1 //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 ///
12 /// This file provides internal interfaces used to implement the InstCombine.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
17 #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
18
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/TargetFolder.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/InstVisitor.h"
32 #include "llvm/IR/InstrTypes.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/Use.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/Compiler.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/KnownBits.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
44 #include <cassert>
45 #include <cstdint>
46
47 #define DEBUG_TYPE "instcombine"
48
49 namespace llvm {
50
51 class APInt;
52 class AssumptionCache;
53 class CallSite;
54 class DataLayout;
55 class DominatorTree;
56 class GEPOperator;
57 class GlobalVariable;
58 class LoopInfo;
59 class OptimizationRemarkEmitter;
60 class TargetLibraryInfo;
61 class User;
62
63 /// Assign a complexity or rank value to LLVM Values. This is used to reduce
64 /// the amount of pattern matching needed for compares and commutative
65 /// instructions. For example, if we have:
66 /// icmp ugt X, Constant
67 /// or
68 /// xor (add X, Constant), cast Z
69 ///
70 /// We do not have to consider the commuted variants of these patterns because
71 /// canonicalization based on complexity guarantees the above ordering.
72 ///
73 /// This routine maps IR values to various complexity ranks:
74 /// 0 -> undef
75 /// 1 -> Constants
76 /// 2 -> Other non-instructions
77 /// 3 -> Arguments
78 /// 4 -> Cast and (f)neg/not instructions
79 /// 5 -> Other instructions
getComplexity(Value * V)80 static inline unsigned getComplexity(Value *V) {
81 if (isa<Instruction>(V)) {
82 if (isa<CastInst>(V) || BinaryOperator::isNeg(V) ||
83 BinaryOperator::isFNeg(V) || BinaryOperator::isNot(V))
84 return 4;
85 return 5;
86 }
87 if (isa<Argument>(V))
88 return 3;
89 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
90 }
91
92 /// Predicate canonicalization reduces the number of patterns that need to be
93 /// matched by other transforms. For example, we may swap the operands of a
94 /// conditional branch or select to create a compare with a canonical (inverted)
95 /// predicate which is then more likely to be matched with other values.
isCanonicalPredicate(CmpInst::Predicate Pred)96 static inline bool isCanonicalPredicate(CmpInst::Predicate Pred) {
97 switch (Pred) {
98 case CmpInst::ICMP_NE:
99 case CmpInst::ICMP_ULE:
100 case CmpInst::ICMP_SLE:
101 case CmpInst::ICMP_UGE:
102 case CmpInst::ICMP_SGE:
103 // TODO: There are 16 FCMP predicates. Should others be (not) canonical?
104 case CmpInst::FCMP_ONE:
105 case CmpInst::FCMP_OLE:
106 case CmpInst::FCMP_OGE:
107 return false;
108 default:
109 return true;
110 }
111 }
112
113 /// Return the source operand of a potentially bitcasted value while optionally
114 /// checking if it has one use. If there is no bitcast or the one use check is
115 /// not met, return the input value itself.
116 static inline Value *peekThroughBitcast(Value *V, bool OneUseOnly = false) {
117 if (auto *BitCast = dyn_cast<BitCastInst>(V))
118 if (!OneUseOnly || BitCast->hasOneUse())
119 return BitCast->getOperand(0);
120
121 // V is not a bitcast or V has more than one use and OneUseOnly is true.
122 return V;
123 }
124
125 /// Add one to a Constant
AddOne(Constant * C)126 static inline Constant *AddOne(Constant *C) {
127 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
128 }
129
130 /// Subtract one from a Constant
SubOne(Constant * C)131 static inline Constant *SubOne(Constant *C) {
132 return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
133 }
134
135 /// Return true if the specified value is free to invert (apply ~ to).
136 /// This happens in cases where the ~ can be eliminated. If WillInvertAllUses
137 /// is true, work under the assumption that the caller intends to remove all
138 /// uses of V and only keep uses of ~V.
IsFreeToInvert(Value * V,bool WillInvertAllUses)139 static inline bool IsFreeToInvert(Value *V, bool WillInvertAllUses) {
140 // ~(~(X)) -> X.
141 if (BinaryOperator::isNot(V))
142 return true;
143
144 // Constants can be considered to be not'ed values.
145 if (isa<ConstantInt>(V))
146 return true;
147
148 // A vector of constant integers can be inverted easily.
149 if (V->getType()->isVectorTy() && isa<Constant>(V)) {
150 unsigned NumElts = V->getType()->getVectorNumElements();
151 for (unsigned i = 0; i != NumElts; ++i) {
152 Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
153 if (!Elt)
154 return false;
155
156 if (isa<UndefValue>(Elt))
157 continue;
158
159 if (!isa<ConstantInt>(Elt))
160 return false;
161 }
162 return true;
163 }
164
165 // Compares can be inverted if all of their uses are being modified to use the
166 // ~V.
167 if (isa<CmpInst>(V))
168 return WillInvertAllUses;
169
170 // If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1
171 // - Constant) - A` if we are willing to invert all of the uses.
172 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
173 if (BO->getOpcode() == Instruction::Add ||
174 BO->getOpcode() == Instruction::Sub)
175 if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1)))
176 return WillInvertAllUses;
177
178 return false;
179 }
180
181 /// Specific patterns of overflow check idioms that we match.
182 enum OverflowCheckFlavor {
183 OCF_UNSIGNED_ADD,
184 OCF_SIGNED_ADD,
185 OCF_UNSIGNED_SUB,
186 OCF_SIGNED_SUB,
187 OCF_UNSIGNED_MUL,
188 OCF_SIGNED_MUL,
189
190 OCF_INVALID
191 };
192
193 /// Returns the OverflowCheckFlavor corresponding to a overflow_with_op
194 /// intrinsic.
195 static inline OverflowCheckFlavor
IntrinsicIDToOverflowCheckFlavor(unsigned ID)196 IntrinsicIDToOverflowCheckFlavor(unsigned ID) {
197 switch (ID) {
198 default:
199 return OCF_INVALID;
200 case Intrinsic::uadd_with_overflow:
201 return OCF_UNSIGNED_ADD;
202 case Intrinsic::sadd_with_overflow:
203 return OCF_SIGNED_ADD;
204 case Intrinsic::usub_with_overflow:
205 return OCF_UNSIGNED_SUB;
206 case Intrinsic::ssub_with_overflow:
207 return OCF_SIGNED_SUB;
208 case Intrinsic::umul_with_overflow:
209 return OCF_UNSIGNED_MUL;
210 case Intrinsic::smul_with_overflow:
211 return OCF_SIGNED_MUL;
212 }
213 }
214
215 /// Some binary operators require special handling to avoid poison and undefined
216 /// behavior. If a constant vector has undef elements, replace those undefs with
217 /// identity constants if possible because those are always safe to execute.
218 /// If no identity constant exists, replace undef with some other safe constant.
getSafeVectorConstantForBinop(BinaryOperator::BinaryOps Opcode,Constant * In,bool IsRHSConstant)219 static inline Constant *getSafeVectorConstantForBinop(
220 BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant) {
221 assert(In->getType()->isVectorTy() && "Not expecting scalars here");
222
223 Type *EltTy = In->getType()->getVectorElementType();
224 auto *SafeC = ConstantExpr::getBinOpIdentity(Opcode, EltTy, IsRHSConstant);
225 if (!SafeC) {
226 // TODO: Should this be available as a constant utility function? It is
227 // similar to getBinOpAbsorber().
228 if (IsRHSConstant) {
229 switch (Opcode) {
230 case Instruction::SRem: // X % 1 = 0
231 case Instruction::URem: // X %u 1 = 0
232 SafeC = ConstantInt::get(EltTy, 1);
233 break;
234 case Instruction::FRem: // X % 1.0 (doesn't simplify, but it is safe)
235 SafeC = ConstantFP::get(EltTy, 1.0);
236 break;
237 default:
238 llvm_unreachable("Only rem opcodes have no identity constant for RHS");
239 }
240 } else {
241 switch (Opcode) {
242 case Instruction::Shl: // 0 << X = 0
243 case Instruction::LShr: // 0 >>u X = 0
244 case Instruction::AShr: // 0 >> X = 0
245 case Instruction::SDiv: // 0 / X = 0
246 case Instruction::UDiv: // 0 /u X = 0
247 case Instruction::SRem: // 0 % X = 0
248 case Instruction::URem: // 0 %u X = 0
249 case Instruction::Sub: // 0 - X (doesn't simplify, but it is safe)
250 case Instruction::FSub: // 0.0 - X (doesn't simplify, but it is safe)
251 case Instruction::FDiv: // 0.0 / X (doesn't simplify, but it is safe)
252 case Instruction::FRem: // 0.0 % X = 0
253 SafeC = Constant::getNullValue(EltTy);
254 break;
255 default:
256 llvm_unreachable("Expected to find identity constant for opcode");
257 }
258 }
259 }
260 assert(SafeC && "Must have safe constant for binop");
261 unsigned NumElts = In->getType()->getVectorNumElements();
262 SmallVector<Constant *, 16> Out(NumElts);
263 for (unsigned i = 0; i != NumElts; ++i) {
264 Constant *C = In->getAggregateElement(i);
265 Out[i] = isa<UndefValue>(C) ? SafeC : C;
266 }
267 return ConstantVector::get(Out);
268 }
269
270 /// The core instruction combiner logic.
271 ///
272 /// This class provides both the logic to recursively visit instructions and
273 /// combine them.
274 class LLVM_LIBRARY_VISIBILITY InstCombiner
275 : public InstVisitor<InstCombiner, Instruction *> {
276 // FIXME: These members shouldn't be public.
277 public:
278 /// A worklist of the instructions that need to be simplified.
279 InstCombineWorklist &Worklist;
280
281 /// An IRBuilder that automatically inserts new instructions into the
282 /// worklist.
283 using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
284 BuilderTy &Builder;
285
286 private:
287 // Mode in which we are running the combiner.
288 const bool MinimizeSize;
289
290 /// Enable combines that trigger rarely but are costly in compiletime.
291 const bool ExpensiveCombines;
292
293 AliasAnalysis *AA;
294
295 // Required analyses.
296 AssumptionCache &AC;
297 TargetLibraryInfo &TLI;
298 DominatorTree &DT;
299 const DataLayout &DL;
300 const SimplifyQuery SQ;
301 OptimizationRemarkEmitter &ORE;
302
303 // Optional analyses. When non-null, these can both be used to do better
304 // combining and will be updated to reflect any changes.
305 LoopInfo *LI;
306
307 bool MadeIRChange = false;
308
309 public:
InstCombiner(InstCombineWorklist & Worklist,BuilderTy & Builder,bool MinimizeSize,bool ExpensiveCombines,AliasAnalysis * AA,AssumptionCache & AC,TargetLibraryInfo & TLI,DominatorTree & DT,OptimizationRemarkEmitter & ORE,const DataLayout & DL,LoopInfo * LI)310 InstCombiner(InstCombineWorklist &Worklist, BuilderTy &Builder,
311 bool MinimizeSize, bool ExpensiveCombines, AliasAnalysis *AA,
312 AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
313 OptimizationRemarkEmitter &ORE, const DataLayout &DL,
314 LoopInfo *LI)
315 : Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize),
316 ExpensiveCombines(ExpensiveCombines), AA(AA), AC(AC), TLI(TLI), DT(DT),
317 DL(DL), SQ(DL, &TLI, &DT, &AC), ORE(ORE), LI(LI) {}
318
319 /// Run the combiner over the entire worklist until it is empty.
320 ///
321 /// \returns true if the IR is changed.
322 bool run();
323
getAssumptionCache()324 AssumptionCache &getAssumptionCache() const { return AC; }
325
getDataLayout()326 const DataLayout &getDataLayout() const { return DL; }
327
getDominatorTree()328 DominatorTree &getDominatorTree() const { return DT; }
329
getLoopInfo()330 LoopInfo *getLoopInfo() const { return LI; }
331
getTargetLibraryInfo()332 TargetLibraryInfo &getTargetLibraryInfo() const { return TLI; }
333
334 // Visitation implementation - Implement instruction combining for different
335 // instruction types. The semantics are as follows:
336 // Return Value:
337 // null - No change was made
338 // I - Change was made, I is still valid, I may be dead though
339 // otherwise - Change was made, replace I with returned instruction
340 //
341 Instruction *visitAdd(BinaryOperator &I);
342 Instruction *visitFAdd(BinaryOperator &I);
343 Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
344 Instruction *visitSub(BinaryOperator &I);
345 Instruction *visitFSub(BinaryOperator &I);
346 Instruction *visitMul(BinaryOperator &I);
347 Instruction *visitFMul(BinaryOperator &I);
348 Instruction *visitURem(BinaryOperator &I);
349 Instruction *visitSRem(BinaryOperator &I);
350 Instruction *visitFRem(BinaryOperator &I);
351 bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
352 Instruction *commonRemTransforms(BinaryOperator &I);
353 Instruction *commonIRemTransforms(BinaryOperator &I);
354 Instruction *commonDivTransforms(BinaryOperator &I);
355 Instruction *commonIDivTransforms(BinaryOperator &I);
356 Instruction *visitUDiv(BinaryOperator &I);
357 Instruction *visitSDiv(BinaryOperator &I);
358 Instruction *visitFDiv(BinaryOperator &I);
359 Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
360 Instruction *visitAnd(BinaryOperator &I);
361 Instruction *visitOr(BinaryOperator &I);
362 Instruction *visitXor(BinaryOperator &I);
363 Instruction *visitShl(BinaryOperator &I);
364 Instruction *visitAShr(BinaryOperator &I);
365 Instruction *visitLShr(BinaryOperator &I);
366 Instruction *commonShiftTransforms(BinaryOperator &I);
367 Instruction *visitFCmpInst(FCmpInst &I);
368 Instruction *visitICmpInst(ICmpInst &I);
369 Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
370 BinaryOperator &I);
371 Instruction *commonCastTransforms(CastInst &CI);
372 Instruction *commonPointerCastTransforms(CastInst &CI);
373 Instruction *visitTrunc(TruncInst &CI);
374 Instruction *visitZExt(ZExtInst &CI);
375 Instruction *visitSExt(SExtInst &CI);
376 Instruction *visitFPTrunc(FPTruncInst &CI);
377 Instruction *visitFPExt(CastInst &CI);
378 Instruction *visitFPToUI(FPToUIInst &FI);
379 Instruction *visitFPToSI(FPToSIInst &FI);
380 Instruction *visitUIToFP(CastInst &CI);
381 Instruction *visitSIToFP(CastInst &CI);
382 Instruction *visitPtrToInt(PtrToIntInst &CI);
383 Instruction *visitIntToPtr(IntToPtrInst &CI);
384 Instruction *visitBitCast(BitCastInst &CI);
385 Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
386 Instruction *FoldItoFPtoI(Instruction &FI);
387 Instruction *visitSelectInst(SelectInst &SI);
388 Instruction *visitCallInst(CallInst &CI);
389 Instruction *visitInvokeInst(InvokeInst &II);
390
391 Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
392 Instruction *visitPHINode(PHINode &PN);
393 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
394 Instruction *visitAllocaInst(AllocaInst &AI);
395 Instruction *visitAllocSite(Instruction &FI);
396 Instruction *visitFree(CallInst &FI);
397 Instruction *visitLoadInst(LoadInst &LI);
398 Instruction *visitStoreInst(StoreInst &SI);
399 Instruction *visitBranchInst(BranchInst &BI);
400 Instruction *visitFenceInst(FenceInst &FI);
401 Instruction *visitSwitchInst(SwitchInst &SI);
402 Instruction *visitReturnInst(ReturnInst &RI);
403 Instruction *visitInsertValueInst(InsertValueInst &IV);
404 Instruction *visitInsertElementInst(InsertElementInst &IE);
405 Instruction *visitExtractElementInst(ExtractElementInst &EI);
406 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
407 Instruction *visitExtractValueInst(ExtractValueInst &EV);
408 Instruction *visitLandingPadInst(LandingPadInst &LI);
409 Instruction *visitVAStartInst(VAStartInst &I);
410 Instruction *visitVACopyInst(VACopyInst &I);
411
412 /// Specify what to return for unhandled instructions.
visitInstruction(Instruction & I)413 Instruction *visitInstruction(Instruction &I) { return nullptr; }
414
415 /// True when DB dominates all uses of DI except UI.
416 /// UI must be in the same block as DI.
417 /// The routine checks that the DI parent and DB are different.
418 bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
419 const BasicBlock *DB) const;
420
421 /// Try to replace select with select operand SIOpd in SI-ICmp sequence.
422 bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
423 const unsigned SIOpd);
424
425 /// Try to replace instruction \p I with value \p V which are pointers
426 /// in different address space.
427 /// \return true if successful.
428 bool replacePointer(Instruction &I, Value *V);
429
430 private:
431 bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
432 bool shouldChangeType(Type *From, Type *To) const;
433 Value *dyn_castNegVal(Value *V) const;
434 Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
435 SmallVectorImpl<Value *> &NewIndices);
436
437 /// Classify whether a cast is worth optimizing.
438 ///
439 /// This is a helper to decide whether the simplification of
440 /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
441 ///
442 /// \param CI The cast we are interested in.
443 ///
444 /// \return true if this cast actually results in any code being generated and
445 /// if it cannot already be eliminated by some other transformation.
446 bool shouldOptimizeCast(CastInst *CI);
447
448 /// Try to optimize a sequence of instructions checking if an operation
449 /// on LHS and RHS overflows.
450 ///
451 /// If this overflow check is done via one of the overflow check intrinsics,
452 /// then CtxI has to be the call instruction calling that intrinsic. If this
453 /// overflow check is done by arithmetic followed by a compare, then CtxI has
454 /// to be the arithmetic instruction.
455 ///
456 /// If a simplification is possible, stores the simplified result of the
457 /// operation in OperationResult and result of the overflow check in
458 /// OverflowResult, and return true. If no simplification is possible,
459 /// returns false.
460 bool OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, Value *RHS,
461 Instruction &CtxI, Value *&OperationResult,
462 Constant *&OverflowResult);
463
464 Instruction *visitCallSite(CallSite CS);
465 Instruction *tryOptimizeCall(CallInst *CI);
466 bool transformConstExprCastCall(CallSite CS);
467 Instruction *transformCallThroughTrampoline(CallSite CS,
468 IntrinsicInst *Tramp);
469
470 /// Transform (zext icmp) to bitwise / integer operations in order to
471 /// eliminate it.
472 ///
473 /// \param ICI The icmp of the (zext icmp) pair we are interested in.
474 /// \parem CI The zext of the (zext icmp) pair we are interested in.
475 /// \param DoTransform Pass false to just test whether the given (zext icmp)
476 /// would be transformed. Pass true to actually perform the transformation.
477 ///
478 /// \return null if the transformation cannot be performed. If the
479 /// transformation can be performed the new instruction that replaces the
480 /// (zext icmp) pair will be returned (if \p DoTransform is false the
481 /// unmodified \p ICI will be returned in this case).
482 Instruction *transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
483 bool DoTransform = true);
484
485 Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
486
willNotOverflowSignedAdd(const Value * LHS,const Value * RHS,const Instruction & CxtI)487 bool willNotOverflowSignedAdd(const Value *LHS, const Value *RHS,
488 const Instruction &CxtI) const {
489 return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
490 OverflowResult::NeverOverflows;
491 }
492
willNotOverflowUnsignedAdd(const Value * LHS,const Value * RHS,const Instruction & CxtI)493 bool willNotOverflowUnsignedAdd(const Value *LHS, const Value *RHS,
494 const Instruction &CxtI) const {
495 return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
496 OverflowResult::NeverOverflows;
497 }
498
willNotOverflowSignedSub(const Value * LHS,const Value * RHS,const Instruction & CxtI)499 bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
500 const Instruction &CxtI) const {
501 return computeOverflowForSignedSub(LHS, RHS, &CxtI) ==
502 OverflowResult::NeverOverflows;
503 }
504
willNotOverflowUnsignedSub(const Value * LHS,const Value * RHS,const Instruction & CxtI)505 bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
506 const Instruction &CxtI) const {
507 return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) ==
508 OverflowResult::NeverOverflows;
509 }
510
willNotOverflowSignedMul(const Value * LHS,const Value * RHS,const Instruction & CxtI)511 bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
512 const Instruction &CxtI) const {
513 return computeOverflowForSignedMul(LHS, RHS, &CxtI) ==
514 OverflowResult::NeverOverflows;
515 }
516
willNotOverflowUnsignedMul(const Value * LHS,const Value * RHS,const Instruction & CxtI)517 bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
518 const Instruction &CxtI) const {
519 return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) ==
520 OverflowResult::NeverOverflows;
521 }
522
523 Value *EmitGEPOffset(User *GEP);
524 Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
525 Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask);
526 Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
527 Instruction *narrowBinOp(TruncInst &Trunc);
528 Instruction *narrowMaskedBinOp(BinaryOperator &And);
529 Instruction *narrowRotate(TruncInst &Trunc);
530 Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
531
532 /// Determine if a pair of casts can be replaced by a single cast.
533 ///
534 /// \param CI1 The first of a pair of casts.
535 /// \param CI2 The second of a pair of casts.
536 ///
537 /// \return 0 if the cast pair cannot be eliminated, otherwise returns an
538 /// Instruction::CastOps value for a cast that can replace the pair, casting
539 /// CI1->getSrcTy() to CI2->getDstTy().
540 ///
541 /// \see CastInst::isEliminableCastPair
542 Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
543 const CastInst *CI2);
544
545 Value *foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI);
546 Value *foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI);
547 Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS);
548
549 /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
550 /// NOTE: Unlike most of instcombine, this returns a Value which should
551 /// already be inserted into the function.
552 Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd);
553
554 Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
555 bool JoinedByAnd, Instruction &CxtI);
556 public:
557 /// Inserts an instruction \p New before instruction \p Old
558 ///
559 /// Also adds the new instruction to the worklist and returns \p New so that
560 /// it is suitable for use as the return from the visitation patterns.
InsertNewInstBefore(Instruction * New,Instruction & Old)561 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
562 assert(New && !New->getParent() &&
563 "New instruction already inserted into a basic block!");
564 BasicBlock *BB = Old.getParent();
565 BB->getInstList().insert(Old.getIterator(), New); // Insert inst
566 Worklist.Add(New);
567 return New;
568 }
569
570 /// Same as InsertNewInstBefore, but also sets the debug loc.
InsertNewInstWith(Instruction * New,Instruction & Old)571 Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
572 New->setDebugLoc(Old.getDebugLoc());
573 return InsertNewInstBefore(New, Old);
574 }
575
576 /// A combiner-aware RAUW-like routine.
577 ///
578 /// This method is to be used when an instruction is found to be dead,
579 /// replaceable with another preexisting expression. Here we add all uses of
580 /// I to the worklist, replace all uses of I with the new value, then return
581 /// I, so that the inst combiner will know that I was modified.
replaceInstUsesWith(Instruction & I,Value * V)582 Instruction *replaceInstUsesWith(Instruction &I, Value *V) {
583 // If there are no uses to replace, then we return nullptr to indicate that
584 // no changes were made to the program.
585 if (I.use_empty()) return nullptr;
586
587 Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
588
589 // If we are replacing the instruction with itself, this must be in a
590 // segment of unreachable code, so just clobber the instruction.
591 if (&I == V)
592 V = UndefValue::get(I.getType());
593
594 LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n"
595 << " with " << *V << '\n');
596
597 I.replaceAllUsesWith(V);
598 return &I;
599 }
600
601 /// Creates a result tuple for an overflow intrinsic \p II with a given
602 /// \p Result and a constant \p Overflow value.
CreateOverflowTuple(IntrinsicInst * II,Value * Result,Constant * Overflow)603 Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result,
604 Constant *Overflow) {
605 Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
606 StructType *ST = cast<StructType>(II->getType());
607 Constant *Struct = ConstantStruct::get(ST, V);
608 return InsertValueInst::Create(Struct, Result, 0);
609 }
610
611 /// Combiner aware instruction erasure.
612 ///
613 /// When dealing with an instruction that has side effects or produces a void
614 /// value, we can't rely on DCE to delete the instruction. Instead, visit
615 /// methods should return the value returned by this function.
eraseInstFromFunction(Instruction & I)616 Instruction *eraseInstFromFunction(Instruction &I) {
617 LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n');
618 assert(I.use_empty() && "Cannot erase instruction that is used!");
619 salvageDebugInfo(I);
620
621 // Make sure that we reprocess all operands now that we reduced their
622 // use counts.
623 if (I.getNumOperands() < 8) {
624 for (Use &Operand : I.operands())
625 if (auto *Inst = dyn_cast<Instruction>(Operand))
626 Worklist.Add(Inst);
627 }
628 Worklist.Remove(&I);
629 I.eraseFromParent();
630 MadeIRChange = true;
631 return nullptr; // Don't do anything with FI
632 }
633
computeKnownBits(const Value * V,KnownBits & Known,unsigned Depth,const Instruction * CxtI)634 void computeKnownBits(const Value *V, KnownBits &Known,
635 unsigned Depth, const Instruction *CxtI) const {
636 llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT);
637 }
638
computeKnownBits(const Value * V,unsigned Depth,const Instruction * CxtI)639 KnownBits computeKnownBits(const Value *V, unsigned Depth,
640 const Instruction *CxtI) const {
641 return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT);
642 }
643
644 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false,
645 unsigned Depth = 0,
646 const Instruction *CxtI = nullptr) {
647 return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT);
648 }
649
650 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0,
651 const Instruction *CxtI = nullptr) const {
652 return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT);
653 }
654
655 unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0,
656 const Instruction *CxtI = nullptr) const {
657 return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT);
658 }
659
computeOverflowForUnsignedMul(const Value * LHS,const Value * RHS,const Instruction * CxtI)660 OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
661 const Value *RHS,
662 const Instruction *CxtI) const {
663 return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
664 }
665
computeOverflowForSignedMul(const Value * LHS,const Value * RHS,const Instruction * CxtI)666 OverflowResult computeOverflowForSignedMul(const Value *LHS,
667 const Value *RHS,
668 const Instruction *CxtI) const {
669 return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
670 }
671
computeOverflowForUnsignedAdd(const Value * LHS,const Value * RHS,const Instruction * CxtI)672 OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
673 const Value *RHS,
674 const Instruction *CxtI) const {
675 return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
676 }
677
computeOverflowForSignedAdd(const Value * LHS,const Value * RHS,const Instruction * CxtI)678 OverflowResult computeOverflowForSignedAdd(const Value *LHS,
679 const Value *RHS,
680 const Instruction *CxtI) const {
681 return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
682 }
683
computeOverflowForUnsignedSub(const Value * LHS,const Value * RHS,const Instruction * CxtI)684 OverflowResult computeOverflowForUnsignedSub(const Value *LHS,
685 const Value *RHS,
686 const Instruction *CxtI) const {
687 return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
688 }
689
computeOverflowForSignedSub(const Value * LHS,const Value * RHS,const Instruction * CxtI)690 OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
691 const Instruction *CxtI) const {
692 return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
693 }
694
695 /// Maximum size of array considered when transforming.
696 uint64_t MaxArraySizeForCombine;
697
698 private:
699 /// Performs a few simplifications for operators which are associative
700 /// or commutative.
701 bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
702
703 /// Tries to simplify binary operations which some other binary
704 /// operation distributes over.
705 ///
706 /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
707 /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
708 /// & (B | C) -> (A&B) | (A&C)" if this is a win). Returns the simplified
709 /// value, or null if it didn't simplify.
710 Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
711
712 /// Tries to simplify add operations using the definition of remainder.
713 ///
714 /// The definition of remainder is X % C = X - (X / C ) * C. The add
715 /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
716 /// X % (C0 * C1)
717 Value *SimplifyAddWithRemainder(BinaryOperator &I);
718
719 // Binary Op helper for select operations where the expression can be
720 // efficiently reorganized.
721 Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
722 Value *RHS);
723
724 /// This tries to simplify binary operations by factorizing out common terms
725 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
726 Value *tryFactorization(BinaryOperator &, Instruction::BinaryOps, Value *,
727 Value *, Value *, Value *);
728
729 /// Match a select chain which produces one of three values based on whether
730 /// the LHS is less than, equal to, or greater than RHS respectively.
731 /// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
732 /// Equal and Greater values are saved in the matching process and returned to
733 /// the caller.
734 bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
735 ConstantInt *&Less, ConstantInt *&Equal,
736 ConstantInt *&Greater);
737
738 /// Attempts to replace V with a simpler value based on the demanded
739 /// bits.
740 Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known,
741 unsigned Depth, Instruction *CxtI);
742 bool SimplifyDemandedBits(Instruction *I, unsigned Op,
743 const APInt &DemandedMask, KnownBits &Known,
744 unsigned Depth = 0);
745
746 /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
747 /// bits. It also tries to handle simplifications that can be done based on
748 /// DemandedMask, but without modifying the Instruction.
749 Value *SimplifyMultipleUseDemandedBits(Instruction *I,
750 const APInt &DemandedMask,
751 KnownBits &Known,
752 unsigned Depth, Instruction *CxtI);
753
754 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
755 /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
756 Value *simplifyShrShlDemandedBits(
757 Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
758 const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);
759
760 /// Tries to simplify operands to an integer instruction based on its
761 /// demanded bits.
762 bool SimplifyDemandedInstructionBits(Instruction &Inst);
763
764 Value *simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
765 APInt DemandedElts,
766 int DmaskIdx = -1);
767
768 Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
769 APInt &UndefElts, unsigned Depth = 0);
770
771 /// Canonicalize the position of binops relative to shufflevector.
772 Instruction *foldShuffledBinop(BinaryOperator &Inst);
773
774 /// Given a binary operator, cast instruction, or select which has a PHI node
775 /// as operand #0, see if we can fold the instruction into the PHI (which is
776 /// only possible if all operands to the PHI are constants).
777 Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN);
778
779 /// Given an instruction with a select as one operand and a constant as the
780 /// other operand, try to fold the binary operator into the select arguments.
781 /// This also works for Cast instructions, which obviously do not have a
782 /// second operand.
783 Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
784
785 /// This is a convenience wrapper function for the above two functions.
786 Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I);
787
788 Instruction *foldAddWithConstant(BinaryOperator &Add);
789
790 /// Try to rotate an operation below a PHI node, using PHI nodes for
791 /// its operands.
792 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
793 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
794 Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
795 Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
796 Instruction *FoldPHIArgZextsIntoPHI(PHINode &PN);
797
798 /// If an integer typed PHI has only one use which is an IntToPtr operation,
799 /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
800 /// insert a new pointer typed PHI and replace the original one.
801 Instruction *FoldIntegerTypedPHI(PHINode &PN);
802
803 /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
804 /// folded operation.
805 void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);
806
807 Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
808 ICmpInst::Predicate Cond, Instruction &I);
809 Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca,
810 const Value *Other);
811 Instruction *foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
812 GlobalVariable *GV, CmpInst &ICI,
813 ConstantInt *AndCst = nullptr);
814 Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
815 Constant *RHSC);
816 Instruction *foldICmpAddOpConst(Value *X, ConstantInt *CI,
817 ICmpInst::Predicate Pred);
818 Instruction *foldICmpWithCastAndCast(ICmpInst &ICI);
819
820 Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
821 Instruction *foldICmpWithConstant(ICmpInst &Cmp);
822 Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
823 Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
824 Instruction *foldICmpBinOp(ICmpInst &Cmp);
825 Instruction *foldICmpEquality(ICmpInst &Cmp);
826 Instruction *foldICmpWithZero(ICmpInst &Cmp);
827
828 Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
829 ConstantInt *C);
830 Instruction *foldICmpBitCastConstant(ICmpInst &Cmp, BitCastInst *Bitcast,
831 const APInt &C);
832 Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
833 const APInt &C);
834 Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
835 const APInt &C);
836 Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
837 const APInt &C);
838 Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
839 const APInt &C);
840 Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
841 const APInt &C);
842 Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
843 const APInt &C);
844 Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
845 const APInt &C);
846 Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
847 const APInt &C);
848 Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
849 const APInt &C);
850 Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
851 const APInt &C);
852 Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
853 const APInt &C);
854 Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
855 const APInt &C1);
856 Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
857 const APInt &C1, const APInt &C2);
858 Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
859 const APInt &C2);
860 Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
861 const APInt &C2);
862
863 Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
864 BinaryOperator *BO,
865 const APInt &C);
866 Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, const APInt &C);
867
868 // Helpers of visitSelectInst().
869 Instruction *foldSelectExtConst(SelectInst &Sel);
870 Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
871 Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
872 Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
873 Value *A, Value *B, Instruction &Outer,
874 SelectPatternFlavor SPF2, Value *C);
875 Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
876
877 Instruction *OptAndOp(BinaryOperator *Op, ConstantInt *OpRHS,
878 ConstantInt *AndRHS, BinaryOperator &TheAnd);
879
880 Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
881 bool isSigned, bool Inside);
882 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
883 Instruction *MatchBSwap(BinaryOperator &I);
884 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
885
886 Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI);
887 Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI);
888
889 Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
890
891 /// Returns a value X such that Val = X * Scale, or null if none.
892 ///
893 /// If the multiplication is known not to overflow then NoSignedWrap is set.
894 Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
895 };
896
897 } // end namespace llvm
898
899 #undef DEBUG_TYPE
900
901 #endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
902