1 //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation implements the well known scalar replacement of
11 // aggregates transformation.  This xform breaks up alloca instructions of
12 // aggregate type (structure or array) into individual alloca instructions for
13 // each member (if possible).  Then, if possible, it transforms the individual
14 // alloca instructions into nice clean scalar SSA form.
15 //
16 // This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17 // often interact, especially for C++ programs.  As such, iterating between
18 // SRoA, then Mem2Reg until we run out of things to promote works well.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #define DEBUG_TYPE "scalarrepl"
23 #include "llvm/Transforms/Scalar.h"
24 #include "llvm/Constants.h"
25 #include "llvm/DerivedTypes.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/IntrinsicInst.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/Module.h"
32 #include "llvm/Pass.h"
33 #include "llvm/Analysis/DebugInfo.h"
34 #include "llvm/Analysis/DIBuilder.h"
35 #include "llvm/Analysis/Dominators.h"
36 #include "llvm/Analysis/Loads.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Target/TargetData.h"
39 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 #include "llvm/Transforms/Utils/SSAUpdater.h"
42 #include "llvm/Support/CallSite.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/GetElementPtrTypeIterator.h"
46 #include "llvm/Support/IRBuilder.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/ADT/SetVector.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/ADT/Statistic.h"
52 using namespace llvm;
53 
54 STATISTIC(NumReplaced,  "Number of allocas broken up");
55 STATISTIC(NumPromoted,  "Number of allocas promoted");
56 STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
57 STATISTIC(NumConverted, "Number of aggregates converted to scalar");
58 STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
59 
60 namespace {
61   struct SROA : public FunctionPass {
SROA__anonc8b00cc40111::SROA62     SROA(int T, bool hasDT, char &ID)
63       : FunctionPass(ID), HasDomTree(hasDT) {
64       if (T == -1)
65         SRThreshold = 128;
66       else
67         SRThreshold = T;
68     }
69 
70     bool runOnFunction(Function &F);
71 
72     bool performScalarRepl(Function &F);
73     bool performPromotion(Function &F);
74 
75   private:
76     bool HasDomTree;
77     TargetData *TD;
78 
79     /// DeadInsts - Keep track of instructions we have made dead, so that
80     /// we can remove them after we are done working.
81     SmallVector<Value*, 32> DeadInsts;
82 
83     /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
84     /// information about the uses.  All these fields are initialized to false
85     /// and set to true when something is learned.
86     struct AllocaInfo {
87       /// The alloca to promote.
88       AllocaInst *AI;
89 
90       /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
91       /// looping and avoid redundant work.
92       SmallPtrSet<PHINode*, 8> CheckedPHIs;
93 
94       /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
95       bool isUnsafe : 1;
96 
97       /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
98       bool isMemCpySrc : 1;
99 
100       /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
101       bool isMemCpyDst : 1;
102 
103       /// hasSubelementAccess - This is true if a subelement of the alloca is
104       /// ever accessed, or false if the alloca is only accessed with mem
105       /// intrinsics or load/store that only access the entire alloca at once.
106       bool hasSubelementAccess : 1;
107 
108       /// hasALoadOrStore - This is true if there are any loads or stores to it.
109       /// The alloca may just be accessed with memcpy, for example, which would
110       /// not set this.
111       bool hasALoadOrStore : 1;
112 
AllocaInfo__anonc8b00cc40111::SROA::AllocaInfo113       explicit AllocaInfo(AllocaInst *ai)
114         : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
115           hasSubelementAccess(false), hasALoadOrStore(false) {}
116     };
117 
118     unsigned SRThreshold;
119 
MarkUnsafe__anonc8b00cc40111::SROA120     void MarkUnsafe(AllocaInfo &I, Instruction *User) {
121       I.isUnsafe = true;
122       DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
123     }
124 
125     bool isSafeAllocaToScalarRepl(AllocaInst *AI);
126 
127     void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
128     void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
129                                          AllocaInfo &Info);
130     void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
131     void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
132                          Type *MemOpType, bool isStore, AllocaInfo &Info,
133                          Instruction *TheAccess, bool AllowWholeAccess);
134     bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size);
135     uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset,
136                                   Type *&IdxTy);
137 
138     void DoScalarReplacement(AllocaInst *AI,
139                              std::vector<AllocaInst*> &WorkList);
140     void DeleteDeadInstructions();
141 
142     void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
143                               SmallVector<AllocaInst*, 32> &NewElts);
144     void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
145                         SmallVector<AllocaInst*, 32> &NewElts);
146     void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
147                     SmallVector<AllocaInst*, 32> &NewElts);
148     void RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
149                                   uint64_t Offset,
150                                   SmallVector<AllocaInst*, 32> &NewElts);
151     void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
152                                       AllocaInst *AI,
153                                       SmallVector<AllocaInst*, 32> &NewElts);
154     void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
155                                        SmallVector<AllocaInst*, 32> &NewElts);
156     void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
157                                       SmallVector<AllocaInst*, 32> &NewElts);
158 
159     static MemTransferInst *isOnlyCopiedFromConstantGlobal(
160         AllocaInst *AI, SmallVector<Instruction*, 4> &ToDelete);
161   };
162 
163   // SROA_DT - SROA that uses DominatorTree.
164   struct SROA_DT : public SROA {
165     static char ID;
166   public:
SROA_DT__anonc8b00cc40111::SROA_DT167     SROA_DT(int T = -1) : SROA(T, true, ID) {
168       initializeSROA_DTPass(*PassRegistry::getPassRegistry());
169     }
170 
171     // getAnalysisUsage - This pass does not require any passes, but we know it
172     // will not alter the CFG, so say so.
getAnalysisUsage__anonc8b00cc40111::SROA_DT173     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
174       AU.addRequired<DominatorTree>();
175       AU.setPreservesCFG();
176     }
177   };
178 
179   // SROA_SSAUp - SROA that uses SSAUpdater.
180   struct SROA_SSAUp : public SROA {
181     static char ID;
182   public:
SROA_SSAUp__anonc8b00cc40111::SROA_SSAUp183     SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
184       initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
185     }
186 
187     // getAnalysisUsage - This pass does not require any passes, but we know it
188     // will not alter the CFG, so say so.
getAnalysisUsage__anonc8b00cc40111::SROA_SSAUp189     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
190       AU.setPreservesCFG();
191     }
192   };
193 
194 }
195 
196 char SROA_DT::ID = 0;
197 char SROA_SSAUp::ID = 0;
198 
199 INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
200                 "Scalar Replacement of Aggregates (DT)", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)201 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
202 INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
203                 "Scalar Replacement of Aggregates (DT)", false, false)
204 
205 INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
206                       "Scalar Replacement of Aggregates (SSAUp)", false, false)
207 INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
208                     "Scalar Replacement of Aggregates (SSAUp)", false, false)
209 
210 // Public interface to the ScalarReplAggregates pass
211 FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
212                                                    bool UseDomTree) {
213   if (UseDomTree)
214     return new SROA_DT(Threshold);
215   return new SROA_SSAUp(Threshold);
216 }
217 
218 
219 //===----------------------------------------------------------------------===//
220 // Convert To Scalar Optimization.
221 //===----------------------------------------------------------------------===//
222 
223 namespace {
224 /// ConvertToScalarInfo - This class implements the "Convert To Scalar"
225 /// optimization, which scans the uses of an alloca and determines if it can
226 /// rewrite it in terms of a single new alloca that can be mem2reg'd.
227 class ConvertToScalarInfo {
228   /// AllocaSize - The size of the alloca being considered in bytes.
229   unsigned AllocaSize;
230   const TargetData &TD;
231 
232   /// IsNotTrivial - This is set to true if there is some access to the object
233   /// which means that mem2reg can't promote it.
234   bool IsNotTrivial;
235 
236   /// ScalarKind - Tracks the kind of alloca being considered for promotion,
237   /// computed based on the uses of the alloca rather than the LLVM type system.
238   enum {
239     Unknown,
240 
241     // Accesses via GEPs that are consistent with element access of a vector
242     // type. This will not be converted into a vector unless there is a later
243     // access using an actual vector type.
244     ImplicitVector,
245 
246     // Accesses via vector operations and GEPs that are consistent with the
247     // layout of a vector type.
248     Vector,
249 
250     // An integer bag-of-bits with bitwise operations for insertion and
251     // extraction. Any combination of types can be converted into this kind
252     // of scalar.
253     Integer
254   } ScalarKind;
255 
256   /// VectorTy - This tracks the type that we should promote the vector to if
257   /// it is possible to turn it into a vector.  This starts out null, and if it
258   /// isn't possible to turn into a vector type, it gets set to VoidTy.
259   VectorType *VectorTy;
260 
261   /// HadNonMemTransferAccess - True if there is at least one access to the
262   /// alloca that is not a MemTransferInst.  We don't want to turn structs into
263   /// large integers unless there is some potential for optimization.
264   bool HadNonMemTransferAccess;
265 
266 public:
ConvertToScalarInfo(unsigned Size,const TargetData & td)267   explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
268     : AllocaSize(Size), TD(td), IsNotTrivial(false), ScalarKind(Unknown),
269       VectorTy(0), HadNonMemTransferAccess(false) { }
270 
271   AllocaInst *TryConvert(AllocaInst *AI);
272 
273 private:
274   bool CanConvertToScalar(Value *V, uint64_t Offset);
275   void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset);
276   bool MergeInVectorType(VectorType *VInTy, uint64_t Offset);
277   void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
278 
279   Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType,
280                                     uint64_t Offset, IRBuilder<> &Builder);
281   Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
282                                    uint64_t Offset, IRBuilder<> &Builder);
283 };
284 } // end anonymous namespace.
285 
286 
287 /// TryConvert - Analyze the specified alloca, and if it is safe to do so,
288 /// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
289 /// alloca if possible or null if not.
TryConvert(AllocaInst * AI)290 AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
291   // If we can't convert this scalar, or if mem2reg can trivially do it, bail
292   // out.
293   if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
294     return 0;
295 
296   // If an alloca has only memset / memcpy uses, it may still have an Unknown
297   // ScalarKind. Treat it as an Integer below.
298   if (ScalarKind == Unknown)
299     ScalarKind = Integer;
300 
301   if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8)
302     ScalarKind = Integer;
303 
304   // If we were able to find a vector type that can handle this with
305   // insert/extract elements, and if there was at least one use that had
306   // a vector type, promote this to a vector.  We don't want to promote
307   // random stuff that doesn't use vectors (e.g. <9 x double>) because then
308   // we just get a lot of insert/extracts.  If at least one vector is
309   // involved, then we probably really do have a union of vector/array.
310   Type *NewTy;
311   if (ScalarKind == Vector) {
312     assert(VectorTy && "Missing type for vector scalar.");
313     DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
314           << *VectorTy << '\n');
315     NewTy = VectorTy;  // Use the vector type.
316   } else {
317     unsigned BitWidth = AllocaSize * 8;
318     if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
319         !HadNonMemTransferAccess && !TD.fitsInLegalInteger(BitWidth))
320       return 0;
321 
322     DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
323     // Create and insert the integer alloca.
324     NewTy = IntegerType::get(AI->getContext(), BitWidth);
325   }
326   AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
327   ConvertUsesToScalar(AI, NewAI, 0);
328   return NewAI;
329 }
330 
331 /// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type
332 /// (VectorTy) so far at the offset specified by Offset (which is specified in
333 /// bytes).
334 ///
335 /// There are two cases we handle here:
336 ///   1) A union of vector types of the same size and potentially its elements.
337 ///      Here we turn element accesses into insert/extract element operations.
338 ///      This promotes a <4 x float> with a store of float to the third element
339 ///      into a <4 x float> that uses insert element.
340 ///   2) A fully general blob of memory, which we turn into some (potentially
341 ///      large) integer type with extract and insert operations where the loads
342 ///      and stores would mutate the memory.  We mark this by setting VectorTy
343 ///      to VoidTy.
MergeInTypeForLoadOrStore(Type * In,uint64_t Offset)344 void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In,
345                                                     uint64_t Offset) {
346   // If we already decided to turn this into a blob of integer memory, there is
347   // nothing to be done.
348   if (ScalarKind == Integer)
349     return;
350 
351   // If this could be contributing to a vector, analyze it.
352 
353   // If the In type is a vector that is the same size as the alloca, see if it
354   // matches the existing VecTy.
355   if (VectorType *VInTy = dyn_cast<VectorType>(In)) {
356     if (MergeInVectorType(VInTy, Offset))
357       return;
358   } else if (In->isFloatTy() || In->isDoubleTy() ||
359              (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
360               isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
361     // Full width accesses can be ignored, because they can always be turned
362     // into bitcasts.
363     unsigned EltSize = In->getPrimitiveSizeInBits()/8;
364     if (EltSize == AllocaSize)
365       return;
366 
367     // If we're accessing something that could be an element of a vector, see
368     // if the implied vector agrees with what we already have and if Offset is
369     // compatible with it.
370     if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
371         (!VectorTy || EltSize == VectorTy->getElementType()
372                                          ->getPrimitiveSizeInBits()/8)) {
373       if (!VectorTy) {
374         ScalarKind = ImplicitVector;
375         VectorTy = VectorType::get(In, AllocaSize/EltSize);
376       }
377       return;
378     }
379   }
380 
381   // Otherwise, we have a case that we can't handle with an optimized vector
382   // form.  We can still turn this into a large integer.
383   ScalarKind = Integer;
384 }
385 
386 /// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore,
387 /// returning true if the type was successfully merged and false otherwise.
MergeInVectorType(VectorType * VInTy,uint64_t Offset)388 bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy,
389                                             uint64_t Offset) {
390   if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
391     // If we're storing/loading a vector of the right size, allow it as a
392     // vector.  If this the first vector we see, remember the type so that
393     // we know the element size. If this is a subsequent access, ignore it
394     // even if it is a differing type but the same size. Worst case we can
395     // bitcast the resultant vectors.
396     if (!VectorTy)
397       VectorTy = VInTy;
398     ScalarKind = Vector;
399     return true;
400   }
401 
402   return false;
403 }
404 
405 /// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
406 /// its accesses to a single vector type, return true and set VecTy to
407 /// the new type.  If we could convert the alloca into a single promotable
408 /// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
409 /// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
410 /// is the current offset from the base of the alloca being analyzed.
411 ///
412 /// If we see at least one access to the value that is as a vector type, set the
413 /// SawVec flag.
CanConvertToScalar(Value * V,uint64_t Offset)414 bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
415   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
416     Instruction *User = cast<Instruction>(*UI);
417 
418     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
419       // Don't break volatile loads.
420       if (!LI->isSimple())
421         return false;
422       // Don't touch MMX operations.
423       if (LI->getType()->isX86_MMXTy())
424         return false;
425       HadNonMemTransferAccess = true;
426       MergeInTypeForLoadOrStore(LI->getType(), Offset);
427       continue;
428     }
429 
430     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
431       // Storing the pointer, not into the value?
432       if (SI->getOperand(0) == V || !SI->isSimple()) return false;
433       // Don't touch MMX operations.
434       if (SI->getOperand(0)->getType()->isX86_MMXTy())
435         return false;
436       HadNonMemTransferAccess = true;
437       MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset);
438       continue;
439     }
440 
441     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
442       if (!onlyUsedByLifetimeMarkers(BCI))
443         IsNotTrivial = true;  // Can't be mem2reg'd.
444       if (!CanConvertToScalar(BCI, Offset))
445         return false;
446       continue;
447     }
448 
449     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
450       // If this is a GEP with a variable indices, we can't handle it.
451       if (!GEP->hasAllConstantIndices())
452         return false;
453 
454       // Compute the offset that this GEP adds to the pointer.
455       SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
456       uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
457                                                Indices);
458       // See if all uses can be converted.
459       if (!CanConvertToScalar(GEP, Offset+GEPOffset))
460         return false;
461       IsNotTrivial = true;  // Can't be mem2reg'd.
462       HadNonMemTransferAccess = true;
463       continue;
464     }
465 
466     // If this is a constant sized memset of a constant value (e.g. 0) we can
467     // handle it.
468     if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
469       // Store of constant value.
470       if (!isa<ConstantInt>(MSI->getValue()))
471         return false;
472 
473       // Store of constant size.
474       ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength());
475       if (!Len)
476         return false;
477 
478       // If the size differs from the alloca, we can only convert the alloca to
479       // an integer bag-of-bits.
480       // FIXME: This should handle all of the cases that are currently accepted
481       // as vector element insertions.
482       if (Len->getZExtValue() != AllocaSize || Offset != 0)
483         ScalarKind = Integer;
484 
485       IsNotTrivial = true;  // Can't be mem2reg'd.
486       HadNonMemTransferAccess = true;
487       continue;
488     }
489 
490     // If this is a memcpy or memmove into or out of the whole allocation, we
491     // can handle it like a load or store of the scalar type.
492     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
493       ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
494       if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
495         return false;
496 
497       IsNotTrivial = true;  // Can't be mem2reg'd.
498       continue;
499     }
500 
501     // If this is a lifetime intrinsic, we can handle it.
502     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
503       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
504           II->getIntrinsicID() == Intrinsic::lifetime_end) {
505         continue;
506       }
507     }
508 
509     // Otherwise, we cannot handle this!
510     return false;
511   }
512 
513   return true;
514 }
515 
516 /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
517 /// directly.  This happens when we are converting an "integer union" to a
518 /// single integer scalar, or when we are converting a "vector union" to a
519 /// vector with insert/extractelement instructions.
520 ///
521 /// Offset is an offset from the original alloca, in bits that need to be
522 /// shifted to the right.  By the end of this, there should be no uses of Ptr.
ConvertUsesToScalar(Value * Ptr,AllocaInst * NewAI,uint64_t Offset)523 void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
524                                               uint64_t Offset) {
525   while (!Ptr->use_empty()) {
526     Instruction *User = cast<Instruction>(Ptr->use_back());
527 
528     if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
529       ConvertUsesToScalar(CI, NewAI, Offset);
530       CI->eraseFromParent();
531       continue;
532     }
533 
534     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
535       // Compute the offset that this GEP adds to the pointer.
536       SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
537       uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
538                                                Indices);
539       ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
540       GEP->eraseFromParent();
541       continue;
542     }
543 
544     IRBuilder<> Builder(User);
545 
546     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
547       // The load is a bit extract from NewAI shifted right by Offset bits.
548       Value *LoadedVal = Builder.CreateLoad(NewAI);
549       Value *NewLoadVal
550         = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
551       LI->replaceAllUsesWith(NewLoadVal);
552       LI->eraseFromParent();
553       continue;
554     }
555 
556     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
557       assert(SI->getOperand(0) != Ptr && "Consistency error!");
558       Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
559       Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
560                                              Builder);
561       Builder.CreateStore(New, NewAI);
562       SI->eraseFromParent();
563 
564       // If the load we just inserted is now dead, then the inserted store
565       // overwrote the entire thing.
566       if (Old->use_empty())
567         Old->eraseFromParent();
568       continue;
569     }
570 
571     // If this is a constant sized memset of a constant value (e.g. 0) we can
572     // transform it into a store of the expanded constant value.
573     if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
574       assert(MSI->getRawDest() == Ptr && "Consistency error!");
575       unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
576       if (NumBytes != 0) {
577         unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
578 
579         // Compute the value replicated the right number of times.
580         APInt APVal(NumBytes*8, Val);
581 
582         // Splat the value if non-zero.
583         if (Val)
584           for (unsigned i = 1; i != NumBytes; ++i)
585             APVal |= APVal << 8;
586 
587         Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
588         Value *New = ConvertScalar_InsertValue(
589                                     ConstantInt::get(User->getContext(), APVal),
590                                                Old, Offset, Builder);
591         Builder.CreateStore(New, NewAI);
592 
593         // If the load we just inserted is now dead, then the memset overwrote
594         // the entire thing.
595         if (Old->use_empty())
596           Old->eraseFromParent();
597       }
598       MSI->eraseFromParent();
599       continue;
600     }
601 
602     // If this is a memcpy or memmove into or out of the whole allocation, we
603     // can handle it like a load or store of the scalar type.
604     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
605       assert(Offset == 0 && "must be store to start of alloca");
606 
607       // If the source and destination are both to the same alloca, then this is
608       // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
609       // as appropriate.
610       AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
611 
612       if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
613         // Dest must be OrigAI, change this to be a load from the original
614         // pointer (bitcasted), then a store to our new alloca.
615         assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
616         Value *SrcPtr = MTI->getSource();
617         PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
618         PointerType* AIPTy = cast<PointerType>(NewAI->getType());
619         if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
620           AIPTy = PointerType::get(AIPTy->getElementType(),
621                                    SPTy->getAddressSpace());
622         }
623         SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
624 
625         LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
626         SrcVal->setAlignment(MTI->getAlignment());
627         Builder.CreateStore(SrcVal, NewAI);
628       } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
629         // Src must be OrigAI, change this to be a load from NewAI then a store
630         // through the original dest pointer (bitcasted).
631         assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
632         LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
633 
634         PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
635         PointerType* AIPTy = cast<PointerType>(NewAI->getType());
636         if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
637           AIPTy = PointerType::get(AIPTy->getElementType(),
638                                    DPTy->getAddressSpace());
639         }
640         Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
641 
642         StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
643         NewStore->setAlignment(MTI->getAlignment());
644       } else {
645         // Noop transfer. Src == Dst
646       }
647 
648       MTI->eraseFromParent();
649       continue;
650     }
651 
652     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
653       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
654           II->getIntrinsicID() == Intrinsic::lifetime_end) {
655         // There's no need to preserve these, as the resulting alloca will be
656         // converted to a register anyways.
657         II->eraseFromParent();
658         continue;
659       }
660     }
661 
662     llvm_unreachable("Unsupported operation!");
663   }
664 }
665 
666 /// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
667 /// or vector value FromVal, extracting the bits from the offset specified by
668 /// Offset.  This returns the value, which is of type ToType.
669 ///
670 /// This happens when we are converting an "integer union" to a single
671 /// integer scalar, or when we are converting a "vector union" to a vector with
672 /// insert/extractelement instructions.
673 ///
674 /// Offset is an offset from the original alloca, in bits that need to be
675 /// shifted to the right.
676 Value *ConvertToScalarInfo::
ConvertScalar_ExtractValue(Value * FromVal,Type * ToType,uint64_t Offset,IRBuilder<> & Builder)677 ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
678                            uint64_t Offset, IRBuilder<> &Builder) {
679   // If the load is of the whole new alloca, no conversion is needed.
680   Type *FromType = FromVal->getType();
681   if (FromType == ToType && Offset == 0)
682     return FromVal;
683 
684   // If the result alloca is a vector type, this is either an element
685   // access or a bitcast to another vector type of the same size.
686   if (VectorType *VTy = dyn_cast<VectorType>(FromType)) {
687     unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
688     unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
689     if (FromTypeSize == ToTypeSize)
690         return Builder.CreateBitCast(FromVal, ToType);
691 
692     // Otherwise it must be an element access.
693     unsigned Elt = 0;
694     if (Offset) {
695       unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
696       Elt = Offset/EltSize;
697       assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
698     }
699     // Return the element extracted out of it.
700     Value *V = Builder.CreateExtractElement(FromVal, Builder.getInt32(Elt));
701     if (V->getType() != ToType)
702       V = Builder.CreateBitCast(V, ToType);
703     return V;
704   }
705 
706   // If ToType is a first class aggregate, extract out each of the pieces and
707   // use insertvalue's to form the FCA.
708   if (StructType *ST = dyn_cast<StructType>(ToType)) {
709     const StructLayout &Layout = *TD.getStructLayout(ST);
710     Value *Res = UndefValue::get(ST);
711     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
712       Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
713                                         Offset+Layout.getElementOffsetInBits(i),
714                                               Builder);
715       Res = Builder.CreateInsertValue(Res, Elt, i);
716     }
717     return Res;
718   }
719 
720   if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
721     uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
722     Value *Res = UndefValue::get(AT);
723     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
724       Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
725                                               Offset+i*EltSize, Builder);
726       Res = Builder.CreateInsertValue(Res, Elt, i);
727     }
728     return Res;
729   }
730 
731   // Otherwise, this must be a union that was converted to an integer value.
732   IntegerType *NTy = cast<IntegerType>(FromVal->getType());
733 
734   // If this is a big-endian system and the load is narrower than the
735   // full alloca type, we need to do a shift to get the right bits.
736   int ShAmt = 0;
737   if (TD.isBigEndian()) {
738     // On big-endian machines, the lowest bit is stored at the bit offset
739     // from the pointer given by getTypeStoreSizeInBits.  This matters for
740     // integers with a bitwidth that is not a multiple of 8.
741     ShAmt = TD.getTypeStoreSizeInBits(NTy) -
742             TD.getTypeStoreSizeInBits(ToType) - Offset;
743   } else {
744     ShAmt = Offset;
745   }
746 
747   // Note: we support negative bitwidths (with shl) which are not defined.
748   // We do this to support (f.e.) loads off the end of a structure where
749   // only some bits are used.
750   if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
751     FromVal = Builder.CreateLShr(FromVal,
752                                  ConstantInt::get(FromVal->getType(), ShAmt));
753   else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
754     FromVal = Builder.CreateShl(FromVal,
755                                 ConstantInt::get(FromVal->getType(), -ShAmt));
756 
757   // Finally, unconditionally truncate the integer to the right width.
758   unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
759   if (LIBitWidth < NTy->getBitWidth())
760     FromVal =
761       Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
762                                                     LIBitWidth));
763   else if (LIBitWidth > NTy->getBitWidth())
764     FromVal =
765        Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
766                                                     LIBitWidth));
767 
768   // If the result is an integer, this is a trunc or bitcast.
769   if (ToType->isIntegerTy()) {
770     // Should be done.
771   } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
772     // Just do a bitcast, we know the sizes match up.
773     FromVal = Builder.CreateBitCast(FromVal, ToType);
774   } else {
775     // Otherwise must be a pointer.
776     FromVal = Builder.CreateIntToPtr(FromVal, ToType);
777   }
778   assert(FromVal->getType() == ToType && "Didn't convert right?");
779   return FromVal;
780 }
781 
782 /// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
783 /// or vector value "Old" at the offset specified by Offset.
784 ///
785 /// This happens when we are converting an "integer union" to a
786 /// single integer scalar, or when we are converting a "vector union" to a
787 /// vector with insert/extractelement instructions.
788 ///
789 /// Offset is an offset from the original alloca, in bits that need to be
790 /// shifted to the right.
791 Value *ConvertToScalarInfo::
ConvertScalar_InsertValue(Value * SV,Value * Old,uint64_t Offset,IRBuilder<> & Builder)792 ConvertScalar_InsertValue(Value *SV, Value *Old,
793                           uint64_t Offset, IRBuilder<> &Builder) {
794   // Convert the stored type to the actual type, shift it left to insert
795   // then 'or' into place.
796   Type *AllocaType = Old->getType();
797   LLVMContext &Context = Old->getContext();
798 
799   if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
800     uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
801     uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
802 
803     // Changing the whole vector with memset or with an access of a different
804     // vector type?
805     if (ValSize == VecSize)
806         return Builder.CreateBitCast(SV, AllocaType);
807 
808     // Must be an element insertion.
809     assert(SV->getType() == VTy->getElementType());
810     uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
811     unsigned Elt = Offset/EltSize;
812     return Builder.CreateInsertElement(Old, SV, Builder.getInt32(Elt));
813   }
814 
815   // If SV is a first-class aggregate value, insert each value recursively.
816   if (StructType *ST = dyn_cast<StructType>(SV->getType())) {
817     const StructLayout &Layout = *TD.getStructLayout(ST);
818     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
819       Value *Elt = Builder.CreateExtractValue(SV, i);
820       Old = ConvertScalar_InsertValue(Elt, Old,
821                                       Offset+Layout.getElementOffsetInBits(i),
822                                       Builder);
823     }
824     return Old;
825   }
826 
827   if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
828     uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
829     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
830       Value *Elt = Builder.CreateExtractValue(SV, i);
831       Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
832     }
833     return Old;
834   }
835 
836   // If SV is a float, convert it to the appropriate integer type.
837   // If it is a pointer, do the same.
838   unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
839   unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
840   unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
841   unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
842   if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
843     SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth));
844   else if (SV->getType()->isPointerTy())
845     SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()));
846 
847   // Zero extend or truncate the value if needed.
848   if (SV->getType() != AllocaType) {
849     if (SV->getType()->getPrimitiveSizeInBits() <
850              AllocaType->getPrimitiveSizeInBits())
851       SV = Builder.CreateZExt(SV, AllocaType);
852     else {
853       // Truncation may be needed if storing more than the alloca can hold
854       // (undefined behavior).
855       SV = Builder.CreateTrunc(SV, AllocaType);
856       SrcWidth = DestWidth;
857       SrcStoreWidth = DestStoreWidth;
858     }
859   }
860 
861   // If this is a big-endian system and the store is narrower than the
862   // full alloca type, we need to do a shift to get the right bits.
863   int ShAmt = 0;
864   if (TD.isBigEndian()) {
865     // On big-endian machines, the lowest bit is stored at the bit offset
866     // from the pointer given by getTypeStoreSizeInBits.  This matters for
867     // integers with a bitwidth that is not a multiple of 8.
868     ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
869   } else {
870     ShAmt = Offset;
871   }
872 
873   // Note: we support negative bitwidths (with shr) which are not defined.
874   // We do this to support (f.e.) stores off the end of a structure where
875   // only some bits in the structure are set.
876   APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
877   if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
878     SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt));
879     Mask <<= ShAmt;
880   } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
881     SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt));
882     Mask = Mask.lshr(-ShAmt);
883   }
884 
885   // Mask out the bits we are about to insert from the old value, and or
886   // in the new bits.
887   if (SrcWidth != DestWidth) {
888     assert(DestWidth > SrcWidth);
889     Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
890     SV = Builder.CreateOr(Old, SV, "ins");
891   }
892   return SV;
893 }
894 
895 
896 //===----------------------------------------------------------------------===//
897 // SRoA Driver
898 //===----------------------------------------------------------------------===//
899 
900 
runOnFunction(Function & F)901 bool SROA::runOnFunction(Function &F) {
902   TD = getAnalysisIfAvailable<TargetData>();
903 
904   bool Changed = performPromotion(F);
905 
906   // FIXME: ScalarRepl currently depends on TargetData more than it
907   // theoretically needs to. It should be refactored in order to support
908   // target-independent IR. Until this is done, just skip the actual
909   // scalar-replacement portion of this pass.
910   if (!TD) return Changed;
911 
912   while (1) {
913     bool LocalChange = performScalarRepl(F);
914     if (!LocalChange) break;   // No need to repromote if no scalarrepl
915     Changed = true;
916     LocalChange = performPromotion(F);
917     if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
918   }
919 
920   return Changed;
921 }
922 
923 namespace {
924 class AllocaPromoter : public LoadAndStorePromoter {
925   AllocaInst *AI;
926   DIBuilder *DIB;
927   SmallVector<DbgDeclareInst *, 4> DDIs;
928   SmallVector<DbgValueInst *, 4> DVIs;
929 public:
AllocaPromoter(const SmallVectorImpl<Instruction * > & Insts,SSAUpdater & S,DIBuilder * DB)930   AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
931                  DIBuilder *DB)
932     : LoadAndStorePromoter(Insts, S), AI(0), DIB(DB) {}
933 
run(AllocaInst * AI,const SmallVectorImpl<Instruction * > & Insts)934   void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
935     // Remember which alloca we're promoting (for isInstInList).
936     this->AI = AI;
937     if (MDNode *DebugNode = MDNode::getIfExists(AI->getContext(), AI)) {
938       for (Value::use_iterator UI = DebugNode->use_begin(),
939              E = DebugNode->use_end(); UI != E; ++UI)
940         if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
941           DDIs.push_back(DDI);
942         else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
943           DVIs.push_back(DVI);
944     }
945 
946     LoadAndStorePromoter::run(Insts);
947     AI->eraseFromParent();
948     for (SmallVector<DbgDeclareInst *, 4>::iterator I = DDIs.begin(),
949            E = DDIs.end(); I != E; ++I) {
950       DbgDeclareInst *DDI = *I;
951       DDI->eraseFromParent();
952     }
953     for (SmallVector<DbgValueInst *, 4>::iterator I = DVIs.begin(),
954            E = DVIs.end(); I != E; ++I) {
955       DbgValueInst *DVI = *I;
956       DVI->eraseFromParent();
957     }
958   }
959 
isInstInList(Instruction * I,const SmallVectorImpl<Instruction * > & Insts) const960   virtual bool isInstInList(Instruction *I,
961                             const SmallVectorImpl<Instruction*> &Insts) const {
962     if (LoadInst *LI = dyn_cast<LoadInst>(I))
963       return LI->getOperand(0) == AI;
964     return cast<StoreInst>(I)->getPointerOperand() == AI;
965   }
966 
updateDebugInfo(Instruction * Inst) const967   virtual void updateDebugInfo(Instruction *Inst) const {
968     for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
969            E = DDIs.end(); I != E; ++I) {
970       DbgDeclareInst *DDI = *I;
971       if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
972         ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
973       else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
974         ConvertDebugDeclareToDebugValue(DDI, LI, *DIB);
975     }
976     for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
977            E = DVIs.end(); I != E; ++I) {
978       DbgValueInst *DVI = *I;
979       if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
980         Instruction *DbgVal = NULL;
981         // If an argument is zero extended then use argument directly. The ZExt
982         // may be zapped by an optimization pass in future.
983         Argument *ExtendedArg = NULL;
984         if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
985           ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
986         if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
987           ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
988         if (ExtendedArg)
989           DbgVal = DIB->insertDbgValueIntrinsic(ExtendedArg, 0,
990                                                 DIVariable(DVI->getVariable()),
991                                                 SI);
992         else
993           DbgVal = DIB->insertDbgValueIntrinsic(SI->getOperand(0), 0,
994                                                 DIVariable(DVI->getVariable()),
995                                                 SI);
996         DbgVal->setDebugLoc(DVI->getDebugLoc());
997       } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
998         Instruction *DbgVal =
999           DIB->insertDbgValueIntrinsic(LI->getOperand(0), 0,
1000                                        DIVariable(DVI->getVariable()), LI);
1001         DbgVal->setDebugLoc(DVI->getDebugLoc());
1002       }
1003     }
1004   }
1005 };
1006 } // end anon namespace
1007 
1008 /// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1009 /// subsequently loaded can be rewritten to load both input pointers and then
1010 /// select between the result, allowing the load of the alloca to be promoted.
1011 /// From this:
1012 ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1013 ///   %V = load i32* %P2
1014 /// to:
1015 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1016 ///   %V2 = load i32* %Other
1017 ///   %V = select i1 %cond, i32 %V1, i32 %V2
1018 ///
1019 /// We can do this to a select if its only uses are loads and if the operand to
1020 /// the select can be loaded unconditionally.
isSafeSelectToSpeculate(SelectInst * SI,const TargetData * TD)1021 static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
1022   bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1023   bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1024 
1025   for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1026        UI != UE; ++UI) {
1027     LoadInst *LI = dyn_cast<LoadInst>(*UI);
1028     if (LI == 0 || !LI->isSimple()) return false;
1029 
1030     // Both operands to the select need to be dereferencable, either absolutely
1031     // (e.g. allocas) or at this point because we can see other accesses to it.
1032     if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1033                                                     LI->getAlignment(), TD))
1034       return false;
1035     if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1036                                                     LI->getAlignment(), TD))
1037       return false;
1038   }
1039 
1040   return true;
1041 }
1042 
1043 /// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1044 /// subsequently loaded can be rewritten to load both input pointers in the pred
1045 /// blocks and then PHI the results, allowing the load of the alloca to be
1046 /// promoted.
1047 /// From this:
1048 ///   %P2 = phi [i32* %Alloca, i32* %Other]
1049 ///   %V = load i32* %P2
1050 /// to:
1051 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1052 ///   ...
1053 ///   %V2 = load i32* %Other
1054 ///   ...
1055 ///   %V = phi [i32 %V1, i32 %V2]
1056 ///
1057 /// We can do this to a select if its only uses are loads and if the operand to
1058 /// the select can be loaded unconditionally.
isSafePHIToSpeculate(PHINode * PN,const TargetData * TD)1059 static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
1060   // For now, we can only do this promotion if the load is in the same block as
1061   // the PHI, and if there are no stores between the phi and load.
1062   // TODO: Allow recursive phi users.
1063   // TODO: Allow stores.
1064   BasicBlock *BB = PN->getParent();
1065   unsigned MaxAlign = 0;
1066   for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1067        UI != UE; ++UI) {
1068     LoadInst *LI = dyn_cast<LoadInst>(*UI);
1069     if (LI == 0 || !LI->isSimple()) return false;
1070 
1071     // For now we only allow loads in the same block as the PHI.  This is a
1072     // common case that happens when instcombine merges two loads through a PHI.
1073     if (LI->getParent() != BB) return false;
1074 
1075     // Ensure that there are no instructions between the PHI and the load that
1076     // could store.
1077     for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1078       if (BBI->mayWriteToMemory())
1079         return false;
1080 
1081     MaxAlign = std::max(MaxAlign, LI->getAlignment());
1082   }
1083 
1084   // Okay, we know that we have one or more loads in the same block as the PHI.
1085   // We can transform this if it is safe to push the loads into the predecessor
1086   // blocks.  The only thing to watch out for is that we can't put a possibly
1087   // trapping load in the predecessor if it is a critical edge.
1088   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1089     BasicBlock *Pred = PN->getIncomingBlock(i);
1090     Value *InVal = PN->getIncomingValue(i);
1091 
1092     // If the terminator of the predecessor has side-effects (an invoke),
1093     // there is no safe place to put a load in the predecessor.
1094     if (Pred->getTerminator()->mayHaveSideEffects())
1095       return false;
1096 
1097     // If the value is produced by the terminator of the predecessor
1098     // (an invoke), there is no valid place to put a load in the predecessor.
1099     if (Pred->getTerminator() == InVal)
1100       return false;
1101 
1102     // If the predecessor has a single successor, then the edge isn't critical.
1103     if (Pred->getTerminator()->getNumSuccessors() == 1)
1104       continue;
1105 
1106     // If this pointer is always safe to load, or if we can prove that there is
1107     // already a load in the block, then we can move the load to the pred block.
1108     if (InVal->isDereferenceablePointer() ||
1109         isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1110       continue;
1111 
1112     return false;
1113   }
1114 
1115   return true;
1116 }
1117 
1118 
1119 /// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1120 /// direct (non-volatile) loads and stores to it.  If the alloca is close but
1121 /// not quite there, this will transform the code to allow promotion.  As such,
1122 /// it is a non-pure predicate.
tryToMakeAllocaBePromotable(AllocaInst * AI,const TargetData * TD)1123 static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
1124   SetVector<Instruction*, SmallVector<Instruction*, 4>,
1125             SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1126 
1127   for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1128        UI != UE; ++UI) {
1129     User *U = *UI;
1130     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1131       if (!LI->isSimple())
1132         return false;
1133       continue;
1134     }
1135 
1136     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1137       if (SI->getOperand(0) == AI || !SI->isSimple())
1138         return false;   // Don't allow a store OF the AI, only INTO the AI.
1139       continue;
1140     }
1141 
1142     if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1143       // If the condition being selected on is a constant, fold the select, yes
1144       // this does (rarely) happen early on.
1145       if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1146         Value *Result = SI->getOperand(1+CI->isZero());
1147         SI->replaceAllUsesWith(Result);
1148         SI->eraseFromParent();
1149 
1150         // This is very rare and we just scrambled the use list of AI, start
1151         // over completely.
1152         return tryToMakeAllocaBePromotable(AI, TD);
1153       }
1154 
1155       // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1156       // loads, then we can transform this by rewriting the select.
1157       if (!isSafeSelectToSpeculate(SI, TD))
1158         return false;
1159 
1160       InstsToRewrite.insert(SI);
1161       continue;
1162     }
1163 
1164     if (PHINode *PN = dyn_cast<PHINode>(U)) {
1165       if (PN->use_empty()) {  // Dead PHIs can be stripped.
1166         InstsToRewrite.insert(PN);
1167         continue;
1168       }
1169 
1170       // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1171       // in the pred blocks, then we can transform this by rewriting the PHI.
1172       if (!isSafePHIToSpeculate(PN, TD))
1173         return false;
1174 
1175       InstsToRewrite.insert(PN);
1176       continue;
1177     }
1178 
1179     if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1180       if (onlyUsedByLifetimeMarkers(BCI)) {
1181         InstsToRewrite.insert(BCI);
1182         continue;
1183       }
1184     }
1185 
1186     return false;
1187   }
1188 
1189   // If there are no instructions to rewrite, then all uses are load/stores and
1190   // we're done!
1191   if (InstsToRewrite.empty())
1192     return true;
1193 
1194   // If we have instructions that need to be rewritten for this to be promotable
1195   // take care of it now.
1196   for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1197     if (BitCastInst *BCI = dyn_cast<BitCastInst>(InstsToRewrite[i])) {
1198       // This could only be a bitcast used by nothing but lifetime intrinsics.
1199       for (BitCastInst::use_iterator I = BCI->use_begin(), E = BCI->use_end();
1200            I != E;) {
1201         Use &U = I.getUse();
1202         ++I;
1203         cast<Instruction>(U.getUser())->eraseFromParent();
1204       }
1205       BCI->eraseFromParent();
1206       continue;
1207     }
1208 
1209     if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1210       // Selects in InstsToRewrite only have load uses.  Rewrite each as two
1211       // loads with a new select.
1212       while (!SI->use_empty()) {
1213         LoadInst *LI = cast<LoadInst>(SI->use_back());
1214 
1215         IRBuilder<> Builder(LI);
1216         LoadInst *TrueLoad =
1217           Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1218         LoadInst *FalseLoad =
1219           Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f");
1220 
1221         // Transfer alignment and TBAA info if present.
1222         TrueLoad->setAlignment(LI->getAlignment());
1223         FalseLoad->setAlignment(LI->getAlignment());
1224         if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1225           TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1226           FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1227         }
1228 
1229         Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1230         V->takeName(LI);
1231         LI->replaceAllUsesWith(V);
1232         LI->eraseFromParent();
1233       }
1234 
1235       // Now that all the loads are gone, the select is gone too.
1236       SI->eraseFromParent();
1237       continue;
1238     }
1239 
1240     // Otherwise, we have a PHI node which allows us to push the loads into the
1241     // predecessors.
1242     PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1243     if (PN->use_empty()) {
1244       PN->eraseFromParent();
1245       continue;
1246     }
1247 
1248     Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1249     PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1250                                      PN->getName()+".ld", PN);
1251 
1252     // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1253     // matter which one we get and if any differ, it doesn't matter.
1254     LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1255     MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1256     unsigned Align = SomeLoad->getAlignment();
1257 
1258     // Rewrite all loads of the PN to use the new PHI.
1259     while (!PN->use_empty()) {
1260       LoadInst *LI = cast<LoadInst>(PN->use_back());
1261       LI->replaceAllUsesWith(NewPN);
1262       LI->eraseFromParent();
1263     }
1264 
1265     // Inject loads into all of the pred blocks.  Keep track of which blocks we
1266     // insert them into in case we have multiple edges from the same block.
1267     DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1268 
1269     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1270       BasicBlock *Pred = PN->getIncomingBlock(i);
1271       LoadInst *&Load = InsertedLoads[Pred];
1272       if (Load == 0) {
1273         Load = new LoadInst(PN->getIncomingValue(i),
1274                             PN->getName() + "." + Pred->getName(),
1275                             Pred->getTerminator());
1276         Load->setAlignment(Align);
1277         if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1278       }
1279 
1280       NewPN->addIncoming(Load, Pred);
1281     }
1282 
1283     PN->eraseFromParent();
1284   }
1285 
1286   ++NumAdjusted;
1287   return true;
1288 }
1289 
performPromotion(Function & F)1290 bool SROA::performPromotion(Function &F) {
1291   std::vector<AllocaInst*> Allocas;
1292   DominatorTree *DT = 0;
1293   if (HasDomTree)
1294     DT = &getAnalysis<DominatorTree>();
1295 
1296   BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
1297   DIBuilder DIB(*F.getParent());
1298   bool Changed = false;
1299   SmallVector<Instruction*, 64> Insts;
1300   while (1) {
1301     Allocas.clear();
1302 
1303     // Find allocas that are safe to promote, by looking at all instructions in
1304     // the entry node
1305     for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1306       if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
1307         if (tryToMakeAllocaBePromotable(AI, TD))
1308           Allocas.push_back(AI);
1309 
1310     if (Allocas.empty()) break;
1311 
1312     if (HasDomTree)
1313       PromoteMemToReg(Allocas, *DT);
1314     else {
1315       SSAUpdater SSA;
1316       for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1317         AllocaInst *AI = Allocas[i];
1318 
1319         // Build list of instructions to promote.
1320         for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1321              UI != E; ++UI)
1322           Insts.push_back(cast<Instruction>(*UI));
1323         AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts);
1324         Insts.clear();
1325       }
1326     }
1327     NumPromoted += Allocas.size();
1328     Changed = true;
1329   }
1330 
1331   return Changed;
1332 }
1333 
1334 
1335 /// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1336 /// SROA.  It must be a struct or array type with a small number of elements.
ShouldAttemptScalarRepl(AllocaInst * AI)1337 static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
1338   Type *T = AI->getAllocatedType();
1339   // Do not promote any struct into more than 32 separate vars.
1340   if (StructType *ST = dyn_cast<StructType>(T))
1341     return ST->getNumElements() <= 32;
1342   // Arrays are much less likely to be safe for SROA; only consider
1343   // them if they are very small.
1344   if (ArrayType *AT = dyn_cast<ArrayType>(T))
1345     return AT->getNumElements() <= 8;
1346   return false;
1347 }
1348 
1349 
1350 // performScalarRepl - This algorithm is a simple worklist driven algorithm,
1351 // which runs on all of the alloca instructions in the function, removing them
1352 // if they are only used by getelementptr instructions.
1353 //
performScalarRepl(Function & F)1354 bool SROA::performScalarRepl(Function &F) {
1355   std::vector<AllocaInst*> WorkList;
1356 
1357   // Scan the entry basic block, adding allocas to the worklist.
1358   BasicBlock &BB = F.getEntryBlock();
1359   for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1360     if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1361       WorkList.push_back(A);
1362 
1363   // Process the worklist
1364   bool Changed = false;
1365   while (!WorkList.empty()) {
1366     AllocaInst *AI = WorkList.back();
1367     WorkList.pop_back();
1368 
1369     // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
1370     // with unused elements.
1371     if (AI->use_empty()) {
1372       AI->eraseFromParent();
1373       Changed = true;
1374       continue;
1375     }
1376 
1377     // If this alloca is impossible for us to promote, reject it early.
1378     if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1379       continue;
1380 
1381     // Check to see if this allocation is only modified by a memcpy/memmove from
1382     // a constant global.  If this is the case, we can change all users to use
1383     // the constant global instead.  This is commonly produced by the CFE by
1384     // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1385     // is only subsequently read.
1386     SmallVector<Instruction *, 4> ToDelete;
1387     if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(AI, ToDelete)) {
1388       DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1389       DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
1390       for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
1391         ToDelete[i]->eraseFromParent();
1392       Constant *TheSrc = cast<Constant>(Copy->getSource());
1393       AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
1394       Copy->eraseFromParent();  // Don't mutate the global.
1395       AI->eraseFromParent();
1396       ++NumGlobals;
1397       Changed = true;
1398       continue;
1399     }
1400 
1401     // Check to see if we can perform the core SROA transformation.  We cannot
1402     // transform the allocation instruction if it is an array allocation
1403     // (allocations OF arrays are ok though), and an allocation of a scalar
1404     // value cannot be decomposed at all.
1405     uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1406 
1407     // Do not promote [0 x %struct].
1408     if (AllocaSize == 0) continue;
1409 
1410     // Do not promote any struct whose size is too big.
1411     if (AllocaSize > SRThreshold) continue;
1412 
1413     // If the alloca looks like a good candidate for scalar replacement, and if
1414     // all its users can be transformed, then split up the aggregate into its
1415     // separate elements.
1416     if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1417       DoScalarReplacement(AI, WorkList);
1418       Changed = true;
1419       continue;
1420     }
1421 
1422     // If we can turn this aggregate value (potentially with casts) into a
1423     // simple scalar value that can be mem2reg'd into a register value.
1424     // IsNotTrivial tracks whether this is something that mem2reg could have
1425     // promoted itself.  If so, we don't want to transform it needlessly.  Note
1426     // that we can't just check based on the type: the alloca may be of an i32
1427     // but that has pointer arithmetic to set byte 3 of it or something.
1428     if (AllocaInst *NewAI =
1429           ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
1430       NewAI->takeName(AI);
1431       AI->eraseFromParent();
1432       ++NumConverted;
1433       Changed = true;
1434       continue;
1435     }
1436 
1437     // Otherwise, couldn't process this alloca.
1438   }
1439 
1440   return Changed;
1441 }
1442 
1443 /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1444 /// predicate, do SROA now.
DoScalarReplacement(AllocaInst * AI,std::vector<AllocaInst * > & WorkList)1445 void SROA::DoScalarReplacement(AllocaInst *AI,
1446                                std::vector<AllocaInst*> &WorkList) {
1447   DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1448   SmallVector<AllocaInst*, 32> ElementAllocas;
1449   if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1450     ElementAllocas.reserve(ST->getNumContainedTypes());
1451     for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1452       AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1453                                       AI->getAlignment(),
1454                                       AI->getName() + "." + Twine(i), AI);
1455       ElementAllocas.push_back(NA);
1456       WorkList.push_back(NA);  // Add to worklist for recursive processing
1457     }
1458   } else {
1459     ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1460     ElementAllocas.reserve(AT->getNumElements());
1461     Type *ElTy = AT->getElementType();
1462     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1463       AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1464                                       AI->getName() + "." + Twine(i), AI);
1465       ElementAllocas.push_back(NA);
1466       WorkList.push_back(NA);  // Add to worklist for recursive processing
1467     }
1468   }
1469 
1470   // Now that we have created the new alloca instructions, rewrite all the
1471   // uses of the old alloca.
1472   RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1473 
1474   // Now erase any instructions that were made dead while rewriting the alloca.
1475   DeleteDeadInstructions();
1476   AI->eraseFromParent();
1477 
1478   ++NumReplaced;
1479 }
1480 
1481 /// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1482 /// recursively including all their operands that become trivially dead.
DeleteDeadInstructions()1483 void SROA::DeleteDeadInstructions() {
1484   while (!DeadInsts.empty()) {
1485     Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1486 
1487     for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1488       if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1489         // Zero out the operand and see if it becomes trivially dead.
1490         // (But, don't add allocas to the dead instruction list -- they are
1491         // already on the worklist and will be deleted separately.)
1492         *OI = 0;
1493         if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1494           DeadInsts.push_back(U);
1495       }
1496 
1497     I->eraseFromParent();
1498   }
1499 }
1500 
1501 /// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1502 /// performing scalar replacement of alloca AI.  The results are flagged in
1503 /// the Info parameter.  Offset indicates the position within AI that is
1504 /// referenced by this instruction.
isSafeForScalarRepl(Instruction * I,uint64_t Offset,AllocaInfo & Info)1505 void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1506                                AllocaInfo &Info) {
1507   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1508     Instruction *User = cast<Instruction>(*UI);
1509 
1510     if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1511       isSafeForScalarRepl(BC, Offset, Info);
1512     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1513       uint64_t GEPOffset = Offset;
1514       isSafeGEP(GEPI, GEPOffset, Info);
1515       if (!Info.isUnsafe)
1516         isSafeForScalarRepl(GEPI, GEPOffset, Info);
1517     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1518       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1519       if (Length == 0)
1520         return MarkUnsafe(Info, User);
1521       isSafeMemAccess(Offset, Length->getZExtValue(), 0,
1522                       UI.getOperandNo() == 0, Info, MI,
1523                       true /*AllowWholeAccess*/);
1524     } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1525       if (!LI->isSimple())
1526         return MarkUnsafe(Info, User);
1527       Type *LIType = LI->getType();
1528       isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1529                       LIType, false, Info, LI, true /*AllowWholeAccess*/);
1530       Info.hasALoadOrStore = true;
1531 
1532     } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1533       // Store is ok if storing INTO the pointer, not storing the pointer
1534       if (!SI->isSimple() || SI->getOperand(0) == I)
1535         return MarkUnsafe(Info, User);
1536 
1537       Type *SIType = SI->getOperand(0)->getType();
1538       isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1539                       SIType, true, Info, SI, true /*AllowWholeAccess*/);
1540       Info.hasALoadOrStore = true;
1541     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1542       if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1543           II->getIntrinsicID() != Intrinsic::lifetime_end)
1544         return MarkUnsafe(Info, User);
1545     } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1546       isSafePHISelectUseForScalarRepl(User, Offset, Info);
1547     } else {
1548       return MarkUnsafe(Info, User);
1549     }
1550     if (Info.isUnsafe) return;
1551   }
1552 }
1553 
1554 
1555 /// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1556 /// derived from the alloca, we can often still split the alloca into elements.
1557 /// This is useful if we have a large alloca where one element is phi'd
1558 /// together somewhere: we can SRoA and promote all the other elements even if
1559 /// we end up not being able to promote this one.
1560 ///
1561 /// All we require is that the uses of the PHI do not index into other parts of
1562 /// the alloca.  The most important use case for this is single load and stores
1563 /// that are PHI'd together, which can happen due to code sinking.
isSafePHISelectUseForScalarRepl(Instruction * I,uint64_t Offset,AllocaInfo & Info)1564 void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1565                                            AllocaInfo &Info) {
1566   // If we've already checked this PHI, don't do it again.
1567   if (PHINode *PN = dyn_cast<PHINode>(I))
1568     if (!Info.CheckedPHIs.insert(PN))
1569       return;
1570 
1571   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1572     Instruction *User = cast<Instruction>(*UI);
1573 
1574     if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1575       isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1576     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1577       // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
1578       // but would have to prove that we're staying inside of an element being
1579       // promoted.
1580       if (!GEPI->hasAllZeroIndices())
1581         return MarkUnsafe(Info, User);
1582       isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1583     } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1584       if (!LI->isSimple())
1585         return MarkUnsafe(Info, User);
1586       Type *LIType = LI->getType();
1587       isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1588                       LIType, false, Info, LI, false /*AllowWholeAccess*/);
1589       Info.hasALoadOrStore = true;
1590 
1591     } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1592       // Store is ok if storing INTO the pointer, not storing the pointer
1593       if (!SI->isSimple() || SI->getOperand(0) == I)
1594         return MarkUnsafe(Info, User);
1595 
1596       Type *SIType = SI->getOperand(0)->getType();
1597       isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1598                       SIType, true, Info, SI, false /*AllowWholeAccess*/);
1599       Info.hasALoadOrStore = true;
1600     } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1601       isSafePHISelectUseForScalarRepl(User, Offset, Info);
1602     } else {
1603       return MarkUnsafe(Info, User);
1604     }
1605     if (Info.isUnsafe) return;
1606   }
1607 }
1608 
1609 /// isSafeGEP - Check if a GEP instruction can be handled for scalar
1610 /// replacement.  It is safe when all the indices are constant, in-bounds
1611 /// references, and when the resulting offset corresponds to an element within
1612 /// the alloca type.  The results are flagged in the Info parameter.  Upon
1613 /// return, Offset is adjusted as specified by the GEP indices.
isSafeGEP(GetElementPtrInst * GEPI,uint64_t & Offset,AllocaInfo & Info)1614 void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1615                      uint64_t &Offset, AllocaInfo &Info) {
1616   gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1617   if (GEPIt == E)
1618     return;
1619 
1620   // Walk through the GEP type indices, checking the types that this indexes
1621   // into.
1622   for (; GEPIt != E; ++GEPIt) {
1623     // Ignore struct elements, no extra checking needed for these.
1624     if ((*GEPIt)->isStructTy())
1625       continue;
1626 
1627     ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1628     if (!IdxVal)
1629       return MarkUnsafe(Info, GEPI);
1630   }
1631 
1632   // Compute the offset due to this GEP and check if the alloca has a
1633   // component element at that offset.
1634   SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1635   Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
1636   if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
1637     MarkUnsafe(Info, GEPI);
1638 }
1639 
1640 /// isHomogeneousAggregate - Check if type T is a struct or array containing
1641 /// elements of the same type (which is always true for arrays).  If so,
1642 /// return true with NumElts and EltTy set to the number of elements and the
1643 /// element type, respectively.
isHomogeneousAggregate(Type * T,unsigned & NumElts,Type * & EltTy)1644 static bool isHomogeneousAggregate(Type *T, unsigned &NumElts,
1645                                    Type *&EltTy) {
1646   if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1647     NumElts = AT->getNumElements();
1648     EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1649     return true;
1650   }
1651   if (StructType *ST = dyn_cast<StructType>(T)) {
1652     NumElts = ST->getNumContainedTypes();
1653     EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1654     for (unsigned n = 1; n < NumElts; ++n) {
1655       if (ST->getContainedType(n) != EltTy)
1656         return false;
1657     }
1658     return true;
1659   }
1660   return false;
1661 }
1662 
1663 /// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1664 /// "homogeneous" aggregates with the same element type and number of elements.
isCompatibleAggregate(Type * T1,Type * T2)1665 static bool isCompatibleAggregate(Type *T1, Type *T2) {
1666   if (T1 == T2)
1667     return true;
1668 
1669   unsigned NumElts1, NumElts2;
1670   Type *EltTy1, *EltTy2;
1671   if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1672       isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1673       NumElts1 == NumElts2 &&
1674       EltTy1 == EltTy2)
1675     return true;
1676 
1677   return false;
1678 }
1679 
1680 /// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1681 /// alloca or has an offset and size that corresponds to a component element
1682 /// within it.  The offset checked here may have been formed from a GEP with a
1683 /// pointer bitcasted to a different type.
1684 ///
1685 /// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1686 /// unit.  If false, it only allows accesses known to be in a single element.
isSafeMemAccess(uint64_t Offset,uint64_t MemSize,Type * MemOpType,bool isStore,AllocaInfo & Info,Instruction * TheAccess,bool AllowWholeAccess)1687 void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1688                            Type *MemOpType, bool isStore,
1689                            AllocaInfo &Info, Instruction *TheAccess,
1690                            bool AllowWholeAccess) {
1691   // Check if this is a load/store of the entire alloca.
1692   if (Offset == 0 && AllowWholeAccess &&
1693       MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
1694     // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1695     // loads/stores (which are essentially the same as the MemIntrinsics with
1696     // regard to copying padding between elements).  But, if an alloca is
1697     // flagged as both a source and destination of such operations, we'll need
1698     // to check later for padding between elements.
1699     if (!MemOpType || MemOpType->isIntegerTy()) {
1700       if (isStore)
1701         Info.isMemCpyDst = true;
1702       else
1703         Info.isMemCpySrc = true;
1704       return;
1705     }
1706     // This is also safe for references using a type that is compatible with
1707     // the type of the alloca, so that loads/stores can be rewritten using
1708     // insertvalue/extractvalue.
1709     if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1710       Info.hasSubelementAccess = true;
1711       return;
1712     }
1713   }
1714   // Check if the offset/size correspond to a component within the alloca type.
1715   Type *T = Info.AI->getAllocatedType();
1716   if (TypeHasComponent(T, Offset, MemSize)) {
1717     Info.hasSubelementAccess = true;
1718     return;
1719   }
1720 
1721   return MarkUnsafe(Info, TheAccess);
1722 }
1723 
1724 /// TypeHasComponent - Return true if T has a component type with the
1725 /// specified offset and size.  If Size is zero, do not check the size.
TypeHasComponent(Type * T,uint64_t Offset,uint64_t Size)1726 bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) {
1727   Type *EltTy;
1728   uint64_t EltSize;
1729   if (StructType *ST = dyn_cast<StructType>(T)) {
1730     const StructLayout *Layout = TD->getStructLayout(ST);
1731     unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1732     EltTy = ST->getContainedType(EltIdx);
1733     EltSize = TD->getTypeAllocSize(EltTy);
1734     Offset -= Layout->getElementOffset(EltIdx);
1735   } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1736     EltTy = AT->getElementType();
1737     EltSize = TD->getTypeAllocSize(EltTy);
1738     if (Offset >= AT->getNumElements() * EltSize)
1739       return false;
1740     Offset %= EltSize;
1741   } else {
1742     return false;
1743   }
1744   if (Offset == 0 && (Size == 0 || EltSize == Size))
1745     return true;
1746   // Check if the component spans multiple elements.
1747   if (Offset + Size > EltSize)
1748     return false;
1749   return TypeHasComponent(EltTy, Offset, Size);
1750 }
1751 
1752 /// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1753 /// the instruction I, which references it, to use the separate elements.
1754 /// Offset indicates the position within AI that is referenced by this
1755 /// instruction.
RewriteForScalarRepl(Instruction * I,AllocaInst * AI,uint64_t Offset,SmallVector<AllocaInst *,32> & NewElts)1756 void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1757                                 SmallVector<AllocaInst*, 32> &NewElts) {
1758   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1759     Use &TheUse = UI.getUse();
1760     Instruction *User = cast<Instruction>(*UI++);
1761 
1762     if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1763       RewriteBitCast(BC, AI, Offset, NewElts);
1764       continue;
1765     }
1766 
1767     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1768       RewriteGEP(GEPI, AI, Offset, NewElts);
1769       continue;
1770     }
1771 
1772     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1773       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1774       uint64_t MemSize = Length->getZExtValue();
1775       if (Offset == 0 &&
1776           MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1777         RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1778       // Otherwise the intrinsic can only touch a single element and the
1779       // address operand will be updated, so nothing else needs to be done.
1780       continue;
1781     }
1782 
1783     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1784       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
1785           II->getIntrinsicID() == Intrinsic::lifetime_end) {
1786         RewriteLifetimeIntrinsic(II, AI, Offset, NewElts);
1787       }
1788       continue;
1789     }
1790 
1791     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1792       Type *LIType = LI->getType();
1793 
1794       if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1795         // Replace:
1796         //   %res = load { i32, i32 }* %alloc
1797         // with:
1798         //   %load.0 = load i32* %alloc.0
1799         //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1800         //   %load.1 = load i32* %alloc.1
1801         //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1802         // (Also works for arrays instead of structs)
1803         Value *Insert = UndefValue::get(LIType);
1804         IRBuilder<> Builder(LI);
1805         for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1806           Value *Load = Builder.CreateLoad(NewElts[i], "load");
1807           Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
1808         }
1809         LI->replaceAllUsesWith(Insert);
1810         DeadInsts.push_back(LI);
1811       } else if (LIType->isIntegerTy() &&
1812                  TD->getTypeAllocSize(LIType) ==
1813                  TD->getTypeAllocSize(AI->getAllocatedType())) {
1814         // If this is a load of the entire alloca to an integer, rewrite it.
1815         RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1816       }
1817       continue;
1818     }
1819 
1820     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1821       Value *Val = SI->getOperand(0);
1822       Type *SIType = Val->getType();
1823       if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1824         // Replace:
1825         //   store { i32, i32 } %val, { i32, i32 }* %alloc
1826         // with:
1827         //   %val.0 = extractvalue { i32, i32 } %val, 0
1828         //   store i32 %val.0, i32* %alloc.0
1829         //   %val.1 = extractvalue { i32, i32 } %val, 1
1830         //   store i32 %val.1, i32* %alloc.1
1831         // (Also works for arrays instead of structs)
1832         IRBuilder<> Builder(SI);
1833         for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1834           Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
1835           Builder.CreateStore(Extract, NewElts[i]);
1836         }
1837         DeadInsts.push_back(SI);
1838       } else if (SIType->isIntegerTy() &&
1839                  TD->getTypeAllocSize(SIType) ==
1840                  TD->getTypeAllocSize(AI->getAllocatedType())) {
1841         // If this is a store of the entire alloca from an integer, rewrite it.
1842         RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1843       }
1844       continue;
1845     }
1846 
1847     if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1848       // If we have a PHI user of the alloca itself (as opposed to a GEP or
1849       // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
1850       // the new pointer.
1851       if (!isa<AllocaInst>(I)) continue;
1852 
1853       assert(Offset == 0 && NewElts[0] &&
1854              "Direct alloca use should have a zero offset");
1855 
1856       // If we have a use of the alloca, we know the derived uses will be
1857       // utilizing just the first element of the scalarized result.  Insert a
1858       // bitcast of the first alloca before the user as required.
1859       AllocaInst *NewAI = NewElts[0];
1860       BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1861       NewAI->moveBefore(BCI);
1862       TheUse = BCI;
1863       continue;
1864     }
1865   }
1866 }
1867 
1868 /// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1869 /// and recursively continue updating all of its uses.
RewriteBitCast(BitCastInst * BC,AllocaInst * AI,uint64_t Offset,SmallVector<AllocaInst *,32> & NewElts)1870 void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1871                           SmallVector<AllocaInst*, 32> &NewElts) {
1872   RewriteForScalarRepl(BC, AI, Offset, NewElts);
1873   if (BC->getOperand(0) != AI)
1874     return;
1875 
1876   // The bitcast references the original alloca.  Replace its uses with
1877   // references to the first new element alloca.
1878   Instruction *Val = NewElts[0];
1879   if (Val->getType() != BC->getDestTy()) {
1880     Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1881     Val->takeName(BC);
1882   }
1883   BC->replaceAllUsesWith(Val);
1884   DeadInsts.push_back(BC);
1885 }
1886 
1887 /// FindElementAndOffset - Return the index of the element containing Offset
1888 /// within the specified type, which must be either a struct or an array.
1889 /// Sets T to the type of the element and Offset to the offset within that
1890 /// element.  IdxTy is set to the type of the index result to be used in a
1891 /// GEP instruction.
FindElementAndOffset(Type * & T,uint64_t & Offset,Type * & IdxTy)1892 uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
1893                                     Type *&IdxTy) {
1894   uint64_t Idx = 0;
1895   if (StructType *ST = dyn_cast<StructType>(T)) {
1896     const StructLayout *Layout = TD->getStructLayout(ST);
1897     Idx = Layout->getElementContainingOffset(Offset);
1898     T = ST->getContainedType(Idx);
1899     Offset -= Layout->getElementOffset(Idx);
1900     IdxTy = Type::getInt32Ty(T->getContext());
1901     return Idx;
1902   }
1903   ArrayType *AT = cast<ArrayType>(T);
1904   T = AT->getElementType();
1905   uint64_t EltSize = TD->getTypeAllocSize(T);
1906   Idx = Offset / EltSize;
1907   Offset -= Idx * EltSize;
1908   IdxTy = Type::getInt64Ty(T->getContext());
1909   return Idx;
1910 }
1911 
1912 /// RewriteGEP - Check if this GEP instruction moves the pointer across
1913 /// elements of the alloca that are being split apart, and if so, rewrite
1914 /// the GEP to be relative to the new element.
RewriteGEP(GetElementPtrInst * GEPI,AllocaInst * AI,uint64_t Offset,SmallVector<AllocaInst *,32> & NewElts)1915 void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1916                       SmallVector<AllocaInst*, 32> &NewElts) {
1917   uint64_t OldOffset = Offset;
1918   SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1919   Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
1920 
1921   RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1922 
1923   Type *T = AI->getAllocatedType();
1924   Type *IdxTy;
1925   uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
1926   if (GEPI->getOperand(0) == AI)
1927     OldIdx = ~0ULL; // Force the GEP to be rewritten.
1928 
1929   T = AI->getAllocatedType();
1930   uint64_t EltOffset = Offset;
1931   uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1932 
1933   // If this GEP does not move the pointer across elements of the alloca
1934   // being split, then it does not needs to be rewritten.
1935   if (Idx == OldIdx)
1936     return;
1937 
1938   Type *i32Ty = Type::getInt32Ty(AI->getContext());
1939   SmallVector<Value*, 8> NewArgs;
1940   NewArgs.push_back(Constant::getNullValue(i32Ty));
1941   while (EltOffset != 0) {
1942     uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1943     NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
1944   }
1945   Instruction *Val = NewElts[Idx];
1946   if (NewArgs.size() > 1) {
1947     Val = GetElementPtrInst::CreateInBounds(Val, NewArgs, "", GEPI);
1948     Val->takeName(GEPI);
1949   }
1950   if (Val->getType() != GEPI->getType())
1951     Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
1952   GEPI->replaceAllUsesWith(Val);
1953   DeadInsts.push_back(GEPI);
1954 }
1955 
1956 /// RewriteLifetimeIntrinsic - II is a lifetime.start/lifetime.end. Rewrite it
1957 /// to mark the lifetime of the scalarized memory.
RewriteLifetimeIntrinsic(IntrinsicInst * II,AllocaInst * AI,uint64_t Offset,SmallVector<AllocaInst *,32> & NewElts)1958 void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
1959                                     uint64_t Offset,
1960                                     SmallVector<AllocaInst*, 32> &NewElts) {
1961   ConstantInt *OldSize = cast<ConstantInt>(II->getArgOperand(0));
1962   // Put matching lifetime markers on everything from Offset up to
1963   // Offset+OldSize.
1964   Type *AIType = AI->getAllocatedType();
1965   uint64_t NewOffset = Offset;
1966   Type *IdxTy;
1967   uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy);
1968 
1969   IRBuilder<> Builder(II);
1970   uint64_t Size = OldSize->getLimitedValue();
1971 
1972   if (NewOffset) {
1973     // Splice the first element and index 'NewOffset' bytes in.  SROA will
1974     // split the alloca again later.
1975     Value *V = Builder.CreateBitCast(NewElts[Idx], Builder.getInt8PtrTy());
1976     V = Builder.CreateGEP(V, Builder.getInt64(NewOffset));
1977 
1978     IdxTy = NewElts[Idx]->getAllocatedType();
1979     uint64_t EltSize = TD->getTypeAllocSize(IdxTy) - NewOffset;
1980     if (EltSize > Size) {
1981       EltSize = Size;
1982       Size = 0;
1983     } else {
1984       Size -= EltSize;
1985     }
1986     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1987       Builder.CreateLifetimeStart(V, Builder.getInt64(EltSize));
1988     else
1989       Builder.CreateLifetimeEnd(V, Builder.getInt64(EltSize));
1990     ++Idx;
1991   }
1992 
1993   for (; Idx != NewElts.size() && Size; ++Idx) {
1994     IdxTy = NewElts[Idx]->getAllocatedType();
1995     uint64_t EltSize = TD->getTypeAllocSize(IdxTy);
1996     if (EltSize > Size) {
1997       EltSize = Size;
1998       Size = 0;
1999     } else {
2000       Size -= EltSize;
2001     }
2002     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
2003       Builder.CreateLifetimeStart(NewElts[Idx],
2004                                   Builder.getInt64(EltSize));
2005     else
2006       Builder.CreateLifetimeEnd(NewElts[Idx],
2007                                 Builder.getInt64(EltSize));
2008   }
2009   DeadInsts.push_back(II);
2010 }
2011 
2012 /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
2013 /// Rewrite it to copy or set the elements of the scalarized memory.
RewriteMemIntrinUserOfAlloca(MemIntrinsic * MI,Instruction * Inst,AllocaInst * AI,SmallVector<AllocaInst *,32> & NewElts)2014 void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
2015                                         AllocaInst *AI,
2016                                         SmallVector<AllocaInst*, 32> &NewElts) {
2017   // If this is a memcpy/memmove, construct the other pointer as the
2018   // appropriate type.  The "Other" pointer is the pointer that goes to memory
2019   // that doesn't have anything to do with the alloca that we are promoting. For
2020   // memset, this Value* stays null.
2021   Value *OtherPtr = 0;
2022   unsigned MemAlignment = MI->getAlignment();
2023   if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
2024     if (Inst == MTI->getRawDest())
2025       OtherPtr = MTI->getRawSource();
2026     else {
2027       assert(Inst == MTI->getRawSource());
2028       OtherPtr = MTI->getRawDest();
2029     }
2030   }
2031 
2032   // If there is an other pointer, we want to convert it to the same pointer
2033   // type as AI has, so we can GEP through it safely.
2034   if (OtherPtr) {
2035     unsigned AddrSpace =
2036       cast<PointerType>(OtherPtr->getType())->getAddressSpace();
2037 
2038     // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
2039     // optimization, but it's also required to detect the corner case where
2040     // both pointer operands are referencing the same memory, and where
2041     // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
2042     // function is only called for mem intrinsics that access the whole
2043     // aggregate, so non-zero GEPs are not an issue here.)
2044     OtherPtr = OtherPtr->stripPointerCasts();
2045 
2046     // Copying the alloca to itself is a no-op: just delete it.
2047     if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2048       // This code will run twice for a no-op memcpy -- once for each operand.
2049       // Put only one reference to MI on the DeadInsts list.
2050       for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
2051              E = DeadInsts.end(); I != E; ++I)
2052         if (*I == MI) return;
2053       DeadInsts.push_back(MI);
2054       return;
2055     }
2056 
2057     // If the pointer is not the right type, insert a bitcast to the right
2058     // type.
2059     Type *NewTy =
2060       PointerType::get(AI->getType()->getElementType(), AddrSpace);
2061 
2062     if (OtherPtr->getType() != NewTy)
2063       OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
2064   }
2065 
2066   // Process each element of the aggregate.
2067   bool SROADest = MI->getRawDest() == Inst;
2068 
2069   Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
2070 
2071   for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2072     // If this is a memcpy/memmove, emit a GEP of the other element address.
2073     Value *OtherElt = 0;
2074     unsigned OtherEltAlign = MemAlignment;
2075 
2076     if (OtherPtr) {
2077       Value *Idx[2] = { Zero,
2078                       ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
2079       OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx,
2080                                               OtherPtr->getName()+"."+Twine(i),
2081                                                    MI);
2082       uint64_t EltOffset;
2083       PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
2084       Type *OtherTy = OtherPtrTy->getElementType();
2085       if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
2086         EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
2087       } else {
2088         Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2089         EltOffset = TD->getTypeAllocSize(EltTy)*i;
2090       }
2091 
2092       // The alignment of the other pointer is the guaranteed alignment of the
2093       // element, which is affected by both the known alignment of the whole
2094       // mem intrinsic and the alignment of the element.  If the alignment of
2095       // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2096       // known alignment is just 4 bytes.
2097       OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2098     }
2099 
2100     Value *EltPtr = NewElts[i];
2101     Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2102 
2103     // If we got down to a scalar, insert a load or store as appropriate.
2104     if (EltTy->isSingleValueType()) {
2105       if (isa<MemTransferInst>(MI)) {
2106         if (SROADest) {
2107           // From Other to Alloca.
2108           Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2109           new StoreInst(Elt, EltPtr, MI);
2110         } else {
2111           // From Alloca to Other.
2112           Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2113           new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2114         }
2115         continue;
2116       }
2117       assert(isa<MemSetInst>(MI));
2118 
2119       // If the stored element is zero (common case), just store a null
2120       // constant.
2121       Constant *StoreVal;
2122       if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2123         if (CI->isZero()) {
2124           StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
2125         } else {
2126           // If EltTy is a vector type, get the element type.
2127           Type *ValTy = EltTy->getScalarType();
2128 
2129           // Construct an integer with the right value.
2130           unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2131           APInt OneVal(EltSize, CI->getZExtValue());
2132           APInt TotalVal(OneVal);
2133           // Set each byte.
2134           for (unsigned i = 0; 8*i < EltSize; ++i) {
2135             TotalVal = TotalVal.shl(8);
2136             TotalVal |= OneVal;
2137           }
2138 
2139           // Convert the integer value to the appropriate type.
2140           StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2141           if (ValTy->isPointerTy())
2142             StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2143           else if (ValTy->isFloatingPointTy())
2144             StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2145           assert(StoreVal->getType() == ValTy && "Type mismatch!");
2146 
2147           // If the requested value was a vector constant, create it.
2148           if (EltTy->isVectorTy()) {
2149             unsigned NumElts = cast<VectorType>(EltTy)->getNumElements();
2150             SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
2151             StoreVal = ConstantVector::get(Elts);
2152           }
2153         }
2154         new StoreInst(StoreVal, EltPtr, MI);
2155         continue;
2156       }
2157       // Otherwise, if we're storing a byte variable, use a memset call for
2158       // this element.
2159     }
2160 
2161     unsigned EltSize = TD->getTypeAllocSize(EltTy);
2162 
2163     IRBuilder<> Builder(MI);
2164 
2165     // Finally, insert the meminst for this element.
2166     if (isa<MemSetInst>(MI)) {
2167       Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2168                            MI->isVolatile());
2169     } else {
2170       assert(isa<MemTransferInst>(MI));
2171       Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
2172       Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
2173 
2174       if (isa<MemCpyInst>(MI))
2175         Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2176       else
2177         Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2178     }
2179   }
2180   DeadInsts.push_back(MI);
2181 }
2182 
2183 /// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2184 /// overwrites the entire allocation.  Extract out the pieces of the stored
2185 /// integer and store them individually.
RewriteStoreUserOfWholeAlloca(StoreInst * SI,AllocaInst * AI,SmallVector<AllocaInst *,32> & NewElts)2186 void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2187                                          SmallVector<AllocaInst*, 32> &NewElts){
2188   // Extract each element out of the integer according to its structure offset
2189   // and store the element value to the individual alloca.
2190   Value *SrcVal = SI->getOperand(0);
2191   Type *AllocaEltTy = AI->getAllocatedType();
2192   uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2193 
2194   IRBuilder<> Builder(SI);
2195 
2196   // Handle tail padding by extending the operand
2197   if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2198     SrcVal = Builder.CreateZExt(SrcVal,
2199                             IntegerType::get(SI->getContext(), AllocaSizeBits));
2200 
2201   DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2202                << '\n');
2203 
2204   // There are two forms here: AI could be an array or struct.  Both cases
2205   // have different ways to compute the element offset.
2206   if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2207     const StructLayout *Layout = TD->getStructLayout(EltSTy);
2208 
2209     for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2210       // Get the number of bits to shift SrcVal to get the value.
2211       Type *FieldTy = EltSTy->getElementType(i);
2212       uint64_t Shift = Layout->getElementOffsetInBits(i);
2213 
2214       if (TD->isBigEndian())
2215         Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
2216 
2217       Value *EltVal = SrcVal;
2218       if (Shift) {
2219         Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2220         EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2221       }
2222 
2223       // Truncate down to an integer of the right size.
2224       uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2225 
2226       // Ignore zero sized fields like {}, they obviously contain no data.
2227       if (FieldSizeBits == 0) continue;
2228 
2229       if (FieldSizeBits != AllocaSizeBits)
2230         EltVal = Builder.CreateTrunc(EltVal,
2231                              IntegerType::get(SI->getContext(), FieldSizeBits));
2232       Value *DestField = NewElts[i];
2233       if (EltVal->getType() == FieldTy) {
2234         // Storing to an integer field of this size, just do it.
2235       } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2236         // Bitcast to the right element type (for fp/vector values).
2237         EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2238       } else {
2239         // Otherwise, bitcast the dest pointer (for aggregates).
2240         DestField = Builder.CreateBitCast(DestField,
2241                                      PointerType::getUnqual(EltVal->getType()));
2242       }
2243       new StoreInst(EltVal, DestField, SI);
2244     }
2245 
2246   } else {
2247     ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2248     Type *ArrayEltTy = ATy->getElementType();
2249     uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2250     uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2251 
2252     uint64_t Shift;
2253 
2254     if (TD->isBigEndian())
2255       Shift = AllocaSizeBits-ElementOffset;
2256     else
2257       Shift = 0;
2258 
2259     for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2260       // Ignore zero sized fields like {}, they obviously contain no data.
2261       if (ElementSizeBits == 0) continue;
2262 
2263       Value *EltVal = SrcVal;
2264       if (Shift) {
2265         Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2266         EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2267       }
2268 
2269       // Truncate down to an integer of the right size.
2270       if (ElementSizeBits != AllocaSizeBits)
2271         EltVal = Builder.CreateTrunc(EltVal,
2272                                      IntegerType::get(SI->getContext(),
2273                                                       ElementSizeBits));
2274       Value *DestField = NewElts[i];
2275       if (EltVal->getType() == ArrayEltTy) {
2276         // Storing to an integer field of this size, just do it.
2277       } else if (ArrayEltTy->isFloatingPointTy() ||
2278                  ArrayEltTy->isVectorTy()) {
2279         // Bitcast to the right element type (for fp/vector values).
2280         EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2281       } else {
2282         // Otherwise, bitcast the dest pointer (for aggregates).
2283         DestField = Builder.CreateBitCast(DestField,
2284                                      PointerType::getUnqual(EltVal->getType()));
2285       }
2286       new StoreInst(EltVal, DestField, SI);
2287 
2288       if (TD->isBigEndian())
2289         Shift -= ElementOffset;
2290       else
2291         Shift += ElementOffset;
2292     }
2293   }
2294 
2295   DeadInsts.push_back(SI);
2296 }
2297 
2298 /// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2299 /// an integer.  Load the individual pieces to form the aggregate value.
RewriteLoadUserOfWholeAlloca(LoadInst * LI,AllocaInst * AI,SmallVector<AllocaInst *,32> & NewElts)2300 void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2301                                         SmallVector<AllocaInst*, 32> &NewElts) {
2302   // Extract each element out of the NewElts according to its structure offset
2303   // and form the result value.
2304   Type *AllocaEltTy = AI->getAllocatedType();
2305   uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2306 
2307   DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2308                << '\n');
2309 
2310   // There are two forms here: AI could be an array or struct.  Both cases
2311   // have different ways to compute the element offset.
2312   const StructLayout *Layout = 0;
2313   uint64_t ArrayEltBitOffset = 0;
2314   if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2315     Layout = TD->getStructLayout(EltSTy);
2316   } else {
2317     Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2318     ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2319   }
2320 
2321   Value *ResultVal =
2322     Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2323 
2324   for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2325     // Load the value from the alloca.  If the NewElt is an aggregate, cast
2326     // the pointer to an integer of the same size before doing the load.
2327     Value *SrcField = NewElts[i];
2328     Type *FieldTy =
2329       cast<PointerType>(SrcField->getType())->getElementType();
2330     uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2331 
2332     // Ignore zero sized fields like {}, they obviously contain no data.
2333     if (FieldSizeBits == 0) continue;
2334 
2335     IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2336                                                      FieldSizeBits);
2337     if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2338         !FieldTy->isVectorTy())
2339       SrcField = new BitCastInst(SrcField,
2340                                  PointerType::getUnqual(FieldIntTy),
2341                                  "", LI);
2342     SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2343 
2344     // If SrcField is a fp or vector of the right size but that isn't an
2345     // integer type, bitcast to an integer so we can shift it.
2346     if (SrcField->getType() != FieldIntTy)
2347       SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2348 
2349     // Zero extend the field to be the same size as the final alloca so that
2350     // we can shift and insert it.
2351     if (SrcField->getType() != ResultVal->getType())
2352       SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2353 
2354     // Determine the number of bits to shift SrcField.
2355     uint64_t Shift;
2356     if (Layout) // Struct case.
2357       Shift = Layout->getElementOffsetInBits(i);
2358     else  // Array case.
2359       Shift = i*ArrayEltBitOffset;
2360 
2361     if (TD->isBigEndian())
2362       Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2363 
2364     if (Shift) {
2365       Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2366       SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2367     }
2368 
2369     // Don't create an 'or x, 0' on the first iteration.
2370     if (!isa<Constant>(ResultVal) ||
2371         !cast<Constant>(ResultVal)->isNullValue())
2372       ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2373     else
2374       ResultVal = SrcField;
2375   }
2376 
2377   // Handle tail padding by truncating the result
2378   if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2379     ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2380 
2381   LI->replaceAllUsesWith(ResultVal);
2382   DeadInsts.push_back(LI);
2383 }
2384 
2385 /// HasPadding - Return true if the specified type has any structure or
2386 /// alignment padding in between the elements that would be split apart
2387 /// by SROA; return false otherwise.
HasPadding(Type * Ty,const TargetData & TD)2388 static bool HasPadding(Type *Ty, const TargetData &TD) {
2389   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2390     Ty = ATy->getElementType();
2391     return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
2392   }
2393 
2394   // SROA currently handles only Arrays and Structs.
2395   StructType *STy = cast<StructType>(Ty);
2396   const StructLayout *SL = TD.getStructLayout(STy);
2397   unsigned PrevFieldBitOffset = 0;
2398   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2399     unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2400 
2401     // Check to see if there is any padding between this element and the
2402     // previous one.
2403     if (i) {
2404       unsigned PrevFieldEnd =
2405         PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2406       if (PrevFieldEnd < FieldBitOffset)
2407         return true;
2408     }
2409     PrevFieldBitOffset = FieldBitOffset;
2410   }
2411   // Check for tail padding.
2412   if (unsigned EltCount = STy->getNumElements()) {
2413     unsigned PrevFieldEnd = PrevFieldBitOffset +
2414       TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2415     if (PrevFieldEnd < SL->getSizeInBits())
2416       return true;
2417   }
2418   return false;
2419 }
2420 
2421 /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2422 /// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
2423 /// or 1 if safe after canonicalization has been performed.
isSafeAllocaToScalarRepl(AllocaInst * AI)2424 bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2425   // Loop over the use list of the alloca.  We can only transform it if all of
2426   // the users are safe to transform.
2427   AllocaInfo Info(AI);
2428 
2429   isSafeForScalarRepl(AI, 0, Info);
2430   if (Info.isUnsafe) {
2431     DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2432     return false;
2433   }
2434 
2435   // Okay, we know all the users are promotable.  If the aggregate is a memcpy
2436   // source and destination, we have to be careful.  In particular, the memcpy
2437   // could be moving around elements that live in structure padding of the LLVM
2438   // types, but may actually be used.  In these cases, we refuse to promote the
2439   // struct.
2440   if (Info.isMemCpySrc && Info.isMemCpyDst &&
2441       HasPadding(AI->getAllocatedType(), *TD))
2442     return false;
2443 
2444   // If the alloca never has an access to just *part* of it, but is accessed
2445   // via loads and stores, then we should use ConvertToScalarInfo to promote
2446   // the alloca instead of promoting each piece at a time and inserting fission
2447   // and fusion code.
2448   if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2449     // If the struct/array just has one element, use basic SRoA.
2450     if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2451       if (ST->getNumElements() > 1) return false;
2452     } else {
2453       if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2454         return false;
2455     }
2456   }
2457 
2458   return true;
2459 }
2460 
2461 
2462 
2463 /// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2464 /// some part of a constant global variable.  This intentionally only accepts
2465 /// constant expressions because we don't can't rewrite arbitrary instructions.
PointsToConstantGlobal(Value * V)2466 static bool PointsToConstantGlobal(Value *V) {
2467   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2468     return GV->isConstant();
2469   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2470     if (CE->getOpcode() == Instruction::BitCast ||
2471         CE->getOpcode() == Instruction::GetElementPtr)
2472       return PointsToConstantGlobal(CE->getOperand(0));
2473   return false;
2474 }
2475 
2476 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2477 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
2478 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
2479 /// track of whether it moves the pointer (with isOffset) but otherwise traverse
2480 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
2481 /// the alloca, and if the source pointer is a pointer to a constant global, we
2482 /// can optimize this.
2483 static bool
isOnlyCopiedFromConstantGlobal(Value * V,MemTransferInst * & TheCopy,bool isOffset,SmallVector<Instruction *,4> & LifetimeMarkers)2484 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
2485                                bool isOffset,
2486                                SmallVector<Instruction *, 4> &LifetimeMarkers) {
2487   // We track lifetime intrinsics as we encounter them.  If we decide to go
2488   // ahead and replace the value with the global, this lets the caller quickly
2489   // eliminate the markers.
2490 
2491   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
2492     User *U = cast<Instruction>(*UI);
2493 
2494     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
2495       // Ignore non-volatile loads, they are always ok.
2496       if (!LI->isSimple()) return false;
2497       continue;
2498     }
2499 
2500     if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
2501       // If uses of the bitcast are ok, we are ok.
2502       if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset,
2503                                           LifetimeMarkers))
2504         return false;
2505       continue;
2506     }
2507     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
2508       // If the GEP has all zero indices, it doesn't offset the pointer.  If it
2509       // doesn't, it does.
2510       if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2511                                           isOffset || !GEP->hasAllZeroIndices(),
2512                                           LifetimeMarkers))
2513         return false;
2514       continue;
2515     }
2516 
2517     if (CallSite CS = U) {
2518       // If this is the function being called then we treat it like a load and
2519       // ignore it.
2520       if (CS.isCallee(UI))
2521         continue;
2522 
2523       // If this is a readonly/readnone call site, then we know it is just a
2524       // load (but one that potentially returns the value itself), so we can
2525       // ignore it if we know that the value isn't captured.
2526       unsigned ArgNo = CS.getArgumentNo(UI);
2527       if (CS.onlyReadsMemory() &&
2528           (CS.getInstruction()->use_empty() ||
2529            CS.paramHasAttr(ArgNo+1, Attribute::NoCapture)))
2530         continue;
2531 
2532       // If this is being passed as a byval argument, the caller is making a
2533       // copy, so it is only a read of the alloca.
2534       if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
2535         continue;
2536     }
2537 
2538     // Lifetime intrinsics can be handled by the caller.
2539     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
2540       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
2541           II->getIntrinsicID() == Intrinsic::lifetime_end) {
2542         assert(II->use_empty() && "Lifetime markers have no result to use!");
2543         LifetimeMarkers.push_back(II);
2544         continue;
2545       }
2546     }
2547 
2548     // If this is isn't our memcpy/memmove, reject it as something we can't
2549     // handle.
2550     MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2551     if (MI == 0)
2552       return false;
2553 
2554     // If the transfer is using the alloca as a source of the transfer, then
2555     // ignore it since it is a load (unless the transfer is volatile).
2556     if (UI.getOperandNo() == 1) {
2557       if (MI->isVolatile()) return false;
2558       continue;
2559     }
2560 
2561     // If we already have seen a copy, reject the second one.
2562     if (TheCopy) return false;
2563 
2564     // If the pointer has been offset from the start of the alloca, we can't
2565     // safely handle this.
2566     if (isOffset) return false;
2567 
2568     // If the memintrinsic isn't using the alloca as the dest, reject it.
2569     if (UI.getOperandNo() != 0) return false;
2570 
2571     // If the source of the memcpy/move is not a constant global, reject it.
2572     if (!PointsToConstantGlobal(MI->getSource()))
2573       return false;
2574 
2575     // Otherwise, the transform is safe.  Remember the copy instruction.
2576     TheCopy = MI;
2577   }
2578   return true;
2579 }
2580 
2581 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2582 /// modified by a copy from a constant global.  If we can prove this, we can
2583 /// replace any uses of the alloca with uses of the global directly.
2584 MemTransferInst *
isOnlyCopiedFromConstantGlobal(AllocaInst * AI,SmallVector<Instruction *,4> & ToDelete)2585 SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
2586                                      SmallVector<Instruction*, 4> &ToDelete) {
2587   MemTransferInst *TheCopy = 0;
2588   if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false, ToDelete))
2589     return TheCopy;
2590   return 0;
2591 }
2592