4937 bool IsNewFormat) {
4938 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
4939
4940 // Scalar nodes have only one possible "field" -- their parent in the access
4941 // hierarchy. Offset must be zero at this point, but our caller is supposed
4942 // to Assert that.
4943 if (BaseNode->getNumOperands() == 2)
4944 return cast<MDNode>(BaseNode->getOperand(1));
4945
4946 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
4947 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
4948 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
4949 Idx += NumOpsPerField) {
4950 auto *OffsetEntryCI =
4951 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
4952 if (OffsetEntryCI->getValue().ugt(Offset)) {
4953 if (Idx == FirstFieldOpNo) {
4954 CheckFailed("Could not find TBAA parent in struct type node", &I,
4955 BaseNode, &Offset);
4956 return nullptr;
4957 }
4958
4959 unsigned PrevIdx = Idx - NumOpsPerField;
4960 auto *PrevOffsetEntryCI =
4961 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
4962 Offset -= PrevOffsetEntryCI->getValue();
4963 return cast<MDNode>(BaseNode->getOperand(PrevIdx));
4964 }
4965 }
4966
4967 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
4968 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
4969 BaseNode->getOperand(LastIdx + 1));
4970 Offset -= LastOffsetEntryCI->getValue();
4971 return cast<MDNode>(BaseNode->getOperand(LastIdx));
4972 }
4973
isNewFormatTBAATypeNode(llvm::MDNode * Type)4974 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
4975 if (!Type || Type->getNumOperands() < 3)
4976 return false;
4977
4978 // In the new format type nodes shall have a reference to the parent type as
4979 // its first operand.
4980 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
4981 if (!Parent)
4982 return false;
4983
4984 return true;
4985 }
4986
visitTBAAMetadata(Instruction & I,const MDNode * MD)4987 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
4988 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
4989 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
4990 isa<AtomicCmpXchgInst>(I),
4991 "This instruction shall not have a TBAA access tag!", &I);
4992
4993 bool IsStructPathTBAA =
4994 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
4995
4996 AssertTBAA(
4997 IsStructPathTBAA,
4998 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
4999
5000 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
5001 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5002
5003 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
5004
5005 if (IsNewFormat) {
5006 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
5007 "Access tag metadata must have either 4 or 5 operands", &I, MD);
5008 } else {
5009 AssertTBAA(MD->getNumOperands() < 5,
5010 "Struct tag metadata must have either 3 or 4 operands", &I, MD);
5011 }
5012
5013 // Check the access size field.
5014 if (IsNewFormat) {
5015 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5016 MD->getOperand(3));
5017 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
5018 }
5019
5020 // Check the immutability flag.
5021 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
5022 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
5023 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
5024 MD->getOperand(ImmutabilityFlagOpNo));
5025 AssertTBAA(IsImmutableCI,
5026 "Immutability tag on struct tag metadata must be a constant",
5027 &I, MD);
5028 AssertTBAA(
5029 IsImmutableCI->isZero() || IsImmutableCI->isOne(),
5030 "Immutability part of the struct tag metadata must be either 0 or 1",
5031 &I, MD);
5032 }
5033
5034 AssertTBAA(BaseNode && AccessType,
5035 "Malformed struct tag metadata: base and access-type "
5036 "should be non-null and point to Metadata nodes",
5037 &I, MD, BaseNode, AccessType);
5038
5039 if (!IsNewFormat) {
5040 AssertTBAA(isValidScalarTBAANode(AccessType),
5041 "Access type node must be a valid scalar type", &I, MD,
5042 AccessType);
5043 }
5044
5045 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
5046 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
5047
5048 APInt Offset = OffsetCI->getValue();
5049 bool SeenAccessTypeInPath = false;
5050
5051 SmallPtrSet<MDNode *, 4> StructPath;
5052
5053 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
5054 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
5055 IsNewFormat)) {
5056 if (!StructPath.insert(BaseNode).second) {
5057 CheckFailed("Cycle detected in struct path", &I, MD);
5058 return false;
5059 }
5060
5061 bool Invalid;
5062 unsigned BaseNodeBitWidth;
5063 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
5064 IsNewFormat);
5065
5066 // If the base node is invalid in itself, then we've already printed all the
5067 // errors we wanted to print.
5068 if (Invalid)
5069 return false;
5070
5071 SeenAccessTypeInPath |= BaseNode == AccessType;
5072
5073 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
5074 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
5075 &I, MD, &Offset);
5076
5077 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
5078 (BaseNodeBitWidth == 0 && Offset == 0) ||
5079 (IsNewFormat && BaseNodeBitWidth == ~0u),
5080 "Access bit-width not the same as description bit-width", &I, MD,
5081 BaseNodeBitWidth, Offset.getBitWidth());
5082
5083 if (IsNewFormat && SeenAccessTypeInPath)
5084 break;
5085 }
5086
5087 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
5088 &I, MD);
5089 return true;
5090 }
5091
5092 char VerifierLegacyPass::ID = 0;
5093 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
5094
createVerifierPass(bool FatalErrors)5095 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
5096 return new VerifierLegacyPass(FatalErrors);
5097 }
5098
5099 AnalysisKey VerifierAnalysis::Key;
run(Module & M,ModuleAnalysisManager &)5100 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
5101 ModuleAnalysisManager &) {
5102 Result Res;
5103 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
5104 return Res;
5105 }
5106
run(Function & F,FunctionAnalysisManager &)5107 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
5108 FunctionAnalysisManager &) {
5109 return { llvm::verifyFunction(F, &dbgs()), false };
5110 }
5111
run(Module & M,ModuleAnalysisManager & AM)5112 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
5113 auto Res = AM.getResult<VerifierAnalysis>(M);
5114 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
5115 report_fatal_error("Broken module found, compilation aborted!");
5116
5117 return PreservedAnalyses::all();
5118 }
5119
run(Function & F,FunctionAnalysisManager & AM)5120 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
5121 auto res = AM.getResult<VerifierAnalysis>(F);
5122 if (res.IRBroken && FatalErrors)
5123 report_fatal_error("Broken function found, compilation aborted!");
5124
5125 return PreservedAnalyses::all();
5126 }
5127