1 //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation implements the well known scalar replacement of
11 // aggregates transformation. This xform breaks up alloca instructions of
12 // aggregate type (structure or array) into individual alloca instructions for
13 // each member (if possible). Then, if possible, it transforms the individual
14 // alloca instructions into nice clean scalar SSA form.
15 //
16 // This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17 // often interact, especially for C++ programs. As such, iterating between
18 // SRoA, then Mem2Reg until we run out of things to promote works well.
19 //
20 //===----------------------------------------------------------------------===//
21
22 #define DEBUG_TYPE "scalarrepl"
23 #include "llvm/Transforms/Scalar.h"
24 #include "llvm/Constants.h"
25 #include "llvm/DerivedTypes.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/IntrinsicInst.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/Module.h"
32 #include "llvm/Pass.h"
33 #include "llvm/Analysis/DebugInfo.h"
34 #include "llvm/Analysis/DIBuilder.h"
35 #include "llvm/Analysis/Dominators.h"
36 #include "llvm/Analysis/Loads.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Target/TargetData.h"
39 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 #include "llvm/Transforms/Utils/SSAUpdater.h"
42 #include "llvm/Support/CallSite.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/GetElementPtrTypeIterator.h"
46 #include "llvm/Support/IRBuilder.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/ADT/SetVector.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/ADT/Statistic.h"
52 using namespace llvm;
53
54 STATISTIC(NumReplaced, "Number of allocas broken up");
55 STATISTIC(NumPromoted, "Number of allocas promoted");
56 STATISTIC(NumAdjusted, "Number of scalar allocas adjusted to allow promotion");
57 STATISTIC(NumConverted, "Number of aggregates converted to scalar");
58 STATISTIC(NumGlobals, "Number of allocas copied from constant global");
59
60 namespace {
61 struct SROA : public FunctionPass {
SROA__anonc8b00cc40111::SROA62 SROA(int T, bool hasDT, char &ID)
63 : FunctionPass(ID), HasDomTree(hasDT) {
64 if (T == -1)
65 SRThreshold = 128;
66 else
67 SRThreshold = T;
68 }
69
70 bool runOnFunction(Function &F);
71
72 bool performScalarRepl(Function &F);
73 bool performPromotion(Function &F);
74
75 private:
76 bool HasDomTree;
77 TargetData *TD;
78
79 /// DeadInsts - Keep track of instructions we have made dead, so that
80 /// we can remove them after we are done working.
81 SmallVector<Value*, 32> DeadInsts;
82
83 /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
84 /// information about the uses. All these fields are initialized to false
85 /// and set to true when something is learned.
86 struct AllocaInfo {
87 /// The alloca to promote.
88 AllocaInst *AI;
89
90 /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
91 /// looping and avoid redundant work.
92 SmallPtrSet<PHINode*, 8> CheckedPHIs;
93
94 /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
95 bool isUnsafe : 1;
96
97 /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
98 bool isMemCpySrc : 1;
99
100 /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
101 bool isMemCpyDst : 1;
102
103 /// hasSubelementAccess - This is true if a subelement of the alloca is
104 /// ever accessed, or false if the alloca is only accessed with mem
105 /// intrinsics or load/store that only access the entire alloca at once.
106 bool hasSubelementAccess : 1;
107
108 /// hasALoadOrStore - This is true if there are any loads or stores to it.
109 /// The alloca may just be accessed with memcpy, for example, which would
110 /// not set this.
111 bool hasALoadOrStore : 1;
112
AllocaInfo__anonc8b00cc40111::SROA::AllocaInfo113 explicit AllocaInfo(AllocaInst *ai)
114 : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
115 hasSubelementAccess(false), hasALoadOrStore(false) {}
116 };
117
118 unsigned SRThreshold;
119
MarkUnsafe__anonc8b00cc40111::SROA120 void MarkUnsafe(AllocaInfo &I, Instruction *User) {
121 I.isUnsafe = true;
122 DEBUG(dbgs() << " Transformation preventing inst: " << *User << '\n');
123 }
124
125 bool isSafeAllocaToScalarRepl(AllocaInst *AI);
126
127 void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
128 void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
129 AllocaInfo &Info);
130 void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
131 void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
132 Type *MemOpType, bool isStore, AllocaInfo &Info,
133 Instruction *TheAccess, bool AllowWholeAccess);
134 bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size);
135 uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset,
136 Type *&IdxTy);
137
138 void DoScalarReplacement(AllocaInst *AI,
139 std::vector<AllocaInst*> &WorkList);
140 void DeleteDeadInstructions();
141
142 void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
143 SmallVector<AllocaInst*, 32> &NewElts);
144 void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
145 SmallVector<AllocaInst*, 32> &NewElts);
146 void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
147 SmallVector<AllocaInst*, 32> &NewElts);
148 void RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
149 uint64_t Offset,
150 SmallVector<AllocaInst*, 32> &NewElts);
151 void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
152 AllocaInst *AI,
153 SmallVector<AllocaInst*, 32> &NewElts);
154 void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
155 SmallVector<AllocaInst*, 32> &NewElts);
156 void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
157 SmallVector<AllocaInst*, 32> &NewElts);
158
159 static MemTransferInst *isOnlyCopiedFromConstantGlobal(
160 AllocaInst *AI, SmallVector<Instruction*, 4> &ToDelete);
161 };
162
163 // SROA_DT - SROA that uses DominatorTree.
164 struct SROA_DT : public SROA {
165 static char ID;
166 public:
SROA_DT__anonc8b00cc40111::SROA_DT167 SROA_DT(int T = -1) : SROA(T, true, ID) {
168 initializeSROA_DTPass(*PassRegistry::getPassRegistry());
169 }
170
171 // getAnalysisUsage - This pass does not require any passes, but we know it
172 // will not alter the CFG, so say so.
getAnalysisUsage__anonc8b00cc40111::SROA_DT173 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
174 AU.addRequired<DominatorTree>();
175 AU.setPreservesCFG();
176 }
177 };
178
179 // SROA_SSAUp - SROA that uses SSAUpdater.
180 struct SROA_SSAUp : public SROA {
181 static char ID;
182 public:
SROA_SSAUp__anonc8b00cc40111::SROA_SSAUp183 SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
184 initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
185 }
186
187 // getAnalysisUsage - This pass does not require any passes, but we know it
188 // will not alter the CFG, so say so.
getAnalysisUsage__anonc8b00cc40111::SROA_SSAUp189 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
190 AU.setPreservesCFG();
191 }
192 };
193
194 }
195
196 char SROA_DT::ID = 0;
197 char SROA_SSAUp::ID = 0;
198
199 INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
200 "Scalar Replacement of Aggregates (DT)", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)201 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
202 INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
203 "Scalar Replacement of Aggregates (DT)", false, false)
204
205 INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
206 "Scalar Replacement of Aggregates (SSAUp)", false, false)
207 INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
208 "Scalar Replacement of Aggregates (SSAUp)", false, false)
209
210 // Public interface to the ScalarReplAggregates pass
211 FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
212 bool UseDomTree) {
213 if (UseDomTree)
214 return new SROA_DT(Threshold);
215 return new SROA_SSAUp(Threshold);
216 }
217
218
219 //===----------------------------------------------------------------------===//
220 // Convert To Scalar Optimization.
221 //===----------------------------------------------------------------------===//
222
223 namespace {
224 /// ConvertToScalarInfo - This class implements the "Convert To Scalar"
225 /// optimization, which scans the uses of an alloca and determines if it can
226 /// rewrite it in terms of a single new alloca that can be mem2reg'd.
227 class ConvertToScalarInfo {
228 /// AllocaSize - The size of the alloca being considered in bytes.
229 unsigned AllocaSize;
230 const TargetData &TD;
231
232 /// IsNotTrivial - This is set to true if there is some access to the object
233 /// which means that mem2reg can't promote it.
234 bool IsNotTrivial;
235
236 /// ScalarKind - Tracks the kind of alloca being considered for promotion,
237 /// computed based on the uses of the alloca rather than the LLVM type system.
238 enum {
239 Unknown,
240
241 // Accesses via GEPs that are consistent with element access of a vector
242 // type. This will not be converted into a vector unless there is a later
243 // access using an actual vector type.
244 ImplicitVector,
245
246 // Accesses via vector operations and GEPs that are consistent with the
247 // layout of a vector type.
248 Vector,
249
250 // An integer bag-of-bits with bitwise operations for insertion and
251 // extraction. Any combination of types can be converted into this kind
252 // of scalar.
253 Integer
254 } ScalarKind;
255
256 /// VectorTy - This tracks the type that we should promote the vector to if
257 /// it is possible to turn it into a vector. This starts out null, and if it
258 /// isn't possible to turn into a vector type, it gets set to VoidTy.
259 VectorType *VectorTy;
260
261 /// HadNonMemTransferAccess - True if there is at least one access to the
262 /// alloca that is not a MemTransferInst. We don't want to turn structs into
263 /// large integers unless there is some potential for optimization.
264 bool HadNonMemTransferAccess;
265
266 public:
ConvertToScalarInfo(unsigned Size,const TargetData & td)267 explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
268 : AllocaSize(Size), TD(td), IsNotTrivial(false), ScalarKind(Unknown),
269 VectorTy(0), HadNonMemTransferAccess(false) { }
270
271 AllocaInst *TryConvert(AllocaInst *AI);
272
273 private:
274 bool CanConvertToScalar(Value *V, uint64_t Offset);
275 void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset);
276 bool MergeInVectorType(VectorType *VInTy, uint64_t Offset);
277 void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
278
279 Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType,
280 uint64_t Offset, IRBuilder<> &Builder);
281 Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
282 uint64_t Offset, IRBuilder<> &Builder);
283 };
284 } // end anonymous namespace.
285
286
287 /// TryConvert - Analyze the specified alloca, and if it is safe to do so,
288 /// rewrite it to be a new alloca which is mem2reg'able. This returns the new
289 /// alloca if possible or null if not.
TryConvert(AllocaInst * AI)290 AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
291 // If we can't convert this scalar, or if mem2reg can trivially do it, bail
292 // out.
293 if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
294 return 0;
295
296 // If an alloca has only memset / memcpy uses, it may still have an Unknown
297 // ScalarKind. Treat it as an Integer below.
298 if (ScalarKind == Unknown)
299 ScalarKind = Integer;
300
301 if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8)
302 ScalarKind = Integer;
303
304 // If we were able to find a vector type that can handle this with
305 // insert/extract elements, and if there was at least one use that had
306 // a vector type, promote this to a vector. We don't want to promote
307 // random stuff that doesn't use vectors (e.g. <9 x double>) because then
308 // we just get a lot of insert/extracts. If at least one vector is
309 // involved, then we probably really do have a union of vector/array.
310 Type *NewTy;
311 if (ScalarKind == Vector) {
312 assert(VectorTy && "Missing type for vector scalar.");
313 DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n TYPE = "
314 << *VectorTy << '\n');
315 NewTy = VectorTy; // Use the vector type.
316 } else {
317 unsigned BitWidth = AllocaSize * 8;
318 if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
319 !HadNonMemTransferAccess && !TD.fitsInLegalInteger(BitWidth))
320 return 0;
321
322 DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
323 // Create and insert the integer alloca.
324 NewTy = IntegerType::get(AI->getContext(), BitWidth);
325 }
326 AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
327 ConvertUsesToScalar(AI, NewAI, 0);
328 return NewAI;
329 }
330
331 /// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type
332 /// (VectorTy) so far at the offset specified by Offset (which is specified in
333 /// bytes).
334 ///
335 /// There are two cases we handle here:
336 /// 1) A union of vector types of the same size and potentially its elements.
337 /// Here we turn element accesses into insert/extract element operations.
338 /// This promotes a <4 x float> with a store of float to the third element
339 /// into a <4 x float> that uses insert element.
340 /// 2) A fully general blob of memory, which we turn into some (potentially
341 /// large) integer type with extract and insert operations where the loads
342 /// and stores would mutate the memory. We mark this by setting VectorTy
343 /// to VoidTy.
MergeInTypeForLoadOrStore(Type * In,uint64_t Offset)344 void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In,
345 uint64_t Offset) {
346 // If we already decided to turn this into a blob of integer memory, there is
347 // nothing to be done.
348 if (ScalarKind == Integer)
349 return;
350
351 // If this could be contributing to a vector, analyze it.
352
353 // If the In type is a vector that is the same size as the alloca, see if it
354 // matches the existing VecTy.
355 if (VectorType *VInTy = dyn_cast<VectorType>(In)) {
356 if (MergeInVectorType(VInTy, Offset))
357 return;
358 } else if (In->isFloatTy() || In->isDoubleTy() ||
359 (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
360 isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
361 // Full width accesses can be ignored, because they can always be turned
362 // into bitcasts.
363 unsigned EltSize = In->getPrimitiveSizeInBits()/8;
364 if (EltSize == AllocaSize)
365 return;
366
367 // If we're accessing something that could be an element of a vector, see
368 // if the implied vector agrees with what we already have and if Offset is
369 // compatible with it.
370 if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
371 (!VectorTy || EltSize == VectorTy->getElementType()
372 ->getPrimitiveSizeInBits()/8)) {
373 if (!VectorTy) {
374 ScalarKind = ImplicitVector;
375 VectorTy = VectorType::get(In, AllocaSize/EltSize);
376 }
377 return;
378 }
379 }
380
381 // Otherwise, we have a case that we can't handle with an optimized vector
382 // form. We can still turn this into a large integer.
383 ScalarKind = Integer;
384 }
385
386 /// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore,
387 /// returning true if the type was successfully merged and false otherwise.
MergeInVectorType(VectorType * VInTy,uint64_t Offset)388 bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy,
389 uint64_t Offset) {
390 if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
391 // If we're storing/loading a vector of the right size, allow it as a
392 // vector. If this the first vector we see, remember the type so that
393 // we know the element size. If this is a subsequent access, ignore it
394 // even if it is a differing type but the same size. Worst case we can
395 // bitcast the resultant vectors.
396 if (!VectorTy)
397 VectorTy = VInTy;
398 ScalarKind = Vector;
399 return true;
400 }
401
402 return false;
403 }
404
405 /// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
406 /// its accesses to a single vector type, return true and set VecTy to
407 /// the new type. If we could convert the alloca into a single promotable
408 /// integer, return true but set VecTy to VoidTy. Further, if the use is not a
409 /// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset
410 /// is the current offset from the base of the alloca being analyzed.
411 ///
412 /// If we see at least one access to the value that is as a vector type, set the
413 /// SawVec flag.
CanConvertToScalar(Value * V,uint64_t Offset)414 bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
415 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
416 Instruction *User = cast<Instruction>(*UI);
417
418 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
419 // Don't break volatile loads.
420 if (!LI->isSimple())
421 return false;
422 // Don't touch MMX operations.
423 if (LI->getType()->isX86_MMXTy())
424 return false;
425 HadNonMemTransferAccess = true;
426 MergeInTypeForLoadOrStore(LI->getType(), Offset);
427 continue;
428 }
429
430 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
431 // Storing the pointer, not into the value?
432 if (SI->getOperand(0) == V || !SI->isSimple()) return false;
433 // Don't touch MMX operations.
434 if (SI->getOperand(0)->getType()->isX86_MMXTy())
435 return false;
436 HadNonMemTransferAccess = true;
437 MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset);
438 continue;
439 }
440
441 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
442 if (!onlyUsedByLifetimeMarkers(BCI))
443 IsNotTrivial = true; // Can't be mem2reg'd.
444 if (!CanConvertToScalar(BCI, Offset))
445 return false;
446 continue;
447 }
448
449 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
450 // If this is a GEP with a variable indices, we can't handle it.
451 if (!GEP->hasAllConstantIndices())
452 return false;
453
454 // Compute the offset that this GEP adds to the pointer.
455 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
456 uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
457 Indices);
458 // See if all uses can be converted.
459 if (!CanConvertToScalar(GEP, Offset+GEPOffset))
460 return false;
461 IsNotTrivial = true; // Can't be mem2reg'd.
462 HadNonMemTransferAccess = true;
463 continue;
464 }
465
466 // If this is a constant sized memset of a constant value (e.g. 0) we can
467 // handle it.
468 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
469 // Store of constant value.
470 if (!isa<ConstantInt>(MSI->getValue()))
471 return false;
472
473 // Store of constant size.
474 ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength());
475 if (!Len)
476 return false;
477
478 // If the size differs from the alloca, we can only convert the alloca to
479 // an integer bag-of-bits.
480 // FIXME: This should handle all of the cases that are currently accepted
481 // as vector element insertions.
482 if (Len->getZExtValue() != AllocaSize || Offset != 0)
483 ScalarKind = Integer;
484
485 IsNotTrivial = true; // Can't be mem2reg'd.
486 HadNonMemTransferAccess = true;
487 continue;
488 }
489
490 // If this is a memcpy or memmove into or out of the whole allocation, we
491 // can handle it like a load or store of the scalar type.
492 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
493 ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
494 if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
495 return false;
496
497 IsNotTrivial = true; // Can't be mem2reg'd.
498 continue;
499 }
500
501 // If this is a lifetime intrinsic, we can handle it.
502 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
503 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
504 II->getIntrinsicID() == Intrinsic::lifetime_end) {
505 continue;
506 }
507 }
508
509 // Otherwise, we cannot handle this!
510 return false;
511 }
512
513 return true;
514 }
515
516 /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
517 /// directly. This happens when we are converting an "integer union" to a
518 /// single integer scalar, or when we are converting a "vector union" to a
519 /// vector with insert/extractelement instructions.
520 ///
521 /// Offset is an offset from the original alloca, in bits that need to be
522 /// shifted to the right. By the end of this, there should be no uses of Ptr.
ConvertUsesToScalar(Value * Ptr,AllocaInst * NewAI,uint64_t Offset)523 void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
524 uint64_t Offset) {
525 while (!Ptr->use_empty()) {
526 Instruction *User = cast<Instruction>(Ptr->use_back());
527
528 if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
529 ConvertUsesToScalar(CI, NewAI, Offset);
530 CI->eraseFromParent();
531 continue;
532 }
533
534 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
535 // Compute the offset that this GEP adds to the pointer.
536 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
537 uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
538 Indices);
539 ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
540 GEP->eraseFromParent();
541 continue;
542 }
543
544 IRBuilder<> Builder(User);
545
546 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
547 // The load is a bit extract from NewAI shifted right by Offset bits.
548 Value *LoadedVal = Builder.CreateLoad(NewAI);
549 Value *NewLoadVal
550 = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
551 LI->replaceAllUsesWith(NewLoadVal);
552 LI->eraseFromParent();
553 continue;
554 }
555
556 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
557 assert(SI->getOperand(0) != Ptr && "Consistency error!");
558 Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
559 Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
560 Builder);
561 Builder.CreateStore(New, NewAI);
562 SI->eraseFromParent();
563
564 // If the load we just inserted is now dead, then the inserted store
565 // overwrote the entire thing.
566 if (Old->use_empty())
567 Old->eraseFromParent();
568 continue;
569 }
570
571 // If this is a constant sized memset of a constant value (e.g. 0) we can
572 // transform it into a store of the expanded constant value.
573 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
574 assert(MSI->getRawDest() == Ptr && "Consistency error!");
575 unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
576 if (NumBytes != 0) {
577 unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
578
579 // Compute the value replicated the right number of times.
580 APInt APVal(NumBytes*8, Val);
581
582 // Splat the value if non-zero.
583 if (Val)
584 for (unsigned i = 1; i != NumBytes; ++i)
585 APVal |= APVal << 8;
586
587 Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
588 Value *New = ConvertScalar_InsertValue(
589 ConstantInt::get(User->getContext(), APVal),
590 Old, Offset, Builder);
591 Builder.CreateStore(New, NewAI);
592
593 // If the load we just inserted is now dead, then the memset overwrote
594 // the entire thing.
595 if (Old->use_empty())
596 Old->eraseFromParent();
597 }
598 MSI->eraseFromParent();
599 continue;
600 }
601
602 // If this is a memcpy or memmove into or out of the whole allocation, we
603 // can handle it like a load or store of the scalar type.
604 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
605 assert(Offset == 0 && "must be store to start of alloca");
606
607 // If the source and destination are both to the same alloca, then this is
608 // a noop copy-to-self, just delete it. Otherwise, emit a load and store
609 // as appropriate.
610 AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
611
612 if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
613 // Dest must be OrigAI, change this to be a load from the original
614 // pointer (bitcasted), then a store to our new alloca.
615 assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
616 Value *SrcPtr = MTI->getSource();
617 PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
618 PointerType* AIPTy = cast<PointerType>(NewAI->getType());
619 if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
620 AIPTy = PointerType::get(AIPTy->getElementType(),
621 SPTy->getAddressSpace());
622 }
623 SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
624
625 LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
626 SrcVal->setAlignment(MTI->getAlignment());
627 Builder.CreateStore(SrcVal, NewAI);
628 } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
629 // Src must be OrigAI, change this to be a load from NewAI then a store
630 // through the original dest pointer (bitcasted).
631 assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
632 LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
633
634 PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
635 PointerType* AIPTy = cast<PointerType>(NewAI->getType());
636 if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
637 AIPTy = PointerType::get(AIPTy->getElementType(),
638 DPTy->getAddressSpace());
639 }
640 Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
641
642 StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
643 NewStore->setAlignment(MTI->getAlignment());
644 } else {
645 // Noop transfer. Src == Dst
646 }
647
648 MTI->eraseFromParent();
649 continue;
650 }
651
652 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
653 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
654 II->getIntrinsicID() == Intrinsic::lifetime_end) {
655 // There's no need to preserve these, as the resulting alloca will be
656 // converted to a register anyways.
657 II->eraseFromParent();
658 continue;
659 }
660 }
661
662 llvm_unreachable("Unsupported operation!");
663 }
664 }
665
666 /// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
667 /// or vector value FromVal, extracting the bits from the offset specified by
668 /// Offset. This returns the value, which is of type ToType.
669 ///
670 /// This happens when we are converting an "integer union" to a single
671 /// integer scalar, or when we are converting a "vector union" to a vector with
672 /// insert/extractelement instructions.
673 ///
674 /// Offset is an offset from the original alloca, in bits that need to be
675 /// shifted to the right.
676 Value *ConvertToScalarInfo::
ConvertScalar_ExtractValue(Value * FromVal,Type * ToType,uint64_t Offset,IRBuilder<> & Builder)677 ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
678 uint64_t Offset, IRBuilder<> &Builder) {
679 // If the load is of the whole new alloca, no conversion is needed.
680 Type *FromType = FromVal->getType();
681 if (FromType == ToType && Offset == 0)
682 return FromVal;
683
684 // If the result alloca is a vector type, this is either an element
685 // access or a bitcast to another vector type of the same size.
686 if (VectorType *VTy = dyn_cast<VectorType>(FromType)) {
687 unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
688 unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
689 if (FromTypeSize == ToTypeSize)
690 return Builder.CreateBitCast(FromVal, ToType);
691
692 // Otherwise it must be an element access.
693 unsigned Elt = 0;
694 if (Offset) {
695 unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
696 Elt = Offset/EltSize;
697 assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
698 }
699 // Return the element extracted out of it.
700 Value *V = Builder.CreateExtractElement(FromVal, Builder.getInt32(Elt));
701 if (V->getType() != ToType)
702 V = Builder.CreateBitCast(V, ToType);
703 return V;
704 }
705
706 // If ToType is a first class aggregate, extract out each of the pieces and
707 // use insertvalue's to form the FCA.
708 if (StructType *ST = dyn_cast<StructType>(ToType)) {
709 const StructLayout &Layout = *TD.getStructLayout(ST);
710 Value *Res = UndefValue::get(ST);
711 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
712 Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
713 Offset+Layout.getElementOffsetInBits(i),
714 Builder);
715 Res = Builder.CreateInsertValue(Res, Elt, i);
716 }
717 return Res;
718 }
719
720 if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
721 uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
722 Value *Res = UndefValue::get(AT);
723 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
724 Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
725 Offset+i*EltSize, Builder);
726 Res = Builder.CreateInsertValue(Res, Elt, i);
727 }
728 return Res;
729 }
730
731 // Otherwise, this must be a union that was converted to an integer value.
732 IntegerType *NTy = cast<IntegerType>(FromVal->getType());
733
734 // If this is a big-endian system and the load is narrower than the
735 // full alloca type, we need to do a shift to get the right bits.
736 int ShAmt = 0;
737 if (TD.isBigEndian()) {
738 // On big-endian machines, the lowest bit is stored at the bit offset
739 // from the pointer given by getTypeStoreSizeInBits. This matters for
740 // integers with a bitwidth that is not a multiple of 8.
741 ShAmt = TD.getTypeStoreSizeInBits(NTy) -
742 TD.getTypeStoreSizeInBits(ToType) - Offset;
743 } else {
744 ShAmt = Offset;
745 }
746
747 // Note: we support negative bitwidths (with shl) which are not defined.
748 // We do this to support (f.e.) loads off the end of a structure where
749 // only some bits are used.
750 if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
751 FromVal = Builder.CreateLShr(FromVal,
752 ConstantInt::get(FromVal->getType(), ShAmt));
753 else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
754 FromVal = Builder.CreateShl(FromVal,
755 ConstantInt::get(FromVal->getType(), -ShAmt));
756
757 // Finally, unconditionally truncate the integer to the right width.
758 unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
759 if (LIBitWidth < NTy->getBitWidth())
760 FromVal =
761 Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
762 LIBitWidth));
763 else if (LIBitWidth > NTy->getBitWidth())
764 FromVal =
765 Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
766 LIBitWidth));
767
768 // If the result is an integer, this is a trunc or bitcast.
769 if (ToType->isIntegerTy()) {
770 // Should be done.
771 } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
772 // Just do a bitcast, we know the sizes match up.
773 FromVal = Builder.CreateBitCast(FromVal, ToType);
774 } else {
775 // Otherwise must be a pointer.
776 FromVal = Builder.CreateIntToPtr(FromVal, ToType);
777 }
778 assert(FromVal->getType() == ToType && "Didn't convert right?");
779 return FromVal;
780 }
781
782 /// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
783 /// or vector value "Old" at the offset specified by Offset.
784 ///
785 /// This happens when we are converting an "integer union" to a
786 /// single integer scalar, or when we are converting a "vector union" to a
787 /// vector with insert/extractelement instructions.
788 ///
789 /// Offset is an offset from the original alloca, in bits that need to be
790 /// shifted to the right.
791 Value *ConvertToScalarInfo::
ConvertScalar_InsertValue(Value * SV,Value * Old,uint64_t Offset,IRBuilder<> & Builder)792 ConvertScalar_InsertValue(Value *SV, Value *Old,
793 uint64_t Offset, IRBuilder<> &Builder) {
794 // Convert the stored type to the actual type, shift it left to insert
795 // then 'or' into place.
796 Type *AllocaType = Old->getType();
797 LLVMContext &Context = Old->getContext();
798
799 if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
800 uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
801 uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
802
803 // Changing the whole vector with memset or with an access of a different
804 // vector type?
805 if (ValSize == VecSize)
806 return Builder.CreateBitCast(SV, AllocaType);
807
808 // Must be an element insertion.
809 assert(SV->getType() == VTy->getElementType());
810 uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
811 unsigned Elt = Offset/EltSize;
812 return Builder.CreateInsertElement(Old, SV, Builder.getInt32(Elt));
813 }
814
815 // If SV is a first-class aggregate value, insert each value recursively.
816 if (StructType *ST = dyn_cast<StructType>(SV->getType())) {
817 const StructLayout &Layout = *TD.getStructLayout(ST);
818 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
819 Value *Elt = Builder.CreateExtractValue(SV, i);
820 Old = ConvertScalar_InsertValue(Elt, Old,
821 Offset+Layout.getElementOffsetInBits(i),
822 Builder);
823 }
824 return Old;
825 }
826
827 if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
828 uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
829 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
830 Value *Elt = Builder.CreateExtractValue(SV, i);
831 Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
832 }
833 return Old;
834 }
835
836 // If SV is a float, convert it to the appropriate integer type.
837 // If it is a pointer, do the same.
838 unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
839 unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
840 unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
841 unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
842 if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
843 SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth));
844 else if (SV->getType()->isPointerTy())
845 SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()));
846
847 // Zero extend or truncate the value if needed.
848 if (SV->getType() != AllocaType) {
849 if (SV->getType()->getPrimitiveSizeInBits() <
850 AllocaType->getPrimitiveSizeInBits())
851 SV = Builder.CreateZExt(SV, AllocaType);
852 else {
853 // Truncation may be needed if storing more than the alloca can hold
854 // (undefined behavior).
855 SV = Builder.CreateTrunc(SV, AllocaType);
856 SrcWidth = DestWidth;
857 SrcStoreWidth = DestStoreWidth;
858 }
859 }
860
861 // If this is a big-endian system and the store is narrower than the
862 // full alloca type, we need to do a shift to get the right bits.
863 int ShAmt = 0;
864 if (TD.isBigEndian()) {
865 // On big-endian machines, the lowest bit is stored at the bit offset
866 // from the pointer given by getTypeStoreSizeInBits. This matters for
867 // integers with a bitwidth that is not a multiple of 8.
868 ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
869 } else {
870 ShAmt = Offset;
871 }
872
873 // Note: we support negative bitwidths (with shr) which are not defined.
874 // We do this to support (f.e.) stores off the end of a structure where
875 // only some bits in the structure are set.
876 APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
877 if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
878 SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt));
879 Mask <<= ShAmt;
880 } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
881 SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt));
882 Mask = Mask.lshr(-ShAmt);
883 }
884
885 // Mask out the bits we are about to insert from the old value, and or
886 // in the new bits.
887 if (SrcWidth != DestWidth) {
888 assert(DestWidth > SrcWidth);
889 Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
890 SV = Builder.CreateOr(Old, SV, "ins");
891 }
892 return SV;
893 }
894
895
896 //===----------------------------------------------------------------------===//
897 // SRoA Driver
898 //===----------------------------------------------------------------------===//
899
900
runOnFunction(Function & F)901 bool SROA::runOnFunction(Function &F) {
902 TD = getAnalysisIfAvailable<TargetData>();
903
904 bool Changed = performPromotion(F);
905
906 // FIXME: ScalarRepl currently depends on TargetData more than it
907 // theoretically needs to. It should be refactored in order to support
908 // target-independent IR. Until this is done, just skip the actual
909 // scalar-replacement portion of this pass.
910 if (!TD) return Changed;
911
912 while (1) {
913 bool LocalChange = performScalarRepl(F);
914 if (!LocalChange) break; // No need to repromote if no scalarrepl
915 Changed = true;
916 LocalChange = performPromotion(F);
917 if (!LocalChange) break; // No need to re-scalarrepl if no promotion
918 }
919
920 return Changed;
921 }
922
923 namespace {
924 class AllocaPromoter : public LoadAndStorePromoter {
925 AllocaInst *AI;
926 DIBuilder *DIB;
927 SmallVector<DbgDeclareInst *, 4> DDIs;
928 SmallVector<DbgValueInst *, 4> DVIs;
929 public:
AllocaPromoter(const SmallVectorImpl<Instruction * > & Insts,SSAUpdater & S,DIBuilder * DB)930 AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
931 DIBuilder *DB)
932 : LoadAndStorePromoter(Insts, S), AI(0), DIB(DB) {}
933
run(AllocaInst * AI,const SmallVectorImpl<Instruction * > & Insts)934 void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
935 // Remember which alloca we're promoting (for isInstInList).
936 this->AI = AI;
937 if (MDNode *DebugNode = MDNode::getIfExists(AI->getContext(), AI)) {
938 for (Value::use_iterator UI = DebugNode->use_begin(),
939 E = DebugNode->use_end(); UI != E; ++UI)
940 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
941 DDIs.push_back(DDI);
942 else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
943 DVIs.push_back(DVI);
944 }
945
946 LoadAndStorePromoter::run(Insts);
947 AI->eraseFromParent();
948 for (SmallVector<DbgDeclareInst *, 4>::iterator I = DDIs.begin(),
949 E = DDIs.end(); I != E; ++I) {
950 DbgDeclareInst *DDI = *I;
951 DDI->eraseFromParent();
952 }
953 for (SmallVector<DbgValueInst *, 4>::iterator I = DVIs.begin(),
954 E = DVIs.end(); I != E; ++I) {
955 DbgValueInst *DVI = *I;
956 DVI->eraseFromParent();
957 }
958 }
959
isInstInList(Instruction * I,const SmallVectorImpl<Instruction * > & Insts) const960 virtual bool isInstInList(Instruction *I,
961 const SmallVectorImpl<Instruction*> &Insts) const {
962 if (LoadInst *LI = dyn_cast<LoadInst>(I))
963 return LI->getOperand(0) == AI;
964 return cast<StoreInst>(I)->getPointerOperand() == AI;
965 }
966
updateDebugInfo(Instruction * Inst) const967 virtual void updateDebugInfo(Instruction *Inst) const {
968 for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
969 E = DDIs.end(); I != E; ++I) {
970 DbgDeclareInst *DDI = *I;
971 if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
972 ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
973 else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
974 ConvertDebugDeclareToDebugValue(DDI, LI, *DIB);
975 }
976 for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
977 E = DVIs.end(); I != E; ++I) {
978 DbgValueInst *DVI = *I;
979 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
980 Instruction *DbgVal = NULL;
981 // If an argument is zero extended then use argument directly. The ZExt
982 // may be zapped by an optimization pass in future.
983 Argument *ExtendedArg = NULL;
984 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
985 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
986 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
987 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
988 if (ExtendedArg)
989 DbgVal = DIB->insertDbgValueIntrinsic(ExtendedArg, 0,
990 DIVariable(DVI->getVariable()),
991 SI);
992 else
993 DbgVal = DIB->insertDbgValueIntrinsic(SI->getOperand(0), 0,
994 DIVariable(DVI->getVariable()),
995 SI);
996 DbgVal->setDebugLoc(DVI->getDebugLoc());
997 } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
998 Instruction *DbgVal =
999 DIB->insertDbgValueIntrinsic(LI->getOperand(0), 0,
1000 DIVariable(DVI->getVariable()), LI);
1001 DbgVal->setDebugLoc(DVI->getDebugLoc());
1002 }
1003 }
1004 }
1005 };
1006 } // end anon namespace
1007
1008 /// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1009 /// subsequently loaded can be rewritten to load both input pointers and then
1010 /// select between the result, allowing the load of the alloca to be promoted.
1011 /// From this:
1012 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1013 /// %V = load i32* %P2
1014 /// to:
1015 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1016 /// %V2 = load i32* %Other
1017 /// %V = select i1 %cond, i32 %V1, i32 %V2
1018 ///
1019 /// We can do this to a select if its only uses are loads and if the operand to
1020 /// the select can be loaded unconditionally.
isSafeSelectToSpeculate(SelectInst * SI,const TargetData * TD)1021 static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
1022 bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1023 bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1024
1025 for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1026 UI != UE; ++UI) {
1027 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1028 if (LI == 0 || !LI->isSimple()) return false;
1029
1030 // Both operands to the select need to be dereferencable, either absolutely
1031 // (e.g. allocas) or at this point because we can see other accesses to it.
1032 if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1033 LI->getAlignment(), TD))
1034 return false;
1035 if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1036 LI->getAlignment(), TD))
1037 return false;
1038 }
1039
1040 return true;
1041 }
1042
1043 /// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1044 /// subsequently loaded can be rewritten to load both input pointers in the pred
1045 /// blocks and then PHI the results, allowing the load of the alloca to be
1046 /// promoted.
1047 /// From this:
1048 /// %P2 = phi [i32* %Alloca, i32* %Other]
1049 /// %V = load i32* %P2
1050 /// to:
1051 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1052 /// ...
1053 /// %V2 = load i32* %Other
1054 /// ...
1055 /// %V = phi [i32 %V1, i32 %V2]
1056 ///
1057 /// We can do this to a select if its only uses are loads and if the operand to
1058 /// the select can be loaded unconditionally.
isSafePHIToSpeculate(PHINode * PN,const TargetData * TD)1059 static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
1060 // For now, we can only do this promotion if the load is in the same block as
1061 // the PHI, and if there are no stores between the phi and load.
1062 // TODO: Allow recursive phi users.
1063 // TODO: Allow stores.
1064 BasicBlock *BB = PN->getParent();
1065 unsigned MaxAlign = 0;
1066 for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1067 UI != UE; ++UI) {
1068 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1069 if (LI == 0 || !LI->isSimple()) return false;
1070
1071 // For now we only allow loads in the same block as the PHI. This is a
1072 // common case that happens when instcombine merges two loads through a PHI.
1073 if (LI->getParent() != BB) return false;
1074
1075 // Ensure that there are no instructions between the PHI and the load that
1076 // could store.
1077 for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1078 if (BBI->mayWriteToMemory())
1079 return false;
1080
1081 MaxAlign = std::max(MaxAlign, LI->getAlignment());
1082 }
1083
1084 // Okay, we know that we have one or more loads in the same block as the PHI.
1085 // We can transform this if it is safe to push the loads into the predecessor
1086 // blocks. The only thing to watch out for is that we can't put a possibly
1087 // trapping load in the predecessor if it is a critical edge.
1088 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1089 BasicBlock *Pred = PN->getIncomingBlock(i);
1090 Value *InVal = PN->getIncomingValue(i);
1091
1092 // If the terminator of the predecessor has side-effects (an invoke),
1093 // there is no safe place to put a load in the predecessor.
1094 if (Pred->getTerminator()->mayHaveSideEffects())
1095 return false;
1096
1097 // If the value is produced by the terminator of the predecessor
1098 // (an invoke), there is no valid place to put a load in the predecessor.
1099 if (Pred->getTerminator() == InVal)
1100 return false;
1101
1102 // If the predecessor has a single successor, then the edge isn't critical.
1103 if (Pred->getTerminator()->getNumSuccessors() == 1)
1104 continue;
1105
1106 // If this pointer is always safe to load, or if we can prove that there is
1107 // already a load in the block, then we can move the load to the pred block.
1108 if (InVal->isDereferenceablePointer() ||
1109 isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1110 continue;
1111
1112 return false;
1113 }
1114
1115 return true;
1116 }
1117
1118
1119 /// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1120 /// direct (non-volatile) loads and stores to it. If the alloca is close but
1121 /// not quite there, this will transform the code to allow promotion. As such,
1122 /// it is a non-pure predicate.
tryToMakeAllocaBePromotable(AllocaInst * AI,const TargetData * TD)1123 static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
1124 SetVector<Instruction*, SmallVector<Instruction*, 4>,
1125 SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1126
1127 for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1128 UI != UE; ++UI) {
1129 User *U = *UI;
1130 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1131 if (!LI->isSimple())
1132 return false;
1133 continue;
1134 }
1135
1136 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1137 if (SI->getOperand(0) == AI || !SI->isSimple())
1138 return false; // Don't allow a store OF the AI, only INTO the AI.
1139 continue;
1140 }
1141
1142 if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1143 // If the condition being selected on is a constant, fold the select, yes
1144 // this does (rarely) happen early on.
1145 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1146 Value *Result = SI->getOperand(1+CI->isZero());
1147 SI->replaceAllUsesWith(Result);
1148 SI->eraseFromParent();
1149
1150 // This is very rare and we just scrambled the use list of AI, start
1151 // over completely.
1152 return tryToMakeAllocaBePromotable(AI, TD);
1153 }
1154
1155 // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1156 // loads, then we can transform this by rewriting the select.
1157 if (!isSafeSelectToSpeculate(SI, TD))
1158 return false;
1159
1160 InstsToRewrite.insert(SI);
1161 continue;
1162 }
1163
1164 if (PHINode *PN = dyn_cast<PHINode>(U)) {
1165 if (PN->use_empty()) { // Dead PHIs can be stripped.
1166 InstsToRewrite.insert(PN);
1167 continue;
1168 }
1169
1170 // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1171 // in the pred blocks, then we can transform this by rewriting the PHI.
1172 if (!isSafePHIToSpeculate(PN, TD))
1173 return false;
1174
1175 InstsToRewrite.insert(PN);
1176 continue;
1177 }
1178
1179 if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1180 if (onlyUsedByLifetimeMarkers(BCI)) {
1181 InstsToRewrite.insert(BCI);
1182 continue;
1183 }
1184 }
1185
1186 return false;
1187 }
1188
1189 // If there are no instructions to rewrite, then all uses are load/stores and
1190 // we're done!
1191 if (InstsToRewrite.empty())
1192 return true;
1193
1194 // If we have instructions that need to be rewritten for this to be promotable
1195 // take care of it now.
1196 for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1197 if (BitCastInst *BCI = dyn_cast<BitCastInst>(InstsToRewrite[i])) {
1198 // This could only be a bitcast used by nothing but lifetime intrinsics.
1199 for (BitCastInst::use_iterator I = BCI->use_begin(), E = BCI->use_end();
1200 I != E;) {
1201 Use &U = I.getUse();
1202 ++I;
1203 cast<Instruction>(U.getUser())->eraseFromParent();
1204 }
1205 BCI->eraseFromParent();
1206 continue;
1207 }
1208
1209 if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1210 // Selects in InstsToRewrite only have load uses. Rewrite each as two
1211 // loads with a new select.
1212 while (!SI->use_empty()) {
1213 LoadInst *LI = cast<LoadInst>(SI->use_back());
1214
1215 IRBuilder<> Builder(LI);
1216 LoadInst *TrueLoad =
1217 Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1218 LoadInst *FalseLoad =
1219 Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f");
1220
1221 // Transfer alignment and TBAA info if present.
1222 TrueLoad->setAlignment(LI->getAlignment());
1223 FalseLoad->setAlignment(LI->getAlignment());
1224 if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1225 TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1226 FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1227 }
1228
1229 Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1230 V->takeName(LI);
1231 LI->replaceAllUsesWith(V);
1232 LI->eraseFromParent();
1233 }
1234
1235 // Now that all the loads are gone, the select is gone too.
1236 SI->eraseFromParent();
1237 continue;
1238 }
1239
1240 // Otherwise, we have a PHI node which allows us to push the loads into the
1241 // predecessors.
1242 PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1243 if (PN->use_empty()) {
1244 PN->eraseFromParent();
1245 continue;
1246 }
1247
1248 Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1249 PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1250 PN->getName()+".ld", PN);
1251
1252 // Get the TBAA tag and alignment to use from one of the loads. It doesn't
1253 // matter which one we get and if any differ, it doesn't matter.
1254 LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1255 MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1256 unsigned Align = SomeLoad->getAlignment();
1257
1258 // Rewrite all loads of the PN to use the new PHI.
1259 while (!PN->use_empty()) {
1260 LoadInst *LI = cast<LoadInst>(PN->use_back());
1261 LI->replaceAllUsesWith(NewPN);
1262 LI->eraseFromParent();
1263 }
1264
1265 // Inject loads into all of the pred blocks. Keep track of which blocks we
1266 // insert them into in case we have multiple edges from the same block.
1267 DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1268
1269 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1270 BasicBlock *Pred = PN->getIncomingBlock(i);
1271 LoadInst *&Load = InsertedLoads[Pred];
1272 if (Load == 0) {
1273 Load = new LoadInst(PN->getIncomingValue(i),
1274 PN->getName() + "." + Pred->getName(),
1275 Pred->getTerminator());
1276 Load->setAlignment(Align);
1277 if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1278 }
1279
1280 NewPN->addIncoming(Load, Pred);
1281 }
1282
1283 PN->eraseFromParent();
1284 }
1285
1286 ++NumAdjusted;
1287 return true;
1288 }
1289
performPromotion(Function & F)1290 bool SROA::performPromotion(Function &F) {
1291 std::vector<AllocaInst*> Allocas;
1292 DominatorTree *DT = 0;
1293 if (HasDomTree)
1294 DT = &getAnalysis<DominatorTree>();
1295
1296 BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
1297 DIBuilder DIB(*F.getParent());
1298 bool Changed = false;
1299 SmallVector<Instruction*, 64> Insts;
1300 while (1) {
1301 Allocas.clear();
1302
1303 // Find allocas that are safe to promote, by looking at all instructions in
1304 // the entry node
1305 for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1306 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
1307 if (tryToMakeAllocaBePromotable(AI, TD))
1308 Allocas.push_back(AI);
1309
1310 if (Allocas.empty()) break;
1311
1312 if (HasDomTree)
1313 PromoteMemToReg(Allocas, *DT);
1314 else {
1315 SSAUpdater SSA;
1316 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1317 AllocaInst *AI = Allocas[i];
1318
1319 // Build list of instructions to promote.
1320 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1321 UI != E; ++UI)
1322 Insts.push_back(cast<Instruction>(*UI));
1323 AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts);
1324 Insts.clear();
1325 }
1326 }
1327 NumPromoted += Allocas.size();
1328 Changed = true;
1329 }
1330
1331 return Changed;
1332 }
1333
1334
1335 /// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1336 /// SROA. It must be a struct or array type with a small number of elements.
ShouldAttemptScalarRepl(AllocaInst * AI)1337 static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
1338 Type *T = AI->getAllocatedType();
1339 // Do not promote any struct into more than 32 separate vars.
1340 if (StructType *ST = dyn_cast<StructType>(T))
1341 return ST->getNumElements() <= 32;
1342 // Arrays are much less likely to be safe for SROA; only consider
1343 // them if they are very small.
1344 if (ArrayType *AT = dyn_cast<ArrayType>(T))
1345 return AT->getNumElements() <= 8;
1346 return false;
1347 }
1348
1349
1350 // performScalarRepl - This algorithm is a simple worklist driven algorithm,
1351 // which runs on all of the alloca instructions in the function, removing them
1352 // if they are only used by getelementptr instructions.
1353 //
performScalarRepl(Function & F)1354 bool SROA::performScalarRepl(Function &F) {
1355 std::vector<AllocaInst*> WorkList;
1356
1357 // Scan the entry basic block, adding allocas to the worklist.
1358 BasicBlock &BB = F.getEntryBlock();
1359 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1360 if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1361 WorkList.push_back(A);
1362
1363 // Process the worklist
1364 bool Changed = false;
1365 while (!WorkList.empty()) {
1366 AllocaInst *AI = WorkList.back();
1367 WorkList.pop_back();
1368
1369 // Handle dead allocas trivially. These can be formed by SROA'ing arrays
1370 // with unused elements.
1371 if (AI->use_empty()) {
1372 AI->eraseFromParent();
1373 Changed = true;
1374 continue;
1375 }
1376
1377 // If this alloca is impossible for us to promote, reject it early.
1378 if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1379 continue;
1380
1381 // Check to see if this allocation is only modified by a memcpy/memmove from
1382 // a constant global. If this is the case, we can change all users to use
1383 // the constant global instead. This is commonly produced by the CFE by
1384 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1385 // is only subsequently read.
1386 SmallVector<Instruction *, 4> ToDelete;
1387 if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(AI, ToDelete)) {
1388 DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1389 DEBUG(dbgs() << " memcpy = " << *Copy << '\n');
1390 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
1391 ToDelete[i]->eraseFromParent();
1392 Constant *TheSrc = cast<Constant>(Copy->getSource());
1393 AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
1394 Copy->eraseFromParent(); // Don't mutate the global.
1395 AI->eraseFromParent();
1396 ++NumGlobals;
1397 Changed = true;
1398 continue;
1399 }
1400
1401 // Check to see if we can perform the core SROA transformation. We cannot
1402 // transform the allocation instruction if it is an array allocation
1403 // (allocations OF arrays are ok though), and an allocation of a scalar
1404 // value cannot be decomposed at all.
1405 uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1406
1407 // Do not promote [0 x %struct].
1408 if (AllocaSize == 0) continue;
1409
1410 // Do not promote any struct whose size is too big.
1411 if (AllocaSize > SRThreshold) continue;
1412
1413 // If the alloca looks like a good candidate for scalar replacement, and if
1414 // all its users can be transformed, then split up the aggregate into its
1415 // separate elements.
1416 if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1417 DoScalarReplacement(AI, WorkList);
1418 Changed = true;
1419 continue;
1420 }
1421
1422 // If we can turn this aggregate value (potentially with casts) into a
1423 // simple scalar value that can be mem2reg'd into a register value.
1424 // IsNotTrivial tracks whether this is something that mem2reg could have
1425 // promoted itself. If so, we don't want to transform it needlessly. Note
1426 // that we can't just check based on the type: the alloca may be of an i32
1427 // but that has pointer arithmetic to set byte 3 of it or something.
1428 if (AllocaInst *NewAI =
1429 ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
1430 NewAI->takeName(AI);
1431 AI->eraseFromParent();
1432 ++NumConverted;
1433 Changed = true;
1434 continue;
1435 }
1436
1437 // Otherwise, couldn't process this alloca.
1438 }
1439
1440 return Changed;
1441 }
1442
1443 /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1444 /// predicate, do SROA now.
DoScalarReplacement(AllocaInst * AI,std::vector<AllocaInst * > & WorkList)1445 void SROA::DoScalarReplacement(AllocaInst *AI,
1446 std::vector<AllocaInst*> &WorkList) {
1447 DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1448 SmallVector<AllocaInst*, 32> ElementAllocas;
1449 if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1450 ElementAllocas.reserve(ST->getNumContainedTypes());
1451 for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1452 AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1453 AI->getAlignment(),
1454 AI->getName() + "." + Twine(i), AI);
1455 ElementAllocas.push_back(NA);
1456 WorkList.push_back(NA); // Add to worklist for recursive processing
1457 }
1458 } else {
1459 ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1460 ElementAllocas.reserve(AT->getNumElements());
1461 Type *ElTy = AT->getElementType();
1462 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1463 AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1464 AI->getName() + "." + Twine(i), AI);
1465 ElementAllocas.push_back(NA);
1466 WorkList.push_back(NA); // Add to worklist for recursive processing
1467 }
1468 }
1469
1470 // Now that we have created the new alloca instructions, rewrite all the
1471 // uses of the old alloca.
1472 RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1473
1474 // Now erase any instructions that were made dead while rewriting the alloca.
1475 DeleteDeadInstructions();
1476 AI->eraseFromParent();
1477
1478 ++NumReplaced;
1479 }
1480
1481 /// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1482 /// recursively including all their operands that become trivially dead.
DeleteDeadInstructions()1483 void SROA::DeleteDeadInstructions() {
1484 while (!DeadInsts.empty()) {
1485 Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1486
1487 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1488 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1489 // Zero out the operand and see if it becomes trivially dead.
1490 // (But, don't add allocas to the dead instruction list -- they are
1491 // already on the worklist and will be deleted separately.)
1492 *OI = 0;
1493 if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1494 DeadInsts.push_back(U);
1495 }
1496
1497 I->eraseFromParent();
1498 }
1499 }
1500
1501 /// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1502 /// performing scalar replacement of alloca AI. The results are flagged in
1503 /// the Info parameter. Offset indicates the position within AI that is
1504 /// referenced by this instruction.
isSafeForScalarRepl(Instruction * I,uint64_t Offset,AllocaInfo & Info)1505 void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1506 AllocaInfo &Info) {
1507 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1508 Instruction *User = cast<Instruction>(*UI);
1509
1510 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1511 isSafeForScalarRepl(BC, Offset, Info);
1512 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1513 uint64_t GEPOffset = Offset;
1514 isSafeGEP(GEPI, GEPOffset, Info);
1515 if (!Info.isUnsafe)
1516 isSafeForScalarRepl(GEPI, GEPOffset, Info);
1517 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1518 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1519 if (Length == 0)
1520 return MarkUnsafe(Info, User);
1521 isSafeMemAccess(Offset, Length->getZExtValue(), 0,
1522 UI.getOperandNo() == 0, Info, MI,
1523 true /*AllowWholeAccess*/);
1524 } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1525 if (!LI->isSimple())
1526 return MarkUnsafe(Info, User);
1527 Type *LIType = LI->getType();
1528 isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1529 LIType, false, Info, LI, true /*AllowWholeAccess*/);
1530 Info.hasALoadOrStore = true;
1531
1532 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1533 // Store is ok if storing INTO the pointer, not storing the pointer
1534 if (!SI->isSimple() || SI->getOperand(0) == I)
1535 return MarkUnsafe(Info, User);
1536
1537 Type *SIType = SI->getOperand(0)->getType();
1538 isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1539 SIType, true, Info, SI, true /*AllowWholeAccess*/);
1540 Info.hasALoadOrStore = true;
1541 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1542 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1543 II->getIntrinsicID() != Intrinsic::lifetime_end)
1544 return MarkUnsafe(Info, User);
1545 } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1546 isSafePHISelectUseForScalarRepl(User, Offset, Info);
1547 } else {
1548 return MarkUnsafe(Info, User);
1549 }
1550 if (Info.isUnsafe) return;
1551 }
1552 }
1553
1554
1555 /// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1556 /// derived from the alloca, we can often still split the alloca into elements.
1557 /// This is useful if we have a large alloca where one element is phi'd
1558 /// together somewhere: we can SRoA and promote all the other elements even if
1559 /// we end up not being able to promote this one.
1560 ///
1561 /// All we require is that the uses of the PHI do not index into other parts of
1562 /// the alloca. The most important use case for this is single load and stores
1563 /// that are PHI'd together, which can happen due to code sinking.
isSafePHISelectUseForScalarRepl(Instruction * I,uint64_t Offset,AllocaInfo & Info)1564 void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1565 AllocaInfo &Info) {
1566 // If we've already checked this PHI, don't do it again.
1567 if (PHINode *PN = dyn_cast<PHINode>(I))
1568 if (!Info.CheckedPHIs.insert(PN))
1569 return;
1570
1571 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1572 Instruction *User = cast<Instruction>(*UI);
1573
1574 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1575 isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1576 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1577 // Only allow "bitcast" GEPs for simplicity. We could generalize this,
1578 // but would have to prove that we're staying inside of an element being
1579 // promoted.
1580 if (!GEPI->hasAllZeroIndices())
1581 return MarkUnsafe(Info, User);
1582 isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1583 } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1584 if (!LI->isSimple())
1585 return MarkUnsafe(Info, User);
1586 Type *LIType = LI->getType();
1587 isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1588 LIType, false, Info, LI, false /*AllowWholeAccess*/);
1589 Info.hasALoadOrStore = true;
1590
1591 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1592 // Store is ok if storing INTO the pointer, not storing the pointer
1593 if (!SI->isSimple() || SI->getOperand(0) == I)
1594 return MarkUnsafe(Info, User);
1595
1596 Type *SIType = SI->getOperand(0)->getType();
1597 isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1598 SIType, true, Info, SI, false /*AllowWholeAccess*/);
1599 Info.hasALoadOrStore = true;
1600 } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1601 isSafePHISelectUseForScalarRepl(User, Offset, Info);
1602 } else {
1603 return MarkUnsafe(Info, User);
1604 }
1605 if (Info.isUnsafe) return;
1606 }
1607 }
1608
1609 /// isSafeGEP - Check if a GEP instruction can be handled for scalar
1610 /// replacement. It is safe when all the indices are constant, in-bounds
1611 /// references, and when the resulting offset corresponds to an element within
1612 /// the alloca type. The results are flagged in the Info parameter. Upon
1613 /// return, Offset is adjusted as specified by the GEP indices.
isSafeGEP(GetElementPtrInst * GEPI,uint64_t & Offset,AllocaInfo & Info)1614 void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1615 uint64_t &Offset, AllocaInfo &Info) {
1616 gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1617 if (GEPIt == E)
1618 return;
1619
1620 // Walk through the GEP type indices, checking the types that this indexes
1621 // into.
1622 for (; GEPIt != E; ++GEPIt) {
1623 // Ignore struct elements, no extra checking needed for these.
1624 if ((*GEPIt)->isStructTy())
1625 continue;
1626
1627 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1628 if (!IdxVal)
1629 return MarkUnsafe(Info, GEPI);
1630 }
1631
1632 // Compute the offset due to this GEP and check if the alloca has a
1633 // component element at that offset.
1634 SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1635 Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
1636 if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
1637 MarkUnsafe(Info, GEPI);
1638 }
1639
1640 /// isHomogeneousAggregate - Check if type T is a struct or array containing
1641 /// elements of the same type (which is always true for arrays). If so,
1642 /// return true with NumElts and EltTy set to the number of elements and the
1643 /// element type, respectively.
isHomogeneousAggregate(Type * T,unsigned & NumElts,Type * & EltTy)1644 static bool isHomogeneousAggregate(Type *T, unsigned &NumElts,
1645 Type *&EltTy) {
1646 if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1647 NumElts = AT->getNumElements();
1648 EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1649 return true;
1650 }
1651 if (StructType *ST = dyn_cast<StructType>(T)) {
1652 NumElts = ST->getNumContainedTypes();
1653 EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1654 for (unsigned n = 1; n < NumElts; ++n) {
1655 if (ST->getContainedType(n) != EltTy)
1656 return false;
1657 }
1658 return true;
1659 }
1660 return false;
1661 }
1662
1663 /// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1664 /// "homogeneous" aggregates with the same element type and number of elements.
isCompatibleAggregate(Type * T1,Type * T2)1665 static bool isCompatibleAggregate(Type *T1, Type *T2) {
1666 if (T1 == T2)
1667 return true;
1668
1669 unsigned NumElts1, NumElts2;
1670 Type *EltTy1, *EltTy2;
1671 if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1672 isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1673 NumElts1 == NumElts2 &&
1674 EltTy1 == EltTy2)
1675 return true;
1676
1677 return false;
1678 }
1679
1680 /// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1681 /// alloca or has an offset and size that corresponds to a component element
1682 /// within it. The offset checked here may have been formed from a GEP with a
1683 /// pointer bitcasted to a different type.
1684 ///
1685 /// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1686 /// unit. If false, it only allows accesses known to be in a single element.
isSafeMemAccess(uint64_t Offset,uint64_t MemSize,Type * MemOpType,bool isStore,AllocaInfo & Info,Instruction * TheAccess,bool AllowWholeAccess)1687 void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1688 Type *MemOpType, bool isStore,
1689 AllocaInfo &Info, Instruction *TheAccess,
1690 bool AllowWholeAccess) {
1691 // Check if this is a load/store of the entire alloca.
1692 if (Offset == 0 && AllowWholeAccess &&
1693 MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
1694 // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1695 // loads/stores (which are essentially the same as the MemIntrinsics with
1696 // regard to copying padding between elements). But, if an alloca is
1697 // flagged as both a source and destination of such operations, we'll need
1698 // to check later for padding between elements.
1699 if (!MemOpType || MemOpType->isIntegerTy()) {
1700 if (isStore)
1701 Info.isMemCpyDst = true;
1702 else
1703 Info.isMemCpySrc = true;
1704 return;
1705 }
1706 // This is also safe for references using a type that is compatible with
1707 // the type of the alloca, so that loads/stores can be rewritten using
1708 // insertvalue/extractvalue.
1709 if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1710 Info.hasSubelementAccess = true;
1711 return;
1712 }
1713 }
1714 // Check if the offset/size correspond to a component within the alloca type.
1715 Type *T = Info.AI->getAllocatedType();
1716 if (TypeHasComponent(T, Offset, MemSize)) {
1717 Info.hasSubelementAccess = true;
1718 return;
1719 }
1720
1721 return MarkUnsafe(Info, TheAccess);
1722 }
1723
1724 /// TypeHasComponent - Return true if T has a component type with the
1725 /// specified offset and size. If Size is zero, do not check the size.
TypeHasComponent(Type * T,uint64_t Offset,uint64_t Size)1726 bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) {
1727 Type *EltTy;
1728 uint64_t EltSize;
1729 if (StructType *ST = dyn_cast<StructType>(T)) {
1730 const StructLayout *Layout = TD->getStructLayout(ST);
1731 unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1732 EltTy = ST->getContainedType(EltIdx);
1733 EltSize = TD->getTypeAllocSize(EltTy);
1734 Offset -= Layout->getElementOffset(EltIdx);
1735 } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1736 EltTy = AT->getElementType();
1737 EltSize = TD->getTypeAllocSize(EltTy);
1738 if (Offset >= AT->getNumElements() * EltSize)
1739 return false;
1740 Offset %= EltSize;
1741 } else {
1742 return false;
1743 }
1744 if (Offset == 0 && (Size == 0 || EltSize == Size))
1745 return true;
1746 // Check if the component spans multiple elements.
1747 if (Offset + Size > EltSize)
1748 return false;
1749 return TypeHasComponent(EltTy, Offset, Size);
1750 }
1751
1752 /// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1753 /// the instruction I, which references it, to use the separate elements.
1754 /// Offset indicates the position within AI that is referenced by this
1755 /// instruction.
RewriteForScalarRepl(Instruction * I,AllocaInst * AI,uint64_t Offset,SmallVector<AllocaInst *,32> & NewElts)1756 void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1757 SmallVector<AllocaInst*, 32> &NewElts) {
1758 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1759 Use &TheUse = UI.getUse();
1760 Instruction *User = cast<Instruction>(*UI++);
1761
1762 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1763 RewriteBitCast(BC, AI, Offset, NewElts);
1764 continue;
1765 }
1766
1767 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1768 RewriteGEP(GEPI, AI, Offset, NewElts);
1769 continue;
1770 }
1771
1772 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1773 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1774 uint64_t MemSize = Length->getZExtValue();
1775 if (Offset == 0 &&
1776 MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1777 RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1778 // Otherwise the intrinsic can only touch a single element and the
1779 // address operand will be updated, so nothing else needs to be done.
1780 continue;
1781 }
1782
1783 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1784 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
1785 II->getIntrinsicID() == Intrinsic::lifetime_end) {
1786 RewriteLifetimeIntrinsic(II, AI, Offset, NewElts);
1787 }
1788 continue;
1789 }
1790
1791 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1792 Type *LIType = LI->getType();
1793
1794 if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1795 // Replace:
1796 // %res = load { i32, i32 }* %alloc
1797 // with:
1798 // %load.0 = load i32* %alloc.0
1799 // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1800 // %load.1 = load i32* %alloc.1
1801 // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1802 // (Also works for arrays instead of structs)
1803 Value *Insert = UndefValue::get(LIType);
1804 IRBuilder<> Builder(LI);
1805 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1806 Value *Load = Builder.CreateLoad(NewElts[i], "load");
1807 Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
1808 }
1809 LI->replaceAllUsesWith(Insert);
1810 DeadInsts.push_back(LI);
1811 } else if (LIType->isIntegerTy() &&
1812 TD->getTypeAllocSize(LIType) ==
1813 TD->getTypeAllocSize(AI->getAllocatedType())) {
1814 // If this is a load of the entire alloca to an integer, rewrite it.
1815 RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1816 }
1817 continue;
1818 }
1819
1820 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1821 Value *Val = SI->getOperand(0);
1822 Type *SIType = Val->getType();
1823 if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1824 // Replace:
1825 // store { i32, i32 } %val, { i32, i32 }* %alloc
1826 // with:
1827 // %val.0 = extractvalue { i32, i32 } %val, 0
1828 // store i32 %val.0, i32* %alloc.0
1829 // %val.1 = extractvalue { i32, i32 } %val, 1
1830 // store i32 %val.1, i32* %alloc.1
1831 // (Also works for arrays instead of structs)
1832 IRBuilder<> Builder(SI);
1833 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1834 Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
1835 Builder.CreateStore(Extract, NewElts[i]);
1836 }
1837 DeadInsts.push_back(SI);
1838 } else if (SIType->isIntegerTy() &&
1839 TD->getTypeAllocSize(SIType) ==
1840 TD->getTypeAllocSize(AI->getAllocatedType())) {
1841 // If this is a store of the entire alloca from an integer, rewrite it.
1842 RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1843 }
1844 continue;
1845 }
1846
1847 if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1848 // If we have a PHI user of the alloca itself (as opposed to a GEP or
1849 // bitcast) we have to rewrite it. GEP and bitcast uses will be RAUW'd to
1850 // the new pointer.
1851 if (!isa<AllocaInst>(I)) continue;
1852
1853 assert(Offset == 0 && NewElts[0] &&
1854 "Direct alloca use should have a zero offset");
1855
1856 // If we have a use of the alloca, we know the derived uses will be
1857 // utilizing just the first element of the scalarized result. Insert a
1858 // bitcast of the first alloca before the user as required.
1859 AllocaInst *NewAI = NewElts[0];
1860 BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1861 NewAI->moveBefore(BCI);
1862 TheUse = BCI;
1863 continue;
1864 }
1865 }
1866 }
1867
1868 /// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1869 /// and recursively continue updating all of its uses.
RewriteBitCast(BitCastInst * BC,AllocaInst * AI,uint64_t Offset,SmallVector<AllocaInst *,32> & NewElts)1870 void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1871 SmallVector<AllocaInst*, 32> &NewElts) {
1872 RewriteForScalarRepl(BC, AI, Offset, NewElts);
1873 if (BC->getOperand(0) != AI)
1874 return;
1875
1876 // The bitcast references the original alloca. Replace its uses with
1877 // references to the first new element alloca.
1878 Instruction *Val = NewElts[0];
1879 if (Val->getType() != BC->getDestTy()) {
1880 Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1881 Val->takeName(BC);
1882 }
1883 BC->replaceAllUsesWith(Val);
1884 DeadInsts.push_back(BC);
1885 }
1886
1887 /// FindElementAndOffset - Return the index of the element containing Offset
1888 /// within the specified type, which must be either a struct or an array.
1889 /// Sets T to the type of the element and Offset to the offset within that
1890 /// element. IdxTy is set to the type of the index result to be used in a
1891 /// GEP instruction.
FindElementAndOffset(Type * & T,uint64_t & Offset,Type * & IdxTy)1892 uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
1893 Type *&IdxTy) {
1894 uint64_t Idx = 0;
1895 if (StructType *ST = dyn_cast<StructType>(T)) {
1896 const StructLayout *Layout = TD->getStructLayout(ST);
1897 Idx = Layout->getElementContainingOffset(Offset);
1898 T = ST->getContainedType(Idx);
1899 Offset -= Layout->getElementOffset(Idx);
1900 IdxTy = Type::getInt32Ty(T->getContext());
1901 return Idx;
1902 }
1903 ArrayType *AT = cast<ArrayType>(T);
1904 T = AT->getElementType();
1905 uint64_t EltSize = TD->getTypeAllocSize(T);
1906 Idx = Offset / EltSize;
1907 Offset -= Idx * EltSize;
1908 IdxTy = Type::getInt64Ty(T->getContext());
1909 return Idx;
1910 }
1911
1912 /// RewriteGEP - Check if this GEP instruction moves the pointer across
1913 /// elements of the alloca that are being split apart, and if so, rewrite
1914 /// the GEP to be relative to the new element.
RewriteGEP(GetElementPtrInst * GEPI,AllocaInst * AI,uint64_t Offset,SmallVector<AllocaInst *,32> & NewElts)1915 void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1916 SmallVector<AllocaInst*, 32> &NewElts) {
1917 uint64_t OldOffset = Offset;
1918 SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1919 Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
1920
1921 RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1922
1923 Type *T = AI->getAllocatedType();
1924 Type *IdxTy;
1925 uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
1926 if (GEPI->getOperand(0) == AI)
1927 OldIdx = ~0ULL; // Force the GEP to be rewritten.
1928
1929 T = AI->getAllocatedType();
1930 uint64_t EltOffset = Offset;
1931 uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1932
1933 // If this GEP does not move the pointer across elements of the alloca
1934 // being split, then it does not needs to be rewritten.
1935 if (Idx == OldIdx)
1936 return;
1937
1938 Type *i32Ty = Type::getInt32Ty(AI->getContext());
1939 SmallVector<Value*, 8> NewArgs;
1940 NewArgs.push_back(Constant::getNullValue(i32Ty));
1941 while (EltOffset != 0) {
1942 uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1943 NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
1944 }
1945 Instruction *Val = NewElts[Idx];
1946 if (NewArgs.size() > 1) {
1947 Val = GetElementPtrInst::CreateInBounds(Val, NewArgs, "", GEPI);
1948 Val->takeName(GEPI);
1949 }
1950 if (Val->getType() != GEPI->getType())
1951 Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
1952 GEPI->replaceAllUsesWith(Val);
1953 DeadInsts.push_back(GEPI);
1954 }
1955
1956 /// RewriteLifetimeIntrinsic - II is a lifetime.start/lifetime.end. Rewrite it
1957 /// to mark the lifetime of the scalarized memory.
RewriteLifetimeIntrinsic(IntrinsicInst * II,AllocaInst * AI,uint64_t Offset,SmallVector<AllocaInst *,32> & NewElts)1958 void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
1959 uint64_t Offset,
1960 SmallVector<AllocaInst*, 32> &NewElts) {
1961 ConstantInt *OldSize = cast<ConstantInt>(II->getArgOperand(0));
1962 // Put matching lifetime markers on everything from Offset up to
1963 // Offset+OldSize.
1964 Type *AIType = AI->getAllocatedType();
1965 uint64_t NewOffset = Offset;
1966 Type *IdxTy;
1967 uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy);
1968
1969 IRBuilder<> Builder(II);
1970 uint64_t Size = OldSize->getLimitedValue();
1971
1972 if (NewOffset) {
1973 // Splice the first element and index 'NewOffset' bytes in. SROA will
1974 // split the alloca again later.
1975 Value *V = Builder.CreateBitCast(NewElts[Idx], Builder.getInt8PtrTy());
1976 V = Builder.CreateGEP(V, Builder.getInt64(NewOffset));
1977
1978 IdxTy = NewElts[Idx]->getAllocatedType();
1979 uint64_t EltSize = TD->getTypeAllocSize(IdxTy) - NewOffset;
1980 if (EltSize > Size) {
1981 EltSize = Size;
1982 Size = 0;
1983 } else {
1984 Size -= EltSize;
1985 }
1986 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1987 Builder.CreateLifetimeStart(V, Builder.getInt64(EltSize));
1988 else
1989 Builder.CreateLifetimeEnd(V, Builder.getInt64(EltSize));
1990 ++Idx;
1991 }
1992
1993 for (; Idx != NewElts.size() && Size; ++Idx) {
1994 IdxTy = NewElts[Idx]->getAllocatedType();
1995 uint64_t EltSize = TD->getTypeAllocSize(IdxTy);
1996 if (EltSize > Size) {
1997 EltSize = Size;
1998 Size = 0;
1999 } else {
2000 Size -= EltSize;
2001 }
2002 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
2003 Builder.CreateLifetimeStart(NewElts[Idx],
2004 Builder.getInt64(EltSize));
2005 else
2006 Builder.CreateLifetimeEnd(NewElts[Idx],
2007 Builder.getInt64(EltSize));
2008 }
2009 DeadInsts.push_back(II);
2010 }
2011
2012 /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
2013 /// Rewrite it to copy or set the elements of the scalarized memory.
RewriteMemIntrinUserOfAlloca(MemIntrinsic * MI,Instruction * Inst,AllocaInst * AI,SmallVector<AllocaInst *,32> & NewElts)2014 void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
2015 AllocaInst *AI,
2016 SmallVector<AllocaInst*, 32> &NewElts) {
2017 // If this is a memcpy/memmove, construct the other pointer as the
2018 // appropriate type. The "Other" pointer is the pointer that goes to memory
2019 // that doesn't have anything to do with the alloca that we are promoting. For
2020 // memset, this Value* stays null.
2021 Value *OtherPtr = 0;
2022 unsigned MemAlignment = MI->getAlignment();
2023 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
2024 if (Inst == MTI->getRawDest())
2025 OtherPtr = MTI->getRawSource();
2026 else {
2027 assert(Inst == MTI->getRawSource());
2028 OtherPtr = MTI->getRawDest();
2029 }
2030 }
2031
2032 // If there is an other pointer, we want to convert it to the same pointer
2033 // type as AI has, so we can GEP through it safely.
2034 if (OtherPtr) {
2035 unsigned AddrSpace =
2036 cast<PointerType>(OtherPtr->getType())->getAddressSpace();
2037
2038 // Remove bitcasts and all-zero GEPs from OtherPtr. This is an
2039 // optimization, but it's also required to detect the corner case where
2040 // both pointer operands are referencing the same memory, and where
2041 // OtherPtr may be a bitcast or GEP that currently being rewritten. (This
2042 // function is only called for mem intrinsics that access the whole
2043 // aggregate, so non-zero GEPs are not an issue here.)
2044 OtherPtr = OtherPtr->stripPointerCasts();
2045
2046 // Copying the alloca to itself is a no-op: just delete it.
2047 if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2048 // This code will run twice for a no-op memcpy -- once for each operand.
2049 // Put only one reference to MI on the DeadInsts list.
2050 for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
2051 E = DeadInsts.end(); I != E; ++I)
2052 if (*I == MI) return;
2053 DeadInsts.push_back(MI);
2054 return;
2055 }
2056
2057 // If the pointer is not the right type, insert a bitcast to the right
2058 // type.
2059 Type *NewTy =
2060 PointerType::get(AI->getType()->getElementType(), AddrSpace);
2061
2062 if (OtherPtr->getType() != NewTy)
2063 OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
2064 }
2065
2066 // Process each element of the aggregate.
2067 bool SROADest = MI->getRawDest() == Inst;
2068
2069 Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
2070
2071 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2072 // If this is a memcpy/memmove, emit a GEP of the other element address.
2073 Value *OtherElt = 0;
2074 unsigned OtherEltAlign = MemAlignment;
2075
2076 if (OtherPtr) {
2077 Value *Idx[2] = { Zero,
2078 ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
2079 OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx,
2080 OtherPtr->getName()+"."+Twine(i),
2081 MI);
2082 uint64_t EltOffset;
2083 PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
2084 Type *OtherTy = OtherPtrTy->getElementType();
2085 if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
2086 EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
2087 } else {
2088 Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2089 EltOffset = TD->getTypeAllocSize(EltTy)*i;
2090 }
2091
2092 // The alignment of the other pointer is the guaranteed alignment of the
2093 // element, which is affected by both the known alignment of the whole
2094 // mem intrinsic and the alignment of the element. If the alignment of
2095 // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2096 // known alignment is just 4 bytes.
2097 OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2098 }
2099
2100 Value *EltPtr = NewElts[i];
2101 Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2102
2103 // If we got down to a scalar, insert a load or store as appropriate.
2104 if (EltTy->isSingleValueType()) {
2105 if (isa<MemTransferInst>(MI)) {
2106 if (SROADest) {
2107 // From Other to Alloca.
2108 Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2109 new StoreInst(Elt, EltPtr, MI);
2110 } else {
2111 // From Alloca to Other.
2112 Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2113 new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2114 }
2115 continue;
2116 }
2117 assert(isa<MemSetInst>(MI));
2118
2119 // If the stored element is zero (common case), just store a null
2120 // constant.
2121 Constant *StoreVal;
2122 if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2123 if (CI->isZero()) {
2124 StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0>
2125 } else {
2126 // If EltTy is a vector type, get the element type.
2127 Type *ValTy = EltTy->getScalarType();
2128
2129 // Construct an integer with the right value.
2130 unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2131 APInt OneVal(EltSize, CI->getZExtValue());
2132 APInt TotalVal(OneVal);
2133 // Set each byte.
2134 for (unsigned i = 0; 8*i < EltSize; ++i) {
2135 TotalVal = TotalVal.shl(8);
2136 TotalVal |= OneVal;
2137 }
2138
2139 // Convert the integer value to the appropriate type.
2140 StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2141 if (ValTy->isPointerTy())
2142 StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2143 else if (ValTy->isFloatingPointTy())
2144 StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2145 assert(StoreVal->getType() == ValTy && "Type mismatch!");
2146
2147 // If the requested value was a vector constant, create it.
2148 if (EltTy->isVectorTy()) {
2149 unsigned NumElts = cast<VectorType>(EltTy)->getNumElements();
2150 SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
2151 StoreVal = ConstantVector::get(Elts);
2152 }
2153 }
2154 new StoreInst(StoreVal, EltPtr, MI);
2155 continue;
2156 }
2157 // Otherwise, if we're storing a byte variable, use a memset call for
2158 // this element.
2159 }
2160
2161 unsigned EltSize = TD->getTypeAllocSize(EltTy);
2162
2163 IRBuilder<> Builder(MI);
2164
2165 // Finally, insert the meminst for this element.
2166 if (isa<MemSetInst>(MI)) {
2167 Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2168 MI->isVolatile());
2169 } else {
2170 assert(isa<MemTransferInst>(MI));
2171 Value *Dst = SROADest ? EltPtr : OtherElt; // Dest ptr
2172 Value *Src = SROADest ? OtherElt : EltPtr; // Src ptr
2173
2174 if (isa<MemCpyInst>(MI))
2175 Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2176 else
2177 Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2178 }
2179 }
2180 DeadInsts.push_back(MI);
2181 }
2182
2183 /// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2184 /// overwrites the entire allocation. Extract out the pieces of the stored
2185 /// integer and store them individually.
RewriteStoreUserOfWholeAlloca(StoreInst * SI,AllocaInst * AI,SmallVector<AllocaInst *,32> & NewElts)2186 void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2187 SmallVector<AllocaInst*, 32> &NewElts){
2188 // Extract each element out of the integer according to its structure offset
2189 // and store the element value to the individual alloca.
2190 Value *SrcVal = SI->getOperand(0);
2191 Type *AllocaEltTy = AI->getAllocatedType();
2192 uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2193
2194 IRBuilder<> Builder(SI);
2195
2196 // Handle tail padding by extending the operand
2197 if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2198 SrcVal = Builder.CreateZExt(SrcVal,
2199 IntegerType::get(SI->getContext(), AllocaSizeBits));
2200
2201 DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2202 << '\n');
2203
2204 // There are two forms here: AI could be an array or struct. Both cases
2205 // have different ways to compute the element offset.
2206 if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2207 const StructLayout *Layout = TD->getStructLayout(EltSTy);
2208
2209 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2210 // Get the number of bits to shift SrcVal to get the value.
2211 Type *FieldTy = EltSTy->getElementType(i);
2212 uint64_t Shift = Layout->getElementOffsetInBits(i);
2213
2214 if (TD->isBigEndian())
2215 Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
2216
2217 Value *EltVal = SrcVal;
2218 if (Shift) {
2219 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2220 EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2221 }
2222
2223 // Truncate down to an integer of the right size.
2224 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2225
2226 // Ignore zero sized fields like {}, they obviously contain no data.
2227 if (FieldSizeBits == 0) continue;
2228
2229 if (FieldSizeBits != AllocaSizeBits)
2230 EltVal = Builder.CreateTrunc(EltVal,
2231 IntegerType::get(SI->getContext(), FieldSizeBits));
2232 Value *DestField = NewElts[i];
2233 if (EltVal->getType() == FieldTy) {
2234 // Storing to an integer field of this size, just do it.
2235 } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2236 // Bitcast to the right element type (for fp/vector values).
2237 EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2238 } else {
2239 // Otherwise, bitcast the dest pointer (for aggregates).
2240 DestField = Builder.CreateBitCast(DestField,
2241 PointerType::getUnqual(EltVal->getType()));
2242 }
2243 new StoreInst(EltVal, DestField, SI);
2244 }
2245
2246 } else {
2247 ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2248 Type *ArrayEltTy = ATy->getElementType();
2249 uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2250 uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2251
2252 uint64_t Shift;
2253
2254 if (TD->isBigEndian())
2255 Shift = AllocaSizeBits-ElementOffset;
2256 else
2257 Shift = 0;
2258
2259 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2260 // Ignore zero sized fields like {}, they obviously contain no data.
2261 if (ElementSizeBits == 0) continue;
2262
2263 Value *EltVal = SrcVal;
2264 if (Shift) {
2265 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2266 EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2267 }
2268
2269 // Truncate down to an integer of the right size.
2270 if (ElementSizeBits != AllocaSizeBits)
2271 EltVal = Builder.CreateTrunc(EltVal,
2272 IntegerType::get(SI->getContext(),
2273 ElementSizeBits));
2274 Value *DestField = NewElts[i];
2275 if (EltVal->getType() == ArrayEltTy) {
2276 // Storing to an integer field of this size, just do it.
2277 } else if (ArrayEltTy->isFloatingPointTy() ||
2278 ArrayEltTy->isVectorTy()) {
2279 // Bitcast to the right element type (for fp/vector values).
2280 EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2281 } else {
2282 // Otherwise, bitcast the dest pointer (for aggregates).
2283 DestField = Builder.CreateBitCast(DestField,
2284 PointerType::getUnqual(EltVal->getType()));
2285 }
2286 new StoreInst(EltVal, DestField, SI);
2287
2288 if (TD->isBigEndian())
2289 Shift -= ElementOffset;
2290 else
2291 Shift += ElementOffset;
2292 }
2293 }
2294
2295 DeadInsts.push_back(SI);
2296 }
2297
2298 /// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2299 /// an integer. Load the individual pieces to form the aggregate value.
RewriteLoadUserOfWholeAlloca(LoadInst * LI,AllocaInst * AI,SmallVector<AllocaInst *,32> & NewElts)2300 void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2301 SmallVector<AllocaInst*, 32> &NewElts) {
2302 // Extract each element out of the NewElts according to its structure offset
2303 // and form the result value.
2304 Type *AllocaEltTy = AI->getAllocatedType();
2305 uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2306
2307 DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2308 << '\n');
2309
2310 // There are two forms here: AI could be an array or struct. Both cases
2311 // have different ways to compute the element offset.
2312 const StructLayout *Layout = 0;
2313 uint64_t ArrayEltBitOffset = 0;
2314 if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2315 Layout = TD->getStructLayout(EltSTy);
2316 } else {
2317 Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2318 ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2319 }
2320
2321 Value *ResultVal =
2322 Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2323
2324 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2325 // Load the value from the alloca. If the NewElt is an aggregate, cast
2326 // the pointer to an integer of the same size before doing the load.
2327 Value *SrcField = NewElts[i];
2328 Type *FieldTy =
2329 cast<PointerType>(SrcField->getType())->getElementType();
2330 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2331
2332 // Ignore zero sized fields like {}, they obviously contain no data.
2333 if (FieldSizeBits == 0) continue;
2334
2335 IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2336 FieldSizeBits);
2337 if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2338 !FieldTy->isVectorTy())
2339 SrcField = new BitCastInst(SrcField,
2340 PointerType::getUnqual(FieldIntTy),
2341 "", LI);
2342 SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2343
2344 // If SrcField is a fp or vector of the right size but that isn't an
2345 // integer type, bitcast to an integer so we can shift it.
2346 if (SrcField->getType() != FieldIntTy)
2347 SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2348
2349 // Zero extend the field to be the same size as the final alloca so that
2350 // we can shift and insert it.
2351 if (SrcField->getType() != ResultVal->getType())
2352 SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2353
2354 // Determine the number of bits to shift SrcField.
2355 uint64_t Shift;
2356 if (Layout) // Struct case.
2357 Shift = Layout->getElementOffsetInBits(i);
2358 else // Array case.
2359 Shift = i*ArrayEltBitOffset;
2360
2361 if (TD->isBigEndian())
2362 Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2363
2364 if (Shift) {
2365 Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2366 SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2367 }
2368
2369 // Don't create an 'or x, 0' on the first iteration.
2370 if (!isa<Constant>(ResultVal) ||
2371 !cast<Constant>(ResultVal)->isNullValue())
2372 ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2373 else
2374 ResultVal = SrcField;
2375 }
2376
2377 // Handle tail padding by truncating the result
2378 if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2379 ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2380
2381 LI->replaceAllUsesWith(ResultVal);
2382 DeadInsts.push_back(LI);
2383 }
2384
2385 /// HasPadding - Return true if the specified type has any structure or
2386 /// alignment padding in between the elements that would be split apart
2387 /// by SROA; return false otherwise.
HasPadding(Type * Ty,const TargetData & TD)2388 static bool HasPadding(Type *Ty, const TargetData &TD) {
2389 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2390 Ty = ATy->getElementType();
2391 return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
2392 }
2393
2394 // SROA currently handles only Arrays and Structs.
2395 StructType *STy = cast<StructType>(Ty);
2396 const StructLayout *SL = TD.getStructLayout(STy);
2397 unsigned PrevFieldBitOffset = 0;
2398 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2399 unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2400
2401 // Check to see if there is any padding between this element and the
2402 // previous one.
2403 if (i) {
2404 unsigned PrevFieldEnd =
2405 PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2406 if (PrevFieldEnd < FieldBitOffset)
2407 return true;
2408 }
2409 PrevFieldBitOffset = FieldBitOffset;
2410 }
2411 // Check for tail padding.
2412 if (unsigned EltCount = STy->getNumElements()) {
2413 unsigned PrevFieldEnd = PrevFieldBitOffset +
2414 TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2415 if (PrevFieldEnd < SL->getSizeInBits())
2416 return true;
2417 }
2418 return false;
2419 }
2420
2421 /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2422 /// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
2423 /// or 1 if safe after canonicalization has been performed.
isSafeAllocaToScalarRepl(AllocaInst * AI)2424 bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2425 // Loop over the use list of the alloca. We can only transform it if all of
2426 // the users are safe to transform.
2427 AllocaInfo Info(AI);
2428
2429 isSafeForScalarRepl(AI, 0, Info);
2430 if (Info.isUnsafe) {
2431 DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2432 return false;
2433 }
2434
2435 // Okay, we know all the users are promotable. If the aggregate is a memcpy
2436 // source and destination, we have to be careful. In particular, the memcpy
2437 // could be moving around elements that live in structure padding of the LLVM
2438 // types, but may actually be used. In these cases, we refuse to promote the
2439 // struct.
2440 if (Info.isMemCpySrc && Info.isMemCpyDst &&
2441 HasPadding(AI->getAllocatedType(), *TD))
2442 return false;
2443
2444 // If the alloca never has an access to just *part* of it, but is accessed
2445 // via loads and stores, then we should use ConvertToScalarInfo to promote
2446 // the alloca instead of promoting each piece at a time and inserting fission
2447 // and fusion code.
2448 if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2449 // If the struct/array just has one element, use basic SRoA.
2450 if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2451 if (ST->getNumElements() > 1) return false;
2452 } else {
2453 if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2454 return false;
2455 }
2456 }
2457
2458 return true;
2459 }
2460
2461
2462
2463 /// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2464 /// some part of a constant global variable. This intentionally only accepts
2465 /// constant expressions because we don't can't rewrite arbitrary instructions.
PointsToConstantGlobal(Value * V)2466 static bool PointsToConstantGlobal(Value *V) {
2467 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2468 return GV->isConstant();
2469 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2470 if (CE->getOpcode() == Instruction::BitCast ||
2471 CE->getOpcode() == Instruction::GetElementPtr)
2472 return PointsToConstantGlobal(CE->getOperand(0));
2473 return false;
2474 }
2475
2476 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2477 /// pointer to an alloca. Ignore any reads of the pointer, return false if we
2478 /// see any stores or other unknown uses. If we see pointer arithmetic, keep
2479 /// track of whether it moves the pointer (with isOffset) but otherwise traverse
2480 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
2481 /// the alloca, and if the source pointer is a pointer to a constant global, we
2482 /// can optimize this.
2483 static bool
isOnlyCopiedFromConstantGlobal(Value * V,MemTransferInst * & TheCopy,bool isOffset,SmallVector<Instruction *,4> & LifetimeMarkers)2484 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
2485 bool isOffset,
2486 SmallVector<Instruction *, 4> &LifetimeMarkers) {
2487 // We track lifetime intrinsics as we encounter them. If we decide to go
2488 // ahead and replace the value with the global, this lets the caller quickly
2489 // eliminate the markers.
2490
2491 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
2492 User *U = cast<Instruction>(*UI);
2493
2494 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
2495 // Ignore non-volatile loads, they are always ok.
2496 if (!LI->isSimple()) return false;
2497 continue;
2498 }
2499
2500 if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
2501 // If uses of the bitcast are ok, we are ok.
2502 if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset,
2503 LifetimeMarkers))
2504 return false;
2505 continue;
2506 }
2507 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
2508 // If the GEP has all zero indices, it doesn't offset the pointer. If it
2509 // doesn't, it does.
2510 if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2511 isOffset || !GEP->hasAllZeroIndices(),
2512 LifetimeMarkers))
2513 return false;
2514 continue;
2515 }
2516
2517 if (CallSite CS = U) {
2518 // If this is the function being called then we treat it like a load and
2519 // ignore it.
2520 if (CS.isCallee(UI))
2521 continue;
2522
2523 // If this is a readonly/readnone call site, then we know it is just a
2524 // load (but one that potentially returns the value itself), so we can
2525 // ignore it if we know that the value isn't captured.
2526 unsigned ArgNo = CS.getArgumentNo(UI);
2527 if (CS.onlyReadsMemory() &&
2528 (CS.getInstruction()->use_empty() ||
2529 CS.paramHasAttr(ArgNo+1, Attribute::NoCapture)))
2530 continue;
2531
2532 // If this is being passed as a byval argument, the caller is making a
2533 // copy, so it is only a read of the alloca.
2534 if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
2535 continue;
2536 }
2537
2538 // Lifetime intrinsics can be handled by the caller.
2539 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
2540 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
2541 II->getIntrinsicID() == Intrinsic::lifetime_end) {
2542 assert(II->use_empty() && "Lifetime markers have no result to use!");
2543 LifetimeMarkers.push_back(II);
2544 continue;
2545 }
2546 }
2547
2548 // If this is isn't our memcpy/memmove, reject it as something we can't
2549 // handle.
2550 MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2551 if (MI == 0)
2552 return false;
2553
2554 // If the transfer is using the alloca as a source of the transfer, then
2555 // ignore it since it is a load (unless the transfer is volatile).
2556 if (UI.getOperandNo() == 1) {
2557 if (MI->isVolatile()) return false;
2558 continue;
2559 }
2560
2561 // If we already have seen a copy, reject the second one.
2562 if (TheCopy) return false;
2563
2564 // If the pointer has been offset from the start of the alloca, we can't
2565 // safely handle this.
2566 if (isOffset) return false;
2567
2568 // If the memintrinsic isn't using the alloca as the dest, reject it.
2569 if (UI.getOperandNo() != 0) return false;
2570
2571 // If the source of the memcpy/move is not a constant global, reject it.
2572 if (!PointsToConstantGlobal(MI->getSource()))
2573 return false;
2574
2575 // Otherwise, the transform is safe. Remember the copy instruction.
2576 TheCopy = MI;
2577 }
2578 return true;
2579 }
2580
2581 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2582 /// modified by a copy from a constant global. If we can prove this, we can
2583 /// replace any uses of the alloca with uses of the global directly.
2584 MemTransferInst *
isOnlyCopiedFromConstantGlobal(AllocaInst * AI,SmallVector<Instruction *,4> & ToDelete)2585 SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
2586 SmallVector<Instruction*, 4> &ToDelete) {
2587 MemTransferInst *TheCopy = 0;
2588 if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false, ToDelete))
2589 return TheCopy;
2590 return 0;
2591 }
2592