1 /*
2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <assert.h>
12 #include <stdlib.h>  // qsort()
13 
14 #include "./vp9_rtcd.h"
15 #include "./vpx_dsp_rtcd.h"
16 #include "./vpx_scale_rtcd.h"
17 
18 #include "vpx_dsp/bitreader_buffer.h"
19 #include "vpx_dsp/bitreader.h"
20 #include "vpx_dsp/vpx_dsp_common.h"
21 #include "vpx_mem/vpx_mem.h"
22 #include "vpx_ports/mem.h"
23 #include "vpx_ports/mem_ops.h"
24 #include "vpx_scale/vpx_scale.h"
25 #include "vpx_util/vpx_thread.h"
26 
27 #include "vp9/common/vp9_alloccommon.h"
28 #include "vp9/common/vp9_common.h"
29 #include "vp9/common/vp9_entropy.h"
30 #include "vp9/common/vp9_entropymode.h"
31 #include "vp9/common/vp9_idct.h"
32 #include "vp9/common/vp9_thread_common.h"
33 #include "vp9/common/vp9_pred_common.h"
34 #include "vp9/common/vp9_quant_common.h"
35 #include "vp9/common/vp9_reconintra.h"
36 #include "vp9/common/vp9_reconinter.h"
37 #include "vp9/common/vp9_seg_common.h"
38 #include "vp9/common/vp9_tile_common.h"
39 
40 #include "vp9/decoder/vp9_decodeframe.h"
41 #include "vp9/decoder/vp9_detokenize.h"
42 #include "vp9/decoder/vp9_decodemv.h"
43 #include "vp9/decoder/vp9_decoder.h"
44 #include "vp9/decoder/vp9_dsubexp.h"
45 
46 #define MAX_VP9_HEADER_SIZE 80
47 
48 typedef int (*predict_recon_func)(TileWorkerData *twd, MODE_INFO *const mi,
49                                   int plane, int row, int col, TX_SIZE tx_size);
50 
51 typedef void (*intra_recon_func)(TileWorkerData *twd, MODE_INFO *const mi,
52                                  int plane, int row, int col, TX_SIZE tx_size);
53 
read_is_valid(const uint8_t * start,size_t len,const uint8_t * end)54 static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) {
55   return len != 0 && len <= (size_t)(end - start);
56 }
57 
decode_unsigned_max(struct vpx_read_bit_buffer * rb,int max)58 static int decode_unsigned_max(struct vpx_read_bit_buffer *rb, int max) {
59   const int data = vpx_rb_read_literal(rb, get_unsigned_bits(max));
60   return data > max ? max : data;
61 }
62 
read_tx_mode(vpx_reader * r)63 static TX_MODE read_tx_mode(vpx_reader *r) {
64   TX_MODE tx_mode = vpx_read_literal(r, 2);
65   if (tx_mode == ALLOW_32X32) tx_mode += vpx_read_bit(r);
66   return tx_mode;
67 }
68 
read_tx_mode_probs(struct tx_probs * tx_probs,vpx_reader * r)69 static void read_tx_mode_probs(struct tx_probs *tx_probs, vpx_reader *r) {
70   int i, j;
71 
72   for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
73     for (j = 0; j < TX_SIZES - 3; ++j)
74       vp9_diff_update_prob(r, &tx_probs->p8x8[i][j]);
75 
76   for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
77     for (j = 0; j < TX_SIZES - 2; ++j)
78       vp9_diff_update_prob(r, &tx_probs->p16x16[i][j]);
79 
80   for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
81     for (j = 0; j < TX_SIZES - 1; ++j)
82       vp9_diff_update_prob(r, &tx_probs->p32x32[i][j]);
83 }
84 
read_switchable_interp_probs(FRAME_CONTEXT * fc,vpx_reader * r)85 static void read_switchable_interp_probs(FRAME_CONTEXT *fc, vpx_reader *r) {
86   int i, j;
87   for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
88     for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i)
89       vp9_diff_update_prob(r, &fc->switchable_interp_prob[j][i]);
90 }
91 
read_inter_mode_probs(FRAME_CONTEXT * fc,vpx_reader * r)92 static void read_inter_mode_probs(FRAME_CONTEXT *fc, vpx_reader *r) {
93   int i, j;
94   for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
95     for (j = 0; j < INTER_MODES - 1; ++j)
96       vp9_diff_update_prob(r, &fc->inter_mode_probs[i][j]);
97 }
98 
read_frame_reference_mode(const VP9_COMMON * cm,vpx_reader * r)99 static REFERENCE_MODE read_frame_reference_mode(const VP9_COMMON *cm,
100                                                 vpx_reader *r) {
101   if (vp9_compound_reference_allowed(cm)) {
102     return vpx_read_bit(r)
103                ? (vpx_read_bit(r) ? REFERENCE_MODE_SELECT : COMPOUND_REFERENCE)
104                : SINGLE_REFERENCE;
105   } else {
106     return SINGLE_REFERENCE;
107   }
108 }
109 
read_frame_reference_mode_probs(VP9_COMMON * cm,vpx_reader * r)110 static void read_frame_reference_mode_probs(VP9_COMMON *cm, vpx_reader *r) {
111   FRAME_CONTEXT *const fc = cm->fc;
112   int i;
113 
114   if (cm->reference_mode == REFERENCE_MODE_SELECT)
115     for (i = 0; i < COMP_INTER_CONTEXTS; ++i)
116       vp9_diff_update_prob(r, &fc->comp_inter_prob[i]);
117 
118   if (cm->reference_mode != COMPOUND_REFERENCE)
119     for (i = 0; i < REF_CONTEXTS; ++i) {
120       vp9_diff_update_prob(r, &fc->single_ref_prob[i][0]);
121       vp9_diff_update_prob(r, &fc->single_ref_prob[i][1]);
122     }
123 
124   if (cm->reference_mode != SINGLE_REFERENCE)
125     for (i = 0; i < REF_CONTEXTS; ++i)
126       vp9_diff_update_prob(r, &fc->comp_ref_prob[i]);
127 }
128 
update_mv_probs(vpx_prob * p,int n,vpx_reader * r)129 static void update_mv_probs(vpx_prob *p, int n, vpx_reader *r) {
130   int i;
131   for (i = 0; i < n; ++i)
132     if (vpx_read(r, MV_UPDATE_PROB)) p[i] = (vpx_read_literal(r, 7) << 1) | 1;
133 }
134 
read_mv_probs(nmv_context * ctx,int allow_hp,vpx_reader * r)135 static void read_mv_probs(nmv_context *ctx, int allow_hp, vpx_reader *r) {
136   int i, j;
137 
138   update_mv_probs(ctx->joints, MV_JOINTS - 1, r);
139 
140   for (i = 0; i < 2; ++i) {
141     nmv_component *const comp_ctx = &ctx->comps[i];
142     update_mv_probs(&comp_ctx->sign, 1, r);
143     update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r);
144     update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r);
145     update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r);
146   }
147 
148   for (i = 0; i < 2; ++i) {
149     nmv_component *const comp_ctx = &ctx->comps[i];
150     for (j = 0; j < CLASS0_SIZE; ++j)
151       update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r);
152     update_mv_probs(comp_ctx->fp, 3, r);
153   }
154 
155   if (allow_hp) {
156     for (i = 0; i < 2; ++i) {
157       nmv_component *const comp_ctx = &ctx->comps[i];
158       update_mv_probs(&comp_ctx->class0_hp, 1, r);
159       update_mv_probs(&comp_ctx->hp, 1, r);
160     }
161   }
162 }
163 
inverse_transform_block_inter(MACROBLOCKD * xd,int plane,const TX_SIZE tx_size,uint8_t * dst,int stride,int eob)164 static void inverse_transform_block_inter(MACROBLOCKD *xd, int plane,
165                                           const TX_SIZE tx_size, uint8_t *dst,
166                                           int stride, int eob) {
167   struct macroblockd_plane *const pd = &xd->plane[plane];
168   tran_low_t *const dqcoeff = pd->dqcoeff;
169   assert(eob > 0);
170 #if CONFIG_VP9_HIGHBITDEPTH
171   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
172     uint16_t *const dst16 = CONVERT_TO_SHORTPTR(dst);
173     if (xd->lossless) {
174       vp9_highbd_iwht4x4_add(dqcoeff, dst16, stride, eob, xd->bd);
175     } else {
176       switch (tx_size) {
177         case TX_4X4:
178           vp9_highbd_idct4x4_add(dqcoeff, dst16, stride, eob, xd->bd);
179           break;
180         case TX_8X8:
181           vp9_highbd_idct8x8_add(dqcoeff, dst16, stride, eob, xd->bd);
182           break;
183         case TX_16X16:
184           vp9_highbd_idct16x16_add(dqcoeff, dst16, stride, eob, xd->bd);
185           break;
186         case TX_32X32:
187           vp9_highbd_idct32x32_add(dqcoeff, dst16, stride, eob, xd->bd);
188           break;
189         default: assert(0 && "Invalid transform size");
190       }
191     }
192   } else {
193     if (xd->lossless) {
194       vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
195     } else {
196       switch (tx_size) {
197         case TX_4X4: vp9_idct4x4_add(dqcoeff, dst, stride, eob); break;
198         case TX_8X8: vp9_idct8x8_add(dqcoeff, dst, stride, eob); break;
199         case TX_16X16: vp9_idct16x16_add(dqcoeff, dst, stride, eob); break;
200         case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break;
201         default: assert(0 && "Invalid transform size"); return;
202       }
203     }
204   }
205 #else
206   if (xd->lossless) {
207     vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
208   } else {
209     switch (tx_size) {
210       case TX_4X4: vp9_idct4x4_add(dqcoeff, dst, stride, eob); break;
211       case TX_8X8: vp9_idct8x8_add(dqcoeff, dst, stride, eob); break;
212       case TX_16X16: vp9_idct16x16_add(dqcoeff, dst, stride, eob); break;
213       case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break;
214       default: assert(0 && "Invalid transform size"); return;
215     }
216   }
217 #endif  // CONFIG_VP9_HIGHBITDEPTH
218 
219   if (eob == 1) {
220     dqcoeff[0] = 0;
221   } else {
222     if (tx_size <= TX_16X16 && eob <= 10)
223       memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0]));
224     else if (tx_size == TX_32X32 && eob <= 34)
225       memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0]));
226     else
227       memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0]));
228   }
229 }
230 
inverse_transform_block_intra(MACROBLOCKD * xd,int plane,const TX_TYPE tx_type,const TX_SIZE tx_size,uint8_t * dst,int stride,int eob)231 static void inverse_transform_block_intra(MACROBLOCKD *xd, int plane,
232                                           const TX_TYPE tx_type,
233                                           const TX_SIZE tx_size, uint8_t *dst,
234                                           int stride, int eob) {
235   struct macroblockd_plane *const pd = &xd->plane[plane];
236   tran_low_t *const dqcoeff = pd->dqcoeff;
237   assert(eob > 0);
238 #if CONFIG_VP9_HIGHBITDEPTH
239   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
240     uint16_t *const dst16 = CONVERT_TO_SHORTPTR(dst);
241     if (xd->lossless) {
242       vp9_highbd_iwht4x4_add(dqcoeff, dst16, stride, eob, xd->bd);
243     } else {
244       switch (tx_size) {
245         case TX_4X4:
246           vp9_highbd_iht4x4_add(tx_type, dqcoeff, dst16, stride, eob, xd->bd);
247           break;
248         case TX_8X8:
249           vp9_highbd_iht8x8_add(tx_type, dqcoeff, dst16, stride, eob, xd->bd);
250           break;
251         case TX_16X16:
252           vp9_highbd_iht16x16_add(tx_type, dqcoeff, dst16, stride, eob, xd->bd);
253           break;
254         case TX_32X32:
255           vp9_highbd_idct32x32_add(dqcoeff, dst16, stride, eob, xd->bd);
256           break;
257         default: assert(0 && "Invalid transform size");
258       }
259     }
260   } else {
261     if (xd->lossless) {
262       vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
263     } else {
264       switch (tx_size) {
265         case TX_4X4: vp9_iht4x4_add(tx_type, dqcoeff, dst, stride, eob); break;
266         case TX_8X8: vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob); break;
267         case TX_16X16:
268           vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob);
269           break;
270         case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break;
271         default: assert(0 && "Invalid transform size"); return;
272       }
273     }
274   }
275 #else
276   if (xd->lossless) {
277     vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
278   } else {
279     switch (tx_size) {
280       case TX_4X4: vp9_iht4x4_add(tx_type, dqcoeff, dst, stride, eob); break;
281       case TX_8X8: vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob); break;
282       case TX_16X16:
283         vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob);
284         break;
285       case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break;
286       default: assert(0 && "Invalid transform size"); return;
287     }
288   }
289 #endif  // CONFIG_VP9_HIGHBITDEPTH
290 
291   if (eob == 1) {
292     dqcoeff[0] = 0;
293   } else {
294     if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10)
295       memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0]));
296     else if (tx_size == TX_32X32 && eob <= 34)
297       memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0]));
298     else
299       memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0]));
300   }
301 }
302 
predict_and_reconstruct_intra_block(TileWorkerData * twd,MODE_INFO * const mi,int plane,int row,int col,TX_SIZE tx_size)303 static void predict_and_reconstruct_intra_block(TileWorkerData *twd,
304                                                 MODE_INFO *const mi, int plane,
305                                                 int row, int col,
306                                                 TX_SIZE tx_size) {
307   MACROBLOCKD *const xd = &twd->xd;
308   struct macroblockd_plane *const pd = &xd->plane[plane];
309   PREDICTION_MODE mode = (plane == 0) ? mi->mode : mi->uv_mode;
310   uint8_t *dst;
311   dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col];
312 
313   if (mi->sb_type < BLOCK_8X8)
314     if (plane == 0) mode = xd->mi[0]->bmi[(row << 1) + col].as_mode;
315 
316   vp9_predict_intra_block(xd, pd->n4_wl, tx_size, mode, dst, pd->dst.stride,
317                           dst, pd->dst.stride, col, row, plane);
318 
319   if (!mi->skip) {
320     const TX_TYPE tx_type =
321         (plane || xd->lossless) ? DCT_DCT : intra_mode_to_tx_type_lookup[mode];
322     const scan_order *sc = (plane || xd->lossless)
323                                ? &vp9_default_scan_orders[tx_size]
324                                : &vp9_scan_orders[tx_size][tx_type];
325     const int eob = vp9_decode_block_tokens(twd, plane, sc, col, row, tx_size,
326                                             mi->segment_id);
327     if (eob > 0) {
328       inverse_transform_block_intra(xd, plane, tx_type, tx_size, dst,
329                                     pd->dst.stride, eob);
330     }
331   }
332 }
333 
parse_intra_block_row_mt(TileWorkerData * twd,MODE_INFO * const mi,int plane,int row,int col,TX_SIZE tx_size)334 static void parse_intra_block_row_mt(TileWorkerData *twd, MODE_INFO *const mi,
335                                      int plane, int row, int col,
336                                      TX_SIZE tx_size) {
337   MACROBLOCKD *const xd = &twd->xd;
338   PREDICTION_MODE mode = (plane == 0) ? mi->mode : mi->uv_mode;
339 
340   if (mi->sb_type < BLOCK_8X8)
341     if (plane == 0) mode = xd->mi[0]->bmi[(row << 1) + col].as_mode;
342 
343   if (!mi->skip) {
344     struct macroblockd_plane *const pd = &xd->plane[plane];
345     const TX_TYPE tx_type =
346         (plane || xd->lossless) ? DCT_DCT : intra_mode_to_tx_type_lookup[mode];
347     const scan_order *sc = (plane || xd->lossless)
348                                ? &vp9_default_scan_orders[tx_size]
349                                : &vp9_scan_orders[tx_size][tx_type];
350     *pd->eob = vp9_decode_block_tokens(twd, plane, sc, col, row, tx_size,
351                                        mi->segment_id);
352     /* Keep the alignment to 16 */
353     pd->dqcoeff += (16 << (tx_size << 1));
354     pd->eob++;
355   }
356 }
357 
predict_and_reconstruct_intra_block_row_mt(TileWorkerData * twd,MODE_INFO * const mi,int plane,int row,int col,TX_SIZE tx_size)358 static void predict_and_reconstruct_intra_block_row_mt(TileWorkerData *twd,
359                                                        MODE_INFO *const mi,
360                                                        int plane, int row,
361                                                        int col,
362                                                        TX_SIZE tx_size) {
363   MACROBLOCKD *const xd = &twd->xd;
364   struct macroblockd_plane *const pd = &xd->plane[plane];
365   PREDICTION_MODE mode = (plane == 0) ? mi->mode : mi->uv_mode;
366   uint8_t *dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col];
367 
368   if (mi->sb_type < BLOCK_8X8)
369     if (plane == 0) mode = xd->mi[0]->bmi[(row << 1) + col].as_mode;
370 
371   vp9_predict_intra_block(xd, pd->n4_wl, tx_size, mode, dst, pd->dst.stride,
372                           dst, pd->dst.stride, col, row, plane);
373 
374   if (!mi->skip) {
375     const TX_TYPE tx_type =
376         (plane || xd->lossless) ? DCT_DCT : intra_mode_to_tx_type_lookup[mode];
377     if (*pd->eob > 0) {
378       inverse_transform_block_intra(xd, plane, tx_type, tx_size, dst,
379                                     pd->dst.stride, *pd->eob);
380     }
381     /* Keep the alignment to 16 */
382     pd->dqcoeff += (16 << (tx_size << 1));
383     pd->eob++;
384   }
385 }
386 
reconstruct_inter_block(TileWorkerData * twd,MODE_INFO * const mi,int plane,int row,int col,TX_SIZE tx_size)387 static int reconstruct_inter_block(TileWorkerData *twd, MODE_INFO *const mi,
388                                    int plane, int row, int col,
389                                    TX_SIZE tx_size) {
390   MACROBLOCKD *const xd = &twd->xd;
391   struct macroblockd_plane *const pd = &xd->plane[plane];
392   const scan_order *sc = &vp9_default_scan_orders[tx_size];
393   const int eob = vp9_decode_block_tokens(twd, plane, sc, col, row, tx_size,
394                                           mi->segment_id);
395 
396   if (eob > 0) {
397     inverse_transform_block_inter(
398         xd, plane, tx_size, &pd->dst.buf[4 * row * pd->dst.stride + 4 * col],
399         pd->dst.stride, eob);
400   }
401   return eob;
402 }
403 
parse_inter_block_row_mt(TileWorkerData * twd,MODE_INFO * const mi,int plane,int row,int col,TX_SIZE tx_size)404 static int parse_inter_block_row_mt(TileWorkerData *twd, MODE_INFO *const mi,
405                                     int plane, int row, int col,
406                                     TX_SIZE tx_size) {
407   MACROBLOCKD *const xd = &twd->xd;
408   struct macroblockd_plane *const pd = &xd->plane[plane];
409   const scan_order *sc = &vp9_default_scan_orders[tx_size];
410   const int eob = vp9_decode_block_tokens(twd, plane, sc, col, row, tx_size,
411                                           mi->segment_id);
412 
413   *pd->eob = eob;
414   pd->dqcoeff += (16 << (tx_size << 1));
415   pd->eob++;
416 
417   return eob;
418 }
419 
reconstruct_inter_block_row_mt(TileWorkerData * twd,MODE_INFO * const mi,int plane,int row,int col,TX_SIZE tx_size)420 static int reconstruct_inter_block_row_mt(TileWorkerData *twd,
421                                           MODE_INFO *const mi, int plane,
422                                           int row, int col, TX_SIZE tx_size) {
423   MACROBLOCKD *const xd = &twd->xd;
424   struct macroblockd_plane *const pd = &xd->plane[plane];
425   const int eob = *pd->eob;
426 
427   (void)mi;
428   if (eob > 0) {
429     inverse_transform_block_inter(
430         xd, plane, tx_size, &pd->dst.buf[4 * row * pd->dst.stride + 4 * col],
431         pd->dst.stride, eob);
432   }
433   pd->dqcoeff += (16 << (tx_size << 1));
434   pd->eob++;
435 
436   return eob;
437 }
438 
build_mc_border(const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,int x,int y,int b_w,int b_h,int w,int h)439 static void build_mc_border(const uint8_t *src, int src_stride, uint8_t *dst,
440                             int dst_stride, int x, int y, int b_w, int b_h,
441                             int w, int h) {
442   // Get a pointer to the start of the real data for this row.
443   const uint8_t *ref_row = src - x - y * src_stride;
444 
445   if (y >= h)
446     ref_row += (h - 1) * src_stride;
447   else if (y > 0)
448     ref_row += y * src_stride;
449 
450   do {
451     int right = 0, copy;
452     int left = x < 0 ? -x : 0;
453 
454     if (left > b_w) left = b_w;
455 
456     if (x + b_w > w) right = x + b_w - w;
457 
458     if (right > b_w) right = b_w;
459 
460     copy = b_w - left - right;
461 
462     if (left) memset(dst, ref_row[0], left);
463 
464     if (copy) memcpy(dst + left, ref_row + x + left, copy);
465 
466     if (right) memset(dst + left + copy, ref_row[w - 1], right);
467 
468     dst += dst_stride;
469     ++y;
470 
471     if (y > 0 && y < h) ref_row += src_stride;
472   } while (--b_h);
473 }
474 
475 #if CONFIG_VP9_HIGHBITDEPTH
high_build_mc_border(const uint8_t * src8,int src_stride,uint16_t * dst,int dst_stride,int x,int y,int b_w,int b_h,int w,int h)476 static void high_build_mc_border(const uint8_t *src8, int src_stride,
477                                  uint16_t *dst, int dst_stride, int x, int y,
478                                  int b_w, int b_h, int w, int h) {
479   // Get a pointer to the start of the real data for this row.
480   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
481   const uint16_t *ref_row = src - x - y * src_stride;
482 
483   if (y >= h)
484     ref_row += (h - 1) * src_stride;
485   else if (y > 0)
486     ref_row += y * src_stride;
487 
488   do {
489     int right = 0, copy;
490     int left = x < 0 ? -x : 0;
491 
492     if (left > b_w) left = b_w;
493 
494     if (x + b_w > w) right = x + b_w - w;
495 
496     if (right > b_w) right = b_w;
497 
498     copy = b_w - left - right;
499 
500     if (left) vpx_memset16(dst, ref_row[0], left);
501 
502     if (copy) memcpy(dst + left, ref_row + x + left, copy * sizeof(uint16_t));
503 
504     if (right) vpx_memset16(dst + left + copy, ref_row[w - 1], right);
505 
506     dst += dst_stride;
507     ++y;
508 
509     if (y > 0 && y < h) ref_row += src_stride;
510   } while (--b_h);
511 }
512 #endif  // CONFIG_VP9_HIGHBITDEPTH
513 
514 #if CONFIG_VP9_HIGHBITDEPTH
extend_and_predict(const uint8_t * buf_ptr1,int pre_buf_stride,int x0,int y0,int b_w,int b_h,int frame_width,int frame_height,int border_offset,uint8_t * const dst,int dst_buf_stride,int subpel_x,int subpel_y,const InterpKernel * kernel,const struct scale_factors * sf,MACROBLOCKD * xd,int w,int h,int ref,int xs,int ys)515 static void extend_and_predict(const uint8_t *buf_ptr1, int pre_buf_stride,
516                                int x0, int y0, int b_w, int b_h,
517                                int frame_width, int frame_height,
518                                int border_offset, uint8_t *const dst,
519                                int dst_buf_stride, int subpel_x, int subpel_y,
520                                const InterpKernel *kernel,
521                                const struct scale_factors *sf, MACROBLOCKD *xd,
522                                int w, int h, int ref, int xs, int ys) {
523   DECLARE_ALIGNED(16, uint16_t, mc_buf_high[80 * 2 * 80 * 2]);
524 
525   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
526     high_build_mc_border(buf_ptr1, pre_buf_stride, mc_buf_high, b_w, x0, y0,
527                          b_w, b_h, frame_width, frame_height);
528     highbd_inter_predictor(mc_buf_high + border_offset, b_w,
529                            CONVERT_TO_SHORTPTR(dst), dst_buf_stride, subpel_x,
530                            subpel_y, sf, w, h, ref, kernel, xs, ys, xd->bd);
531   } else {
532     build_mc_border(buf_ptr1, pre_buf_stride, (uint8_t *)mc_buf_high, b_w, x0,
533                     y0, b_w, b_h, frame_width, frame_height);
534     inter_predictor(((uint8_t *)mc_buf_high) + border_offset, b_w, dst,
535                     dst_buf_stride, subpel_x, subpel_y, sf, w, h, ref, kernel,
536                     xs, ys);
537   }
538 }
539 #else
extend_and_predict(const uint8_t * buf_ptr1,int pre_buf_stride,int x0,int y0,int b_w,int b_h,int frame_width,int frame_height,int border_offset,uint8_t * const dst,int dst_buf_stride,int subpel_x,int subpel_y,const InterpKernel * kernel,const struct scale_factors * sf,int w,int h,int ref,int xs,int ys)540 static void extend_and_predict(const uint8_t *buf_ptr1, int pre_buf_stride,
541                                int x0, int y0, int b_w, int b_h,
542                                int frame_width, int frame_height,
543                                int border_offset, uint8_t *const dst,
544                                int dst_buf_stride, int subpel_x, int subpel_y,
545                                const InterpKernel *kernel,
546                                const struct scale_factors *sf, int w, int h,
547                                int ref, int xs, int ys) {
548   DECLARE_ALIGNED(16, uint8_t, mc_buf[80 * 2 * 80 * 2]);
549   const uint8_t *buf_ptr;
550 
551   build_mc_border(buf_ptr1, pre_buf_stride, mc_buf, b_w, x0, y0, b_w, b_h,
552                   frame_width, frame_height);
553   buf_ptr = mc_buf + border_offset;
554 
555   inter_predictor(buf_ptr, b_w, dst, dst_buf_stride, subpel_x, subpel_y, sf, w,
556                   h, ref, kernel, xs, ys);
557 }
558 #endif  // CONFIG_VP9_HIGHBITDEPTH
559 
dec_build_inter_predictors(MACROBLOCKD * xd,int plane,int bw,int bh,int x,int y,int w,int h,int mi_x,int mi_y,const InterpKernel * kernel,const struct scale_factors * sf,struct buf_2d * pre_buf,struct buf_2d * dst_buf,const MV * mv,RefCntBuffer * ref_frame_buf,int is_scaled,int ref)560 static void dec_build_inter_predictors(
561     MACROBLOCKD *xd, int plane, int bw, int bh, int x, int y, int w, int h,
562     int mi_x, int mi_y, const InterpKernel *kernel,
563     const struct scale_factors *sf, struct buf_2d *pre_buf,
564     struct buf_2d *dst_buf, const MV *mv, RefCntBuffer *ref_frame_buf,
565     int is_scaled, int ref) {
566   struct macroblockd_plane *const pd = &xd->plane[plane];
567   uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
568   MV32 scaled_mv;
569   int xs, ys, x0, y0, x0_16, y0_16, frame_width, frame_height, buf_stride,
570       subpel_x, subpel_y;
571   uint8_t *ref_frame, *buf_ptr;
572 
573   // Get reference frame pointer, width and height.
574   if (plane == 0) {
575     frame_width = ref_frame_buf->buf.y_crop_width;
576     frame_height = ref_frame_buf->buf.y_crop_height;
577     ref_frame = ref_frame_buf->buf.y_buffer;
578   } else {
579     frame_width = ref_frame_buf->buf.uv_crop_width;
580     frame_height = ref_frame_buf->buf.uv_crop_height;
581     ref_frame =
582         plane == 1 ? ref_frame_buf->buf.u_buffer : ref_frame_buf->buf.v_buffer;
583   }
584 
585   if (is_scaled) {
586     const MV mv_q4 = clamp_mv_to_umv_border_sb(
587         xd, mv, bw, bh, pd->subsampling_x, pd->subsampling_y);
588     // Co-ordinate of containing block to pixel precision.
589     int x_start = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x));
590     int y_start = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y));
591 #if 0  // CONFIG_BETTER_HW_COMPATIBILITY
592     assert(xd->mi[0]->sb_type != BLOCK_4X8 &&
593            xd->mi[0]->sb_type != BLOCK_8X4);
594     assert(mv_q4.row == mv->row * (1 << (1 - pd->subsampling_y)) &&
595            mv_q4.col == mv->col * (1 << (1 - pd->subsampling_x)));
596 #endif
597     // Co-ordinate of the block to 1/16th pixel precision.
598     x0_16 = (x_start + x) << SUBPEL_BITS;
599     y0_16 = (y_start + y) << SUBPEL_BITS;
600 
601     // Co-ordinate of current block in reference frame
602     // to 1/16th pixel precision.
603     x0_16 = sf->scale_value_x(x0_16, sf);
604     y0_16 = sf->scale_value_y(y0_16, sf);
605 
606     // Map the top left corner of the block into the reference frame.
607     x0 = sf->scale_value_x(x_start + x, sf);
608     y0 = sf->scale_value_y(y_start + y, sf);
609 
610     // Scale the MV and incorporate the sub-pixel offset of the block
611     // in the reference frame.
612     scaled_mv = vp9_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf);
613     xs = sf->x_step_q4;
614     ys = sf->y_step_q4;
615   } else {
616     // Co-ordinate of containing block to pixel precision.
617     x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x;
618     y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y;
619 
620     // Co-ordinate of the block to 1/16th pixel precision.
621     x0_16 = x0 << SUBPEL_BITS;
622     y0_16 = y0 << SUBPEL_BITS;
623 
624     scaled_mv.row = mv->row * (1 << (1 - pd->subsampling_y));
625     scaled_mv.col = mv->col * (1 << (1 - pd->subsampling_x));
626     xs = ys = 16;
627   }
628   subpel_x = scaled_mv.col & SUBPEL_MASK;
629   subpel_y = scaled_mv.row & SUBPEL_MASK;
630 
631   // Calculate the top left corner of the best matching block in the
632   // reference frame.
633   x0 += scaled_mv.col >> SUBPEL_BITS;
634   y0 += scaled_mv.row >> SUBPEL_BITS;
635   x0_16 += scaled_mv.col;
636   y0_16 += scaled_mv.row;
637 
638   // Get reference block pointer.
639   buf_ptr = ref_frame + y0 * pre_buf->stride + x0;
640   buf_stride = pre_buf->stride;
641 
642   // Do border extension if there is motion or the
643   // width/height is not a multiple of 8 pixels.
644   if (is_scaled || scaled_mv.col || scaled_mv.row || (frame_width & 0x7) ||
645       (frame_height & 0x7)) {
646     int y1 = ((y0_16 + (h - 1) * ys) >> SUBPEL_BITS) + 1;
647 
648     // Get reference block bottom right horizontal coordinate.
649     int x1 = ((x0_16 + (w - 1) * xs) >> SUBPEL_BITS) + 1;
650     int x_pad = 0, y_pad = 0;
651 
652     if (subpel_x || (sf->x_step_q4 != SUBPEL_SHIFTS)) {
653       x0 -= VP9_INTERP_EXTEND - 1;
654       x1 += VP9_INTERP_EXTEND;
655       x_pad = 1;
656     }
657 
658     if (subpel_y || (sf->y_step_q4 != SUBPEL_SHIFTS)) {
659       y0 -= VP9_INTERP_EXTEND - 1;
660       y1 += VP9_INTERP_EXTEND;
661       y_pad = 1;
662     }
663 
664     // Skip border extension if block is inside the frame.
665     if (x0 < 0 || x0 > frame_width - 1 || x1 < 0 || x1 > frame_width - 1 ||
666         y0 < 0 || y0 > frame_height - 1 || y1 < 0 || y1 > frame_height - 1) {
667       // Extend the border.
668       const uint8_t *const buf_ptr1 = ref_frame + y0 * buf_stride + x0;
669       const int b_w = x1 - x0 + 1;
670       const int b_h = y1 - y0 + 1;
671       const int border_offset = y_pad * 3 * b_w + x_pad * 3;
672 
673       extend_and_predict(buf_ptr1, buf_stride, x0, y0, b_w, b_h, frame_width,
674                          frame_height, border_offset, dst, dst_buf->stride,
675                          subpel_x, subpel_y, kernel, sf,
676 #if CONFIG_VP9_HIGHBITDEPTH
677                          xd,
678 #endif
679                          w, h, ref, xs, ys);
680       return;
681     }
682   }
683 #if CONFIG_VP9_HIGHBITDEPTH
684   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
685     highbd_inter_predictor(CONVERT_TO_SHORTPTR(buf_ptr), buf_stride,
686                            CONVERT_TO_SHORTPTR(dst), dst_buf->stride, subpel_x,
687                            subpel_y, sf, w, h, ref, kernel, xs, ys, xd->bd);
688   } else {
689     inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x,
690                     subpel_y, sf, w, h, ref, kernel, xs, ys);
691   }
692 #else
693   inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x, subpel_y,
694                   sf, w, h, ref, kernel, xs, ys);
695 #endif  // CONFIG_VP9_HIGHBITDEPTH
696 }
697 
dec_build_inter_predictors_sb(VP9Decoder * const pbi,MACROBLOCKD * xd,int mi_row,int mi_col)698 static void dec_build_inter_predictors_sb(VP9Decoder *const pbi,
699                                           MACROBLOCKD *xd, int mi_row,
700                                           int mi_col) {
701   int plane;
702   const int mi_x = mi_col * MI_SIZE;
703   const int mi_y = mi_row * MI_SIZE;
704   const MODE_INFO *mi = xd->mi[0];
705   const InterpKernel *kernel = vp9_filter_kernels[mi->interp_filter];
706   const BLOCK_SIZE sb_type = mi->sb_type;
707   const int is_compound = has_second_ref(mi);
708   int ref;
709   int is_scaled;
710 
711   for (ref = 0; ref < 1 + is_compound; ++ref) {
712     const MV_REFERENCE_FRAME frame = mi->ref_frame[ref];
713     RefBuffer *ref_buf = &pbi->common.frame_refs[frame - LAST_FRAME];
714     const struct scale_factors *const sf = &ref_buf->sf;
715     const int idx = ref_buf->idx;
716     BufferPool *const pool = pbi->common.buffer_pool;
717     RefCntBuffer *const ref_frame_buf = &pool->frame_bufs[idx];
718 
719     if (!vp9_is_valid_scale(sf))
720       vpx_internal_error(xd->error_info, VPX_CODEC_UNSUP_BITSTREAM,
721                          "Reference frame has invalid dimensions");
722 
723     is_scaled = vp9_is_scaled(sf);
724     vp9_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col,
725                          is_scaled ? sf : NULL);
726     xd->block_refs[ref] = ref_buf;
727 
728     if (sb_type < BLOCK_8X8) {
729       for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
730         struct macroblockd_plane *const pd = &xd->plane[plane];
731         struct buf_2d *const dst_buf = &pd->dst;
732         const int num_4x4_w = pd->n4_w;
733         const int num_4x4_h = pd->n4_h;
734         const int n4w_x4 = 4 * num_4x4_w;
735         const int n4h_x4 = 4 * num_4x4_h;
736         struct buf_2d *const pre_buf = &pd->pre[ref];
737         int i = 0, x, y;
738         for (y = 0; y < num_4x4_h; ++y) {
739           for (x = 0; x < num_4x4_w; ++x) {
740             const MV mv = average_split_mvs(pd, mi, ref, i++);
741             dec_build_inter_predictors(xd, plane, n4w_x4, n4h_x4, 4 * x, 4 * y,
742                                        4, 4, mi_x, mi_y, kernel, sf, pre_buf,
743                                        dst_buf, &mv, ref_frame_buf, is_scaled,
744                                        ref);
745           }
746         }
747       }
748     } else {
749       const MV mv = mi->mv[ref].as_mv;
750       for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
751         struct macroblockd_plane *const pd = &xd->plane[plane];
752         struct buf_2d *const dst_buf = &pd->dst;
753         const int num_4x4_w = pd->n4_w;
754         const int num_4x4_h = pd->n4_h;
755         const int n4w_x4 = 4 * num_4x4_w;
756         const int n4h_x4 = 4 * num_4x4_h;
757         struct buf_2d *const pre_buf = &pd->pre[ref];
758         dec_build_inter_predictors(xd, plane, n4w_x4, n4h_x4, 0, 0, n4w_x4,
759                                    n4h_x4, mi_x, mi_y, kernel, sf, pre_buf,
760                                    dst_buf, &mv, ref_frame_buf, is_scaled, ref);
761       }
762     }
763   }
764 }
765 
dec_reset_skip_context(MACROBLOCKD * xd)766 static INLINE void dec_reset_skip_context(MACROBLOCKD *xd) {
767   int i;
768   for (i = 0; i < MAX_MB_PLANE; i++) {
769     struct macroblockd_plane *const pd = &xd->plane[i];
770     memset(pd->above_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_w);
771     memset(pd->left_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_h);
772   }
773 }
774 
set_plane_n4(MACROBLOCKD * const xd,int bw,int bh,int bwl,int bhl)775 static void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh, int bwl,
776                          int bhl) {
777   int i;
778   for (i = 0; i < MAX_MB_PLANE; i++) {
779     xd->plane[i].n4_w = (bw << 1) >> xd->plane[i].subsampling_x;
780     xd->plane[i].n4_h = (bh << 1) >> xd->plane[i].subsampling_y;
781     xd->plane[i].n4_wl = bwl - xd->plane[i].subsampling_x;
782     xd->plane[i].n4_hl = bhl - xd->plane[i].subsampling_y;
783   }
784 }
785 
set_offsets_recon(VP9_COMMON * const cm,MACROBLOCKD * const xd,int mi_row,int mi_col,int bw,int bh,int bwl,int bhl)786 static MODE_INFO *set_offsets_recon(VP9_COMMON *const cm, MACROBLOCKD *const xd,
787                                     int mi_row, int mi_col, int bw, int bh,
788                                     int bwl, int bhl) {
789   const int offset = mi_row * cm->mi_stride + mi_col;
790   const TileInfo *const tile = &xd->tile;
791   xd->mi = cm->mi_grid_visible + offset;
792 
793   set_plane_n4(xd, bw, bh, bwl, bhl);
794 
795   set_skip_context(xd, mi_row, mi_col);
796 
797   // Distance of Mb to the various image edges. These are specified to 8th pel
798   // as they are always compared to values that are in 1/8th pel units
799   set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
800 
801   vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
802   return xd->mi[0];
803 }
804 
set_offsets(VP9_COMMON * const cm,MACROBLOCKD * const xd,BLOCK_SIZE bsize,int mi_row,int mi_col,int bw,int bh,int x_mis,int y_mis,int bwl,int bhl)805 static MODE_INFO *set_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd,
806                               BLOCK_SIZE bsize, int mi_row, int mi_col, int bw,
807                               int bh, int x_mis, int y_mis, int bwl, int bhl) {
808   const int offset = mi_row * cm->mi_stride + mi_col;
809   int x, y;
810   const TileInfo *const tile = &xd->tile;
811 
812   xd->mi = cm->mi_grid_visible + offset;
813   xd->mi[0] = &cm->mi[offset];
814   // TODO(slavarnway): Generate sb_type based on bwl and bhl, instead of
815   // passing bsize from decode_partition().
816   xd->mi[0]->sb_type = bsize;
817   for (y = 0; y < y_mis; ++y)
818     for (x = !y; x < x_mis; ++x) {
819       xd->mi[y * cm->mi_stride + x] = xd->mi[0];
820     }
821 
822   set_plane_n4(xd, bw, bh, bwl, bhl);
823 
824   set_skip_context(xd, mi_row, mi_col);
825 
826   // Distance of Mb to the various image edges. These are specified to 8th pel
827   // as they are always compared to values that are in 1/8th pel units
828   set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
829 
830   vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
831   return xd->mi[0];
832 }
833 
predict_recon_inter(MACROBLOCKD * xd,MODE_INFO * mi,TileWorkerData * twd,predict_recon_func func)834 static INLINE int predict_recon_inter(MACROBLOCKD *xd, MODE_INFO *mi,
835                                       TileWorkerData *twd,
836                                       predict_recon_func func) {
837   int eobtotal = 0;
838   int plane;
839   for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
840     const struct macroblockd_plane *const pd = &xd->plane[plane];
841     const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size;
842     const int num_4x4_w = pd->n4_w;
843     const int num_4x4_h = pd->n4_h;
844     const int step = (1 << tx_size);
845     int row, col;
846     const int max_blocks_wide =
847         num_4x4_w + (xd->mb_to_right_edge >= 0
848                          ? 0
849                          : xd->mb_to_right_edge >> (5 + pd->subsampling_x));
850     const int max_blocks_high =
851         num_4x4_h + (xd->mb_to_bottom_edge >= 0
852                          ? 0
853                          : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
854 
855     xd->max_blocks_wide = xd->mb_to_right_edge >= 0 ? 0 : max_blocks_wide;
856     xd->max_blocks_high = xd->mb_to_bottom_edge >= 0 ? 0 : max_blocks_high;
857 
858     for (row = 0; row < max_blocks_high; row += step)
859       for (col = 0; col < max_blocks_wide; col += step)
860         eobtotal += func(twd, mi, plane, row, col, tx_size);
861   }
862   return eobtotal;
863 }
864 
predict_recon_intra(MACROBLOCKD * xd,MODE_INFO * mi,TileWorkerData * twd,intra_recon_func func)865 static INLINE void predict_recon_intra(MACROBLOCKD *xd, MODE_INFO *mi,
866                                        TileWorkerData *twd,
867                                        intra_recon_func func) {
868   int plane;
869   for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
870     const struct macroblockd_plane *const pd = &xd->plane[plane];
871     const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size;
872     const int num_4x4_w = pd->n4_w;
873     const int num_4x4_h = pd->n4_h;
874     const int step = (1 << tx_size);
875     int row, col;
876     const int max_blocks_wide =
877         num_4x4_w + (xd->mb_to_right_edge >= 0
878                          ? 0
879                          : xd->mb_to_right_edge >> (5 + pd->subsampling_x));
880     const int max_blocks_high =
881         num_4x4_h + (xd->mb_to_bottom_edge >= 0
882                          ? 0
883                          : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
884 
885     xd->max_blocks_wide = xd->mb_to_right_edge >= 0 ? 0 : max_blocks_wide;
886     xd->max_blocks_high = xd->mb_to_bottom_edge >= 0 ? 0 : max_blocks_high;
887 
888     for (row = 0; row < max_blocks_high; row += step)
889       for (col = 0; col < max_blocks_wide; col += step)
890         func(twd, mi, plane, row, col, tx_size);
891   }
892 }
893 
decode_block(TileWorkerData * twd,VP9Decoder * const pbi,int mi_row,int mi_col,BLOCK_SIZE bsize,int bwl,int bhl)894 static void decode_block(TileWorkerData *twd, VP9Decoder *const pbi, int mi_row,
895                          int mi_col, BLOCK_SIZE bsize, int bwl, int bhl) {
896   VP9_COMMON *const cm = &pbi->common;
897   const int less8x8 = bsize < BLOCK_8X8;
898   const int bw = 1 << (bwl - 1);
899   const int bh = 1 << (bhl - 1);
900   const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
901   const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
902   vpx_reader *r = &twd->bit_reader;
903   MACROBLOCKD *const xd = &twd->xd;
904 
905   MODE_INFO *mi = set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis,
906                               y_mis, bwl, bhl);
907 
908   if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) {
909     const BLOCK_SIZE uv_subsize =
910         ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y];
911     if (uv_subsize == BLOCK_INVALID)
912       vpx_internal_error(xd->error_info, VPX_CODEC_CORRUPT_FRAME,
913                          "Invalid block size.");
914   }
915 
916   vp9_read_mode_info(twd, pbi, mi_row, mi_col, x_mis, y_mis);
917 
918   if (mi->skip) {
919     dec_reset_skip_context(xd);
920   }
921 
922   if (!is_inter_block(mi)) {
923     int plane;
924     for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
925       const struct macroblockd_plane *const pd = &xd->plane[plane];
926       const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size;
927       const int num_4x4_w = pd->n4_w;
928       const int num_4x4_h = pd->n4_h;
929       const int step = (1 << tx_size);
930       int row, col;
931       const int max_blocks_wide =
932           num_4x4_w + (xd->mb_to_right_edge >= 0
933                            ? 0
934                            : xd->mb_to_right_edge >> (5 + pd->subsampling_x));
935       const int max_blocks_high =
936           num_4x4_h + (xd->mb_to_bottom_edge >= 0
937                            ? 0
938                            : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
939 
940       xd->max_blocks_wide = xd->mb_to_right_edge >= 0 ? 0 : max_blocks_wide;
941       xd->max_blocks_high = xd->mb_to_bottom_edge >= 0 ? 0 : max_blocks_high;
942 
943       for (row = 0; row < max_blocks_high; row += step)
944         for (col = 0; col < max_blocks_wide; col += step)
945           predict_and_reconstruct_intra_block(twd, mi, plane, row, col,
946                                               tx_size);
947     }
948   } else {
949     // Prediction
950     dec_build_inter_predictors_sb(pbi, xd, mi_row, mi_col);
951 
952     // Reconstruction
953     if (!mi->skip) {
954       int eobtotal = 0;
955       int plane;
956 
957       for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
958         const struct macroblockd_plane *const pd = &xd->plane[plane];
959         const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size;
960         const int num_4x4_w = pd->n4_w;
961         const int num_4x4_h = pd->n4_h;
962         const int step = (1 << tx_size);
963         int row, col;
964         const int max_blocks_wide =
965             num_4x4_w + (xd->mb_to_right_edge >= 0
966                              ? 0
967                              : xd->mb_to_right_edge >> (5 + pd->subsampling_x));
968         const int max_blocks_high =
969             num_4x4_h +
970             (xd->mb_to_bottom_edge >= 0
971                  ? 0
972                  : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
973 
974         xd->max_blocks_wide = xd->mb_to_right_edge >= 0 ? 0 : max_blocks_wide;
975         xd->max_blocks_high = xd->mb_to_bottom_edge >= 0 ? 0 : max_blocks_high;
976 
977         for (row = 0; row < max_blocks_high; row += step)
978           for (col = 0; col < max_blocks_wide; col += step)
979             eobtotal +=
980                 reconstruct_inter_block(twd, mi, plane, row, col, tx_size);
981       }
982 
983       if (!less8x8 && eobtotal == 0) mi->skip = 1;  // skip loopfilter
984     }
985   }
986 
987   xd->corrupted |= vpx_reader_has_error(r);
988 
989   if (cm->lf.filter_level) {
990     vp9_build_mask(cm, mi, mi_row, mi_col, bw, bh);
991   }
992 }
993 
recon_block(TileWorkerData * twd,VP9Decoder * const pbi,int mi_row,int mi_col,BLOCK_SIZE bsize,int bwl,int bhl)994 static void recon_block(TileWorkerData *twd, VP9Decoder *const pbi, int mi_row,
995                         int mi_col, BLOCK_SIZE bsize, int bwl, int bhl) {
996   VP9_COMMON *const cm = &pbi->common;
997   const int bw = 1 << (bwl - 1);
998   const int bh = 1 << (bhl - 1);
999   MACROBLOCKD *const xd = &twd->xd;
1000 
1001   MODE_INFO *mi = set_offsets_recon(cm, xd, mi_row, mi_col, bw, bh, bwl, bhl);
1002 
1003   if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) {
1004     const BLOCK_SIZE uv_subsize =
1005         ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y];
1006     if (uv_subsize == BLOCK_INVALID)
1007       vpx_internal_error(xd->error_info, VPX_CODEC_CORRUPT_FRAME,
1008                          "Invalid block size.");
1009   }
1010 
1011   if (!is_inter_block(mi)) {
1012     predict_recon_intra(xd, mi, twd,
1013                         predict_and_reconstruct_intra_block_row_mt);
1014   } else {
1015     // Prediction
1016     dec_build_inter_predictors_sb(pbi, xd, mi_row, mi_col);
1017 
1018     // Reconstruction
1019     if (!mi->skip) {
1020       predict_recon_inter(xd, mi, twd, reconstruct_inter_block_row_mt);
1021     }
1022   }
1023 
1024   vp9_build_mask(cm, mi, mi_row, mi_col, bw, bh);
1025 }
1026 
parse_block(TileWorkerData * twd,VP9Decoder * const pbi,int mi_row,int mi_col,BLOCK_SIZE bsize,int bwl,int bhl)1027 static void parse_block(TileWorkerData *twd, VP9Decoder *const pbi, int mi_row,
1028                         int mi_col, BLOCK_SIZE bsize, int bwl, int bhl) {
1029   VP9_COMMON *const cm = &pbi->common;
1030   const int less8x8 = bsize < BLOCK_8X8;
1031   const int bw = 1 << (bwl - 1);
1032   const int bh = 1 << (bhl - 1);
1033   const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
1034   const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
1035   vpx_reader *r = &twd->bit_reader;
1036   MACROBLOCKD *const xd = &twd->xd;
1037 
1038   MODE_INFO *mi = set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis,
1039                               y_mis, bwl, bhl);
1040 
1041   if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) {
1042     const BLOCK_SIZE uv_subsize =
1043         ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y];
1044     if (uv_subsize == BLOCK_INVALID)
1045       vpx_internal_error(xd->error_info, VPX_CODEC_CORRUPT_FRAME,
1046                          "Invalid block size.");
1047   }
1048 
1049   vp9_read_mode_info(twd, pbi, mi_row, mi_col, x_mis, y_mis);
1050 
1051   if (mi->skip) {
1052     dec_reset_skip_context(xd);
1053   }
1054 
1055   if (!is_inter_block(mi)) {
1056     predict_recon_intra(xd, mi, twd, parse_intra_block_row_mt);
1057   } else {
1058     if (!mi->skip) {
1059       const int eobtotal =
1060           predict_recon_inter(xd, mi, twd, parse_inter_block_row_mt);
1061 
1062       if (!less8x8 && eobtotal == 0) mi->skip = 1;  // skip loopfilter
1063     }
1064   }
1065 
1066   xd->corrupted |= vpx_reader_has_error(r);
1067 }
1068 
dec_partition_plane_context(TileWorkerData * twd,int mi_row,int mi_col,int bsl)1069 static INLINE int dec_partition_plane_context(TileWorkerData *twd, int mi_row,
1070                                               int mi_col, int bsl) {
1071   const PARTITION_CONTEXT *above_ctx = twd->xd.above_seg_context + mi_col;
1072   const PARTITION_CONTEXT *left_ctx =
1073       twd->xd.left_seg_context + (mi_row & MI_MASK);
1074   int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
1075 
1076   //  assert(bsl >= 0);
1077 
1078   return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
1079 }
1080 
dec_update_partition_context(TileWorkerData * twd,int mi_row,int mi_col,BLOCK_SIZE subsize,int bw)1081 static INLINE void dec_update_partition_context(TileWorkerData *twd, int mi_row,
1082                                                 int mi_col, BLOCK_SIZE subsize,
1083                                                 int bw) {
1084   PARTITION_CONTEXT *const above_ctx = twd->xd.above_seg_context + mi_col;
1085   PARTITION_CONTEXT *const left_ctx =
1086       twd->xd.left_seg_context + (mi_row & MI_MASK);
1087 
1088   // update the partition context at the end notes. set partition bits
1089   // of block sizes larger than the current one to be one, and partition
1090   // bits of smaller block sizes to be zero.
1091   memset(above_ctx, partition_context_lookup[subsize].above, bw);
1092   memset(left_ctx, partition_context_lookup[subsize].left, bw);
1093 }
1094 
read_partition(TileWorkerData * twd,int mi_row,int mi_col,int has_rows,int has_cols,int bsl)1095 static PARTITION_TYPE read_partition(TileWorkerData *twd, int mi_row,
1096                                      int mi_col, int has_rows, int has_cols,
1097                                      int bsl) {
1098   const int ctx = dec_partition_plane_context(twd, mi_row, mi_col, bsl);
1099   const vpx_prob *const probs = twd->xd.partition_probs[ctx];
1100   FRAME_COUNTS *counts = twd->xd.counts;
1101   PARTITION_TYPE p;
1102   vpx_reader *r = &twd->bit_reader;
1103 
1104   if (has_rows && has_cols)
1105     p = (PARTITION_TYPE)vpx_read_tree(r, vp9_partition_tree, probs);
1106   else if (!has_rows && has_cols)
1107     p = vpx_read(r, probs[1]) ? PARTITION_SPLIT : PARTITION_HORZ;
1108   else if (has_rows && !has_cols)
1109     p = vpx_read(r, probs[2]) ? PARTITION_SPLIT : PARTITION_VERT;
1110   else
1111     p = PARTITION_SPLIT;
1112 
1113   if (counts) ++counts->partition[ctx][p];
1114 
1115   return p;
1116 }
1117 
1118 // TODO(slavarnway): eliminate bsize and subsize in future commits
decode_partition(TileWorkerData * twd,VP9Decoder * const pbi,int mi_row,int mi_col,BLOCK_SIZE bsize,int n4x4_l2)1119 static void decode_partition(TileWorkerData *twd, VP9Decoder *const pbi,
1120                              int mi_row, int mi_col, BLOCK_SIZE bsize,
1121                              int n4x4_l2) {
1122   VP9_COMMON *const cm = &pbi->common;
1123   const int n8x8_l2 = n4x4_l2 - 1;
1124   const int num_8x8_wh = 1 << n8x8_l2;
1125   const int hbs = num_8x8_wh >> 1;
1126   PARTITION_TYPE partition;
1127   BLOCK_SIZE subsize;
1128   const int has_rows = (mi_row + hbs) < cm->mi_rows;
1129   const int has_cols = (mi_col + hbs) < cm->mi_cols;
1130   MACROBLOCKD *const xd = &twd->xd;
1131 
1132   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
1133 
1134   partition = read_partition(twd, mi_row, mi_col, has_rows, has_cols, n8x8_l2);
1135   subsize = subsize_lookup[partition][bsize];  // get_subsize(bsize, partition);
1136   if (!hbs) {
1137     // calculate bmode block dimensions (log 2)
1138     xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT);
1139     xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ);
1140     decode_block(twd, pbi, mi_row, mi_col, subsize, 1, 1);
1141   } else {
1142     switch (partition) {
1143       case PARTITION_NONE:
1144         decode_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n4x4_l2);
1145         break;
1146       case PARTITION_HORZ:
1147         decode_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n8x8_l2);
1148         if (has_rows)
1149           decode_block(twd, pbi, mi_row + hbs, mi_col, subsize, n4x4_l2,
1150                        n8x8_l2);
1151         break;
1152       case PARTITION_VERT:
1153         decode_block(twd, pbi, mi_row, mi_col, subsize, n8x8_l2, n4x4_l2);
1154         if (has_cols)
1155           decode_block(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2,
1156                        n4x4_l2);
1157         break;
1158       case PARTITION_SPLIT:
1159         decode_partition(twd, pbi, mi_row, mi_col, subsize, n8x8_l2);
1160         decode_partition(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2);
1161         decode_partition(twd, pbi, mi_row + hbs, mi_col, subsize, n8x8_l2);
1162         decode_partition(twd, pbi, mi_row + hbs, mi_col + hbs, subsize,
1163                          n8x8_l2);
1164         break;
1165       default: assert(0 && "Invalid partition type");
1166     }
1167   }
1168 
1169   // update partition context
1170   if (bsize >= BLOCK_8X8 &&
1171       (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
1172     dec_update_partition_context(twd, mi_row, mi_col, subsize, num_8x8_wh);
1173 }
1174 
recon_partition(TileWorkerData * twd,VP9Decoder * const pbi,int mi_row,int mi_col,BLOCK_SIZE bsize,int n4x4_l2)1175 static void recon_partition(TileWorkerData *twd, VP9Decoder *const pbi,
1176                             int mi_row, int mi_col, BLOCK_SIZE bsize,
1177                             int n4x4_l2) {
1178   VP9_COMMON *const cm = &pbi->common;
1179   const int n8x8_l2 = n4x4_l2 - 1;
1180   const int num_8x8_wh = 1 << n8x8_l2;
1181   const int hbs = num_8x8_wh >> 1;
1182   PARTITION_TYPE partition;
1183   BLOCK_SIZE subsize;
1184   const int has_rows = (mi_row + hbs) < cm->mi_rows;
1185   const int has_cols = (mi_col + hbs) < cm->mi_cols;
1186   MACROBLOCKD *const xd = &twd->xd;
1187 
1188   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
1189 
1190   partition = *xd->partition;
1191   xd->partition++;
1192 
1193   subsize = get_subsize(bsize, partition);
1194   if (!hbs) {
1195     // calculate bmode block dimensions (log 2)
1196     xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT);
1197     xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ);
1198     recon_block(twd, pbi, mi_row, mi_col, subsize, 1, 1);
1199   } else {
1200     switch (partition) {
1201       case PARTITION_NONE:
1202         recon_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n4x4_l2);
1203         break;
1204       case PARTITION_HORZ:
1205         recon_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n8x8_l2);
1206         if (has_rows)
1207           recon_block(twd, pbi, mi_row + hbs, mi_col, subsize, n4x4_l2,
1208                       n8x8_l2);
1209         break;
1210       case PARTITION_VERT:
1211         recon_block(twd, pbi, mi_row, mi_col, subsize, n8x8_l2, n4x4_l2);
1212         if (has_cols)
1213           recon_block(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2,
1214                       n4x4_l2);
1215         break;
1216       case PARTITION_SPLIT:
1217         recon_partition(twd, pbi, mi_row, mi_col, subsize, n8x8_l2);
1218         recon_partition(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2);
1219         recon_partition(twd, pbi, mi_row + hbs, mi_col, subsize, n8x8_l2);
1220         recon_partition(twd, pbi, mi_row + hbs, mi_col + hbs, subsize, n8x8_l2);
1221         break;
1222       default: assert(0 && "Invalid partition type");
1223     }
1224   }
1225 }
1226 
parse_partition(TileWorkerData * twd,VP9Decoder * const pbi,int mi_row,int mi_col,BLOCK_SIZE bsize,int n4x4_l2)1227 static void parse_partition(TileWorkerData *twd, VP9Decoder *const pbi,
1228                             int mi_row, int mi_col, BLOCK_SIZE bsize,
1229                             int n4x4_l2) {
1230   VP9_COMMON *const cm = &pbi->common;
1231   const int n8x8_l2 = n4x4_l2 - 1;
1232   const int num_8x8_wh = 1 << n8x8_l2;
1233   const int hbs = num_8x8_wh >> 1;
1234   PARTITION_TYPE partition;
1235   BLOCK_SIZE subsize;
1236   const int has_rows = (mi_row + hbs) < cm->mi_rows;
1237   const int has_cols = (mi_col + hbs) < cm->mi_cols;
1238   MACROBLOCKD *const xd = &twd->xd;
1239 
1240   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
1241 
1242   *xd->partition =
1243       read_partition(twd, mi_row, mi_col, has_rows, has_cols, n8x8_l2);
1244 
1245   partition = *xd->partition;
1246   xd->partition++;
1247 
1248   subsize = get_subsize(bsize, partition);
1249   if (!hbs) {
1250     // calculate bmode block dimensions (log 2)
1251     xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT);
1252     xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ);
1253     parse_block(twd, pbi, mi_row, mi_col, subsize, 1, 1);
1254   } else {
1255     switch (partition) {
1256       case PARTITION_NONE:
1257         parse_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n4x4_l2);
1258         break;
1259       case PARTITION_HORZ:
1260         parse_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n8x8_l2);
1261         if (has_rows)
1262           parse_block(twd, pbi, mi_row + hbs, mi_col, subsize, n4x4_l2,
1263                       n8x8_l2);
1264         break;
1265       case PARTITION_VERT:
1266         parse_block(twd, pbi, mi_row, mi_col, subsize, n8x8_l2, n4x4_l2);
1267         if (has_cols)
1268           parse_block(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2,
1269                       n4x4_l2);
1270         break;
1271       case PARTITION_SPLIT:
1272         parse_partition(twd, pbi, mi_row, mi_col, subsize, n8x8_l2);
1273         parse_partition(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2);
1274         parse_partition(twd, pbi, mi_row + hbs, mi_col, subsize, n8x8_l2);
1275         parse_partition(twd, pbi, mi_row + hbs, mi_col + hbs, subsize, n8x8_l2);
1276         break;
1277       default: assert(0 && "Invalid partition type");
1278     }
1279   }
1280 
1281   // update partition context
1282   if (bsize >= BLOCK_8X8 &&
1283       (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
1284     dec_update_partition_context(twd, mi_row, mi_col, subsize, num_8x8_wh);
1285 }
1286 
setup_token_decoder(const uint8_t * data,const uint8_t * data_end,size_t read_size,struct vpx_internal_error_info * error_info,vpx_reader * r,vpx_decrypt_cb decrypt_cb,void * decrypt_state)1287 static void setup_token_decoder(const uint8_t *data, const uint8_t *data_end,
1288                                 size_t read_size,
1289                                 struct vpx_internal_error_info *error_info,
1290                                 vpx_reader *r, vpx_decrypt_cb decrypt_cb,
1291                                 void *decrypt_state) {
1292   // Validate the calculated partition length. If the buffer
1293   // described by the partition can't be fully read, then restrict
1294   // it to the portion that can be (for EC mode) or throw an error.
1295   if (!read_is_valid(data, read_size, data_end))
1296     vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
1297                        "Truncated packet or corrupt tile length");
1298 
1299   if (vpx_reader_init(r, data, read_size, decrypt_cb, decrypt_state))
1300     vpx_internal_error(error_info, VPX_CODEC_MEM_ERROR,
1301                        "Failed to allocate bool decoder %d", 1);
1302 }
1303 
read_coef_probs_common(vp9_coeff_probs_model * coef_probs,vpx_reader * r)1304 static void read_coef_probs_common(vp9_coeff_probs_model *coef_probs,
1305                                    vpx_reader *r) {
1306   int i, j, k, l, m;
1307 
1308   if (vpx_read_bit(r))
1309     for (i = 0; i < PLANE_TYPES; ++i)
1310       for (j = 0; j < REF_TYPES; ++j)
1311         for (k = 0; k < COEF_BANDS; ++k)
1312           for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
1313             for (m = 0; m < UNCONSTRAINED_NODES; ++m)
1314               vp9_diff_update_prob(r, &coef_probs[i][j][k][l][m]);
1315 }
1316 
read_coef_probs(FRAME_CONTEXT * fc,TX_MODE tx_mode,vpx_reader * r)1317 static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode, vpx_reader *r) {
1318   const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
1319   TX_SIZE tx_size;
1320   for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
1321     read_coef_probs_common(fc->coef_probs[tx_size], r);
1322 }
1323 
setup_segmentation(struct segmentation * seg,struct vpx_read_bit_buffer * rb)1324 static void setup_segmentation(struct segmentation *seg,
1325                                struct vpx_read_bit_buffer *rb) {
1326   int i, j;
1327 
1328   seg->update_map = 0;
1329   seg->update_data = 0;
1330 
1331   seg->enabled = vpx_rb_read_bit(rb);
1332   if (!seg->enabled) return;
1333 
1334   // Segmentation map update
1335   seg->update_map = vpx_rb_read_bit(rb);
1336   if (seg->update_map) {
1337     for (i = 0; i < SEG_TREE_PROBS; i++)
1338       seg->tree_probs[i] =
1339           vpx_rb_read_bit(rb) ? vpx_rb_read_literal(rb, 8) : MAX_PROB;
1340 
1341     seg->temporal_update = vpx_rb_read_bit(rb);
1342     if (seg->temporal_update) {
1343       for (i = 0; i < PREDICTION_PROBS; i++)
1344         seg->pred_probs[i] =
1345             vpx_rb_read_bit(rb) ? vpx_rb_read_literal(rb, 8) : MAX_PROB;
1346     } else {
1347       for (i = 0; i < PREDICTION_PROBS; i++) seg->pred_probs[i] = MAX_PROB;
1348     }
1349   }
1350 
1351   // Segmentation data update
1352   seg->update_data = vpx_rb_read_bit(rb);
1353   if (seg->update_data) {
1354     seg->abs_delta = vpx_rb_read_bit(rb);
1355 
1356     vp9_clearall_segfeatures(seg);
1357 
1358     for (i = 0; i < MAX_SEGMENTS; i++) {
1359       for (j = 0; j < SEG_LVL_MAX; j++) {
1360         int data = 0;
1361         const int feature_enabled = vpx_rb_read_bit(rb);
1362         if (feature_enabled) {
1363           vp9_enable_segfeature(seg, i, j);
1364           data = decode_unsigned_max(rb, vp9_seg_feature_data_max(j));
1365           if (vp9_is_segfeature_signed(j))
1366             data = vpx_rb_read_bit(rb) ? -data : data;
1367         }
1368         vp9_set_segdata(seg, i, j, data);
1369       }
1370     }
1371   }
1372 }
1373 
setup_loopfilter(struct loopfilter * lf,struct vpx_read_bit_buffer * rb)1374 static void setup_loopfilter(struct loopfilter *lf,
1375                              struct vpx_read_bit_buffer *rb) {
1376   lf->filter_level = vpx_rb_read_literal(rb, 6);
1377   lf->sharpness_level = vpx_rb_read_literal(rb, 3);
1378 
1379   // Read in loop filter deltas applied at the MB level based on mode or ref
1380   // frame.
1381   lf->mode_ref_delta_update = 0;
1382 
1383   lf->mode_ref_delta_enabled = vpx_rb_read_bit(rb);
1384   if (lf->mode_ref_delta_enabled) {
1385     lf->mode_ref_delta_update = vpx_rb_read_bit(rb);
1386     if (lf->mode_ref_delta_update) {
1387       int i;
1388 
1389       for (i = 0; i < MAX_REF_LF_DELTAS; i++)
1390         if (vpx_rb_read_bit(rb))
1391           lf->ref_deltas[i] = vpx_rb_read_signed_literal(rb, 6);
1392 
1393       for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
1394         if (vpx_rb_read_bit(rb))
1395           lf->mode_deltas[i] = vpx_rb_read_signed_literal(rb, 6);
1396     }
1397   }
1398 }
1399 
read_delta_q(struct vpx_read_bit_buffer * rb)1400 static INLINE int read_delta_q(struct vpx_read_bit_buffer *rb) {
1401   return vpx_rb_read_bit(rb) ? vpx_rb_read_signed_literal(rb, 4) : 0;
1402 }
1403 
setup_quantization(VP9_COMMON * const cm,MACROBLOCKD * const xd,struct vpx_read_bit_buffer * rb)1404 static void setup_quantization(VP9_COMMON *const cm, MACROBLOCKD *const xd,
1405                                struct vpx_read_bit_buffer *rb) {
1406   cm->base_qindex = vpx_rb_read_literal(rb, QINDEX_BITS);
1407   cm->y_dc_delta_q = read_delta_q(rb);
1408   cm->uv_dc_delta_q = read_delta_q(rb);
1409   cm->uv_ac_delta_q = read_delta_q(rb);
1410   cm->dequant_bit_depth = cm->bit_depth;
1411   xd->lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 &&
1412                  cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
1413 
1414 #if CONFIG_VP9_HIGHBITDEPTH
1415   xd->bd = (int)cm->bit_depth;
1416 #endif
1417 }
1418 
setup_segmentation_dequant(VP9_COMMON * const cm)1419 static void setup_segmentation_dequant(VP9_COMMON *const cm) {
1420   // Build y/uv dequant values based on segmentation.
1421   if (cm->seg.enabled) {
1422     int i;
1423     for (i = 0; i < MAX_SEGMENTS; ++i) {
1424       const int qindex = vp9_get_qindex(&cm->seg, i, cm->base_qindex);
1425       cm->y_dequant[i][0] =
1426           vp9_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth);
1427       cm->y_dequant[i][1] = vp9_ac_quant(qindex, 0, cm->bit_depth);
1428       cm->uv_dequant[i][0] =
1429           vp9_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth);
1430       cm->uv_dequant[i][1] =
1431           vp9_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth);
1432     }
1433   } else {
1434     const int qindex = cm->base_qindex;
1435     // When segmentation is disabled, only the first value is used.  The
1436     // remaining are don't cares.
1437     cm->y_dequant[0][0] = vp9_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth);
1438     cm->y_dequant[0][1] = vp9_ac_quant(qindex, 0, cm->bit_depth);
1439     cm->uv_dequant[0][0] =
1440         vp9_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth);
1441     cm->uv_dequant[0][1] =
1442         vp9_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth);
1443   }
1444 }
1445 
read_interp_filter(struct vpx_read_bit_buffer * rb)1446 static INTERP_FILTER read_interp_filter(struct vpx_read_bit_buffer *rb) {
1447   const INTERP_FILTER literal_to_filter[] = { EIGHTTAP_SMOOTH, EIGHTTAP,
1448                                               EIGHTTAP_SHARP, BILINEAR };
1449   return vpx_rb_read_bit(rb) ? SWITCHABLE
1450                              : literal_to_filter[vpx_rb_read_literal(rb, 2)];
1451 }
1452 
setup_render_size(VP9_COMMON * cm,struct vpx_read_bit_buffer * rb)1453 static void setup_render_size(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) {
1454   cm->render_width = cm->width;
1455   cm->render_height = cm->height;
1456   if (vpx_rb_read_bit(rb))
1457     vp9_read_frame_size(rb, &cm->render_width, &cm->render_height);
1458 }
1459 
resize_mv_buffer(VP9_COMMON * cm)1460 static void resize_mv_buffer(VP9_COMMON *cm) {
1461   vpx_free(cm->cur_frame->mvs);
1462   cm->cur_frame->mi_rows = cm->mi_rows;
1463   cm->cur_frame->mi_cols = cm->mi_cols;
1464   CHECK_MEM_ERROR(cm, cm->cur_frame->mvs,
1465                   (MV_REF *)vpx_calloc(cm->mi_rows * cm->mi_cols,
1466                                        sizeof(*cm->cur_frame->mvs)));
1467 }
1468 
resize_context_buffers(VP9_COMMON * cm,int width,int height)1469 static void resize_context_buffers(VP9_COMMON *cm, int width, int height) {
1470 #if CONFIG_SIZE_LIMIT
1471   if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT)
1472     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1473                        "Dimensions of %dx%d beyond allowed size of %dx%d.",
1474                        width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT);
1475 #endif
1476   if (cm->width != width || cm->height != height) {
1477     const int new_mi_rows =
1478         ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
1479     const int new_mi_cols =
1480         ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
1481 
1482     // Allocations in vp9_alloc_context_buffers() depend on individual
1483     // dimensions as well as the overall size.
1484     if (new_mi_cols > cm->mi_cols || new_mi_rows > cm->mi_rows) {
1485       if (vp9_alloc_context_buffers(cm, width, height)) {
1486         // The cm->mi_* values have been cleared and any existing context
1487         // buffers have been freed. Clear cm->width and cm->height to be
1488         // consistent and to force a realloc next time.
1489         cm->width = 0;
1490         cm->height = 0;
1491         vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
1492                            "Failed to allocate context buffers");
1493       }
1494     } else {
1495       vp9_set_mb_mi(cm, width, height);
1496     }
1497     vp9_init_context_buffers(cm);
1498     cm->width = width;
1499     cm->height = height;
1500   }
1501   if (cm->cur_frame->mvs == NULL || cm->mi_rows > cm->cur_frame->mi_rows ||
1502       cm->mi_cols > cm->cur_frame->mi_cols) {
1503     resize_mv_buffer(cm);
1504   }
1505 }
1506 
setup_frame_size(VP9_COMMON * cm,struct vpx_read_bit_buffer * rb)1507 static void setup_frame_size(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) {
1508   int width, height;
1509   BufferPool *const pool = cm->buffer_pool;
1510   vp9_read_frame_size(rb, &width, &height);
1511   resize_context_buffers(cm, width, height);
1512   setup_render_size(cm, rb);
1513 
1514   if (vpx_realloc_frame_buffer(
1515           get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x,
1516           cm->subsampling_y,
1517 #if CONFIG_VP9_HIGHBITDEPTH
1518           cm->use_highbitdepth,
1519 #endif
1520           VP9_DEC_BORDER_IN_PIXELS, cm->byte_alignment,
1521           &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb,
1522           pool->cb_priv)) {
1523     vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
1524                        "Failed to allocate frame buffer");
1525   }
1526 
1527   pool->frame_bufs[cm->new_fb_idx].released = 0;
1528   pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
1529   pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
1530   pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
1531   pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space;
1532   pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range;
1533   pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width;
1534   pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height;
1535 }
1536 
valid_ref_frame_img_fmt(vpx_bit_depth_t ref_bit_depth,int ref_xss,int ref_yss,vpx_bit_depth_t this_bit_depth,int this_xss,int this_yss)1537 static INLINE int valid_ref_frame_img_fmt(vpx_bit_depth_t ref_bit_depth,
1538                                           int ref_xss, int ref_yss,
1539                                           vpx_bit_depth_t this_bit_depth,
1540                                           int this_xss, int this_yss) {
1541   return ref_bit_depth == this_bit_depth && ref_xss == this_xss &&
1542          ref_yss == this_yss;
1543 }
1544 
setup_frame_size_with_refs(VP9_COMMON * cm,struct vpx_read_bit_buffer * rb)1545 static void setup_frame_size_with_refs(VP9_COMMON *cm,
1546                                        struct vpx_read_bit_buffer *rb) {
1547   int width, height;
1548   int found = 0, i;
1549   int has_valid_ref_frame = 0;
1550   BufferPool *const pool = cm->buffer_pool;
1551   for (i = 0; i < REFS_PER_FRAME; ++i) {
1552     if (vpx_rb_read_bit(rb)) {
1553       if (cm->frame_refs[i].idx != INVALID_IDX) {
1554         YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf;
1555         width = buf->y_crop_width;
1556         height = buf->y_crop_height;
1557         found = 1;
1558         break;
1559       } else {
1560         vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1561                            "Failed to decode frame size");
1562       }
1563     }
1564   }
1565 
1566   if (!found) vp9_read_frame_size(rb, &width, &height);
1567 
1568   if (width <= 0 || height <= 0)
1569     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1570                        "Invalid frame size");
1571 
1572   // Check to make sure at least one of frames that this frame references
1573   // has valid dimensions.
1574   for (i = 0; i < REFS_PER_FRAME; ++i) {
1575     RefBuffer *const ref_frame = &cm->frame_refs[i];
1576     has_valid_ref_frame |=
1577         (ref_frame->idx != INVALID_IDX &&
1578          valid_ref_frame_size(ref_frame->buf->y_crop_width,
1579                               ref_frame->buf->y_crop_height, width, height));
1580   }
1581   if (!has_valid_ref_frame)
1582     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1583                        "Referenced frame has invalid size");
1584   for (i = 0; i < REFS_PER_FRAME; ++i) {
1585     RefBuffer *const ref_frame = &cm->frame_refs[i];
1586     if (ref_frame->idx == INVALID_IDX ||
1587         !valid_ref_frame_img_fmt(ref_frame->buf->bit_depth,
1588                                  ref_frame->buf->subsampling_x,
1589                                  ref_frame->buf->subsampling_y, cm->bit_depth,
1590                                  cm->subsampling_x, cm->subsampling_y))
1591       vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1592                          "Referenced frame has incompatible color format");
1593   }
1594 
1595   resize_context_buffers(cm, width, height);
1596   setup_render_size(cm, rb);
1597 
1598   if (vpx_realloc_frame_buffer(
1599           get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x,
1600           cm->subsampling_y,
1601 #if CONFIG_VP9_HIGHBITDEPTH
1602           cm->use_highbitdepth,
1603 #endif
1604           VP9_DEC_BORDER_IN_PIXELS, cm->byte_alignment,
1605           &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb,
1606           pool->cb_priv)) {
1607     vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
1608                        "Failed to allocate frame buffer");
1609   }
1610 
1611   pool->frame_bufs[cm->new_fb_idx].released = 0;
1612   pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
1613   pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
1614   pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
1615   pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space;
1616   pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range;
1617   pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width;
1618   pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height;
1619 }
1620 
setup_tile_info(VP9_COMMON * cm,struct vpx_read_bit_buffer * rb)1621 static void setup_tile_info(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) {
1622   int min_log2_tile_cols, max_log2_tile_cols, max_ones;
1623   vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
1624 
1625   // columns
1626   max_ones = max_log2_tile_cols - min_log2_tile_cols;
1627   cm->log2_tile_cols = min_log2_tile_cols;
1628   while (max_ones-- && vpx_rb_read_bit(rb)) cm->log2_tile_cols++;
1629 
1630   if (cm->log2_tile_cols > 6)
1631     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1632                        "Invalid number of tile columns");
1633 
1634   // rows
1635   cm->log2_tile_rows = vpx_rb_read_bit(rb);
1636   if (cm->log2_tile_rows) cm->log2_tile_rows += vpx_rb_read_bit(rb);
1637 }
1638 
1639 // Reads the next tile returning its size and adjusting '*data' accordingly
1640 // based on 'is_last'.
get_tile_buffer(const uint8_t * const data_end,int is_last,struct vpx_internal_error_info * error_info,const uint8_t ** data,vpx_decrypt_cb decrypt_cb,void * decrypt_state,TileBuffer * buf)1641 static void get_tile_buffer(const uint8_t *const data_end, int is_last,
1642                             struct vpx_internal_error_info *error_info,
1643                             const uint8_t **data, vpx_decrypt_cb decrypt_cb,
1644                             void *decrypt_state, TileBuffer *buf) {
1645   size_t size;
1646 
1647   if (!is_last) {
1648     if (!read_is_valid(*data, 4, data_end))
1649       vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
1650                          "Truncated packet or corrupt tile length");
1651 
1652     if (decrypt_cb) {
1653       uint8_t be_data[4];
1654       decrypt_cb(decrypt_state, *data, be_data, 4);
1655       size = mem_get_be32(be_data);
1656     } else {
1657       size = mem_get_be32(*data);
1658     }
1659     *data += 4;
1660 
1661     if (size > (size_t)(data_end - *data))
1662       vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
1663                          "Truncated packet or corrupt tile size");
1664   } else {
1665     size = data_end - *data;
1666   }
1667 
1668   buf->data = *data;
1669   buf->size = size;
1670 
1671   *data += size;
1672 }
1673 
get_tile_buffers(VP9Decoder * pbi,const uint8_t * data,const uint8_t * data_end,int tile_cols,int tile_rows,TileBuffer (* tile_buffers)[1<<6])1674 static void get_tile_buffers(VP9Decoder *pbi, const uint8_t *data,
1675                              const uint8_t *data_end, int tile_cols,
1676                              int tile_rows,
1677                              TileBuffer (*tile_buffers)[1 << 6]) {
1678   int r, c;
1679 
1680   for (r = 0; r < tile_rows; ++r) {
1681     for (c = 0; c < tile_cols; ++c) {
1682       const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1);
1683       TileBuffer *const buf = &tile_buffers[r][c];
1684       buf->col = c;
1685       get_tile_buffer(data_end, is_last, &pbi->common.error, &data,
1686                       pbi->decrypt_cb, pbi->decrypt_state, buf);
1687     }
1688   }
1689 }
1690 
decode_tiles(VP9Decoder * pbi,const uint8_t * data,const uint8_t * data_end)1691 static const uint8_t *decode_tiles(VP9Decoder *pbi, const uint8_t *data,
1692                                    const uint8_t *data_end) {
1693   VP9_COMMON *const cm = &pbi->common;
1694   const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
1695   const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols);
1696   const int tile_cols = 1 << cm->log2_tile_cols;
1697   const int tile_rows = 1 << cm->log2_tile_rows;
1698   TileBuffer tile_buffers[4][1 << 6];
1699   int tile_row, tile_col;
1700   int mi_row, mi_col;
1701   TileWorkerData *tile_data = NULL;
1702 
1703   if (cm->lf.filter_level && !cm->skip_loop_filter &&
1704       pbi->lf_worker.data1 == NULL) {
1705     CHECK_MEM_ERROR(cm, pbi->lf_worker.data1,
1706                     vpx_memalign(32, sizeof(LFWorkerData)));
1707     pbi->lf_worker.hook = vp9_loop_filter_worker;
1708     if (pbi->max_threads > 1 && !winterface->reset(&pbi->lf_worker)) {
1709       vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
1710                          "Loop filter thread creation failed");
1711     }
1712   }
1713 
1714   if (cm->lf.filter_level && !cm->skip_loop_filter) {
1715     LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
1716     // Be sure to sync as we might be resuming after a failed frame decode.
1717     winterface->sync(&pbi->lf_worker);
1718     vp9_loop_filter_data_reset(lf_data, get_frame_new_buffer(cm), cm,
1719                                pbi->mb.plane);
1720   }
1721 
1722   assert(tile_rows <= 4);
1723   assert(tile_cols <= (1 << 6));
1724 
1725   // Note: this memset assumes above_context[0], [1] and [2]
1726   // are allocated as part of the same buffer.
1727   memset(cm->above_context, 0,
1728          sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_cols);
1729 
1730   memset(cm->above_seg_context, 0,
1731          sizeof(*cm->above_seg_context) * aligned_cols);
1732 
1733   vp9_reset_lfm(cm);
1734 
1735   get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers);
1736 
1737   // Load all tile information into tile_data.
1738   for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
1739     for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
1740       const TileBuffer *const buf = &tile_buffers[tile_row][tile_col];
1741       tile_data = pbi->tile_worker_data + tile_cols * tile_row + tile_col;
1742       tile_data->xd = pbi->mb;
1743       tile_data->xd.corrupted = 0;
1744       tile_data->xd.counts =
1745           cm->frame_parallel_decoding_mode ? NULL : &cm->counts;
1746       vp9_zero(tile_data->dqcoeff);
1747       vp9_tile_init(&tile_data->xd.tile, cm, tile_row, tile_col);
1748       setup_token_decoder(buf->data, data_end, buf->size, &cm->error,
1749                           &tile_data->bit_reader, pbi->decrypt_cb,
1750                           pbi->decrypt_state);
1751       vp9_init_macroblockd(cm, &tile_data->xd, tile_data->dqcoeff);
1752     }
1753   }
1754 
1755   for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
1756     TileInfo tile;
1757     vp9_tile_set_row(&tile, cm, tile_row);
1758     for (mi_row = tile.mi_row_start; mi_row < tile.mi_row_end;
1759          mi_row += MI_BLOCK_SIZE) {
1760       for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
1761         const int col =
1762             pbi->inv_tile_order ? tile_cols - tile_col - 1 : tile_col;
1763         tile_data = pbi->tile_worker_data + tile_cols * tile_row + col;
1764         vp9_tile_set_col(&tile, cm, col);
1765         vp9_zero(tile_data->xd.left_context);
1766         vp9_zero(tile_data->xd.left_seg_context);
1767         for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end;
1768              mi_col += MI_BLOCK_SIZE) {
1769           if (pbi->row_mt == 1) {
1770             int plane;
1771             RowMTWorkerData *const row_mt_worker_data = pbi->row_mt_worker_data;
1772             for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
1773               tile_data->xd.plane[plane].eob = row_mt_worker_data->eob[plane];
1774               tile_data->xd.plane[plane].dqcoeff =
1775                   row_mt_worker_data->dqcoeff[plane];
1776             }
1777             tile_data->xd.partition = row_mt_worker_data->partition;
1778             parse_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4);
1779 
1780             for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
1781               tile_data->xd.plane[plane].eob = row_mt_worker_data->eob[plane];
1782               tile_data->xd.plane[plane].dqcoeff =
1783                   row_mt_worker_data->dqcoeff[plane];
1784             }
1785             tile_data->xd.partition = row_mt_worker_data->partition;
1786             recon_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4);
1787           } else {
1788             decode_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4);
1789           }
1790         }
1791         pbi->mb.corrupted |= tile_data->xd.corrupted;
1792         if (pbi->mb.corrupted)
1793           vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1794                              "Failed to decode tile data");
1795       }
1796       // Loopfilter one row.
1797       if (cm->lf.filter_level && !cm->skip_loop_filter) {
1798         const int lf_start = mi_row - MI_BLOCK_SIZE;
1799         LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
1800 
1801         // delay the loopfilter by 1 macroblock row.
1802         if (lf_start < 0) continue;
1803 
1804         // decoding has completed: finish up the loop filter in this thread.
1805         if (mi_row + MI_BLOCK_SIZE >= cm->mi_rows) continue;
1806 
1807         winterface->sync(&pbi->lf_worker);
1808         lf_data->start = lf_start;
1809         lf_data->stop = mi_row;
1810         if (pbi->max_threads > 1) {
1811           winterface->launch(&pbi->lf_worker);
1812         } else {
1813           winterface->execute(&pbi->lf_worker);
1814         }
1815       }
1816     }
1817   }
1818 
1819   // Loopfilter remaining rows in the frame.
1820   if (cm->lf.filter_level && !cm->skip_loop_filter) {
1821     LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
1822     winterface->sync(&pbi->lf_worker);
1823     lf_data->start = lf_data->stop;
1824     lf_data->stop = cm->mi_rows;
1825     winterface->execute(&pbi->lf_worker);
1826   }
1827 
1828   // Get last tile data.
1829   tile_data = pbi->tile_worker_data + tile_cols * tile_rows - 1;
1830 
1831   return vpx_reader_find_end(&tile_data->bit_reader);
1832 }
1833 
set_rows_after_error(VP9LfSync * lf_sync,int start_row,int mi_rows,int num_tiles_left,int total_num_tiles)1834 static void set_rows_after_error(VP9LfSync *lf_sync, int start_row, int mi_rows,
1835                                  int num_tiles_left, int total_num_tiles) {
1836   do {
1837     int mi_row;
1838     const int aligned_rows = mi_cols_aligned_to_sb(mi_rows);
1839     const int sb_rows = (aligned_rows >> MI_BLOCK_SIZE_LOG2);
1840     const int corrupted = 1;
1841     for (mi_row = start_row; mi_row < mi_rows; mi_row += MI_BLOCK_SIZE) {
1842       const int is_last_row = (sb_rows - 1 == mi_row >> MI_BLOCK_SIZE_LOG2);
1843       vp9_set_row(lf_sync, total_num_tiles, mi_row >> MI_BLOCK_SIZE_LOG2,
1844                   is_last_row, corrupted);
1845     }
1846     /* If there are multiple tiles, the second tile should start marking row
1847      * progress from row 0.
1848      */
1849     start_row = 0;
1850   } while (num_tiles_left--);
1851 }
1852 
1853 // On entry 'tile_data->data_end' points to the end of the input frame, on exit
1854 // it is updated to reflect the bitreader position of the final tile column if
1855 // present in the tile buffer group or NULL otherwise.
tile_worker_hook(void * arg1,void * arg2)1856 static int tile_worker_hook(void *arg1, void *arg2) {
1857   TileWorkerData *const tile_data = (TileWorkerData *)arg1;
1858   VP9Decoder *const pbi = (VP9Decoder *)arg2;
1859 
1860   TileInfo *volatile tile = &tile_data->xd.tile;
1861   const int final_col = (1 << pbi->common.log2_tile_cols) - 1;
1862   const uint8_t *volatile bit_reader_end = NULL;
1863   VP9_COMMON *cm = &pbi->common;
1864 
1865   LFWorkerData *lf_data = tile_data->lf_data;
1866   VP9LfSync *lf_sync = tile_data->lf_sync;
1867 
1868   volatile int mi_row = 0;
1869   volatile int n = tile_data->buf_start;
1870   tile_data->error_info.setjmp = 1;
1871 
1872   if (setjmp(tile_data->error_info.jmp)) {
1873     tile_data->error_info.setjmp = 0;
1874     tile_data->xd.corrupted = 1;
1875     tile_data->data_end = NULL;
1876     if (pbi->lpf_mt_opt && cm->lf.filter_level && !cm->skip_loop_filter) {
1877       const int num_tiles_left = tile_data->buf_end - n;
1878       const int mi_row_start = mi_row;
1879       set_rows_after_error(lf_sync, mi_row_start, cm->mi_rows, num_tiles_left,
1880                            1 << cm->log2_tile_cols);
1881     }
1882     return 0;
1883   }
1884 
1885   tile_data->xd.corrupted = 0;
1886 
1887   do {
1888     int mi_col;
1889     const TileBuffer *const buf = pbi->tile_buffers + n;
1890 
1891     /* Initialize to 0 is safe since we do not deal with streams that have
1892      * more than one row of tiles. (So tile->mi_row_start will be 0)
1893      */
1894     assert(cm->log2_tile_rows == 0);
1895     mi_row = 0;
1896     vp9_zero(tile_data->dqcoeff);
1897     vp9_tile_init(tile, &pbi->common, 0, buf->col);
1898     setup_token_decoder(buf->data, tile_data->data_end, buf->size,
1899                         &tile_data->error_info, &tile_data->bit_reader,
1900                         pbi->decrypt_cb, pbi->decrypt_state);
1901     vp9_init_macroblockd(&pbi->common, &tile_data->xd, tile_data->dqcoeff);
1902     // init resets xd.error_info
1903     tile_data->xd.error_info = &tile_data->error_info;
1904 
1905     for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
1906          mi_row += MI_BLOCK_SIZE) {
1907       vp9_zero(tile_data->xd.left_context);
1908       vp9_zero(tile_data->xd.left_seg_context);
1909       for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
1910            mi_col += MI_BLOCK_SIZE) {
1911         decode_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4);
1912       }
1913       if (pbi->lpf_mt_opt && cm->lf.filter_level && !cm->skip_loop_filter) {
1914         const int aligned_rows = mi_cols_aligned_to_sb(cm->mi_rows);
1915         const int sb_rows = (aligned_rows >> MI_BLOCK_SIZE_LOG2);
1916         const int is_last_row = (sb_rows - 1 == mi_row >> MI_BLOCK_SIZE_LOG2);
1917         vp9_set_row(lf_sync, 1 << cm->log2_tile_cols,
1918                     mi_row >> MI_BLOCK_SIZE_LOG2, is_last_row,
1919                     tile_data->xd.corrupted);
1920       }
1921     }
1922 
1923     if (buf->col == final_col) {
1924       bit_reader_end = vpx_reader_find_end(&tile_data->bit_reader);
1925     }
1926   } while (!tile_data->xd.corrupted && ++n <= tile_data->buf_end);
1927 
1928   if (pbi->lpf_mt_opt && n < tile_data->buf_end && cm->lf.filter_level &&
1929       !cm->skip_loop_filter) {
1930     /* This was not incremented in the tile loop, so increment before tiles left
1931      * calculation
1932      */
1933     ++n;
1934     set_rows_after_error(lf_sync, 0, cm->mi_rows, tile_data->buf_end - n,
1935                          1 << cm->log2_tile_cols);
1936   }
1937 
1938   if (pbi->lpf_mt_opt && !tile_data->xd.corrupted && cm->lf.filter_level &&
1939       !cm->skip_loop_filter) {
1940     vp9_loopfilter_rows(lf_data, lf_sync);
1941   }
1942 
1943   tile_data->data_end = bit_reader_end;
1944   return !tile_data->xd.corrupted;
1945 }
1946 
1947 // sorts in descending order
compare_tile_buffers(const void * a,const void * b)1948 static int compare_tile_buffers(const void *a, const void *b) {
1949   const TileBuffer *const buf_a = (const TileBuffer *)a;
1950   const TileBuffer *const buf_b = (const TileBuffer *)b;
1951   return (buf_a->size < buf_b->size) - (buf_a->size > buf_b->size);
1952 }
1953 
decode_tiles_mt(VP9Decoder * pbi,const uint8_t * data,const uint8_t * data_end)1954 static const uint8_t *decode_tiles_mt(VP9Decoder *pbi, const uint8_t *data,
1955                                       const uint8_t *data_end) {
1956   VP9_COMMON *const cm = &pbi->common;
1957   const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
1958   const uint8_t *bit_reader_end = NULL;
1959   VP9LfSync *lf_row_sync = &pbi->lf_row_sync;
1960   YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm);
1961   const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
1962   const int tile_cols = 1 << cm->log2_tile_cols;
1963   const int tile_rows = 1 << cm->log2_tile_rows;
1964   const int num_workers = VPXMIN(pbi->max_threads, tile_cols);
1965   int n;
1966 
1967   assert(tile_cols <= (1 << 6));
1968   assert(tile_rows == 1);
1969   (void)tile_rows;
1970 
1971   if (pbi->num_tile_workers == 0) {
1972     const int num_threads = pbi->max_threads;
1973     CHECK_MEM_ERROR(cm, pbi->tile_workers,
1974                     vpx_malloc(num_threads * sizeof(*pbi->tile_workers)));
1975     for (n = 0; n < num_threads; ++n) {
1976       VPxWorker *const worker = &pbi->tile_workers[n];
1977       ++pbi->num_tile_workers;
1978 
1979       winterface->init(worker);
1980       if (n < num_threads - 1 && !winterface->reset(worker)) {
1981         vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
1982                            "Tile decoder thread creation failed");
1983       }
1984     }
1985   }
1986 
1987   // Initialize LPF
1988   if (pbi->lpf_mt_opt && cm->lf.filter_level && !cm->skip_loop_filter) {
1989     vp9_lpf_mt_init(lf_row_sync, cm, cm->lf.filter_level,
1990                     pbi->num_tile_workers);
1991   }
1992 
1993   // Reset tile decoding hook
1994   for (n = 0; n < num_workers; ++n) {
1995     VPxWorker *const worker = &pbi->tile_workers[n];
1996     TileWorkerData *const tile_data =
1997         &pbi->tile_worker_data[n + pbi->total_tiles];
1998     winterface->sync(worker);
1999 
2000     if (pbi->lpf_mt_opt && cm->lf.filter_level && !cm->skip_loop_filter) {
2001       tile_data->lf_sync = lf_row_sync;
2002       tile_data->lf_data = &tile_data->lf_sync->lfdata[n];
2003       vp9_loop_filter_data_reset(tile_data->lf_data, new_fb, cm, pbi->mb.plane);
2004       tile_data->lf_data->y_only = 0;
2005     }
2006 
2007     tile_data->xd = pbi->mb;
2008     tile_data->xd.counts =
2009         cm->frame_parallel_decoding_mode ? NULL : &tile_data->counts;
2010     worker->hook = tile_worker_hook;
2011     worker->data1 = tile_data;
2012     worker->data2 = pbi;
2013   }
2014 
2015   // Note: this memset assumes above_context[0], [1] and [2]
2016   // are allocated as part of the same buffer.
2017   memset(cm->above_context, 0,
2018          sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_mi_cols);
2019   memset(cm->above_seg_context, 0,
2020          sizeof(*cm->above_seg_context) * aligned_mi_cols);
2021 
2022   vp9_reset_lfm(cm);
2023 
2024   // Load tile data into tile_buffers
2025   get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows,
2026                    &pbi->tile_buffers);
2027 
2028   // Sort the buffers based on size in descending order.
2029   qsort(pbi->tile_buffers, tile_cols, sizeof(pbi->tile_buffers[0]),
2030         compare_tile_buffers);
2031 
2032   if (num_workers == tile_cols) {
2033     // Rearrange the tile buffers such that the largest, and
2034     // presumably the most difficult, tile will be decoded in the main thread.
2035     // This should help minimize the number of instances where the main thread
2036     // is waiting for a worker to complete.
2037     const TileBuffer largest = pbi->tile_buffers[0];
2038     memmove(pbi->tile_buffers, pbi->tile_buffers + 1,
2039             (tile_cols - 1) * sizeof(pbi->tile_buffers[0]));
2040     pbi->tile_buffers[tile_cols - 1] = largest;
2041   } else {
2042     int start = 0, end = tile_cols - 2;
2043     TileBuffer tmp;
2044 
2045     // Interleave the tiles to distribute the load between threads, assuming a
2046     // larger tile implies it is more difficult to decode.
2047     while (start < end) {
2048       tmp = pbi->tile_buffers[start];
2049       pbi->tile_buffers[start] = pbi->tile_buffers[end];
2050       pbi->tile_buffers[end] = tmp;
2051       start += 2;
2052       end -= 2;
2053     }
2054   }
2055 
2056   // Initialize thread frame counts.
2057   if (!cm->frame_parallel_decoding_mode) {
2058     for (n = 0; n < num_workers; ++n) {
2059       TileWorkerData *const tile_data =
2060           (TileWorkerData *)pbi->tile_workers[n].data1;
2061       vp9_zero(tile_data->counts);
2062     }
2063   }
2064 
2065   {
2066     const int base = tile_cols / num_workers;
2067     const int remain = tile_cols % num_workers;
2068     int buf_start = 0;
2069 
2070     for (n = 0; n < num_workers; ++n) {
2071       const int count = base + (remain + n) / num_workers;
2072       VPxWorker *const worker = &pbi->tile_workers[n];
2073       TileWorkerData *const tile_data = (TileWorkerData *)worker->data1;
2074 
2075       tile_data->buf_start = buf_start;
2076       tile_data->buf_end = buf_start + count - 1;
2077       tile_data->data_end = data_end;
2078       buf_start += count;
2079 
2080       worker->had_error = 0;
2081       if (n == num_workers - 1) {
2082         assert(tile_data->buf_end == tile_cols - 1);
2083         winterface->execute(worker);
2084       } else {
2085         winterface->launch(worker);
2086       }
2087     }
2088 
2089     for (; n > 0; --n) {
2090       VPxWorker *const worker = &pbi->tile_workers[n - 1];
2091       TileWorkerData *const tile_data = (TileWorkerData *)worker->data1;
2092       // TODO(jzern): The tile may have specific error data associated with
2093       // its vpx_internal_error_info which could be propagated to the main info
2094       // in cm. Additionally once the threads have been synced and an error is
2095       // detected, there's no point in continuing to decode tiles.
2096       pbi->mb.corrupted |= !winterface->sync(worker);
2097       if (!bit_reader_end) bit_reader_end = tile_data->data_end;
2098     }
2099   }
2100 
2101   // Accumulate thread frame counts.
2102   if (!cm->frame_parallel_decoding_mode) {
2103     for (n = 0; n < num_workers; ++n) {
2104       TileWorkerData *const tile_data =
2105           (TileWorkerData *)pbi->tile_workers[n].data1;
2106       vp9_accumulate_frame_counts(&cm->counts, &tile_data->counts, 1);
2107     }
2108   }
2109 
2110   assert(bit_reader_end || pbi->mb.corrupted);
2111   return bit_reader_end;
2112 }
2113 
error_handler(void * data)2114 static void error_handler(void *data) {
2115   VP9_COMMON *const cm = (VP9_COMMON *)data;
2116   vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet");
2117 }
2118 
read_bitdepth_colorspace_sampling(VP9_COMMON * cm,struct vpx_read_bit_buffer * rb)2119 static void read_bitdepth_colorspace_sampling(VP9_COMMON *cm,
2120                                               struct vpx_read_bit_buffer *rb) {
2121   if (cm->profile >= PROFILE_2) {
2122     cm->bit_depth = vpx_rb_read_bit(rb) ? VPX_BITS_12 : VPX_BITS_10;
2123 #if CONFIG_VP9_HIGHBITDEPTH
2124     cm->use_highbitdepth = 1;
2125 #endif
2126   } else {
2127     cm->bit_depth = VPX_BITS_8;
2128 #if CONFIG_VP9_HIGHBITDEPTH
2129     cm->use_highbitdepth = 0;
2130 #endif
2131   }
2132   cm->color_space = vpx_rb_read_literal(rb, 3);
2133   if (cm->color_space != VPX_CS_SRGB) {
2134     cm->color_range = (vpx_color_range_t)vpx_rb_read_bit(rb);
2135     if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
2136       cm->subsampling_x = vpx_rb_read_bit(rb);
2137       cm->subsampling_y = vpx_rb_read_bit(rb);
2138       if (cm->subsampling_x == 1 && cm->subsampling_y == 1)
2139         vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2140                            "4:2:0 color not supported in profile 1 or 3");
2141       if (vpx_rb_read_bit(rb))
2142         vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2143                            "Reserved bit set");
2144     } else {
2145       cm->subsampling_y = cm->subsampling_x = 1;
2146     }
2147   } else {
2148     cm->color_range = VPX_CR_FULL_RANGE;
2149     if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
2150       // Note if colorspace is SRGB then 4:4:4 chroma sampling is assumed.
2151       // 4:2:2 or 4:4:0 chroma sampling is not allowed.
2152       cm->subsampling_y = cm->subsampling_x = 0;
2153       if (vpx_rb_read_bit(rb))
2154         vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2155                            "Reserved bit set");
2156     } else {
2157       vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2158                          "4:4:4 color not supported in profile 0 or 2");
2159     }
2160   }
2161 }
2162 
flush_all_fb_on_key(VP9_COMMON * cm)2163 static INLINE void flush_all_fb_on_key(VP9_COMMON *cm) {
2164   if (cm->frame_type == KEY_FRAME && cm->current_video_frame > 0) {
2165     RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
2166     BufferPool *const pool = cm->buffer_pool;
2167     int i;
2168     for (i = 0; i < FRAME_BUFFERS; ++i) {
2169       if (i == cm->new_fb_idx) continue;
2170       frame_bufs[i].ref_count = 0;
2171       if (!frame_bufs[i].released) {
2172         pool->release_fb_cb(pool->cb_priv, &frame_bufs[i].raw_frame_buffer);
2173         frame_bufs[i].released = 1;
2174       }
2175     }
2176   }
2177 }
2178 
read_uncompressed_header(VP9Decoder * pbi,struct vpx_read_bit_buffer * rb)2179 static size_t read_uncompressed_header(VP9Decoder *pbi,
2180                                        struct vpx_read_bit_buffer *rb) {
2181   VP9_COMMON *const cm = &pbi->common;
2182   BufferPool *const pool = cm->buffer_pool;
2183   RefCntBuffer *const frame_bufs = pool->frame_bufs;
2184   int i, mask, ref_index = 0;
2185   size_t sz;
2186 
2187   cm->last_frame_type = cm->frame_type;
2188   cm->last_intra_only = cm->intra_only;
2189 
2190   if (vpx_rb_read_literal(rb, 2) != VP9_FRAME_MARKER)
2191     vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2192                        "Invalid frame marker");
2193 
2194   cm->profile = vp9_read_profile(rb);
2195 #if CONFIG_VP9_HIGHBITDEPTH
2196   if (cm->profile >= MAX_PROFILES)
2197     vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2198                        "Unsupported bitstream profile");
2199 #else
2200   if (cm->profile >= PROFILE_2)
2201     vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2202                        "Unsupported bitstream profile");
2203 #endif
2204 
2205   cm->show_existing_frame = vpx_rb_read_bit(rb);
2206   if (cm->show_existing_frame) {
2207     // Show an existing frame directly.
2208     const int frame_to_show = cm->ref_frame_map[vpx_rb_read_literal(rb, 3)];
2209     if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) {
2210       vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2211                          "Buffer %d does not contain a decoded frame",
2212                          frame_to_show);
2213     }
2214 
2215     ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show);
2216     pbi->refresh_frame_flags = 0;
2217     cm->lf.filter_level = 0;
2218     cm->show_frame = 1;
2219 
2220     return 0;
2221   }
2222 
2223   cm->frame_type = (FRAME_TYPE)vpx_rb_read_bit(rb);
2224   cm->show_frame = vpx_rb_read_bit(rb);
2225   cm->error_resilient_mode = vpx_rb_read_bit(rb);
2226 
2227   if (cm->frame_type == KEY_FRAME) {
2228     if (!vp9_read_sync_code(rb))
2229       vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2230                          "Invalid frame sync code");
2231 
2232     read_bitdepth_colorspace_sampling(cm, rb);
2233     pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1;
2234 
2235     for (i = 0; i < REFS_PER_FRAME; ++i) {
2236       cm->frame_refs[i].idx = INVALID_IDX;
2237       cm->frame_refs[i].buf = NULL;
2238     }
2239 
2240     setup_frame_size(cm, rb);
2241     if (pbi->need_resync) {
2242       memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
2243       flush_all_fb_on_key(cm);
2244       pbi->need_resync = 0;
2245     }
2246   } else {
2247     cm->intra_only = cm->show_frame ? 0 : vpx_rb_read_bit(rb);
2248 
2249     cm->reset_frame_context =
2250         cm->error_resilient_mode ? 0 : vpx_rb_read_literal(rb, 2);
2251 
2252     if (cm->intra_only) {
2253       if (!vp9_read_sync_code(rb))
2254         vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2255                            "Invalid frame sync code");
2256       if (cm->profile > PROFILE_0) {
2257         read_bitdepth_colorspace_sampling(cm, rb);
2258       } else {
2259         // NOTE: The intra-only frame header does not include the specification
2260         // of either the color format or color sub-sampling in profile 0. VP9
2261         // specifies that the default color format should be YUV 4:2:0 in this
2262         // case (normative).
2263         cm->color_space = VPX_CS_BT_601;
2264         cm->color_range = VPX_CR_STUDIO_RANGE;
2265         cm->subsampling_y = cm->subsampling_x = 1;
2266         cm->bit_depth = VPX_BITS_8;
2267 #if CONFIG_VP9_HIGHBITDEPTH
2268         cm->use_highbitdepth = 0;
2269 #endif
2270       }
2271 
2272       pbi->refresh_frame_flags = vpx_rb_read_literal(rb, REF_FRAMES);
2273       setup_frame_size(cm, rb);
2274       if (pbi->need_resync) {
2275         memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
2276         pbi->need_resync = 0;
2277       }
2278     } else if (pbi->need_resync != 1) { /* Skip if need resync */
2279       pbi->refresh_frame_flags = vpx_rb_read_literal(rb, REF_FRAMES);
2280       for (i = 0; i < REFS_PER_FRAME; ++i) {
2281         const int ref = vpx_rb_read_literal(rb, REF_FRAMES_LOG2);
2282         const int idx = cm->ref_frame_map[ref];
2283         RefBuffer *const ref_frame = &cm->frame_refs[i];
2284         ref_frame->idx = idx;
2285         ref_frame->buf = &frame_bufs[idx].buf;
2286         cm->ref_frame_sign_bias[LAST_FRAME + i] = vpx_rb_read_bit(rb);
2287       }
2288 
2289       setup_frame_size_with_refs(cm, rb);
2290 
2291       cm->allow_high_precision_mv = vpx_rb_read_bit(rb);
2292       cm->interp_filter = read_interp_filter(rb);
2293 
2294       for (i = 0; i < REFS_PER_FRAME; ++i) {
2295         RefBuffer *const ref_buf = &cm->frame_refs[i];
2296 #if CONFIG_VP9_HIGHBITDEPTH
2297         vp9_setup_scale_factors_for_frame(
2298             &ref_buf->sf, ref_buf->buf->y_crop_width,
2299             ref_buf->buf->y_crop_height, cm->width, cm->height,
2300             cm->use_highbitdepth);
2301 #else
2302         vp9_setup_scale_factors_for_frame(
2303             &ref_buf->sf, ref_buf->buf->y_crop_width,
2304             ref_buf->buf->y_crop_height, cm->width, cm->height);
2305 #endif
2306       }
2307     }
2308   }
2309 #if CONFIG_VP9_HIGHBITDEPTH
2310   get_frame_new_buffer(cm)->bit_depth = cm->bit_depth;
2311 #endif
2312   get_frame_new_buffer(cm)->color_space = cm->color_space;
2313   get_frame_new_buffer(cm)->color_range = cm->color_range;
2314   get_frame_new_buffer(cm)->render_width = cm->render_width;
2315   get_frame_new_buffer(cm)->render_height = cm->render_height;
2316 
2317   if (pbi->need_resync) {
2318     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2319                        "Keyframe / intra-only frame required to reset decoder"
2320                        " state");
2321   }
2322 
2323   if (!cm->error_resilient_mode) {
2324     cm->refresh_frame_context = vpx_rb_read_bit(rb);
2325     cm->frame_parallel_decoding_mode = vpx_rb_read_bit(rb);
2326     if (!cm->frame_parallel_decoding_mode) vp9_zero(cm->counts);
2327   } else {
2328     cm->refresh_frame_context = 0;
2329     cm->frame_parallel_decoding_mode = 1;
2330   }
2331 
2332   // This flag will be overridden by the call to vp9_setup_past_independence
2333   // below, forcing the use of context 0 for those frame types.
2334   cm->frame_context_idx = vpx_rb_read_literal(rb, FRAME_CONTEXTS_LOG2);
2335 
2336   // Generate next_ref_frame_map.
2337   for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) {
2338     if (mask & 1) {
2339       cm->next_ref_frame_map[ref_index] = cm->new_fb_idx;
2340       ++frame_bufs[cm->new_fb_idx].ref_count;
2341     } else {
2342       cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
2343     }
2344     // Current thread holds the reference frame.
2345     if (cm->ref_frame_map[ref_index] >= 0)
2346       ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
2347     ++ref_index;
2348   }
2349 
2350   for (; ref_index < REF_FRAMES; ++ref_index) {
2351     cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
2352     // Current thread holds the reference frame.
2353     if (cm->ref_frame_map[ref_index] >= 0)
2354       ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
2355   }
2356   pbi->hold_ref_buf = 1;
2357 
2358   if (frame_is_intra_only(cm) || cm->error_resilient_mode)
2359     vp9_setup_past_independence(cm);
2360 
2361   setup_loopfilter(&cm->lf, rb);
2362   setup_quantization(cm, &pbi->mb, rb);
2363   setup_segmentation(&cm->seg, rb);
2364   setup_segmentation_dequant(cm);
2365 
2366   setup_tile_info(cm, rb);
2367   if (pbi->row_mt == 1) {
2368     int num_sbs = 1;
2369 
2370     if (pbi->row_mt_worker_data == NULL) {
2371       CHECK_MEM_ERROR(cm, pbi->row_mt_worker_data,
2372                       vpx_calloc(1, sizeof(*pbi->row_mt_worker_data)));
2373     }
2374 
2375     if (pbi->max_threads > 1) {
2376       const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols);
2377       const int sb_cols = aligned_cols >> MI_BLOCK_SIZE_LOG2;
2378       const int aligned_rows = mi_cols_aligned_to_sb(cm->mi_rows);
2379       const int sb_rows = aligned_rows >> MI_BLOCK_SIZE_LOG2;
2380 
2381       num_sbs = sb_cols * sb_rows;
2382     }
2383 
2384     if (num_sbs > pbi->row_mt_worker_data->num_sbs) {
2385       vp9_dec_free_row_mt_mem(pbi->row_mt_worker_data);
2386       vp9_dec_alloc_row_mt_mem(pbi->row_mt_worker_data, cm, num_sbs);
2387     }
2388   }
2389   sz = vpx_rb_read_literal(rb, 16);
2390 
2391   if (sz == 0)
2392     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2393                        "Invalid header size");
2394 
2395   return sz;
2396 }
2397 
read_compressed_header(VP9Decoder * pbi,const uint8_t * data,size_t partition_size)2398 static int read_compressed_header(VP9Decoder *pbi, const uint8_t *data,
2399                                   size_t partition_size) {
2400   VP9_COMMON *const cm = &pbi->common;
2401   MACROBLOCKD *const xd = &pbi->mb;
2402   FRAME_CONTEXT *const fc = cm->fc;
2403   vpx_reader r;
2404   int k;
2405 
2406   if (vpx_reader_init(&r, data, partition_size, pbi->decrypt_cb,
2407                       pbi->decrypt_state))
2408     vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
2409                        "Failed to allocate bool decoder 0");
2410 
2411   cm->tx_mode = xd->lossless ? ONLY_4X4 : read_tx_mode(&r);
2412   if (cm->tx_mode == TX_MODE_SELECT) read_tx_mode_probs(&fc->tx_probs, &r);
2413   read_coef_probs(fc, cm->tx_mode, &r);
2414 
2415   for (k = 0; k < SKIP_CONTEXTS; ++k)
2416     vp9_diff_update_prob(&r, &fc->skip_probs[k]);
2417 
2418   if (!frame_is_intra_only(cm)) {
2419     nmv_context *const nmvc = &fc->nmvc;
2420     int i, j;
2421 
2422     read_inter_mode_probs(fc, &r);
2423 
2424     if (cm->interp_filter == SWITCHABLE) read_switchable_interp_probs(fc, &r);
2425 
2426     for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
2427       vp9_diff_update_prob(&r, &fc->intra_inter_prob[i]);
2428 
2429     cm->reference_mode = read_frame_reference_mode(cm, &r);
2430     if (cm->reference_mode != SINGLE_REFERENCE)
2431       vp9_setup_compound_reference_mode(cm);
2432     read_frame_reference_mode_probs(cm, &r);
2433 
2434     for (j = 0; j < BLOCK_SIZE_GROUPS; j++)
2435       for (i = 0; i < INTRA_MODES - 1; ++i)
2436         vp9_diff_update_prob(&r, &fc->y_mode_prob[j][i]);
2437 
2438     for (j = 0; j < PARTITION_CONTEXTS; ++j)
2439       for (i = 0; i < PARTITION_TYPES - 1; ++i)
2440         vp9_diff_update_prob(&r, &fc->partition_prob[j][i]);
2441 
2442     read_mv_probs(nmvc, cm->allow_high_precision_mv, &r);
2443   }
2444 
2445   return vpx_reader_has_error(&r);
2446 }
2447 
init_read_bit_buffer(VP9Decoder * pbi,struct vpx_read_bit_buffer * rb,const uint8_t * data,const uint8_t * data_end,uint8_t clear_data[MAX_VP9_HEADER_SIZE])2448 static struct vpx_read_bit_buffer *init_read_bit_buffer(
2449     VP9Decoder *pbi, struct vpx_read_bit_buffer *rb, const uint8_t *data,
2450     const uint8_t *data_end, uint8_t clear_data[MAX_VP9_HEADER_SIZE]) {
2451   rb->bit_offset = 0;
2452   rb->error_handler = error_handler;
2453   rb->error_handler_data = &pbi->common;
2454   if (pbi->decrypt_cb) {
2455     const int n = (int)VPXMIN(MAX_VP9_HEADER_SIZE, data_end - data);
2456     pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n);
2457     rb->bit_buffer = clear_data;
2458     rb->bit_buffer_end = clear_data + n;
2459   } else {
2460     rb->bit_buffer = data;
2461     rb->bit_buffer_end = data_end;
2462   }
2463   return rb;
2464 }
2465 
2466 //------------------------------------------------------------------------------
2467 
vp9_read_sync_code(struct vpx_read_bit_buffer * const rb)2468 int vp9_read_sync_code(struct vpx_read_bit_buffer *const rb) {
2469   return vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_0 &&
2470          vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_1 &&
2471          vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_2;
2472 }
2473 
vp9_read_frame_size(struct vpx_read_bit_buffer * rb,int * width,int * height)2474 void vp9_read_frame_size(struct vpx_read_bit_buffer *rb, int *width,
2475                          int *height) {
2476   *width = vpx_rb_read_literal(rb, 16) + 1;
2477   *height = vpx_rb_read_literal(rb, 16) + 1;
2478 }
2479 
vp9_read_profile(struct vpx_read_bit_buffer * rb)2480 BITSTREAM_PROFILE vp9_read_profile(struct vpx_read_bit_buffer *rb) {
2481   int profile = vpx_rb_read_bit(rb);
2482   profile |= vpx_rb_read_bit(rb) << 1;
2483   if (profile > 2) profile += vpx_rb_read_bit(rb);
2484   return (BITSTREAM_PROFILE)profile;
2485 }
2486 
vp9_decode_frame(VP9Decoder * pbi,const uint8_t * data,const uint8_t * data_end,const uint8_t ** p_data_end)2487 void vp9_decode_frame(VP9Decoder *pbi, const uint8_t *data,
2488                       const uint8_t *data_end, const uint8_t **p_data_end) {
2489   VP9_COMMON *const cm = &pbi->common;
2490   MACROBLOCKD *const xd = &pbi->mb;
2491   struct vpx_read_bit_buffer rb;
2492   int context_updated = 0;
2493   uint8_t clear_data[MAX_VP9_HEADER_SIZE];
2494   const size_t first_partition_size = read_uncompressed_header(
2495       pbi, init_read_bit_buffer(pbi, &rb, data, data_end, clear_data));
2496   const int tile_rows = 1 << cm->log2_tile_rows;
2497   const int tile_cols = 1 << cm->log2_tile_cols;
2498   YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm);
2499   xd->cur_buf = new_fb;
2500 
2501   if (!first_partition_size) {
2502     // showing a frame directly
2503     *p_data_end = data + (cm->profile <= PROFILE_2 ? 1 : 2);
2504     return;
2505   }
2506 
2507   data += vpx_rb_bytes_read(&rb);
2508   if (!read_is_valid(data, first_partition_size, data_end))
2509     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2510                        "Truncated packet or corrupt header length");
2511 
2512   cm->use_prev_frame_mvs =
2513       !cm->error_resilient_mode && cm->width == cm->last_width &&
2514       cm->height == cm->last_height && !cm->last_intra_only &&
2515       cm->last_show_frame && (cm->last_frame_type != KEY_FRAME);
2516 
2517   vp9_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y);
2518 
2519   *cm->fc = cm->frame_contexts[cm->frame_context_idx];
2520   if (!cm->fc->initialized)
2521     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2522                        "Uninitialized entropy context.");
2523 
2524   xd->corrupted = 0;
2525   new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size);
2526   if (new_fb->corrupted)
2527     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2528                        "Decode failed. Frame data header is corrupted.");
2529 
2530   if (cm->lf.filter_level && !cm->skip_loop_filter) {
2531     vp9_loop_filter_frame_init(cm, cm->lf.filter_level);
2532   }
2533 
2534   if (pbi->tile_worker_data == NULL ||
2535       (tile_cols * tile_rows) != pbi->total_tiles) {
2536     const int num_tile_workers =
2537         tile_cols * tile_rows + ((pbi->max_threads > 1) ? pbi->max_threads : 0);
2538     const size_t twd_size = num_tile_workers * sizeof(*pbi->tile_worker_data);
2539     // Ensure tile data offsets will be properly aligned. This may fail on
2540     // platforms without DECLARE_ALIGNED().
2541     assert((sizeof(*pbi->tile_worker_data) % 16) == 0);
2542     vpx_free(pbi->tile_worker_data);
2543     CHECK_MEM_ERROR(cm, pbi->tile_worker_data, vpx_memalign(32, twd_size));
2544     pbi->total_tiles = tile_rows * tile_cols;
2545   }
2546 
2547   if (pbi->max_threads > 1 && tile_rows == 1 && tile_cols > 1) {
2548     // Multi-threaded tile decoder
2549     *p_data_end = decode_tiles_mt(pbi, data + first_partition_size, data_end);
2550     if (!pbi->lpf_mt_opt) {
2551       if (!xd->corrupted) {
2552         if (!cm->skip_loop_filter) {
2553           // If multiple threads are used to decode tiles, then we use those
2554           // threads to do parallel loopfiltering.
2555           vp9_loop_filter_frame_mt(new_fb, cm, pbi->mb.plane,
2556                                    cm->lf.filter_level, 0, 0, pbi->tile_workers,
2557                                    pbi->num_tile_workers, &pbi->lf_row_sync);
2558         }
2559       } else {
2560         vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2561                            "Decode failed. Frame data is corrupted.");
2562       }
2563     }
2564   } else {
2565     *p_data_end = decode_tiles(pbi, data + first_partition_size, data_end);
2566   }
2567 
2568   if (!xd->corrupted) {
2569     if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) {
2570       vp9_adapt_coef_probs(cm);
2571 
2572       if (!frame_is_intra_only(cm)) {
2573         vp9_adapt_mode_probs(cm);
2574         vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv);
2575       }
2576     }
2577   } else {
2578     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2579                        "Decode failed. Frame data is corrupted.");
2580   }
2581 
2582   // Non frame parallel update frame context here.
2583   if (cm->refresh_frame_context && !context_updated)
2584     cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
2585 }
2586