1 //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file This file implements the LiveInterval analysis pass which is used
11 /// by the Linear Scan Register allocator. This pass linearizes the
12 /// basic blocks of the function in DFS order and computes live intervals for
13 /// each virtual and physical register.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/CodeGen/LiveIntervals.h"
18 #include "LiveRangeCalc.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DepthFirstIterator.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/iterator_range.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/LiveInterval.h"
26 #include "llvm/CodeGen/LiveVariables.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
29 #include "llvm/CodeGen/MachineDominators.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineInstrBundle.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/SlotIndexes.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/CodeGen/VirtRegMap.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/MC/LaneBitmask.h"
42 #include "llvm/MC/MCRegisterInfo.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/BlockFrequency.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/MathExtras.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstdint>
53 #include <iterator>
54 #include <tuple>
55 #include <utility>
56 
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "regalloc"
60 
61 char LiveIntervals::ID = 0;
62 char &llvm::LiveIntervalsID = LiveIntervals::ID;
63 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
64                 "Live Interval Analysis", false, false)
65 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
66 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
67 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
68 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
69                 "Live Interval Analysis", false, false)
70 
71 #ifndef NDEBUG
72 static cl::opt<bool> EnablePrecomputePhysRegs(
73   "precompute-phys-liveness", cl::Hidden,
74   cl::desc("Eagerly compute live intervals for all physreg units."));
75 #else
76 static bool EnablePrecomputePhysRegs = false;
77 #endif // NDEBUG
78 
79 namespace llvm {
80 
81 cl::opt<bool> UseSegmentSetForPhysRegs(
82     "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
83     cl::desc(
84         "Use segment set for the computation of the live ranges of physregs."));
85 
86 } // end namespace llvm
87 
getAnalysisUsage(AnalysisUsage & AU) const88 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
89   AU.setPreservesCFG();
90   AU.addRequired<AAResultsWrapperPass>();
91   AU.addPreserved<AAResultsWrapperPass>();
92   AU.addPreserved<LiveVariables>();
93   AU.addPreservedID(MachineLoopInfoID);
94   AU.addRequiredTransitiveID(MachineDominatorsID);
95   AU.addPreservedID(MachineDominatorsID);
96   AU.addPreserved<SlotIndexes>();
97   AU.addRequiredTransitive<SlotIndexes>();
98   MachineFunctionPass::getAnalysisUsage(AU);
99 }
100 
LiveIntervals()101 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) {
102   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
103 }
104 
~LiveIntervals()105 LiveIntervals::~LiveIntervals() {
106   delete LRCalc;
107 }
108 
releaseMemory()109 void LiveIntervals::releaseMemory() {
110   // Free the live intervals themselves.
111   for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
112     delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
113   VirtRegIntervals.clear();
114   RegMaskSlots.clear();
115   RegMaskBits.clear();
116   RegMaskBlocks.clear();
117 
118   for (LiveRange *LR : RegUnitRanges)
119     delete LR;
120   RegUnitRanges.clear();
121 
122   // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
123   VNInfoAllocator.Reset();
124 }
125 
runOnMachineFunction(MachineFunction & fn)126 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
127   MF = &fn;
128   MRI = &MF->getRegInfo();
129   TRI = MF->getSubtarget().getRegisterInfo();
130   TII = MF->getSubtarget().getInstrInfo();
131   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
132   Indexes = &getAnalysis<SlotIndexes>();
133   DomTree = &getAnalysis<MachineDominatorTree>();
134 
135   if (!LRCalc)
136     LRCalc = new LiveRangeCalc();
137 
138   // Allocate space for all virtual registers.
139   VirtRegIntervals.resize(MRI->getNumVirtRegs());
140 
141   computeVirtRegs();
142   computeRegMasks();
143   computeLiveInRegUnits();
144 
145   if (EnablePrecomputePhysRegs) {
146     // For stress testing, precompute live ranges of all physical register
147     // units, including reserved registers.
148     for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
149       getRegUnit(i);
150   }
151   LLVM_DEBUG(dump());
152   return true;
153 }
154 
print(raw_ostream & OS,const Module *) const155 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
156   OS << "********** INTERVALS **********\n";
157 
158   // Dump the regunits.
159   for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit)
160     if (LiveRange *LR = RegUnitRanges[Unit])
161       OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n';
162 
163   // Dump the virtregs.
164   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
165     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
166     if (hasInterval(Reg))
167       OS << getInterval(Reg) << '\n';
168   }
169 
170   OS << "RegMasks:";
171   for (SlotIndex Idx : RegMaskSlots)
172     OS << ' ' << Idx;
173   OS << '\n';
174 
175   printInstrs(OS);
176 }
177 
printInstrs(raw_ostream & OS) const178 void LiveIntervals::printInstrs(raw_ostream &OS) const {
179   OS << "********** MACHINEINSTRS **********\n";
180   MF->print(OS, Indexes);
181 }
182 
183 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dumpInstrs() const184 LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const {
185   printInstrs(dbgs());
186 }
187 #endif
188 
createInterval(unsigned reg)189 LiveInterval* LiveIntervals::createInterval(unsigned reg) {
190   float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? huge_valf : 0.0F;
191   return new LiveInterval(reg, Weight);
192 }
193 
194 /// Compute the live interval of a virtual register, based on defs and uses.
computeVirtRegInterval(LiveInterval & LI)195 void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
196   assert(LRCalc && "LRCalc not initialized.");
197   assert(LI.empty() && "Should only compute empty intervals.");
198   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
199   LRCalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg));
200   computeDeadValues(LI, nullptr);
201 }
202 
computeVirtRegs()203 void LiveIntervals::computeVirtRegs() {
204   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
205     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
206     if (MRI->reg_nodbg_empty(Reg))
207       continue;
208     createAndComputeVirtRegInterval(Reg);
209   }
210 }
211 
computeRegMasks()212 void LiveIntervals::computeRegMasks() {
213   RegMaskBlocks.resize(MF->getNumBlockIDs());
214 
215   // Find all instructions with regmask operands.
216   for (const MachineBasicBlock &MBB : *MF) {
217     std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
218     RMB.first = RegMaskSlots.size();
219 
220     // Some block starts, such as EH funclets, create masks.
221     if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
222       RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
223       RegMaskBits.push_back(Mask);
224     }
225 
226     for (const MachineInstr &MI : MBB) {
227       for (const MachineOperand &MO : MI.operands()) {
228         if (!MO.isRegMask())
229           continue;
230         RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
231         RegMaskBits.push_back(MO.getRegMask());
232       }
233     }
234 
235     // Some block ends, such as funclet returns, create masks. Put the mask on
236     // the last instruction of the block, because MBB slot index intervals are
237     // half-open.
238     if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
239       assert(!MBB.empty() && "empty return block?");
240       RegMaskSlots.push_back(
241           Indexes->getInstructionIndex(MBB.back()).getRegSlot());
242       RegMaskBits.push_back(Mask);
243     }
244 
245     // Compute the number of register mask instructions in this block.
246     RMB.second = RegMaskSlots.size() - RMB.first;
247   }
248 }
249 
250 //===----------------------------------------------------------------------===//
251 //                           Register Unit Liveness
252 //===----------------------------------------------------------------------===//
253 //
254 // Fixed interference typically comes from ABI boundaries: Function arguments
255 // and return values are passed in fixed registers, and so are exception
256 // pointers entering landing pads. Certain instructions require values to be
257 // present in specific registers. That is also represented through fixed
258 // interference.
259 //
260 
261 /// Compute the live range of a register unit, based on the uses and defs of
262 /// aliasing registers.  The range should be empty, or contain only dead
263 /// phi-defs from ABI blocks.
computeRegUnitRange(LiveRange & LR,unsigned Unit)264 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
265   assert(LRCalc && "LRCalc not initialized.");
266   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
267 
268   // The physregs aliasing Unit are the roots and their super-registers.
269   // Create all values as dead defs before extending to uses. Note that roots
270   // may share super-registers. That's OK because createDeadDefs() is
271   // idempotent. It is very rare for a register unit to have multiple roots, so
272   // uniquing super-registers is probably not worthwhile.
273   bool IsReserved = false;
274   for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
275     bool IsRootReserved = true;
276     for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
277          Super.isValid(); ++Super) {
278       unsigned Reg = *Super;
279       if (!MRI->reg_empty(Reg))
280         LRCalc->createDeadDefs(LR, Reg);
281       // A register unit is considered reserved if all its roots and all their
282       // super registers are reserved.
283       if (!MRI->isReserved(Reg))
284         IsRootReserved = false;
285     }
286     IsReserved |= IsRootReserved;
287   }
288   assert(IsReserved == MRI->isReservedRegUnit(Unit) &&
289          "reserved computation mismatch");
290 
291   // Now extend LR to reach all uses.
292   // Ignore uses of reserved registers. We only track defs of those.
293   if (!IsReserved) {
294     for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
295       for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
296            Super.isValid(); ++Super) {
297         unsigned Reg = *Super;
298         if (!MRI->reg_empty(Reg))
299           LRCalc->extendToUses(LR, Reg);
300       }
301     }
302   }
303 
304   // Flush the segment set to the segment vector.
305   if (UseSegmentSetForPhysRegs)
306     LR.flushSegmentSet();
307 }
308 
309 /// Precompute the live ranges of any register units that are live-in to an ABI
310 /// block somewhere. Register values can appear without a corresponding def when
311 /// entering the entry block or a landing pad.
computeLiveInRegUnits()312 void LiveIntervals::computeLiveInRegUnits() {
313   RegUnitRanges.resize(TRI->getNumRegUnits());
314   LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
315 
316   // Keep track of the live range sets allocated.
317   SmallVector<unsigned, 8> NewRanges;
318 
319   // Check all basic blocks for live-ins.
320   for (const MachineBasicBlock &MBB : *MF) {
321     // We only care about ABI blocks: Entry + landing pads.
322     if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty())
323       continue;
324 
325     // Create phi-defs at Begin for all live-in registers.
326     SlotIndex Begin = Indexes->getMBBStartIdx(&MBB);
327     LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB));
328     for (const auto &LI : MBB.liveins()) {
329       for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) {
330         unsigned Unit = *Units;
331         LiveRange *LR = RegUnitRanges[Unit];
332         if (!LR) {
333           // Use segment set to speed-up initial computation of the live range.
334           LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
335           NewRanges.push_back(Unit);
336         }
337         VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
338         (void)VNI;
339         LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id);
340       }
341     }
342     LLVM_DEBUG(dbgs() << '\n');
343   }
344   LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
345 
346   // Compute the 'normal' part of the ranges.
347   for (unsigned Unit : NewRanges)
348     computeRegUnitRange(*RegUnitRanges[Unit], Unit);
349 }
350 
createSegmentsForValues(LiveRange & LR,iterator_range<LiveInterval::vni_iterator> VNIs)351 static void createSegmentsForValues(LiveRange &LR,
352     iterator_range<LiveInterval::vni_iterator> VNIs) {
353   for (VNInfo *VNI : VNIs) {
354     if (VNI->isUnused())
355       continue;
356     SlotIndex Def = VNI->def;
357     LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
358   }
359 }
360 
extendSegmentsToUses(LiveRange & Segments,ShrinkToUsesWorkList & WorkList,unsigned Reg,LaneBitmask LaneMask)361 void LiveIntervals::extendSegmentsToUses(LiveRange &Segments,
362                                          ShrinkToUsesWorkList &WorkList,
363                                          unsigned Reg, LaneBitmask LaneMask) {
364   // Keep track of the PHIs that are in use.
365   SmallPtrSet<VNInfo*, 8> UsedPHIs;
366   // Blocks that have already been added to WorkList as live-out.
367   SmallPtrSet<const MachineBasicBlock*, 16> LiveOut;
368 
369   auto getSubRange = [](const LiveInterval &I, LaneBitmask M)
370         -> const LiveRange& {
371     if (M.none())
372       return I;
373     for (const LiveInterval::SubRange &SR : I.subranges()) {
374       if ((SR.LaneMask & M).any()) {
375         assert(SR.LaneMask == M && "Expecting lane masks to match exactly");
376         return SR;
377       }
378     }
379     llvm_unreachable("Subrange for mask not found");
380   };
381 
382   const LiveInterval &LI = getInterval(Reg);
383   const LiveRange &OldRange = getSubRange(LI, LaneMask);
384 
385   // Extend intervals to reach all uses in WorkList.
386   while (!WorkList.empty()) {
387     SlotIndex Idx = WorkList.back().first;
388     VNInfo *VNI = WorkList.back().second;
389     WorkList.pop_back();
390     const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot());
391     SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB);
392 
393     // Extend the live range for VNI to be live at Idx.
394     if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) {
395       assert(ExtVNI == VNI && "Unexpected existing value number");
396       (void)ExtVNI;
397       // Is this a PHIDef we haven't seen before?
398       if (!VNI->isPHIDef() || VNI->def != BlockStart ||
399           !UsedPHIs.insert(VNI).second)
400         continue;
401       // The PHI is live, make sure the predecessors are live-out.
402       for (const MachineBasicBlock *Pred : MBB->predecessors()) {
403         if (!LiveOut.insert(Pred).second)
404           continue;
405         SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
406         // A predecessor is not required to have a live-out value for a PHI.
407         if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
408           WorkList.push_back(std::make_pair(Stop, PVNI));
409       }
410       continue;
411     }
412 
413     // VNI is live-in to MBB.
414     LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
415     Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
416 
417     // Make sure VNI is live-out from the predecessors.
418     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
419       if (!LiveOut.insert(Pred).second)
420         continue;
421       SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
422       if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) {
423         assert(OldVNI == VNI && "Wrong value out of predecessor");
424         (void)OldVNI;
425         WorkList.push_back(std::make_pair(Stop, VNI));
426       } else {
427 #ifndef NDEBUG
428         // There was no old VNI. Verify that Stop is jointly dominated
429         // by <undef>s for this live range.
430         assert(LaneMask.any() &&
431                "Missing value out of predecessor for main range");
432         SmallVector<SlotIndex,8> Undefs;
433         LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
434         assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) &&
435                "Missing value out of predecessor for subrange");
436 #endif
437       }
438     }
439   }
440 }
441 
shrinkToUses(LiveInterval * li,SmallVectorImpl<MachineInstr * > * dead)442 bool LiveIntervals::shrinkToUses(LiveInterval *li,
443                                  SmallVectorImpl<MachineInstr*> *dead) {
444   LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n');
445   assert(TargetRegisterInfo::isVirtualRegister(li->reg)
446          && "Can only shrink virtual registers");
447 
448   // Shrink subregister live ranges.
449   bool NeedsCleanup = false;
450   for (LiveInterval::SubRange &S : li->subranges()) {
451     shrinkToUses(S, li->reg);
452     if (S.empty())
453       NeedsCleanup = true;
454   }
455   if (NeedsCleanup)
456     li->removeEmptySubRanges();
457 
458   // Find all the values used, including PHI kills.
459   ShrinkToUsesWorkList WorkList;
460 
461   // Visit all instructions reading li->reg.
462   unsigned Reg = li->reg;
463   for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) {
464     if (UseMI.isDebugValue() || !UseMI.readsVirtualRegister(Reg))
465       continue;
466     SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
467     LiveQueryResult LRQ = li->Query(Idx);
468     VNInfo *VNI = LRQ.valueIn();
469     if (!VNI) {
470       // This shouldn't happen: readsVirtualRegister returns true, but there is
471       // no live value. It is likely caused by a target getting <undef> flags
472       // wrong.
473       LLVM_DEBUG(
474           dbgs() << Idx << '\t' << UseMI
475                  << "Warning: Instr claims to read non-existent value in "
476                  << *li << '\n');
477       continue;
478     }
479     // Special case: An early-clobber tied operand reads and writes the
480     // register one slot early.
481     if (VNInfo *DefVNI = LRQ.valueDefined())
482       Idx = DefVNI->def;
483 
484     WorkList.push_back(std::make_pair(Idx, VNI));
485   }
486 
487   // Create new live ranges with only minimal live segments per def.
488   LiveRange NewLR;
489   createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end()));
490   extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone());
491 
492   // Move the trimmed segments back.
493   li->segments.swap(NewLR.segments);
494 
495   // Handle dead values.
496   bool CanSeparate = computeDeadValues(*li, dead);
497   LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n');
498   return CanSeparate;
499 }
500 
computeDeadValues(LiveInterval & LI,SmallVectorImpl<MachineInstr * > * dead)501 bool LiveIntervals::computeDeadValues(LiveInterval &LI,
502                                       SmallVectorImpl<MachineInstr*> *dead) {
503   bool MayHaveSplitComponents = false;
504   for (VNInfo *VNI : LI.valnos) {
505     if (VNI->isUnused())
506       continue;
507     SlotIndex Def = VNI->def;
508     LiveRange::iterator I = LI.FindSegmentContaining(Def);
509     assert(I != LI.end() && "Missing segment for VNI");
510 
511     // Is the register live before? Otherwise we may have to add a read-undef
512     // flag for subregister defs.
513     unsigned VReg = LI.reg;
514     if (MRI->shouldTrackSubRegLiveness(VReg)) {
515       if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
516         MachineInstr *MI = getInstructionFromIndex(Def);
517         MI->setRegisterDefReadUndef(VReg);
518       }
519     }
520 
521     if (I->end != Def.getDeadSlot())
522       continue;
523     if (VNI->isPHIDef()) {
524       // This is a dead PHI. Remove it.
525       VNI->markUnused();
526       LI.removeSegment(I);
527       LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
528       MayHaveSplitComponents = true;
529     } else {
530       // This is a dead def. Make sure the instruction knows.
531       MachineInstr *MI = getInstructionFromIndex(Def);
532       assert(MI && "No instruction defining live value");
533       MI->addRegisterDead(LI.reg, TRI);
534       if (dead && MI->allDefsAreDead()) {
535         LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
536         dead->push_back(MI);
537       }
538     }
539   }
540   return MayHaveSplitComponents;
541 }
542 
shrinkToUses(LiveInterval::SubRange & SR,unsigned Reg)543 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg) {
544   LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n');
545   assert(TargetRegisterInfo::isVirtualRegister(Reg)
546          && "Can only shrink virtual registers");
547   // Find all the values used, including PHI kills.
548   ShrinkToUsesWorkList WorkList;
549 
550   // Visit all instructions reading Reg.
551   SlotIndex LastIdx;
552   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
553     // Skip "undef" uses.
554     if (!MO.readsReg())
555       continue;
556     // Maybe the operand is for a subregister we don't care about.
557     unsigned SubReg = MO.getSubReg();
558     if (SubReg != 0) {
559       LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
560       if ((LaneMask & SR.LaneMask).none())
561         continue;
562     }
563     // We only need to visit each instruction once.
564     MachineInstr *UseMI = MO.getParent();
565     SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot();
566     if (Idx == LastIdx)
567       continue;
568     LastIdx = Idx;
569 
570     LiveQueryResult LRQ = SR.Query(Idx);
571     VNInfo *VNI = LRQ.valueIn();
572     // For Subranges it is possible that only undef values are left in that
573     // part of the subregister, so there is no real liverange at the use
574     if (!VNI)
575       continue;
576 
577     // Special case: An early-clobber tied operand reads and writes the
578     // register one slot early.
579     if (VNInfo *DefVNI = LRQ.valueDefined())
580       Idx = DefVNI->def;
581 
582     WorkList.push_back(std::make_pair(Idx, VNI));
583   }
584 
585   // Create a new live ranges with only minimal live segments per def.
586   LiveRange NewLR;
587   createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end()));
588   extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask);
589 
590   // Move the trimmed ranges back.
591   SR.segments.swap(NewLR.segments);
592 
593   // Remove dead PHI value numbers
594   for (VNInfo *VNI : SR.valnos) {
595     if (VNI->isUnused())
596       continue;
597     const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
598     assert(Segment != nullptr && "Missing segment for VNI");
599     if (Segment->end != VNI->def.getDeadSlot())
600       continue;
601     if (VNI->isPHIDef()) {
602       // This is a dead PHI. Remove it.
603       LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def
604                         << " may separate interval\n");
605       VNI->markUnused();
606       SR.removeSegment(*Segment);
607     }
608   }
609 
610   LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n');
611 }
612 
extendToIndices(LiveRange & LR,ArrayRef<SlotIndex> Indices,ArrayRef<SlotIndex> Undefs)613 void LiveIntervals::extendToIndices(LiveRange &LR,
614                                     ArrayRef<SlotIndex> Indices,
615                                     ArrayRef<SlotIndex> Undefs) {
616   assert(LRCalc && "LRCalc not initialized.");
617   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
618   for (SlotIndex Idx : Indices)
619     LRCalc->extend(LR, Idx, /*PhysReg=*/0, Undefs);
620 }
621 
pruneValue(LiveRange & LR,SlotIndex Kill,SmallVectorImpl<SlotIndex> * EndPoints)622 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
623                                SmallVectorImpl<SlotIndex> *EndPoints) {
624   LiveQueryResult LRQ = LR.Query(Kill);
625   VNInfo *VNI = LRQ.valueOutOrDead();
626   if (!VNI)
627     return;
628 
629   MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
630   SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
631 
632   // If VNI isn't live out from KillMBB, the value is trivially pruned.
633   if (LRQ.endPoint() < MBBEnd) {
634     LR.removeSegment(Kill, LRQ.endPoint());
635     if (EndPoints) EndPoints->push_back(LRQ.endPoint());
636     return;
637   }
638 
639   // VNI is live out of KillMBB.
640   LR.removeSegment(Kill, MBBEnd);
641   if (EndPoints) EndPoints->push_back(MBBEnd);
642 
643   // Find all blocks that are reachable from KillMBB without leaving VNI's live
644   // range. It is possible that KillMBB itself is reachable, so start a DFS
645   // from each successor.
646   using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>;
647   VisitedTy Visited;
648   for (MachineBasicBlock *Succ : KillMBB->successors()) {
649     for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
650          I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited);
651          I != E;) {
652       MachineBasicBlock *MBB = *I;
653 
654       // Check if VNI is live in to MBB.
655       SlotIndex MBBStart, MBBEnd;
656       std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
657       LiveQueryResult LRQ = LR.Query(MBBStart);
658       if (LRQ.valueIn() != VNI) {
659         // This block isn't part of the VNI segment. Prune the search.
660         I.skipChildren();
661         continue;
662       }
663 
664       // Prune the search if VNI is killed in MBB.
665       if (LRQ.endPoint() < MBBEnd) {
666         LR.removeSegment(MBBStart, LRQ.endPoint());
667         if (EndPoints) EndPoints->push_back(LRQ.endPoint());
668         I.skipChildren();
669         continue;
670       }
671 
672       // VNI is live through MBB.
673       LR.removeSegment(MBBStart, MBBEnd);
674       if (EndPoints) EndPoints->push_back(MBBEnd);
675       ++I;
676     }
677   }
678 }
679 
680 //===----------------------------------------------------------------------===//
681 // Register allocator hooks.
682 //
683 
addKillFlags(const VirtRegMap * VRM)684 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
685   // Keep track of regunit ranges.
686   SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
687   // Keep track of subregister ranges.
688   SmallVector<std::pair<const LiveInterval::SubRange*,
689                         LiveRange::const_iterator>, 4> SRs;
690 
691   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
692     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
693     if (MRI->reg_nodbg_empty(Reg))
694       continue;
695     const LiveInterval &LI = getInterval(Reg);
696     if (LI.empty())
697       continue;
698 
699     // Find the regunit intervals for the assigned register. They may overlap
700     // the virtual register live range, cancelling any kills.
701     RU.clear();
702     for (MCRegUnitIterator Unit(VRM->getPhys(Reg), TRI); Unit.isValid();
703          ++Unit) {
704       const LiveRange &RURange = getRegUnit(*Unit);
705       if (RURange.empty())
706         continue;
707       RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
708     }
709 
710     if (MRI->subRegLivenessEnabled()) {
711       SRs.clear();
712       for (const LiveInterval::SubRange &SR : LI.subranges()) {
713         SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end)));
714       }
715     }
716 
717     // Every instruction that kills Reg corresponds to a segment range end
718     // point.
719     for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
720          ++RI) {
721       // A block index indicates an MBB edge.
722       if (RI->end.isBlock())
723         continue;
724       MachineInstr *MI = getInstructionFromIndex(RI->end);
725       if (!MI)
726         continue;
727 
728       // Check if any of the regunits are live beyond the end of RI. That could
729       // happen when a physreg is defined as a copy of a virtreg:
730       //
731       //   %eax = COPY %5
732       //   FOO %5             <--- MI, cancel kill because %eax is live.
733       //   BAR killed %eax
734       //
735       // There should be no kill flag on FOO when %5 is rewritten as %eax.
736       for (auto &RUP : RU) {
737         const LiveRange &RURange = *RUP.first;
738         LiveRange::const_iterator &I = RUP.second;
739         if (I == RURange.end())
740           continue;
741         I = RURange.advanceTo(I, RI->end);
742         if (I == RURange.end() || I->start >= RI->end)
743           continue;
744         // I is overlapping RI.
745         goto CancelKill;
746       }
747 
748       if (MRI->subRegLivenessEnabled()) {
749         // When reading a partial undefined value we must not add a kill flag.
750         // The regalloc might have used the undef lane for something else.
751         // Example:
752         //     %1 = ...                  ; R32: %1
753         //     %2:high16 = ...           ; R64: %2
754         //        = read killed %2        ; R64: %2
755         //        = read %1              ; R32: %1
756         // The <kill> flag is correct for %2, but the register allocator may
757         // assign R0L to %1, and R0 to %2 because the low 32bits of R0
758         // are actually never written by %2. After assignment the <kill>
759         // flag at the read instruction is invalid.
760         LaneBitmask DefinedLanesMask;
761         if (!SRs.empty()) {
762           // Compute a mask of lanes that are defined.
763           DefinedLanesMask = LaneBitmask::getNone();
764           for (auto &SRP : SRs) {
765             const LiveInterval::SubRange &SR = *SRP.first;
766             LiveRange::const_iterator &I = SRP.second;
767             if (I == SR.end())
768               continue;
769             I = SR.advanceTo(I, RI->end);
770             if (I == SR.end() || I->start >= RI->end)
771               continue;
772             // I is overlapping RI
773             DefinedLanesMask |= SR.LaneMask;
774           }
775         } else
776           DefinedLanesMask = LaneBitmask::getAll();
777 
778         bool IsFullWrite = false;
779         for (const MachineOperand &MO : MI->operands()) {
780           if (!MO.isReg() || MO.getReg() != Reg)
781             continue;
782           if (MO.isUse()) {
783             // Reading any undefined lanes?
784             LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
785             if ((UseMask & ~DefinedLanesMask).any())
786               goto CancelKill;
787           } else if (MO.getSubReg() == 0) {
788             // Writing to the full register?
789             assert(MO.isDef());
790             IsFullWrite = true;
791           }
792         }
793 
794         // If an instruction writes to a subregister, a new segment starts in
795         // the LiveInterval. But as this is only overriding part of the register
796         // adding kill-flags is not correct here after registers have been
797         // assigned.
798         if (!IsFullWrite) {
799           // Next segment has to be adjacent in the subregister write case.
800           LiveRange::const_iterator N = std::next(RI);
801           if (N != LI.end() && N->start == RI->end)
802             goto CancelKill;
803         }
804       }
805 
806       MI->addRegisterKilled(Reg, nullptr);
807       continue;
808 CancelKill:
809       MI->clearRegisterKills(Reg, nullptr);
810     }
811   }
812 }
813 
814 MachineBasicBlock*
intervalIsInOneMBB(const LiveInterval & LI) const815 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
816   // A local live range must be fully contained inside the block, meaning it is
817   // defined and killed at instructions, not at block boundaries. It is not
818   // live in or out of any block.
819   //
820   // It is technically possible to have a PHI-defined live range identical to a
821   // single block, but we are going to return false in that case.
822 
823   SlotIndex Start = LI.beginIndex();
824   if (Start.isBlock())
825     return nullptr;
826 
827   SlotIndex Stop = LI.endIndex();
828   if (Stop.isBlock())
829     return nullptr;
830 
831   // getMBBFromIndex doesn't need to search the MBB table when both indexes
832   // belong to proper instructions.
833   MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
834   MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
835   return MBB1 == MBB2 ? MBB1 : nullptr;
836 }
837 
838 bool
hasPHIKill(const LiveInterval & LI,const VNInfo * VNI) const839 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
840   for (const VNInfo *PHI : LI.valnos) {
841     if (PHI->isUnused() || !PHI->isPHIDef())
842       continue;
843     const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
844     // Conservatively return true instead of scanning huge predecessor lists.
845     if (PHIMBB->pred_size() > 100)
846       return true;
847     for (const MachineBasicBlock *Pred : PHIMBB->predecessors())
848       if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred)))
849         return true;
850   }
851   return false;
852 }
853 
getSpillWeight(bool isDef,bool isUse,const MachineBlockFrequencyInfo * MBFI,const MachineInstr & MI)854 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
855                                     const MachineBlockFrequencyInfo *MBFI,
856                                     const MachineInstr &MI) {
857   return getSpillWeight(isDef, isUse, MBFI, MI.getParent());
858 }
859 
getSpillWeight(bool isDef,bool isUse,const MachineBlockFrequencyInfo * MBFI,const MachineBasicBlock * MBB)860 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
861                                     const MachineBlockFrequencyInfo *MBFI,
862                                     const MachineBasicBlock *MBB) {
863   BlockFrequency Freq = MBFI->getBlockFreq(MBB);
864   const float Scale = 1.0f / MBFI->getEntryFreq();
865   return (isDef + isUse) * (Freq.getFrequency() * Scale);
866 }
867 
868 LiveRange::Segment
addSegmentToEndOfBlock(unsigned reg,MachineInstr & startInst)869 LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr &startInst) {
870   LiveInterval& Interval = createEmptyInterval(reg);
871   VNInfo *VN = Interval.getNextValue(
872       SlotIndex(getInstructionIndex(startInst).getRegSlot()),
873       getVNInfoAllocator());
874   LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()),
875                        getMBBEndIdx(startInst.getParent()), VN);
876   Interval.addSegment(S);
877 
878   return S;
879 }
880 
881 //===----------------------------------------------------------------------===//
882 //                          Register mask functions
883 //===----------------------------------------------------------------------===//
884 
checkRegMaskInterference(LiveInterval & LI,BitVector & UsableRegs)885 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
886                                              BitVector &UsableRegs) {
887   if (LI.empty())
888     return false;
889   LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
890 
891   // Use a smaller arrays for local live ranges.
892   ArrayRef<SlotIndex> Slots;
893   ArrayRef<const uint32_t*> Bits;
894   if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
895     Slots = getRegMaskSlotsInBlock(MBB->getNumber());
896     Bits = getRegMaskBitsInBlock(MBB->getNumber());
897   } else {
898     Slots = getRegMaskSlots();
899     Bits = getRegMaskBits();
900   }
901 
902   // We are going to enumerate all the register mask slots contained in LI.
903   // Start with a binary search of RegMaskSlots to find a starting point.
904   ArrayRef<SlotIndex>::iterator SlotI =
905     std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
906   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
907 
908   // No slots in range, LI begins after the last call.
909   if (SlotI == SlotE)
910     return false;
911 
912   bool Found = false;
913   while (true) {
914     assert(*SlotI >= LiveI->start);
915     // Loop over all slots overlapping this segment.
916     while (*SlotI < LiveI->end) {
917       // *SlotI overlaps LI. Collect mask bits.
918       if (!Found) {
919         // This is the first overlap. Initialize UsableRegs to all ones.
920         UsableRegs.clear();
921         UsableRegs.resize(TRI->getNumRegs(), true);
922         Found = true;
923       }
924       // Remove usable registers clobbered by this mask.
925       UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
926       if (++SlotI == SlotE)
927         return Found;
928     }
929     // *SlotI is beyond the current LI segment.
930     LiveI = LI.advanceTo(LiveI, *SlotI);
931     if (LiveI == LiveE)
932       return Found;
933     // Advance SlotI until it overlaps.
934     while (*SlotI < LiveI->start)
935       if (++SlotI == SlotE)
936         return Found;
937   }
938 }
939 
940 //===----------------------------------------------------------------------===//
941 //                         IntervalUpdate class.
942 //===----------------------------------------------------------------------===//
943 
944 /// Toolkit used by handleMove to trim or extend live intervals.
945 class LiveIntervals::HMEditor {
946 private:
947   LiveIntervals& LIS;
948   const MachineRegisterInfo& MRI;
949   const TargetRegisterInfo& TRI;
950   SlotIndex OldIdx;
951   SlotIndex NewIdx;
952   SmallPtrSet<LiveRange*, 8> Updated;
953   bool UpdateFlags;
954 
955 public:
HMEditor(LiveIntervals & LIS,const MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI,SlotIndex OldIdx,SlotIndex NewIdx,bool UpdateFlags)956   HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
957            const TargetRegisterInfo& TRI,
958            SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
959     : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
960       UpdateFlags(UpdateFlags) {}
961 
962   // FIXME: UpdateFlags is a workaround that creates live intervals for all
963   // physregs, even those that aren't needed for regalloc, in order to update
964   // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
965   // flags, and postRA passes will use a live register utility instead.
getRegUnitLI(unsigned Unit)966   LiveRange *getRegUnitLI(unsigned Unit) {
967     if (UpdateFlags && !MRI.isReservedRegUnit(Unit))
968       return &LIS.getRegUnit(Unit);
969     return LIS.getCachedRegUnit(Unit);
970   }
971 
972   /// Update all live ranges touched by MI, assuming a move from OldIdx to
973   /// NewIdx.
updateAllRanges(MachineInstr * MI)974   void updateAllRanges(MachineInstr *MI) {
975     LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": "
976                       << *MI);
977     bool hasRegMask = false;
978     for (MachineOperand &MO : MI->operands()) {
979       if (MO.isRegMask())
980         hasRegMask = true;
981       if (!MO.isReg())
982         continue;
983       if (MO.isUse()) {
984         if (!MO.readsReg())
985           continue;
986         // Aggressively clear all kill flags.
987         // They are reinserted by VirtRegRewriter.
988         MO.setIsKill(false);
989       }
990 
991       unsigned Reg = MO.getReg();
992       if (!Reg)
993         continue;
994       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
995         LiveInterval &LI = LIS.getInterval(Reg);
996         if (LI.hasSubRanges()) {
997           unsigned SubReg = MO.getSubReg();
998           LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
999                                         : MRI.getMaxLaneMaskForVReg(Reg);
1000           for (LiveInterval::SubRange &S : LI.subranges()) {
1001             if ((S.LaneMask & LaneMask).none())
1002               continue;
1003             updateRange(S, Reg, S.LaneMask);
1004           }
1005         }
1006         updateRange(LI, Reg, LaneBitmask::getNone());
1007         continue;
1008       }
1009 
1010       // For physregs, only update the regunits that actually have a
1011       // precomputed live range.
1012       for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
1013         if (LiveRange *LR = getRegUnitLI(*Units))
1014           updateRange(*LR, *Units, LaneBitmask::getNone());
1015     }
1016     if (hasRegMask)
1017       updateRegMaskSlots();
1018   }
1019 
1020 private:
1021   /// Update a single live range, assuming an instruction has been moved from
1022   /// OldIdx to NewIdx.
updateRange(LiveRange & LR,unsigned Reg,LaneBitmask LaneMask)1023   void updateRange(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
1024     if (!Updated.insert(&LR).second)
1025       return;
1026     LLVM_DEBUG({
1027       dbgs() << "     ";
1028       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1029         dbgs() << printReg(Reg);
1030         if (LaneMask.any())
1031           dbgs() << " L" << PrintLaneMask(LaneMask);
1032       } else {
1033         dbgs() << printRegUnit(Reg, &TRI);
1034       }
1035       dbgs() << ":\t" << LR << '\n';
1036     });
1037     if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
1038       handleMoveDown(LR);
1039     else
1040       handleMoveUp(LR, Reg, LaneMask);
1041     LLVM_DEBUG(dbgs() << "        -->\t" << LR << '\n');
1042     LR.verify();
1043   }
1044 
1045   /// Update LR to reflect an instruction has been moved downwards from OldIdx
1046   /// to NewIdx (OldIdx < NewIdx).
handleMoveDown(LiveRange & LR)1047   void handleMoveDown(LiveRange &LR) {
1048     LiveRange::iterator E = LR.end();
1049     // Segment going into OldIdx.
1050     LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1051 
1052     // No value live before or after OldIdx? Nothing to do.
1053     if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1054       return;
1055 
1056     LiveRange::iterator OldIdxOut;
1057     // Do we have a value live-in to OldIdx?
1058     if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1059       // If the live-in value already extends to NewIdx, there is nothing to do.
1060       if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end))
1061         return;
1062       // Aggressively remove all kill flags from the old kill point.
1063       // Kill flags shouldn't be used while live intervals exist, they will be
1064       // reinserted by VirtRegRewriter.
1065       if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end))
1066         for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
1067           if (MO->isReg() && MO->isUse())
1068             MO->setIsKill(false);
1069 
1070       // Is there a def before NewIdx which is not OldIdx?
1071       LiveRange::iterator Next = std::next(OldIdxIn);
1072       if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) &&
1073           SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1074         // If we are here then OldIdx was just a use but not a def. We only have
1075         // to ensure liveness extends to NewIdx.
1076         LiveRange::iterator NewIdxIn =
1077           LR.advanceTo(Next, NewIdx.getBaseIndex());
1078         // Extend the segment before NewIdx if necessary.
1079         if (NewIdxIn == E ||
1080             !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) {
1081           LiveRange::iterator Prev = std::prev(NewIdxIn);
1082           Prev->end = NewIdx.getRegSlot();
1083         }
1084         // Extend OldIdxIn.
1085         OldIdxIn->end = Next->start;
1086         return;
1087       }
1088 
1089       // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR
1090       // invalid by overlapping ranges.
1091       bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1092       OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber());
1093       // If this was not a kill, then there was no def and we're done.
1094       if (!isKill)
1095         return;
1096 
1097       // Did we have a Def at OldIdx?
1098       OldIdxOut = Next;
1099       if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1100         return;
1101     } else {
1102       OldIdxOut = OldIdxIn;
1103     }
1104 
1105     // If we are here then there is a Definition at OldIdx. OldIdxOut points
1106     // to the segment starting there.
1107     assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1108            "No def?");
1109     VNInfo *OldIdxVNI = OldIdxOut->valno;
1110     assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1111 
1112     // If the defined value extends beyond NewIdx, just move the beginning
1113     // of the segment to NewIdx.
1114     SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1115     if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) {
1116       OldIdxVNI->def = NewIdxDef;
1117       OldIdxOut->start = OldIdxVNI->def;
1118       return;
1119     }
1120 
1121     // If we are here then we have a Definition at OldIdx which ends before
1122     // NewIdx.
1123 
1124     // Is there an existing Def at NewIdx?
1125     LiveRange::iterator AfterNewIdx
1126       = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot());
1127     bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1128     if (!OldIdxDefIsDead &&
1129         SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) {
1130       // OldIdx is not a dead def, and NewIdxDef is inside a new interval.
1131       VNInfo *DefVNI;
1132       if (OldIdxOut != LR.begin() &&
1133           !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end,
1134                                      OldIdxOut->start)) {
1135         // There is no gap between OldIdxOut and its predecessor anymore,
1136         // merge them.
1137         LiveRange::iterator IPrev = std::prev(OldIdxOut);
1138         DefVNI = OldIdxVNI;
1139         IPrev->end = OldIdxOut->end;
1140       } else {
1141         // The value is live in to OldIdx
1142         LiveRange::iterator INext = std::next(OldIdxOut);
1143         assert(INext != E && "Must have following segment");
1144         // We merge OldIdxOut and its successor. As we're dealing with subreg
1145         // reordering, there is always a successor to OldIdxOut in the same BB
1146         // We don't need INext->valno anymore and will reuse for the new segment
1147         // we create later.
1148         DefVNI = OldIdxVNI;
1149         INext->start = OldIdxOut->end;
1150         INext->valno->def = INext->start;
1151       }
1152       // If NewIdx is behind the last segment, extend that and append a new one.
1153       if (AfterNewIdx == E) {
1154         // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1155         // one position.
1156         //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn -| end
1157         // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end
1158         std::copy(std::next(OldIdxOut), E, OldIdxOut);
1159         // The last segment is undefined now, reuse it for a dead def.
1160         LiveRange::iterator NewSegment = std::prev(E);
1161         *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1162                                          DefVNI);
1163         DefVNI->def = NewIdxDef;
1164 
1165         LiveRange::iterator Prev = std::prev(NewSegment);
1166         Prev->end = NewIdxDef;
1167       } else {
1168         // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1169         // one position.
1170         //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -|
1171         // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -|
1172         std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut);
1173         LiveRange::iterator Prev = std::prev(AfterNewIdx);
1174         // We have two cases:
1175         if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) {
1176           // Case 1: NewIdx is inside a liverange. Split this liverange at
1177           // NewIdxDef into the segment "Prev" followed by "NewSegment".
1178           LiveRange::iterator NewSegment = AfterNewIdx;
1179           *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno);
1180           Prev->valno->def = NewIdxDef;
1181 
1182           *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI);
1183           DefVNI->def = Prev->start;
1184         } else {
1185           // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and
1186           // turn Prev into a segment from NewIdx to AfterNewIdx->start.
1187           *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI);
1188           DefVNI->def = NewIdxDef;
1189           assert(DefVNI != AfterNewIdx->valno);
1190         }
1191       }
1192       return;
1193     }
1194 
1195     if (AfterNewIdx != E &&
1196         SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) {
1197       // There is an existing def at NewIdx. The def at OldIdx is coalesced into
1198       // that value.
1199       assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?");
1200       LR.removeValNo(OldIdxVNI);
1201     } else {
1202       // There was no existing def at NewIdx. We need to create a dead def
1203       // at NewIdx. Shift segments over the old OldIdxOut segment, this frees
1204       // a new segment at the place where we want to construct the dead def.
1205       //    |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -|
1206       // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -|
1207       assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators");
1208       std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut);
1209       // We can reuse OldIdxVNI now.
1210       LiveRange::iterator NewSegment = std::prev(AfterNewIdx);
1211       VNInfo *NewSegmentVNI = OldIdxVNI;
1212       NewSegmentVNI->def = NewIdxDef;
1213       *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1214                                        NewSegmentVNI);
1215     }
1216   }
1217 
1218   /// Update LR to reflect an instruction has been moved upwards from OldIdx
1219   /// to NewIdx (NewIdx < OldIdx).
handleMoveUp(LiveRange & LR,unsigned Reg,LaneBitmask LaneMask)1220   void handleMoveUp(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
1221     LiveRange::iterator E = LR.end();
1222     // Segment going into OldIdx.
1223     LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1224 
1225     // No value live before or after OldIdx? Nothing to do.
1226     if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1227       return;
1228 
1229     LiveRange::iterator OldIdxOut;
1230     // Do we have a value live-in to OldIdx?
1231     if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1232       // If the live-in value isn't killed here, then we have no Def at
1233       // OldIdx, moreover the value must be live at NewIdx so there is nothing
1234       // to do.
1235       bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1236       if (!isKill)
1237         return;
1238 
1239       // At this point we have to move OldIdxIn->end back to the nearest
1240       // previous use or (dead-)def but no further than NewIdx.
1241       SlotIndex DefBeforeOldIdx
1242         = std::max(OldIdxIn->start.getDeadSlot(),
1243                    NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()));
1244       OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask);
1245 
1246       // Did we have a Def at OldIdx? If not we are done now.
1247       OldIdxOut = std::next(OldIdxIn);
1248       if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1249         return;
1250     } else {
1251       OldIdxOut = OldIdxIn;
1252       OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E;
1253     }
1254 
1255     // If we are here then there is a Definition at OldIdx. OldIdxOut points
1256     // to the segment starting there.
1257     assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1258            "No def?");
1259     VNInfo *OldIdxVNI = OldIdxOut->valno;
1260     assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1261     bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1262 
1263     // Is there an existing def at NewIdx?
1264     SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1265     LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot());
1266     if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) {
1267       assert(NewIdxOut->valno != OldIdxVNI &&
1268              "Same value defined more than once?");
1269       // If OldIdx was a dead def remove it.
1270       if (!OldIdxDefIsDead) {
1271         // Remove segment starting at NewIdx and move begin of OldIdxOut to
1272         // NewIdx so it can take its place.
1273         OldIdxVNI->def = NewIdxDef;
1274         OldIdxOut->start = NewIdxDef;
1275         LR.removeValNo(NewIdxOut->valno);
1276       } else {
1277         // Simply remove the dead def at OldIdx.
1278         LR.removeValNo(OldIdxVNI);
1279       }
1280     } else {
1281       // Previously nothing was live after NewIdx, so all we have to do now is
1282       // move the begin of OldIdxOut to NewIdx.
1283       if (!OldIdxDefIsDead) {
1284         // Do we have any intermediate Defs between OldIdx and NewIdx?
1285         if (OldIdxIn != E &&
1286             SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) {
1287           // OldIdx is not a dead def and NewIdx is before predecessor start.
1288           LiveRange::iterator NewIdxIn = NewIdxOut;
1289           assert(NewIdxIn == LR.find(NewIdx.getBaseIndex()));
1290           const SlotIndex SplitPos = NewIdxDef;
1291           OldIdxVNI = OldIdxIn->valno;
1292 
1293           // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut.
1294           OldIdxOut->valno->def = OldIdxIn->start;
1295           *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end,
1296                                           OldIdxOut->valno);
1297           // OldIdxIn and OldIdxVNI are now undef and can be overridden.
1298           // We Slide [NewIdxIn, OldIdxIn) down one position.
1299           //    |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -|
1300           // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -|
1301           std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut);
1302           // NewIdxIn is now considered undef so we can reuse it for the moved
1303           // value.
1304           LiveRange::iterator NewSegment = NewIdxIn;
1305           LiveRange::iterator Next = std::next(NewSegment);
1306           if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1307             // There is no gap between NewSegment and its predecessor.
1308             *NewSegment = LiveRange::Segment(Next->start, SplitPos,
1309                                              Next->valno);
1310             *Next = LiveRange::Segment(SplitPos, Next->end, OldIdxVNI);
1311             Next->valno->def = SplitPos;
1312           } else {
1313             // There is a gap between NewSegment and its predecessor
1314             // Value becomes live in.
1315             *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI);
1316             NewSegment->valno->def = SplitPos;
1317           }
1318         } else {
1319           // Leave the end point of a live def.
1320           OldIdxOut->start = NewIdxDef;
1321           OldIdxVNI->def = NewIdxDef;
1322           if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end))
1323             OldIdxIn->end = NewIdx.getRegSlot();
1324         }
1325       } else if (OldIdxIn != E
1326           && SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx)
1327           && SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) {
1328         // OldIdxVNI is a dead def that has been moved into the middle of
1329         // another value in LR. That can happen when LR is a whole register,
1330         // but the dead def is a write to a subreg that is dead at NewIdx.
1331         // The dead def may have been moved across other values
1332         // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1333         // down one position.
1334         //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1335         // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1336         std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1337         // Modify the segment at NewIdxOut and the following segment to meet at
1338         // the point of the dead def, with the following segment getting
1339         // OldIdxVNI as its value number.
1340         *NewIdxOut = LiveRange::Segment(
1341             NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno);
1342         *(NewIdxOut + 1) = LiveRange::Segment(
1343             NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI);
1344         OldIdxVNI->def = NewIdxDef;
1345         // Modify subsequent segments to be defined by the moved def OldIdxVNI.
1346         for (auto Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx)
1347           Idx->valno = OldIdxVNI;
1348         // Aggressively remove all dead flags from the former dead definition.
1349         // Kill/dead flags shouldn't be used while live intervals exist; they
1350         // will be reinserted by VirtRegRewriter.
1351         if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx))
1352           for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
1353             if (MO->isReg() && !MO->isUse())
1354               MO->setIsDead(false);
1355       } else {
1356         // OldIdxVNI is a dead def. It may have been moved across other values
1357         // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1358         // down one position.
1359         //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1360         // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1361         std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1362         // OldIdxVNI can be reused now to build a new dead def segment.
1363         LiveRange::iterator NewSegment = NewIdxOut;
1364         VNInfo *NewSegmentVNI = OldIdxVNI;
1365         *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1366                                          NewSegmentVNI);
1367         NewSegmentVNI->def = NewIdxDef;
1368       }
1369     }
1370   }
1371 
updateRegMaskSlots()1372   void updateRegMaskSlots() {
1373     SmallVectorImpl<SlotIndex>::iterator RI =
1374       std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
1375                        OldIdx);
1376     assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
1377            "No RegMask at OldIdx.");
1378     *RI = NewIdx.getRegSlot();
1379     assert((RI == LIS.RegMaskSlots.begin() ||
1380             SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
1381            "Cannot move regmask instruction above another call");
1382     assert((std::next(RI) == LIS.RegMaskSlots.end() ||
1383             SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
1384            "Cannot move regmask instruction below another call");
1385   }
1386 
1387   // Return the last use of reg between NewIdx and OldIdx.
findLastUseBefore(SlotIndex Before,unsigned Reg,LaneBitmask LaneMask)1388   SlotIndex findLastUseBefore(SlotIndex Before, unsigned Reg,
1389                               LaneBitmask LaneMask) {
1390     if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1391       SlotIndex LastUse = Before;
1392       for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
1393         if (MO.isUndef())
1394           continue;
1395         unsigned SubReg = MO.getSubReg();
1396         if (SubReg != 0 && LaneMask.any()
1397             && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none())
1398           continue;
1399 
1400         const MachineInstr &MI = *MO.getParent();
1401         SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1402         if (InstSlot > LastUse && InstSlot < OldIdx)
1403           LastUse = InstSlot.getRegSlot();
1404       }
1405       return LastUse;
1406     }
1407 
1408     // This is a regunit interval, so scanning the use list could be very
1409     // expensive. Scan upwards from OldIdx instead.
1410     assert(Before < OldIdx && "Expected upwards move");
1411     SlotIndexes *Indexes = LIS.getSlotIndexes();
1412     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before);
1413 
1414     // OldIdx may not correspond to an instruction any longer, so set MII to
1415     // point to the next instruction after OldIdx, or MBB->end().
1416     MachineBasicBlock::iterator MII = MBB->end();
1417     if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1418                            Indexes->getNextNonNullIndex(OldIdx)))
1419       if (MI->getParent() == MBB)
1420         MII = MI;
1421 
1422     MachineBasicBlock::iterator Begin = MBB->begin();
1423     while (MII != Begin) {
1424       if ((--MII)->isDebugInstr())
1425         continue;
1426       SlotIndex Idx = Indexes->getInstructionIndex(*MII);
1427 
1428       // Stop searching when Before is reached.
1429       if (!SlotIndex::isEarlierInstr(Before, Idx))
1430         return Before;
1431 
1432       // Check if MII uses Reg.
1433       for (MIBundleOperands MO(*MII); MO.isValid(); ++MO)
1434         if (MO->isReg() && !MO->isUndef() &&
1435             TargetRegisterInfo::isPhysicalRegister(MO->getReg()) &&
1436             TRI.hasRegUnit(MO->getReg(), Reg))
1437           return Idx.getRegSlot();
1438     }
1439     // Didn't reach Before. It must be the first instruction in the block.
1440     return Before;
1441   }
1442 };
1443 
handleMove(MachineInstr & MI,bool UpdateFlags)1444 void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) {
1445   assert(!MI.isBundled() && "Can't handle bundled instructions yet.");
1446   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1447   Indexes->removeMachineInstrFromMaps(MI);
1448   SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1449   assert(getMBBStartIdx(MI.getParent()) <= OldIndex &&
1450          OldIndex < getMBBEndIdx(MI.getParent()) &&
1451          "Cannot handle moves across basic block boundaries.");
1452 
1453   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1454   HME.updateAllRanges(&MI);
1455 }
1456 
handleMoveIntoBundle(MachineInstr & MI,MachineInstr & BundleStart,bool UpdateFlags)1457 void LiveIntervals::handleMoveIntoBundle(MachineInstr &MI,
1458                                          MachineInstr &BundleStart,
1459                                          bool UpdateFlags) {
1460   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1461   SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
1462   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1463   HME.updateAllRanges(&MI);
1464 }
1465 
repairOldRegInRange(const MachineBasicBlock::iterator Begin,const MachineBasicBlock::iterator End,const SlotIndex endIdx,LiveRange & LR,const unsigned Reg,LaneBitmask LaneMask)1466 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
1467                                         const MachineBasicBlock::iterator End,
1468                                         const SlotIndex endIdx,
1469                                         LiveRange &LR, const unsigned Reg,
1470                                         LaneBitmask LaneMask) {
1471   LiveInterval::iterator LII = LR.find(endIdx);
1472   SlotIndex lastUseIdx;
1473   if (LII == LR.begin()) {
1474     // This happens when the function is called for a subregister that only
1475     // occurs _after_ the range that is to be repaired.
1476     return;
1477   }
1478   if (LII != LR.end() && LII->start < endIdx)
1479     lastUseIdx = LII->end;
1480   else
1481     --LII;
1482 
1483   for (MachineBasicBlock::iterator I = End; I != Begin;) {
1484     --I;
1485     MachineInstr &MI = *I;
1486     if (MI.isDebugInstr())
1487       continue;
1488 
1489     SlotIndex instrIdx = getInstructionIndex(MI);
1490     bool isStartValid = getInstructionFromIndex(LII->start);
1491     bool isEndValid = getInstructionFromIndex(LII->end);
1492 
1493     // FIXME: This doesn't currently handle early-clobber or multiple removed
1494     // defs inside of the region to repair.
1495     for (MachineInstr::mop_iterator OI = MI.operands_begin(),
1496                                     OE = MI.operands_end();
1497          OI != OE; ++OI) {
1498       const MachineOperand &MO = *OI;
1499       if (!MO.isReg() || MO.getReg() != Reg)
1500         continue;
1501 
1502       unsigned SubReg = MO.getSubReg();
1503       LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
1504       if ((Mask & LaneMask).none())
1505         continue;
1506 
1507       if (MO.isDef()) {
1508         if (!isStartValid) {
1509           if (LII->end.isDead()) {
1510             SlotIndex prevStart;
1511             if (LII != LR.begin())
1512               prevStart = std::prev(LII)->start;
1513 
1514             // FIXME: This could be more efficient if there was a
1515             // removeSegment method that returned an iterator.
1516             LR.removeSegment(*LII, true);
1517             if (prevStart.isValid())
1518               LII = LR.find(prevStart);
1519             else
1520               LII = LR.begin();
1521           } else {
1522             LII->start = instrIdx.getRegSlot();
1523             LII->valno->def = instrIdx.getRegSlot();
1524             if (MO.getSubReg() && !MO.isUndef())
1525               lastUseIdx = instrIdx.getRegSlot();
1526             else
1527               lastUseIdx = SlotIndex();
1528             continue;
1529           }
1530         }
1531 
1532         if (!lastUseIdx.isValid()) {
1533           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1534           LiveRange::Segment S(instrIdx.getRegSlot(),
1535                                instrIdx.getDeadSlot(), VNI);
1536           LII = LR.addSegment(S);
1537         } else if (LII->start != instrIdx.getRegSlot()) {
1538           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1539           LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1540           LII = LR.addSegment(S);
1541         }
1542 
1543         if (MO.getSubReg() && !MO.isUndef())
1544           lastUseIdx = instrIdx.getRegSlot();
1545         else
1546           lastUseIdx = SlotIndex();
1547       } else if (MO.isUse()) {
1548         // FIXME: This should probably be handled outside of this branch,
1549         // either as part of the def case (for defs inside of the region) or
1550         // after the loop over the region.
1551         if (!isEndValid && !LII->end.isBlock())
1552           LII->end = instrIdx.getRegSlot();
1553         if (!lastUseIdx.isValid())
1554           lastUseIdx = instrIdx.getRegSlot();
1555       }
1556     }
1557   }
1558 }
1559 
1560 void
repairIntervalsInRange(MachineBasicBlock * MBB,MachineBasicBlock::iterator Begin,MachineBasicBlock::iterator End,ArrayRef<unsigned> OrigRegs)1561 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1562                                       MachineBasicBlock::iterator Begin,
1563                                       MachineBasicBlock::iterator End,
1564                                       ArrayRef<unsigned> OrigRegs) {
1565   // Find anchor points, which are at the beginning/end of blocks or at
1566   // instructions that already have indexes.
1567   while (Begin != MBB->begin() && !Indexes->hasIndex(*Begin))
1568     --Begin;
1569   while (End != MBB->end() && !Indexes->hasIndex(*End))
1570     ++End;
1571 
1572   SlotIndex endIdx;
1573   if (End == MBB->end())
1574     endIdx = getMBBEndIdx(MBB).getPrevSlot();
1575   else
1576     endIdx = getInstructionIndex(*End);
1577 
1578   Indexes->repairIndexesInRange(MBB, Begin, End);
1579 
1580   for (MachineBasicBlock::iterator I = End; I != Begin;) {
1581     --I;
1582     MachineInstr &MI = *I;
1583     if (MI.isDebugInstr())
1584       continue;
1585     for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(),
1586                                           MOE = MI.operands_end();
1587          MOI != MOE; ++MOI) {
1588       if (MOI->isReg() &&
1589           TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
1590           !hasInterval(MOI->getReg())) {
1591         createAndComputeVirtRegInterval(MOI->getReg());
1592       }
1593     }
1594   }
1595 
1596   for (unsigned Reg : OrigRegs) {
1597     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1598       continue;
1599 
1600     LiveInterval &LI = getInterval(Reg);
1601     // FIXME: Should we support undefs that gain defs?
1602     if (!LI.hasAtLeastOneValue())
1603       continue;
1604 
1605     for (LiveInterval::SubRange &S : LI.subranges())
1606       repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask);
1607 
1608     repairOldRegInRange(Begin, End, endIdx, LI, Reg);
1609   }
1610 }
1611 
removePhysRegDefAt(unsigned Reg,SlotIndex Pos)1612 void LiveIntervals::removePhysRegDefAt(unsigned Reg, SlotIndex Pos) {
1613   for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) {
1614     if (LiveRange *LR = getCachedRegUnit(*Unit))
1615       if (VNInfo *VNI = LR->getVNInfoAt(Pos))
1616         LR->removeValNo(VNI);
1617   }
1618 }
1619 
removeVRegDefAt(LiveInterval & LI,SlotIndex Pos)1620 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
1621   // LI may not have the main range computed yet, but its subranges may
1622   // be present.
1623   VNInfo *VNI = LI.getVNInfoAt(Pos);
1624   if (VNI != nullptr) {
1625     assert(VNI->def.getBaseIndex() == Pos.getBaseIndex());
1626     LI.removeValNo(VNI);
1627   }
1628 
1629   // Also remove the value defined in subranges.
1630   for (LiveInterval::SubRange &S : LI.subranges()) {
1631     if (VNInfo *SVNI = S.getVNInfoAt(Pos))
1632       if (SVNI->def.getBaseIndex() == Pos.getBaseIndex())
1633         S.removeValNo(SVNI);
1634   }
1635   LI.removeEmptySubRanges();
1636 }
1637 
splitSeparateComponents(LiveInterval & LI,SmallVectorImpl<LiveInterval * > & SplitLIs)1638 void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
1639     SmallVectorImpl<LiveInterval*> &SplitLIs) {
1640   ConnectedVNInfoEqClasses ConEQ(*this);
1641   unsigned NumComp = ConEQ.Classify(LI);
1642   if (NumComp <= 1)
1643     return;
1644   LLVM_DEBUG(dbgs() << "  Split " << NumComp << " components: " << LI << '\n');
1645   unsigned Reg = LI.reg;
1646   const TargetRegisterClass *RegClass = MRI->getRegClass(Reg);
1647   for (unsigned I = 1; I < NumComp; ++I) {
1648     unsigned NewVReg = MRI->createVirtualRegister(RegClass);
1649     LiveInterval &NewLI = createEmptyInterval(NewVReg);
1650     SplitLIs.push_back(&NewLI);
1651   }
1652   ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
1653 }
1654 
constructMainRangeFromSubranges(LiveInterval & LI)1655 void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) {
1656   assert(LRCalc && "LRCalc not initialized.");
1657   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
1658   LRCalc->constructMainRangeFromSubranges(LI);
1659 }
1660