1 //===- IRSymtab.cpp - implementation of IR symbol tables ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Object/IRSymtab.h"
11 #include "llvm/ADT/ArrayRef.h"
12 #include "llvm/ADT/DenseMap.h"
13 #include "llvm/ADT/SmallPtrSet.h"
14 #include "llvm/ADT/SmallString.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/Config/llvm-config.h"
19 #include "llvm/IR/Comdat.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/GlobalAlias.h"
22 #include "llvm/IR/GlobalObject.h"
23 #include "llvm/IR/Mangler.h"
24 #include "llvm/IR/Metadata.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Bitcode/BitcodeReader.h"
27 #include "llvm/MC/StringTableBuilder.h"
28 #include "llvm/Object/IRObjectFile.h"
29 #include "llvm/Object/ModuleSymbolTable.h"
30 #include "llvm/Object/SymbolicFile.h"
31 #include "llvm/Support/Allocator.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/Error.h"
34 #include "llvm/Support/StringSaver.h"
35 #include "llvm/Support/VCSRevision.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <cassert>
38 #include <string>
39 #include <utility>
40 #include <vector>
41 
42 using namespace llvm;
43 using namespace irsymtab;
44 
45 static const char *LibcallRoutineNames[] = {
46 #define HANDLE_LIBCALL(code, name) name,
47 #include "llvm/IR/RuntimeLibcalls.def"
48 #undef HANDLE_LIBCALL
49 };
50 
51 namespace {
52 
getExpectedProducerName()53 const char *getExpectedProducerName() {
54   static char DefaultName[] = LLVM_VERSION_STRING
55 #ifdef LLVM_REVISION
56       " " LLVM_REVISION
57 #endif
58       ;
59   // Allows for testing of the irsymtab writer and upgrade mechanism. This
60   // environment variable should not be set by users.
61   if (char *OverrideName = getenv("LLVM_OVERRIDE_PRODUCER"))
62     return OverrideName;
63   return DefaultName;
64 }
65 
66 const char *kExpectedProducerName = getExpectedProducerName();
67 
68 /// Stores the temporary state that is required to build an IR symbol table.
69 struct Builder {
70   SmallVector<char, 0> &Symtab;
71   StringTableBuilder &StrtabBuilder;
72   StringSaver Saver;
73 
74   // This ctor initializes a StringSaver using the passed in BumpPtrAllocator.
75   // The StringTableBuilder does not create a copy of any strings added to it,
76   // so this provides somewhere to store any strings that we create.
Builder__anonc0d02a5b0111::Builder77   Builder(SmallVector<char, 0> &Symtab, StringTableBuilder &StrtabBuilder,
78           BumpPtrAllocator &Alloc)
79       : Symtab(Symtab), StrtabBuilder(StrtabBuilder), Saver(Alloc) {}
80 
81   DenseMap<const Comdat *, int> ComdatMap;
82   Mangler Mang;
83   Triple TT;
84 
85   std::vector<storage::Comdat> Comdats;
86   std::vector<storage::Module> Mods;
87   std::vector<storage::Symbol> Syms;
88   std::vector<storage::Uncommon> Uncommons;
89 
90   std::string COFFLinkerOpts;
91   raw_string_ostream COFFLinkerOptsOS{COFFLinkerOpts};
92 
setStr__anonc0d02a5b0111::Builder93   void setStr(storage::Str &S, StringRef Value) {
94     S.Offset = StrtabBuilder.add(Value);
95     S.Size = Value.size();
96   }
97 
98   template <typename T>
writeRange__anonc0d02a5b0111::Builder99   void writeRange(storage::Range<T> &R, const std::vector<T> &Objs) {
100     R.Offset = Symtab.size();
101     R.Size = Objs.size();
102     Symtab.insert(Symtab.end(), reinterpret_cast<const char *>(Objs.data()),
103                   reinterpret_cast<const char *>(Objs.data() + Objs.size()));
104   }
105 
106   Expected<int> getComdatIndex(const Comdat *C, const Module *M);
107 
108   Error addModule(Module *M);
109   Error addSymbol(const ModuleSymbolTable &Msymtab,
110                   const SmallPtrSet<GlobalValue *, 8> &Used,
111                   ModuleSymbolTable::Symbol Sym);
112 
113   Error build(ArrayRef<Module *> Mods);
114 };
115 
addModule(Module * M)116 Error Builder::addModule(Module *M) {
117   if (M->getDataLayoutStr().empty())
118     return make_error<StringError>("input module has no datalayout",
119                                    inconvertibleErrorCode());
120 
121   SmallPtrSet<GlobalValue *, 8> Used;
122   collectUsedGlobalVariables(*M, Used, /*CompilerUsed*/ false);
123 
124   ModuleSymbolTable Msymtab;
125   Msymtab.addModule(M);
126 
127   storage::Module Mod;
128   Mod.Begin = Syms.size();
129   Mod.End = Syms.size() + Msymtab.symbols().size();
130   Mod.UncBegin = Uncommons.size();
131   Mods.push_back(Mod);
132 
133   if (TT.isOSBinFormatCOFF()) {
134     if (auto E = M->materializeMetadata())
135       return E;
136     if (NamedMDNode *LinkerOptions =
137             M->getNamedMetadata("llvm.linker.options")) {
138       for (MDNode *MDOptions : LinkerOptions->operands())
139         for (const MDOperand &MDOption : cast<MDNode>(MDOptions)->operands())
140           COFFLinkerOptsOS << " " << cast<MDString>(MDOption)->getString();
141     }
142   }
143 
144   for (ModuleSymbolTable::Symbol Msym : Msymtab.symbols())
145     if (Error Err = addSymbol(Msymtab, Used, Msym))
146       return Err;
147 
148   return Error::success();
149 }
150 
getComdatIndex(const Comdat * C,const Module * M)151 Expected<int> Builder::getComdatIndex(const Comdat *C, const Module *M) {
152   auto P = ComdatMap.insert(std::make_pair(C, Comdats.size()));
153   if (P.second) {
154     std::string Name;
155     if (TT.isOSBinFormatCOFF()) {
156       const GlobalValue *GV = M->getNamedValue(C->getName());
157       if (!GV)
158         return make_error<StringError>("Could not find leader",
159                                        inconvertibleErrorCode());
160       // Internal leaders do not affect symbol resolution, therefore they do not
161       // appear in the symbol table.
162       if (GV->hasLocalLinkage()) {
163         P.first->second = -1;
164         return -1;
165       }
166       llvm::raw_string_ostream OS(Name);
167       Mang.getNameWithPrefix(OS, GV, false);
168     } else {
169       Name = C->getName();
170     }
171 
172     storage::Comdat Comdat;
173     setStr(Comdat.Name, Saver.save(Name));
174     Comdats.push_back(Comdat);
175   }
176 
177   return P.first->second;
178 }
179 
addSymbol(const ModuleSymbolTable & Msymtab,const SmallPtrSet<GlobalValue *,8> & Used,ModuleSymbolTable::Symbol Msym)180 Error Builder::addSymbol(const ModuleSymbolTable &Msymtab,
181                          const SmallPtrSet<GlobalValue *, 8> &Used,
182                          ModuleSymbolTable::Symbol Msym) {
183   Syms.emplace_back();
184   storage::Symbol &Sym = Syms.back();
185   Sym = {};
186 
187   storage::Uncommon *Unc = nullptr;
188   auto Uncommon = [&]() -> storage::Uncommon & {
189     if (Unc)
190       return *Unc;
191     Sym.Flags |= 1 << storage::Symbol::FB_has_uncommon;
192     Uncommons.emplace_back();
193     Unc = &Uncommons.back();
194     *Unc = {};
195     setStr(Unc->COFFWeakExternFallbackName, "");
196     setStr(Unc->SectionName, "");
197     return *Unc;
198   };
199 
200   SmallString<64> Name;
201   {
202     raw_svector_ostream OS(Name);
203     Msymtab.printSymbolName(OS, Msym);
204   }
205   setStr(Sym.Name, Saver.save(StringRef(Name)));
206 
207   auto Flags = Msymtab.getSymbolFlags(Msym);
208   if (Flags & object::BasicSymbolRef::SF_Undefined)
209     Sym.Flags |= 1 << storage::Symbol::FB_undefined;
210   if (Flags & object::BasicSymbolRef::SF_Weak)
211     Sym.Flags |= 1 << storage::Symbol::FB_weak;
212   if (Flags & object::BasicSymbolRef::SF_Common)
213     Sym.Flags |= 1 << storage::Symbol::FB_common;
214   if (Flags & object::BasicSymbolRef::SF_Indirect)
215     Sym.Flags |= 1 << storage::Symbol::FB_indirect;
216   if (Flags & object::BasicSymbolRef::SF_Global)
217     Sym.Flags |= 1 << storage::Symbol::FB_global;
218   if (Flags & object::BasicSymbolRef::SF_FormatSpecific)
219     Sym.Flags |= 1 << storage::Symbol::FB_format_specific;
220   if (Flags & object::BasicSymbolRef::SF_Executable)
221     Sym.Flags |= 1 << storage::Symbol::FB_executable;
222 
223   Sym.ComdatIndex = -1;
224   auto *GV = Msym.dyn_cast<GlobalValue *>();
225   if (!GV) {
226     // Undefined module asm symbols act as GC roots and are implicitly used.
227     if (Flags & object::BasicSymbolRef::SF_Undefined)
228       Sym.Flags |= 1 << storage::Symbol::FB_used;
229     setStr(Sym.IRName, "");
230     return Error::success();
231   }
232 
233   setStr(Sym.IRName, GV->getName());
234 
235   bool IsBuiltinFunc = false;
236 
237   for (const char *LibcallName : LibcallRoutineNames)
238     if (GV->getName() == LibcallName)
239       IsBuiltinFunc = true;
240 
241   if (Used.count(GV) || IsBuiltinFunc)
242     Sym.Flags |= 1 << storage::Symbol::FB_used;
243   if (GV->isThreadLocal())
244     Sym.Flags |= 1 << storage::Symbol::FB_tls;
245   if (GV->hasGlobalUnnamedAddr())
246     Sym.Flags |= 1 << storage::Symbol::FB_unnamed_addr;
247   if (GV->canBeOmittedFromSymbolTable())
248     Sym.Flags |= 1 << storage::Symbol::FB_may_omit;
249   Sym.Flags |= unsigned(GV->getVisibility()) << storage::Symbol::FB_visibility;
250 
251   if (Flags & object::BasicSymbolRef::SF_Common) {
252     Uncommon().CommonSize = GV->getParent()->getDataLayout().getTypeAllocSize(
253         GV->getType()->getElementType());
254     Uncommon().CommonAlign = GV->getAlignment();
255   }
256 
257   const GlobalObject *Base = GV->getBaseObject();
258   if (!Base)
259     return make_error<StringError>("Unable to determine comdat of alias!",
260                                    inconvertibleErrorCode());
261   if (const Comdat *C = Base->getComdat()) {
262     Expected<int> ComdatIndexOrErr = getComdatIndex(C, GV->getParent());
263     if (!ComdatIndexOrErr)
264       return ComdatIndexOrErr.takeError();
265     Sym.ComdatIndex = *ComdatIndexOrErr;
266   }
267 
268   if (TT.isOSBinFormatCOFF()) {
269     emitLinkerFlagsForGlobalCOFF(COFFLinkerOptsOS, GV, TT, Mang);
270 
271     if ((Flags & object::BasicSymbolRef::SF_Weak) &&
272         (Flags & object::BasicSymbolRef::SF_Indirect)) {
273       auto *Fallback = dyn_cast<GlobalValue>(
274           cast<GlobalAlias>(GV)->getAliasee()->stripPointerCasts());
275       if (!Fallback)
276         return make_error<StringError>("Invalid weak external",
277                                        inconvertibleErrorCode());
278       std::string FallbackName;
279       raw_string_ostream OS(FallbackName);
280       Msymtab.printSymbolName(OS, Fallback);
281       OS.flush();
282       setStr(Uncommon().COFFWeakExternFallbackName, Saver.save(FallbackName));
283     }
284   }
285 
286   if (!Base->getSection().empty())
287     setStr(Uncommon().SectionName, Saver.save(Base->getSection()));
288 
289   return Error::success();
290 }
291 
build(ArrayRef<Module * > IRMods)292 Error Builder::build(ArrayRef<Module *> IRMods) {
293   storage::Header Hdr;
294 
295   assert(!IRMods.empty());
296   Hdr.Version = storage::Header::kCurrentVersion;
297   setStr(Hdr.Producer, kExpectedProducerName);
298   setStr(Hdr.TargetTriple, IRMods[0]->getTargetTriple());
299   setStr(Hdr.SourceFileName, IRMods[0]->getSourceFileName());
300   TT = Triple(IRMods[0]->getTargetTriple());
301 
302   for (auto *M : IRMods)
303     if (Error Err = addModule(M))
304       return Err;
305 
306   COFFLinkerOptsOS.flush();
307   setStr(Hdr.COFFLinkerOpts, Saver.save(COFFLinkerOpts));
308 
309   // We are about to fill in the header's range fields, so reserve space for it
310   // and copy it in afterwards.
311   Symtab.resize(sizeof(storage::Header));
312   writeRange(Hdr.Modules, Mods);
313   writeRange(Hdr.Comdats, Comdats);
314   writeRange(Hdr.Symbols, Syms);
315   writeRange(Hdr.Uncommons, Uncommons);
316 
317   *reinterpret_cast<storage::Header *>(Symtab.data()) = Hdr;
318   return Error::success();
319 }
320 
321 } // end anonymous namespace
322 
build(ArrayRef<Module * > Mods,SmallVector<char,0> & Symtab,StringTableBuilder & StrtabBuilder,BumpPtrAllocator & Alloc)323 Error irsymtab::build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab,
324                       StringTableBuilder &StrtabBuilder,
325                       BumpPtrAllocator &Alloc) {
326   return Builder(Symtab, StrtabBuilder, Alloc).build(Mods);
327 }
328 
329 // Upgrade a vector of bitcode modules created by an old version of LLVM by
330 // creating an irsymtab for them in the current format.
upgrade(ArrayRef<BitcodeModule> BMs)331 static Expected<FileContents> upgrade(ArrayRef<BitcodeModule> BMs) {
332   FileContents FC;
333 
334   LLVMContext Ctx;
335   std::vector<Module *> Mods;
336   std::vector<std::unique_ptr<Module>> OwnedMods;
337   for (auto BM : BMs) {
338     Expected<std::unique_ptr<Module>> MOrErr =
339         BM.getLazyModule(Ctx, /*ShouldLazyLoadMetadata*/ true,
340                          /*IsImporting*/ false);
341     if (!MOrErr)
342       return MOrErr.takeError();
343 
344     Mods.push_back(MOrErr->get());
345     OwnedMods.push_back(std::move(*MOrErr));
346   }
347 
348   StringTableBuilder StrtabBuilder(StringTableBuilder::RAW);
349   BumpPtrAllocator Alloc;
350   if (Error E = build(Mods, FC.Symtab, StrtabBuilder, Alloc))
351     return std::move(E);
352 
353   StrtabBuilder.finalizeInOrder();
354   FC.Strtab.resize(StrtabBuilder.getSize());
355   StrtabBuilder.write((uint8_t *)FC.Strtab.data());
356 
357   FC.TheReader = {{FC.Symtab.data(), FC.Symtab.size()},
358                   {FC.Strtab.data(), FC.Strtab.size()}};
359   return std::move(FC);
360 }
361 
readBitcode(const BitcodeFileContents & BFC)362 Expected<FileContents> irsymtab::readBitcode(const BitcodeFileContents &BFC) {
363   if (BFC.Mods.empty())
364     return make_error<StringError>("Bitcode file does not contain any modules",
365                                    inconvertibleErrorCode());
366 
367   if (BFC.StrtabForSymtab.empty() ||
368       BFC.Symtab.size() < sizeof(storage::Header))
369     return upgrade(BFC.Mods);
370 
371   // We cannot use the regular reader to read the version and producer, because
372   // it will expect the header to be in the current format. The only thing we
373   // can rely on is that the version and producer will be present as the first
374   // struct elements.
375   auto *Hdr = reinterpret_cast<const storage::Header *>(BFC.Symtab.data());
376   unsigned Version = Hdr->Version;
377   StringRef Producer = Hdr->Producer.get(BFC.StrtabForSymtab);
378   if (Version != storage::Header::kCurrentVersion ||
379       Producer != kExpectedProducerName)
380     return upgrade(BFC.Mods);
381 
382   FileContents FC;
383   FC.TheReader = {{BFC.Symtab.data(), BFC.Symtab.size()},
384                   {BFC.StrtabForSymtab.data(), BFC.StrtabForSymtab.size()}};
385 
386   // Finally, make sure that the number of modules in the symbol table matches
387   // the number of modules in the bitcode file. If they differ, it may mean that
388   // the bitcode file was created by binary concatenation, so we need to create
389   // a new symbol table from scratch.
390   if (FC.TheReader.getNumModules() != BFC.Mods.size())
391     return upgrade(std::move(BFC.Mods));
392 
393   return std::move(FC);
394 }
395