1 //===- FunctionComparator.h - Function Comparator -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the FunctionComparator and GlobalNumberState classes
11 // which are used by the MergeFunctions pass for comparing functions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/FunctionComparator.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/InstrTypes.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <cassert>
47 #include <cstddef>
48 #include <cstdint>
49 #include <utility>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "functioncomparator"
54 
cmpNumbers(uint64_t L,uint64_t R) const55 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
56   if (L < R) return -1;
57   if (L > R) return 1;
58   return 0;
59 }
60 
cmpOrderings(AtomicOrdering L,AtomicOrdering R) const61 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const {
62   if ((int)L < (int)R) return -1;
63   if ((int)L > (int)R) return 1;
64   return 0;
65 }
66 
cmpAPInts(const APInt & L,const APInt & R) const67 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
68   if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
69     return Res;
70   if (L.ugt(R)) return 1;
71   if (R.ugt(L)) return -1;
72   return 0;
73 }
74 
cmpAPFloats(const APFloat & L,const APFloat & R) const75 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
76   // Floats are ordered first by semantics (i.e. float, double, half, etc.),
77   // then by value interpreted as a bitstring (aka APInt).
78   const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
79   if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
80                            APFloat::semanticsPrecision(SR)))
81     return Res;
82   if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
83                            APFloat::semanticsMaxExponent(SR)))
84     return Res;
85   if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
86                            APFloat::semanticsMinExponent(SR)))
87     return Res;
88   if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
89                            APFloat::semanticsSizeInBits(SR)))
90     return Res;
91   return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
92 }
93 
cmpMem(StringRef L,StringRef R) const94 int FunctionComparator::cmpMem(StringRef L, StringRef R) const {
95   // Prevent heavy comparison, compare sizes first.
96   if (int Res = cmpNumbers(L.size(), R.size()))
97     return Res;
98 
99   // Compare strings lexicographically only when it is necessary: only when
100   // strings are equal in size.
101   return L.compare(R);
102 }
103 
cmpAttrs(const AttributeList L,const AttributeList R) const104 int FunctionComparator::cmpAttrs(const AttributeList L,
105                                  const AttributeList R) const {
106   if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets()))
107     return Res;
108 
109   for (unsigned i = L.index_begin(), e = L.index_end(); i != e; ++i) {
110     AttributeSet LAS = L.getAttributes(i);
111     AttributeSet RAS = R.getAttributes(i);
112     AttributeSet::iterator LI = LAS.begin(), LE = LAS.end();
113     AttributeSet::iterator RI = RAS.begin(), RE = RAS.end();
114     for (; LI != LE && RI != RE; ++LI, ++RI) {
115       Attribute LA = *LI;
116       Attribute RA = *RI;
117       if (LA < RA)
118         return -1;
119       if (RA < LA)
120         return 1;
121     }
122     if (LI != LE)
123       return 1;
124     if (RI != RE)
125       return -1;
126   }
127   return 0;
128 }
129 
cmpRangeMetadata(const MDNode * L,const MDNode * R) const130 int FunctionComparator::cmpRangeMetadata(const MDNode *L,
131                                          const MDNode *R) const {
132   if (L == R)
133     return 0;
134   if (!L)
135     return -1;
136   if (!R)
137     return 1;
138   // Range metadata is a sequence of numbers. Make sure they are the same
139   // sequence.
140   // TODO: Note that as this is metadata, it is possible to drop and/or merge
141   // this data when considering functions to merge. Thus this comparison would
142   // return 0 (i.e. equivalent), but merging would become more complicated
143   // because the ranges would need to be unioned. It is not likely that
144   // functions differ ONLY in this metadata if they are actually the same
145   // function semantically.
146   if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
147     return Res;
148   for (size_t I = 0; I < L->getNumOperands(); ++I) {
149     ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I));
150     ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I));
151     if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue()))
152       return Res;
153   }
154   return 0;
155 }
156 
cmpOperandBundlesSchema(const Instruction * L,const Instruction * R) const157 int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L,
158                                                 const Instruction *R) const {
159   ImmutableCallSite LCS(L);
160   ImmutableCallSite RCS(R);
161 
162   assert(LCS && RCS && "Must be calls or invokes!");
163   assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!");
164 
165   if (int Res =
166           cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles()))
167     return Res;
168 
169   for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) {
170     auto OBL = LCS.getOperandBundleAt(i);
171     auto OBR = RCS.getOperandBundleAt(i);
172 
173     if (int Res = OBL.getTagName().compare(OBR.getTagName()))
174       return Res;
175 
176     if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
177       return Res;
178   }
179 
180   return 0;
181 }
182 
183 /// Constants comparison:
184 /// 1. Check whether type of L constant could be losslessly bitcasted to R
185 /// type.
186 /// 2. Compare constant contents.
187 /// For more details see declaration comments.
cmpConstants(const Constant * L,const Constant * R) const188 int FunctionComparator::cmpConstants(const Constant *L,
189                                      const Constant *R) const {
190   Type *TyL = L->getType();
191   Type *TyR = R->getType();
192 
193   // Check whether types are bitcastable. This part is just re-factored
194   // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
195   // we also pack into result which type is "less" for us.
196   int TypesRes = cmpTypes(TyL, TyR);
197   if (TypesRes != 0) {
198     // Types are different, but check whether we can bitcast them.
199     if (!TyL->isFirstClassType()) {
200       if (TyR->isFirstClassType())
201         return -1;
202       // Neither TyL nor TyR are values of first class type. Return the result
203       // of comparing the types
204       return TypesRes;
205     }
206     if (!TyR->isFirstClassType()) {
207       if (TyL->isFirstClassType())
208         return 1;
209       return TypesRes;
210     }
211 
212     // Vector -> Vector conversions are always lossless if the two vector types
213     // have the same size, otherwise not.
214     unsigned TyLWidth = 0;
215     unsigned TyRWidth = 0;
216 
217     if (auto *VecTyL = dyn_cast<VectorType>(TyL))
218       TyLWidth = VecTyL->getBitWidth();
219     if (auto *VecTyR = dyn_cast<VectorType>(TyR))
220       TyRWidth = VecTyR->getBitWidth();
221 
222     if (TyLWidth != TyRWidth)
223       return cmpNumbers(TyLWidth, TyRWidth);
224 
225     // Zero bit-width means neither TyL nor TyR are vectors.
226     if (!TyLWidth) {
227       PointerType *PTyL = dyn_cast<PointerType>(TyL);
228       PointerType *PTyR = dyn_cast<PointerType>(TyR);
229       if (PTyL && PTyR) {
230         unsigned AddrSpaceL = PTyL->getAddressSpace();
231         unsigned AddrSpaceR = PTyR->getAddressSpace();
232         if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
233           return Res;
234       }
235       if (PTyL)
236         return 1;
237       if (PTyR)
238         return -1;
239 
240       // TyL and TyR aren't vectors, nor pointers. We don't know how to
241       // bitcast them.
242       return TypesRes;
243     }
244   }
245 
246   // OK, types are bitcastable, now check constant contents.
247 
248   if (L->isNullValue() && R->isNullValue())
249     return TypesRes;
250   if (L->isNullValue() && !R->isNullValue())
251     return 1;
252   if (!L->isNullValue() && R->isNullValue())
253     return -1;
254 
255   auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L));
256   auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R));
257   if (GlobalValueL && GlobalValueR) {
258     return cmpGlobalValues(GlobalValueL, GlobalValueR);
259   }
260 
261   if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
262     return Res;
263 
264   if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
265     const auto *SeqR = cast<ConstantDataSequential>(R);
266     // This handles ConstantDataArray and ConstantDataVector. Note that we
267     // compare the two raw data arrays, which might differ depending on the host
268     // endianness. This isn't a problem though, because the endiness of a module
269     // will affect the order of the constants, but this order is the same
270     // for a given input module and host platform.
271     return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
272   }
273 
274   switch (L->getValueID()) {
275   case Value::UndefValueVal:
276   case Value::ConstantTokenNoneVal:
277     return TypesRes;
278   case Value::ConstantIntVal: {
279     const APInt &LInt = cast<ConstantInt>(L)->getValue();
280     const APInt &RInt = cast<ConstantInt>(R)->getValue();
281     return cmpAPInts(LInt, RInt);
282   }
283   case Value::ConstantFPVal: {
284     const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
285     const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
286     return cmpAPFloats(LAPF, RAPF);
287   }
288   case Value::ConstantArrayVal: {
289     const ConstantArray *LA = cast<ConstantArray>(L);
290     const ConstantArray *RA = cast<ConstantArray>(R);
291     uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
292     uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
293     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
294       return Res;
295     for (uint64_t i = 0; i < NumElementsL; ++i) {
296       if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
297                                  cast<Constant>(RA->getOperand(i))))
298         return Res;
299     }
300     return 0;
301   }
302   case Value::ConstantStructVal: {
303     const ConstantStruct *LS = cast<ConstantStruct>(L);
304     const ConstantStruct *RS = cast<ConstantStruct>(R);
305     unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
306     unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
307     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
308       return Res;
309     for (unsigned i = 0; i != NumElementsL; ++i) {
310       if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
311                                  cast<Constant>(RS->getOperand(i))))
312         return Res;
313     }
314     return 0;
315   }
316   case Value::ConstantVectorVal: {
317     const ConstantVector *LV = cast<ConstantVector>(L);
318     const ConstantVector *RV = cast<ConstantVector>(R);
319     unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
320     unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
321     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
322       return Res;
323     for (uint64_t i = 0; i < NumElementsL; ++i) {
324       if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
325                                  cast<Constant>(RV->getOperand(i))))
326         return Res;
327     }
328     return 0;
329   }
330   case Value::ConstantExprVal: {
331     const ConstantExpr *LE = cast<ConstantExpr>(L);
332     const ConstantExpr *RE = cast<ConstantExpr>(R);
333     unsigned NumOperandsL = LE->getNumOperands();
334     unsigned NumOperandsR = RE->getNumOperands();
335     if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
336       return Res;
337     for (unsigned i = 0; i < NumOperandsL; ++i) {
338       if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
339                                  cast<Constant>(RE->getOperand(i))))
340         return Res;
341     }
342     return 0;
343   }
344   case Value::BlockAddressVal: {
345     const BlockAddress *LBA = cast<BlockAddress>(L);
346     const BlockAddress *RBA = cast<BlockAddress>(R);
347     if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
348       return Res;
349     if (LBA->getFunction() == RBA->getFunction()) {
350       // They are BBs in the same function. Order by which comes first in the
351       // BB order of the function. This order is deterministic.
352       Function* F = LBA->getFunction();
353       BasicBlock *LBB = LBA->getBasicBlock();
354       BasicBlock *RBB = RBA->getBasicBlock();
355       if (LBB == RBB)
356         return 0;
357       for(BasicBlock &BB : F->getBasicBlockList()) {
358         if (&BB == LBB) {
359           assert(&BB != RBB);
360           return -1;
361         }
362         if (&BB == RBB)
363           return 1;
364       }
365       llvm_unreachable("Basic Block Address does not point to a basic block in "
366                        "its function.");
367       return -1;
368     } else {
369       // cmpValues said the functions are the same. So because they aren't
370       // literally the same pointer, they must respectively be the left and
371       // right functions.
372       assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
373       // cmpValues will tell us if these are equivalent BasicBlocks, in the
374       // context of their respective functions.
375       return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
376     }
377   }
378   default: // Unknown constant, abort.
379     LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
380     llvm_unreachable("Constant ValueID not recognized.");
381     return -1;
382   }
383 }
384 
cmpGlobalValues(GlobalValue * L,GlobalValue * R) const385 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const {
386   uint64_t LNumber = GlobalNumbers->getNumber(L);
387   uint64_t RNumber = GlobalNumbers->getNumber(R);
388   return cmpNumbers(LNumber, RNumber);
389 }
390 
391 /// cmpType - compares two types,
392 /// defines total ordering among the types set.
393 /// See method declaration comments for more details.
cmpTypes(Type * TyL,Type * TyR) const394 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
395   PointerType *PTyL = dyn_cast<PointerType>(TyL);
396   PointerType *PTyR = dyn_cast<PointerType>(TyR);
397 
398   const DataLayout &DL = FnL->getParent()->getDataLayout();
399   if (PTyL && PTyL->getAddressSpace() == 0)
400     TyL = DL.getIntPtrType(TyL);
401   if (PTyR && PTyR->getAddressSpace() == 0)
402     TyR = DL.getIntPtrType(TyR);
403 
404   if (TyL == TyR)
405     return 0;
406 
407   if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
408     return Res;
409 
410   switch (TyL->getTypeID()) {
411   default:
412     llvm_unreachable("Unknown type!");
413     // Fall through in Release mode.
414 #ifndef NDEBUG
415     LLVM_FALLTHROUGH;
416 #endif
417   case Type::IntegerTyID:
418     return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
419                       cast<IntegerType>(TyR)->getBitWidth());
420   // TyL == TyR would have returned true earlier, because types are uniqued.
421   case Type::VoidTyID:
422   case Type::FloatTyID:
423   case Type::DoubleTyID:
424   case Type::X86_FP80TyID:
425   case Type::FP128TyID:
426   case Type::PPC_FP128TyID:
427   case Type::LabelTyID:
428   case Type::MetadataTyID:
429   case Type::TokenTyID:
430     return 0;
431 
432   case Type::PointerTyID:
433     assert(PTyL && PTyR && "Both types must be pointers here.");
434     return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
435 
436   case Type::StructTyID: {
437     StructType *STyL = cast<StructType>(TyL);
438     StructType *STyR = cast<StructType>(TyR);
439     if (STyL->getNumElements() != STyR->getNumElements())
440       return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
441 
442     if (STyL->isPacked() != STyR->isPacked())
443       return cmpNumbers(STyL->isPacked(), STyR->isPacked());
444 
445     for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
446       if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
447         return Res;
448     }
449     return 0;
450   }
451 
452   case Type::FunctionTyID: {
453     FunctionType *FTyL = cast<FunctionType>(TyL);
454     FunctionType *FTyR = cast<FunctionType>(TyR);
455     if (FTyL->getNumParams() != FTyR->getNumParams())
456       return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
457 
458     if (FTyL->isVarArg() != FTyR->isVarArg())
459       return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
460 
461     if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
462       return Res;
463 
464     for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
465       if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
466         return Res;
467     }
468     return 0;
469   }
470 
471   case Type::ArrayTyID:
472   case Type::VectorTyID: {
473     auto *STyL = cast<SequentialType>(TyL);
474     auto *STyR = cast<SequentialType>(TyR);
475     if (STyL->getNumElements() != STyR->getNumElements())
476       return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
477     return cmpTypes(STyL->getElementType(), STyR->getElementType());
478   }
479   }
480 }
481 
482 // Determine whether the two operations are the same except that pointer-to-A
483 // and pointer-to-B are equivalent. This should be kept in sync with
484 // Instruction::isSameOperationAs.
485 // Read method declaration comments for more details.
cmpOperations(const Instruction * L,const Instruction * R,bool & needToCmpOperands) const486 int FunctionComparator::cmpOperations(const Instruction *L,
487                                       const Instruction *R,
488                                       bool &needToCmpOperands) const {
489   needToCmpOperands = true;
490   if (int Res = cmpValues(L, R))
491     return Res;
492 
493   // Differences from Instruction::isSameOperationAs:
494   //  * replace type comparison with calls to cmpTypes.
495   //  * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top.
496   //  * because of the above, we don't test for the tail bit on calls later on.
497   if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
498     return Res;
499 
500   if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) {
501     needToCmpOperands = false;
502     const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R);
503     if (int Res =
504             cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
505       return Res;
506     return cmpGEPs(GEPL, GEPR);
507   }
508 
509   if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
510     return Res;
511 
512   if (int Res = cmpTypes(L->getType(), R->getType()))
513     return Res;
514 
515   if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
516                            R->getRawSubclassOptionalData()))
517     return Res;
518 
519   // We have two instructions of identical opcode and #operands.  Check to see
520   // if all operands are the same type
521   for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
522     if (int Res =
523             cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
524       return Res;
525   }
526 
527   // Check special state that is a part of some instructions.
528   if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
529     if (int Res = cmpTypes(AI->getAllocatedType(),
530                            cast<AllocaInst>(R)->getAllocatedType()))
531       return Res;
532     return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment());
533   }
534   if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
535     if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
536       return Res;
537     if (int Res =
538             cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
539       return Res;
540     if (int Res =
541             cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
542       return Res;
543     if (int Res = cmpNumbers(LI->getSyncScopeID(),
544                              cast<LoadInst>(R)->getSyncScopeID()))
545       return Res;
546     return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range),
547         cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
548   }
549   if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
550     if (int Res =
551             cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
552       return Res;
553     if (int Res =
554             cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
555       return Res;
556     if (int Res =
557             cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
558       return Res;
559     return cmpNumbers(SI->getSyncScopeID(),
560                       cast<StoreInst>(R)->getSyncScopeID());
561   }
562   if (const CmpInst *CI = dyn_cast<CmpInst>(L))
563     return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
564   if (const CallInst *CI = dyn_cast<CallInst>(L)) {
565     if (int Res = cmpNumbers(CI->getCallingConv(),
566                              cast<CallInst>(R)->getCallingConv()))
567       return Res;
568     if (int Res =
569             cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes()))
570       return Res;
571     if (int Res = cmpOperandBundlesSchema(CI, R))
572       return Res;
573     return cmpRangeMetadata(
574         CI->getMetadata(LLVMContext::MD_range),
575         cast<CallInst>(R)->getMetadata(LLVMContext::MD_range));
576   }
577   if (const InvokeInst *II = dyn_cast<InvokeInst>(L)) {
578     if (int Res = cmpNumbers(II->getCallingConv(),
579                              cast<InvokeInst>(R)->getCallingConv()))
580       return Res;
581     if (int Res =
582             cmpAttrs(II->getAttributes(), cast<InvokeInst>(R)->getAttributes()))
583       return Res;
584     if (int Res = cmpOperandBundlesSchema(II, R))
585       return Res;
586     return cmpRangeMetadata(
587         II->getMetadata(LLVMContext::MD_range),
588         cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range));
589   }
590   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
591     ArrayRef<unsigned> LIndices = IVI->getIndices();
592     ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
593     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
594       return Res;
595     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
596       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
597         return Res;
598     }
599     return 0;
600   }
601   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
602     ArrayRef<unsigned> LIndices = EVI->getIndices();
603     ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
604     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
605       return Res;
606     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
607       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
608         return Res;
609     }
610   }
611   if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
612     if (int Res =
613             cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
614       return Res;
615     return cmpNumbers(FI->getSyncScopeID(),
616                       cast<FenceInst>(R)->getSyncScopeID());
617   }
618   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
619     if (int Res = cmpNumbers(CXI->isVolatile(),
620                              cast<AtomicCmpXchgInst>(R)->isVolatile()))
621       return Res;
622     if (int Res = cmpNumbers(CXI->isWeak(),
623                              cast<AtomicCmpXchgInst>(R)->isWeak()))
624       return Res;
625     if (int Res =
626             cmpOrderings(CXI->getSuccessOrdering(),
627                          cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
628       return Res;
629     if (int Res =
630             cmpOrderings(CXI->getFailureOrdering(),
631                          cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
632       return Res;
633     return cmpNumbers(CXI->getSyncScopeID(),
634                       cast<AtomicCmpXchgInst>(R)->getSyncScopeID());
635   }
636   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
637     if (int Res = cmpNumbers(RMWI->getOperation(),
638                              cast<AtomicRMWInst>(R)->getOperation()))
639       return Res;
640     if (int Res = cmpNumbers(RMWI->isVolatile(),
641                              cast<AtomicRMWInst>(R)->isVolatile()))
642       return Res;
643     if (int Res = cmpOrderings(RMWI->getOrdering(),
644                              cast<AtomicRMWInst>(R)->getOrdering()))
645       return Res;
646     return cmpNumbers(RMWI->getSyncScopeID(),
647                       cast<AtomicRMWInst>(R)->getSyncScopeID());
648   }
649   if (const PHINode *PNL = dyn_cast<PHINode>(L)) {
650     const PHINode *PNR = cast<PHINode>(R);
651     // Ensure that in addition to the incoming values being identical
652     // (checked by the caller of this function), the incoming blocks
653     // are also identical.
654     for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) {
655       if (int Res =
656               cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i)))
657         return Res;
658     }
659   }
660   return 0;
661 }
662 
663 // Determine whether two GEP operations perform the same underlying arithmetic.
664 // Read method declaration comments for more details.
cmpGEPs(const GEPOperator * GEPL,const GEPOperator * GEPR) const665 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
666                                 const GEPOperator *GEPR) const {
667   unsigned int ASL = GEPL->getPointerAddressSpace();
668   unsigned int ASR = GEPR->getPointerAddressSpace();
669 
670   if (int Res = cmpNumbers(ASL, ASR))
671     return Res;
672 
673   // When we have target data, we can reduce the GEP down to the value in bytes
674   // added to the address.
675   const DataLayout &DL = FnL->getParent()->getDataLayout();
676   unsigned BitWidth = DL.getPointerSizeInBits(ASL);
677   APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
678   if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
679       GEPR->accumulateConstantOffset(DL, OffsetR))
680     return cmpAPInts(OffsetL, OffsetR);
681   if (int Res = cmpTypes(GEPL->getSourceElementType(),
682                          GEPR->getSourceElementType()))
683     return Res;
684 
685   if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
686     return Res;
687 
688   for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
689     if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
690       return Res;
691   }
692 
693   return 0;
694 }
695 
cmpInlineAsm(const InlineAsm * L,const InlineAsm * R) const696 int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
697                                      const InlineAsm *R) const {
698   // InlineAsm's are uniqued. If they are the same pointer, obviously they are
699   // the same, otherwise compare the fields.
700   if (L == R)
701     return 0;
702   if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
703     return Res;
704   if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
705     return Res;
706   if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
707     return Res;
708   if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
709     return Res;
710   if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
711     return Res;
712   if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
713     return Res;
714   assert(L->getFunctionType() != R->getFunctionType());
715   return 0;
716 }
717 
718 /// Compare two values used by the two functions under pair-wise comparison. If
719 /// this is the first time the values are seen, they're added to the mapping so
720 /// that we will detect mismatches on next use.
721 /// See comments in declaration for more details.
cmpValues(const Value * L,const Value * R) const722 int FunctionComparator::cmpValues(const Value *L, const Value *R) const {
723   // Catch self-reference case.
724   if (L == FnL) {
725     if (R == FnR)
726       return 0;
727     return -1;
728   }
729   if (R == FnR) {
730     if (L == FnL)
731       return 0;
732     return 1;
733   }
734 
735   const Constant *ConstL = dyn_cast<Constant>(L);
736   const Constant *ConstR = dyn_cast<Constant>(R);
737   if (ConstL && ConstR) {
738     if (L == R)
739       return 0;
740     return cmpConstants(ConstL, ConstR);
741   }
742 
743   if (ConstL)
744     return 1;
745   if (ConstR)
746     return -1;
747 
748   const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
749   const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
750 
751   if (InlineAsmL && InlineAsmR)
752     return cmpInlineAsm(InlineAsmL, InlineAsmR);
753   if (InlineAsmL)
754     return 1;
755   if (InlineAsmR)
756     return -1;
757 
758   auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
759        RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
760 
761   return cmpNumbers(LeftSN.first->second, RightSN.first->second);
762 }
763 
764 // Test whether two basic blocks have equivalent behaviour.
cmpBasicBlocks(const BasicBlock * BBL,const BasicBlock * BBR) const765 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL,
766                                        const BasicBlock *BBR) const {
767   BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
768   BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
769 
770   do {
771     bool needToCmpOperands = true;
772     if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands))
773       return Res;
774     if (needToCmpOperands) {
775       assert(InstL->getNumOperands() == InstR->getNumOperands());
776 
777       for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
778         Value *OpL = InstL->getOperand(i);
779         Value *OpR = InstR->getOperand(i);
780         if (int Res = cmpValues(OpL, OpR))
781           return Res;
782         // cmpValues should ensure this is true.
783         assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
784       }
785     }
786 
787     ++InstL;
788     ++InstR;
789   } while (InstL != InstLE && InstR != InstRE);
790 
791   if (InstL != InstLE && InstR == InstRE)
792     return 1;
793   if (InstL == InstLE && InstR != InstRE)
794     return -1;
795   return 0;
796 }
797 
compareSignature() const798 int FunctionComparator::compareSignature() const {
799   if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
800     return Res;
801 
802   if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
803     return Res;
804 
805   if (FnL->hasGC()) {
806     if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
807       return Res;
808   }
809 
810   if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
811     return Res;
812 
813   if (FnL->hasSection()) {
814     if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
815       return Res;
816   }
817 
818   if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
819     return Res;
820 
821   // TODO: if it's internal and only used in direct calls, we could handle this
822   // case too.
823   if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
824     return Res;
825 
826   if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
827     return Res;
828 
829   assert(FnL->arg_size() == FnR->arg_size() &&
830          "Identically typed functions have different numbers of args!");
831 
832   // Visit the arguments so that they get enumerated in the order they're
833   // passed in.
834   for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
835        ArgRI = FnR->arg_begin(),
836        ArgLE = FnL->arg_end();
837        ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
838     if (cmpValues(&*ArgLI, &*ArgRI) != 0)
839       llvm_unreachable("Arguments repeat!");
840   }
841   return 0;
842 }
843 
844 // Test whether the two functions have equivalent behaviour.
compare()845 int FunctionComparator::compare() {
846   beginCompare();
847 
848   if (int Res = compareSignature())
849     return Res;
850 
851   // We do a CFG-ordered walk since the actual ordering of the blocks in the
852   // linked list is immaterial. Our walk starts at the entry block for both
853   // functions, then takes each block from each terminator in order. As an
854   // artifact, this also means that unreachable blocks are ignored.
855   SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
856   SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1.
857 
858   FnLBBs.push_back(&FnL->getEntryBlock());
859   FnRBBs.push_back(&FnR->getEntryBlock());
860 
861   VisitedBBs.insert(FnLBBs[0]);
862   while (!FnLBBs.empty()) {
863     const BasicBlock *BBL = FnLBBs.pop_back_val();
864     const BasicBlock *BBR = FnRBBs.pop_back_val();
865 
866     if (int Res = cmpValues(BBL, BBR))
867       return Res;
868 
869     if (int Res = cmpBasicBlocks(BBL, BBR))
870       return Res;
871 
872     const TerminatorInst *TermL = BBL->getTerminator();
873     const TerminatorInst *TermR = BBR->getTerminator();
874 
875     assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
876     for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
877       if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
878         continue;
879 
880       FnLBBs.push_back(TermL->getSuccessor(i));
881       FnRBBs.push_back(TermR->getSuccessor(i));
882     }
883   }
884   return 0;
885 }
886 
887 namespace {
888 
889 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a
890 // hash of a sequence of 64bit ints, but the entire input does not need to be
891 // available at once. This interface is necessary for functionHash because it
892 // needs to accumulate the hash as the structure of the function is traversed
893 // without saving these values to an intermediate buffer. This form of hashing
894 // is not often needed, as usually the object to hash is just read from a
895 // buffer.
896 class HashAccumulator64 {
897   uint64_t Hash;
898 
899 public:
900   // Initialize to random constant, so the state isn't zero.
HashAccumulator64()901   HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; }
902 
add(uint64_t V)903   void add(uint64_t V) {
904      Hash = hashing::detail::hash_16_bytes(Hash, V);
905   }
906 
907   // No finishing is required, because the entire hash value is used.
getHash()908   uint64_t getHash() { return Hash; }
909 };
910 
911 } // end anonymous namespace
912 
913 // A function hash is calculated by considering only the number of arguments and
914 // whether a function is varargs, the order of basic blocks (given by the
915 // successors of each basic block in depth first order), and the order of
916 // opcodes of each instruction within each of these basic blocks. This mirrors
917 // the strategy compare() uses to compare functions by walking the BBs in depth
918 // first order and comparing each instruction in sequence. Because this hash
919 // does not look at the operands, it is insensitive to things such as the
920 // target of calls and the constants used in the function, which makes it useful
921 // when possibly merging functions which are the same modulo constants and call
922 // targets.
functionHash(Function & F)923 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) {
924   HashAccumulator64 H;
925   H.add(F.isVarArg());
926   H.add(F.arg_size());
927 
928   SmallVector<const BasicBlock *, 8> BBs;
929   SmallPtrSet<const BasicBlock *, 16> VisitedBBs;
930 
931   // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(),
932   // accumulating the hash of the function "structure." (BB and opcode sequence)
933   BBs.push_back(&F.getEntryBlock());
934   VisitedBBs.insert(BBs[0]);
935   while (!BBs.empty()) {
936     const BasicBlock *BB = BBs.pop_back_val();
937     // This random value acts as a block header, as otherwise the partition of
938     // opcodes into BBs wouldn't affect the hash, only the order of the opcodes
939     H.add(45798);
940     for (auto &Inst : *BB) {
941       H.add(Inst.getOpcode());
942     }
943     const TerminatorInst *Term = BB->getTerminator();
944     for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
945       if (!VisitedBBs.insert(Term->getSuccessor(i)).second)
946         continue;
947       BBs.push_back(Term->getSuccessor(i));
948     }
949   }
950   return H.getHash();
951 }
952