1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #include "tensorflow/core/framework/common_shape_fns.h"
17 #include "tensorflow/core/framework/op.h"
18 #include "tensorflow/core/framework/op_def_builder.h"
19 #include "tensorflow/core/framework/shape_inference.h"
20 
21 namespace tensorflow {
22 
23 using shape_inference::DimensionHandle;
24 using shape_inference::InferenceContext;
25 using shape_inference::ShapeHandle;
26 
27 namespace {
28 
DequeueManyV2Shape(InferenceContext * c,ShapeHandle n_shape)29 Status DequeueManyV2Shape(InferenceContext* c, ShapeHandle n_shape) {
30   auto* t = c->input_handle_shapes_and_types(0);
31   if (t != nullptr && t->size() == c->num_outputs()) {
32     for (int i = 0; i < c->num_outputs(); ++i) {
33       ShapeHandle combined_shape;
34       TF_RETURN_IF_ERROR(
35           c->Concatenate(n_shape, (*t)[i].shape, &combined_shape));
36       c->set_output(i, combined_shape);
37     }
38     return Status::OK();
39   } else {
40     return shape_inference::UnknownShape(c);
41   }
42 }
43 
44 }  // namespace
45 
46 // --------------------------------------------------------------------------
47 
48 REGISTER_OP("DynamicPartition")
49     .Input("data: T")
50     .Input("partitions: int32")
51     .Output("outputs: num_partitions * T")
52     .Attr("num_partitions: int")
53     .Attr("T: type")
__anona2f81a440202(InferenceContext* c) 54     .SetShapeFn([](InferenceContext* c) {
55       int64 num_partitions;
56       TF_RETURN_IF_ERROR(c->GetAttr("num_partitions", &num_partitions));
57 
58       ShapeHandle data_shape = c->input(0);
59       ShapeHandle partitions_shape = c->input(1);
60 
61       if (!c->RankKnown(partitions_shape)) {
62         return shape_inference::UnknownShape(c);
63       }
64 
65       const int64 rank = c->Rank(partitions_shape);
66 
67       // data shape must start with partitions_shape
68       ShapeHandle unused;
69       TF_RETURN_IF_ERROR(
70           c->MergePrefix(data_shape, partitions_shape, &unused, &unused));
71 
72       // The partition shape is dynamic in the 0th dimension, and matches
73       // data_shape in the remaining dimensions.
74       ShapeHandle unknown_dim0 = c->MakeShape({c->UnknownDim()});
75 
76       ShapeHandle data_suffix_shape;
77       TF_RETURN_IF_ERROR(c->Subshape(data_shape, rank, &data_suffix_shape));
78       ShapeHandle result_shape;
79       TF_RETURN_IF_ERROR(
80           c->Concatenate(unknown_dim0, data_suffix_shape, &result_shape));
81 
82       for (int i = 0; i < c->num_outputs(); ++i) {
83         c->set_output(i, result_shape);
84       }
85 
86       return Status::OK();
87     });
88 
89 namespace {
90 
DynamicStitchShapeFunction(InferenceContext * c)91 Status DynamicStitchShapeFunction(InferenceContext* c) {
92   int32 num_partitions;
93   TF_RETURN_IF_ERROR(c->GetAttr("N", &num_partitions));
94 
95   bool all_indices_constant = true;
96   int32 max_index = 0;
97   ShapeHandle extra_shape = c->UnknownShape();
98   for (int i = 0; i < num_partitions; ++i) {
99     const Tensor* indices_t = c->input_tensor(i);
100     if (indices_t == nullptr) {
101       all_indices_constant = false;
102     }
103 
104     ShapeHandle indices_shape = c->input(i);
105     ShapeHandle data_shape = c->input(i + num_partitions);
106     if (!c->RankKnown(indices_shape)) {
107       continue;
108     }
109     const int64 indices_rank = c->Rank(indices_shape);
110 
111     // Assert that data_shape starts with indices_shape.
112     ShapeHandle unused;
113     TF_RETURN_IF_ERROR(
114         c->MergePrefix(data_shape, indices_shape, &unused, &unused));
115 
116     // The rest belongs to output.
117     ShapeHandle rest;
118     TF_RETURN_IF_ERROR(c->Subshape(data_shape, indices_rank, &rest));
119     TF_RETURN_IF_ERROR(c->Merge(extra_shape, rest, &extra_shape));
120 
121     if (indices_t != nullptr) {
122       // The length is based on the highest index from flattened indices.
123       const int32* indices = indices_t->flat<int32>().data();
124       int64 count = indices_t->NumElements();
125       for (int64 i = 0; i < count; ++i) {
126         if (indices[i] > max_index) {
127           max_index = indices[i];
128         }
129       }
130     }
131   }
132 
133   ShapeHandle output_shape = c->Vector(
134       all_indices_constant ? c->MakeDim(max_index + 1) : c->UnknownDim());
135   TF_RETURN_IF_ERROR(c->Concatenate(output_shape, extra_shape, &output_shape));
136   c->set_output(0, output_shape);
137   return Status::OK();
138 }
139 
140 }  // namespace
141 
142 REGISTER_OP("DynamicStitch")
143     .Input("indices: N * int32")
144     .Input("data: N * T")
145     .Output("merged: T")
146     .Attr("N : int >= 1")
147     .Attr("T : type")
148     .SetShapeFn(DynamicStitchShapeFunction);
149 
150 REGISTER_OP("ParallelDynamicStitch")
151     .Input("indices: N * int32")
152     .Input("data: N * T")
153     .Output("merged: T")
154     .Attr("N : int >= 1")
155     .Attr("T : type")
156     .SetShapeFn(DynamicStitchShapeFunction);
157 
158 // --------------------------------------------------------------------------
159 
160 namespace {
TwoElementVectorInputsAndScalarOutputs(InferenceContext * c)161 Status TwoElementVectorInputsAndScalarOutputs(InferenceContext* c) {
162   ShapeHandle handle;
163   DimensionHandle unused_handle;
164   for (int i = 0; i < c->num_inputs(); ++i) {
165     TF_RETURN_IF_ERROR(c->WithRank(c->input(i), 1, &handle));
166     TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_handle));
167   }
168   for (int i = 0; i < c->num_outputs(); ++i) {
169     c->set_output(i, c->Scalar());
170   }
171   return Status::OK();
172 }
173 
TwoElementOutput(InferenceContext * c)174 Status TwoElementOutput(InferenceContext* c) {
175   c->set_output(0, c->Vector(2));
176   return Status::OK();
177 }
178 }  // namespace
179 
180 REGISTER_OP("RandomShuffleQueue")
181     .Output("handle: Ref(string)")
182     .Attr("component_types: list(type) >= 1")
183     .Attr("shapes: list(shape) >= 0 = []")
184     .Attr("capacity: int = -1")
185     .Attr("min_after_dequeue: int = 0")
186     .Attr("seed: int = 0")
187     .Attr("seed2: int = 0")
188     .Attr("container: string = ''")
189     .Attr("shared_name: string = ''")
190     .SetIsStateful()
191     .SetShapeFn(TwoElementOutput);
192 
193 REGISTER_OP("RandomShuffleQueueV2")
194     .Output("handle: resource")
195     .Attr("component_types: list(type) >= 1")
196     .Attr("shapes: list(shape) >= 0 = []")
197     .Attr("capacity: int = -1")
198     .Attr("min_after_dequeue: int = 0")
199     .Attr("seed: int = 0")
200     .Attr("seed2: int = 0")
201     .Attr("container: string = ''")
202     .Attr("shared_name: string = ''")
203     .SetIsStateful()
204     .SetShapeFn(shape_inference::ScalarShape);
205 
206 REGISTER_OP("FIFOQueue")
207     .Output("handle: Ref(string)")
208     .Attr("component_types: list(type) >= 1")
209     .Attr("shapes: list(shape) >= 0 = []")
210     .Attr("capacity: int = -1")
211     .Attr("container: string = ''")
212     .Attr("shared_name: string = ''")
213     .SetIsStateful()
214     .SetShapeFn(TwoElementOutput);
215 
216 REGISTER_OP("FIFOQueueV2")
217     .Output("handle: resource")
218     .Attr("component_types: list(type) >= 1")
219     .Attr("shapes: list(shape) >= 0 = []")
220     .Attr("capacity: int = -1")
221     .Attr("container: string = ''")
222     .Attr("shared_name: string = ''")
223     .SetIsStateful()
224     .SetShapeFn(shape_inference::ScalarShape);
225 
226 REGISTER_OP("PaddingFIFOQueue")
227     .Output("handle: Ref(string)")
228     .Attr("component_types: list(type) >= 1")
229     .Attr("shapes: list(shape) >= 0 = []")
230     .Attr("capacity: int = -1")
231     .Attr("container: string = ''")
232     .Attr("shared_name: string = ''")
233     .SetIsStateful()
234     .SetShapeFn(TwoElementOutput);
235 
236 REGISTER_OP("PaddingFIFOQueueV2")
237     .Output("handle: resource")
238     .Attr("component_types: list(type) >= 1")
239     .Attr("shapes: list(shape) >= 0 = []")
240     .Attr("capacity: int = -1")
241     .Attr("container: string = ''")
242     .Attr("shared_name: string = ''")
243     .SetIsStateful()
244     .SetShapeFn(shape_inference::ScalarShape);
245 
246 REGISTER_OP("PriorityQueue")
247     .Output("handle: Ref(string)")
248     .Attr("component_types: list(type) >= 0 = []")
249     .Attr("shapes: list(shape) >= 0")
250     .Attr("capacity: int = -1")
251     .Attr("container: string = ''")
252     .Attr("shared_name: string = ''")
253     .SetIsStateful()
254     .SetShapeFn(TwoElementOutput);
255 
256 REGISTER_OP("PriorityQueueV2")
257     .Output("handle: resource")
258     .Attr("component_types: list(type) >= 0 = []")
259     .Attr("shapes: list(shape) >= 0")
260     .Attr("capacity: int = -1")
261     .Attr("container: string = ''")
262     .Attr("shared_name: string = ''")
263     .SetIsStateful()
264     .SetShapeFn(shape_inference::ScalarShape);
265 
266 REGISTER_OP("FakeQueue")
267     .Input("resource: resource")
268     .Output("handle: Ref(string)")
269     .SetIsStateful()
270     .SetShapeFn(TwoElementOutput);
271 
272 REGISTER_OP("QueueEnqueue")
273     .Input("handle: Ref(string)")
274     .Input("components: Tcomponents")
275     .Attr("Tcomponents: list(type) >= 1")
276     .Attr("timeout_ms: int = -1")
277     .SetShapeFn(shape_inference::UnknownShape);
278 
279 REGISTER_OP("QueueEnqueueV2")
280     .Input("handle: resource")
281     .Input("components: Tcomponents")
282     .Attr("Tcomponents: list(type) >= 1")
283     .Attr("timeout_ms: int = -1")
284     .SetShapeFn(shape_inference::UnknownShape);
285 
286 REGISTER_OP("QueueEnqueueMany")
287     .Input("handle: Ref(string)")
288     .Input("components: Tcomponents")
289     .Attr("Tcomponents: list(type) >= 1")
290     .Attr("timeout_ms: int = -1")
291     .SetShapeFn(shape_inference::UnknownShape);
292 
293 REGISTER_OP("QueueEnqueueManyV2")
294     .Input("handle: resource")
295     .Input("components: Tcomponents")
296     .Attr("Tcomponents: list(type) >= 1")
297     .Attr("timeout_ms: int = -1")
298     .SetShapeFn(shape_inference::UnknownShape);
299 
300 REGISTER_OP("QueueDequeue")
301     .Input("handle: Ref(string)")
302     .Output("components: component_types")
303     .Attr("component_types: list(type) >= 1")
304     .Attr("timeout_ms: int = -1")
305     .SetShapeFn(shape_inference::UnknownShape);
306 
307 REGISTER_OP("QueueDequeueV2")
308     .Input("handle: resource")
309     .Output("components: component_types")
310     .Attr("component_types: list(type) >= 1")
311     .Attr("timeout_ms: int = -1")
__anona2f81a440502(InferenceContext* c) 312     .SetShapeFn([](InferenceContext* c) {
313       auto* t = c->input_handle_shapes_and_types(0);
314       if (t != nullptr && t->size() == c->num_outputs()) {
315         for (int i = 0; i < c->num_outputs(); ++i) {
316           c->set_output(i, (*t)[i].shape);
317         }
318         return Status::OK();
319       } else {
320         return shape_inference::UnknownShape(c);
321       }
322     });
323 
324 REGISTER_OP("QueueDequeueMany")
325     .Input("handle: Ref(string)")
326     .Input("n: int32")
327     .Output("components: component_types")
328     .Attr("component_types: list(type) >= 1")
329     .Attr("timeout_ms: int = -1")
330     .SetShapeFn(shape_inference::UnknownShape);
331 
332 REGISTER_OP("QueueDequeueManyV2")
333     .Input("handle: resource")
334     .Input("n: int32")
335     .Output("components: component_types")
336     .Attr("component_types: list(type) >= 1")
337     .Attr("timeout_ms: int = -1")
__anona2f81a440602(InferenceContext* c) 338     .SetShapeFn([](InferenceContext* c) {
339       ShapeHandle n_shape;
340       if (c->input_tensor(1) == nullptr) {
341         n_shape = c->Vector(InferenceContext::kUnknownDim);
342       } else {
343         const int32 n = c->input_tensor(1)->scalar<int32>()();
344         if (n < 0) {
345           return errors::InvalidArgument("Input 'n' must be >= 0, but is ", n);
346         }
347         n_shape = c->Vector(n);
348       }
349       return DequeueManyV2Shape(c, n_shape);
350     });
351 
352 REGISTER_OP("QueueDequeueUpTo")
353     .Input("handle: Ref(string)")
354     .Input("n: int32")
355     .Output("components: component_types")
356     .Attr("component_types: list(type) >= 1")
357     .Attr("timeout_ms: int = -1")
358     .SetShapeFn(shape_inference::UnknownShape);
359 
360 REGISTER_OP("QueueDequeueUpToV2")
361     .Input("handle: resource")
362     .Input("n: int32")
363     .Output("components: component_types")
364     .Attr("component_types: list(type) >= 1")
365     .Attr("timeout_ms: int = -1")
__anona2f81a440702(InferenceContext* c) 366     .SetShapeFn([](InferenceContext* c) {
367       return DequeueManyV2Shape(c, c->Vector(InferenceContext::kUnknownDim));
368     });
369 
370 REGISTER_OP("QueueClose")
371     .Input("handle: Ref(string)")
372     .SetShapeFn(TwoElementVectorInputsAndScalarOutputs)
373     .Attr("cancel_pending_enqueues: bool = false");
374 
375 REGISTER_OP("QueueCloseV2")
376     .Input("handle: resource")
377     .SetShapeFn(shape_inference::NoOutputs)
378     .Attr("cancel_pending_enqueues: bool = false");
379 
380 REGISTER_OP("QueueIsClosed")
381     .Input("handle: Ref(string)")
382     .Output("is_closed: bool")
383     .SetShapeFn(shape_inference::ScalarShape);
384 
385 REGISTER_OP("QueueIsClosedV2")
386     .Input("handle: resource")
387     .Output("is_closed: bool")
388     .SetShapeFn(shape_inference::ScalarShape);
389 
390 REGISTER_OP("QueueSize")
391     .Input("handle: Ref(string)")
392     .Output("size: int32")
393     .SetShapeFn(TwoElementVectorInputsAndScalarOutputs);
394 
395 REGISTER_OP("QueueSizeV2")
396     .Input("handle: resource")
397     .Output("size: int32")
398     .SetShapeFn(shape_inference::UnchangedShape);
399 
400 // --------------------------------------------------------------------------
401 
402 REGISTER_OP("AccumulatorNumAccumulated")
403     .Input("handle: Ref(string)")
404     .Output("num_accumulated: int32")
405     .SetShapeFn(shape_inference::ScalarShape);
406 
407 REGISTER_OP("AccumulatorSetGlobalStep")
408     .Input("handle: Ref(string)")
409     .Input("new_global_step: int64")
__anona2f81a440802(InferenceContext* c) 410     .SetShapeFn([](InferenceContext* c) {
411       ShapeHandle unused;
412       TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused));
413       return Status::OK();
414     });
415 
416 REGISTER_OP("ConditionalAccumulator")
417     .Output("handle: Ref(string)")
418     .Attr("dtype: numbertype")
419     .Attr("shape: shape")
420     .Attr("container: string = ''")
421     .Attr("shared_name: string = ''")
422     .Attr("reduction_type: { 'MEAN', 'SUM' } = 'MEAN' ")
423     .SetIsStateful()
__anona2f81a440902(InferenceContext* c) 424     .SetShapeFn([](InferenceContext* c) {
425       c->set_output(0, c->Vector(2));
426       return Status::OK();
427     });
428 
429 REGISTER_OP("AccumulatorApplyGradient")
430     .Input("handle: Ref(string)")
431     .Input("local_step: int64")
432     .Input("gradient: dtype")
433     .Attr("dtype: numbertype")
__anona2f81a440a02(InferenceContext* c) 434     .SetShapeFn([](InferenceContext* c) {
435       ShapeHandle unused;
436       TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused));
437       return Status::OK();
438     });
439 
440 REGISTER_OP("AccumulatorTakeGradient")
441     .Input("handle: Ref(string)")
442     .Input("num_required: int32")
443     .Output("average: dtype")
__anona2f81a440b02(InferenceContext* c) 444     .SetShapeFn([](InferenceContext* c) {
445       ShapeHandle unused;
446       TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused));
447       // Shape of output is the shape of the accumulator referenced
448       // by 'handle', but which is not available here, so we lose
449       // shape information.
450       return shape_inference::UnknownShape(c);
451     })
452     .Attr("dtype: numbertype");
453 
454 REGISTER_OP("SparseConditionalAccumulator")
455     .Output("handle: Ref(string)")
456     .Attr("dtype: numbertype")
457     .Attr("shape: shape")
458     .Attr("container: string = ''")
459     .Attr("shared_name: string = ''")
460     .Attr("reduction_type: { 'MEAN', 'SUM' } = 'MEAN' ")
461     .SetIsStateful()
__anona2f81a440c02(InferenceContext* c) 462     .SetShapeFn([](InferenceContext* c) {
463       c->set_output(0, c->Vector(2));
464       return Status::OK();
465     });
466 
467 REGISTER_OP("SparseAccumulatorApplyGradient")
468     .Input("handle: Ref(string)")
469     .Input("local_step: int64")
470     .Input("gradient_indices: int64")
471     .Input("gradient_values: dtype")
472     .Input("gradient_shape: int64")
473     .Attr("dtype: numbertype")
474     .Attr("has_known_shape: bool")
__anona2f81a440d02(InferenceContext* c) 475     .SetShapeFn([](InferenceContext* c) {
476       ShapeHandle unused;
477       TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused));
478       return Status::OK();
479     });
480 
481 REGISTER_OP("SparseAccumulatorTakeGradient")
482     .Input("handle: Ref(string)")
483     .Input("num_required: int32")
484     .Output("indices: int64")
485     .Output("values: dtype")
486     .Output("shape: int64")
487     .Attr("dtype: numbertype")
__anona2f81a440e02(InferenceContext* c) 488     .SetShapeFn([](InferenceContext* c) {
489       ShapeHandle unused;
490       TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused));
491       // Shape of output is the shape of the accumulator referenced
492       // by 'handle', but which is not available here, so we lose
493       // shape information.
494       return shape_inference::UnknownShape(c);
495     });
496 
497 // --------------------------------------------------------------------------
498 
499 REGISTER_OP("StackV2")
500     .Input("max_size: int32")
501     .Output("handle: resource")
502     .Attr("elem_type: type")
503     .Attr("stack_name: string = ''")
504     .SetIsStateful()
505     .SetShapeFn(TwoElementOutput);
506 
507 REGISTER_OP("StackPushV2")
508     .Input("handle: resource")
509     .Input("elem: T")
510     .Output("output: T")
511     .Attr("T: type")
512     .Attr("swap_memory: bool = false")
__anona2f81a440f02(shape_inference::InferenceContext* c) 513     .SetShapeFn([](shape_inference::InferenceContext* c) {
514       c->set_output(0, c->input(1));
515       return Status::OK();
516     });
517 
518 REGISTER_OP("StackPopV2")
519     .Input("handle: resource")
520     .Output("elem: elem_type")
521     .Attr("elem_type: type")
522     .SetShapeFn(shape_inference::UnknownShape);
523 
524 REGISTER_OP("StackCloseV2")
525     .Input("handle: resource")
526     .SetShapeFn(TwoElementVectorInputsAndScalarOutputs);
527 
528 // Deprecated ref-typed variants of stack.
529 
530 REGISTER_OP("Stack")
531     .Output("handle: Ref(string)")
532     .Attr("elem_type: type")
533     .Attr("stack_name: string = ''")
534     .SetIsStateful()
535     .SetShapeFn(TwoElementOutput);
536 
537 REGISTER_OP("StackPush")
538     .Input("handle: Ref(string)")
539     .Input("elem: T")
540     .Output("output: T")
541     .Attr("T: type")
542     .Attr("swap_memory: bool = false")
__anona2f81a441002(shape_inference::InferenceContext* c) 543     .SetShapeFn([](shape_inference::InferenceContext* c) {
544       c->set_output(0, c->input(1));
545       return Status::OK();
546     });
547 
548 REGISTER_OP("StackPop")
549     .Input("handle: Ref(string)")
550     .Output("elem: elem_type")
551     .Attr("elem_type: type")
552     .SetShapeFn(shape_inference::UnknownShape);
553 
554 REGISTER_OP("StackClose")
555     .Input("handle: Ref(string)")
556     .SetShapeFn(TwoElementVectorInputsAndScalarOutputs);
557 
558 // --------------------------------------------------------------------------
559 
560 REGISTER_OP("TensorArrayV3")
561     .Input("size: int32")
562     .Attr("dtype: type")
563     .Attr("element_shape: shape = { unknown_rank: true }")
564     .Attr("dynamic_size: bool = false")
565     .Attr("clear_after_read: bool = true")
566     .Attr("identical_element_shapes: bool = false")
567     .Attr("tensor_array_name: string = ''")
568     .Output("handle: resource")
569     .Output("flow: float")
570     .SetIsStateful()
__anona2f81a441102(InferenceContext* c) 571     .SetShapeFn([](InferenceContext* c) {
572       ShapeHandle unused;
573       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &unused));
574       c->set_output(0, c->Vector(2));
575       c->set_output(1, c->Scalar());
576       bool identical_shapes;
577       TF_RETURN_IF_ERROR(
578           c->GetAttr("identical_element_shapes", &identical_shapes));
579       DataType t;
580       TF_RETURN_IF_ERROR(c->GetAttr("dtype", &t));
581       PartialTensorShape p;
582       TF_RETURN_IF_ERROR(c->GetAttr("element_shape", &p));
583       ShapeHandle s;
584       TF_RETURN_IF_ERROR(c->MakeShapeFromPartialTensorShape(p, &s));
585       if (c->FullyDefined(s) || identical_shapes) {
586         c->set_output_handle_shapes_and_types(
587             0, std::vector<shape_inference::ShapeAndType>{{s, t}});
588       }
589       return Status::OK();
590     });
591 
592 REGISTER_OP("TensorArrayGradV3")
593     .Input("handle: resource")
594     .Input("flow_in: float")
595     .Output("grad_handle: resource")
596     .Output("flow_out: float")
597     .Attr("source: string")
598     .SetIsStateful()
__anona2f81a441202(InferenceContext* c) 599     .SetShapeFn([](InferenceContext* c) {
600       ShapeHandle handle;
601       DimensionHandle unused_dim;
602       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle));
603       TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim));
604       c->set_output(0, c->Vector(2));
605       c->set_output(1, c->Scalar());
606       if (c->input_handle_shapes_and_types(0)) {
607         c->set_output_handle_shapes_and_types(
608             0, *c->input_handle_shapes_and_types(0));
609       }
610       return Status::OK();
611     });
612 
613 REGISTER_OP("TensorArrayGradWithShape")
614     .Input("handle: resource")
615     .Input("flow_in: float")
616     .Input("shape_to_prepend: int32")
617     .Output("grad_handle: resource")
618     .Output("flow_out: float")
619     .Attr("source: string")
620     .SetIsStateful()
__anona2f81a441302(InferenceContext* c) 621     .SetShapeFn([](InferenceContext* c) {
622       ShapeHandle handle;
623       DimensionHandle unused_dim;
624       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle));
625       TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim));
626       c->set_output(0, c->Vector(2));
627       c->set_output(1, c->Scalar());
628       auto* shape_and_type = c->input_handle_shapes_and_types(0);
629       if (shape_and_type) {
630         auto input_shape = (*shape_and_type)[0].shape;
631         auto dtype = (*shape_and_type)[0].dtype;
632         // Note that shape_to_preped is a rank 1 Tensor representing a shape.
633         // The size of dimension 0 is the number of dimensions we need to add to
634         // output shape.
635         int64 prepend_rank = c->Value(c->Dim(c->input(2), 0));
636         if (c->RankKnown(input_shape) &&
637             prepend_rank != InferenceContext::kUnknownDim) {
638           int32 input_rank = c->Rank(input_shape);
639           std::vector<DimensionHandle> dims;
640           dims.reserve(prepend_rank + input_rank);
641           for (int i = 0; i < prepend_rank; ++i) {
642             dims.push_back(c->UnknownDim());
643           }
644           for (int i = 0; i < input_rank; ++i) {
645             dims.push_back(c->Dim(input_shape, i));
646           }
647           c->set_output_handle_shapes_and_types(0,
648                                                 {{c->MakeShape(dims), dtype}});
649         } else {
650           c->set_output_handle_shapes_and_types(0,
651                                                 {{c->UnknownShape(), dtype}});
652         }
653       }
654       return Status::OK();
655     });
656 
657 REGISTER_OP("TensorArrayWriteV3")
658     .Input("handle: resource")
659     .Input("index: int32")
660     .Input("value: T")
661     .Input("flow_in: float")
662     .Output("flow_out: float")
663     .Attr("T: type")
__anona2f81a441402(InferenceContext* c) 664     .SetShapeFn([](InferenceContext* c) {
665       ShapeHandle handle;
666       DimensionHandle unused_dim;
667       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle));
668       TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim));
669 
670       ShapeHandle unused;
671       TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused));
672       TF_RETURN_IF_ERROR(c->WithRank(c->input(3), 0, &unused));
673 
674       auto* handle_data = c->input_handle_shapes_and_types(0);
675       if (handle_data != nullptr && !handle_data->empty()) {
676         shape_inference::ShapeAndType shape_and_type = (*handle_data)[0];
677         ShapeHandle value_shape = c->input(2);
678         TF_RETURN_IF_ERROR(
679             c->Merge(shape_and_type.shape, value_shape, &unused));
680       }
681 
682       return shape_inference::ScalarShape(c);
683     });
684 
685 REGISTER_OP("TensorArrayReadV3")
686     .Input("handle: resource")
687     .Input("index: int32")
688     .Input("flow_in: float")
689     .Output("value: dtype")
690     .Attr("dtype: type")
__anona2f81a441502(InferenceContext* c) 691     .SetShapeFn([](InferenceContext* c) {
692       ShapeHandle handle;
693       DimensionHandle unused_dim;
694       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle));
695       TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim));
696       ShapeHandle unused;
697       TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused));
698       TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 0, &unused));
699       auto shapes = c->input_handle_shapes_and_types(0);
700       if (shapes != nullptr && !shapes->empty()) {
701         ShapeHandle tensor_shape = shapes->at(0).shape;
702         c->set_output(0, tensor_shape);
703         return Status::OK();
704       } else {
705         return shape_inference::UnknownShape(c);
706       }
707     });
708 
709 REGISTER_OP("TensorArrayGatherV3")
710     .Input("handle: resource")
711     .Input("indices: int32")
712     .Input("flow_in: float")
713     .Output("value: dtype")
714     .Attr("dtype: type")
715     .Attr("element_shape: shape = { unknown_rank: true }")
__anona2f81a441602(InferenceContext* c) 716     .SetShapeFn([](InferenceContext* c) {
717       ShapeHandle indices;
718       ShapeHandle unused;
719       DimensionHandle unused_dim;
720       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &unused));
721       TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &indices));
722       TF_RETURN_IF_ERROR(c->WithValue(c->Dim(c->input(0), 0), 2, &unused_dim));
723       TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 0, &unused));
724       auto shapes = c->input_handle_shapes_and_types(0);
725       if (shapes != nullptr && !shapes->empty()) {
726         ShapeHandle tensor_shape = shapes->at(0).shape;
727         ShapeHandle output_shape;
728         TF_RETURN_IF_ERROR(
729             c->Concatenate(indices, tensor_shape, &output_shape));
730         c->set_output(0, output_shape);
731         return Status::OK();
732       } else {
733         PartialTensorShape p;
734         TF_RETURN_IF_ERROR(c->GetAttr("element_shape", &p));
735         ShapeHandle s;
736         TF_RETURN_IF_ERROR(c->MakeShapeFromPartialTensorShape(p, &s));
737         ShapeHandle output_shape;
738         TF_RETURN_IF_ERROR(c->Concatenate(indices, s, &output_shape));
739         c->set_output(0, output_shape);
740         return Status::OK();
741       }
742     });
743 
744 REGISTER_OP("TensorArrayScatterV3")
745     .Input("handle: resource")
746     .Input("indices: int32")
747     .Input("value: T")
748     .Input("flow_in: float")
749     .Output("flow_out: float")
750     .Attr("T: type")
__anona2f81a441702(InferenceContext* c) 751     .SetShapeFn([](InferenceContext* c) {
752       ShapeHandle indices;
753       ShapeHandle unused;
754       DimensionHandle unused_dim;
755       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &unused));
756       TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &indices));
757       TF_RETURN_IF_ERROR(c->WithValue(c->Dim(c->input(0), 0), 2, &unused_dim));
758       TF_RETURN_IF_ERROR(c->WithRank(c->input(3), 0, &unused));
759       ShapeHandle value_shape;
760       // Assert that the length of the indices tensor is equal to the first
761       // dimension of the value tensor.
762       TF_RETURN_IF_ERROR(
763           c->MergePrefix(c->input(2), indices, &value_shape, &indices));
764       auto shapes = c->input_handle_shapes_and_types(0);
765       if (shapes != nullptr && !shapes->empty()) {
766         ShapeHandle tensor_shape = shapes->at(0).shape;
767         ShapeHandle fed_shape;
768         TF_RETURN_IF_ERROR(c->Subshape(value_shape, 1, &fed_shape));
769         TF_RETURN_IF_ERROR(c->Merge(tensor_shape, fed_shape, &fed_shape));
770       }
771       return shape_inference::ScalarShape(c);
772     });
773 
774 REGISTER_OP("TensorArrayConcatV3")
775     .Input("handle: resource")
776     .Input("flow_in: float")
777     .Output("value: dtype")
778     .Output("lengths: int64")
779     .Attr("dtype: type")
780     .Attr("element_shape_except0: shape = { unknown_rank: true }")
__anona2f81a441802(InferenceContext* c) 781     .SetShapeFn([](InferenceContext* c) {
782       ShapeHandle handle;
783       DimensionHandle unused_dim;
784       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle));
785       TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim));
786       ShapeHandle unused;
787       TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused));
788       c->set_output(0, c->UnknownShape());
789       c->set_output(1, c->Vector(c->UnknownDim()));
790       return Status::OK();
791     });
792 
793 REGISTER_OP("TensorArraySplitV3")
794     .Input("handle: resource")
795     .Input("value: T")
796     .Input("lengths: int64")
797     .Input("flow_in: float")
798     .Output("flow_out: float")
799     .Attr("T: type")
__anona2f81a441902(InferenceContext* c) 800     .SetShapeFn([](InferenceContext* c) {
801       ShapeHandle handle;
802       DimensionHandle unused_dim;
803       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle));
804       TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim));
805       ShapeHandle unused;
806       TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 1, &unused));
807       TF_RETURN_IF_ERROR(c->WithRank(c->input(3), 0, &unused));
808       return shape_inference::ScalarShape(c);
809     });
810 
811 REGISTER_OP("TensorArraySizeV3")
812     .Input("handle: resource")
813     .Input("flow_in: float")
814     .Output("size: int32")
__anona2f81a441a02(InferenceContext* c) 815     .SetShapeFn([](InferenceContext* c) {
816       ShapeHandle handle;
817       DimensionHandle unused_dim;
818       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle));
819       TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim));
820       return shape_inference::ScalarShape(c);
821     });
822 
823 REGISTER_OP("TensorArrayCloseV3")
824     .Input("handle: resource")
__anona2f81a441b02(InferenceContext* c) 825     .SetShapeFn([](InferenceContext* c) {
826       ShapeHandle handle;
827       DimensionHandle unused_dim;
828       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle));
829       TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim));
830       return Status::OK();
831     });
832 
833 // --------------------------------------------------------------------------
834 
835 // Deprecated TensorArray methods
836 
837 REGISTER_OP("TensorArray")
838     .Input("size: int32")
839     .Attr("dtype: type")
840     .Attr("dynamic_size: bool = false")
841     .Attr("clear_after_read: bool = true")
842     .Attr("tensor_array_name: string = ''")
843     .Attr("element_shape: shape = { unknown_rank: true }")
844     .Output("handle: Ref(string)")
845     .SetIsStateful()
846     .SetShapeFn(shape_inference::UnknownShape)
847     .Deprecated(16, "Use TensorArrayV3");
848 REGISTER_OP("TensorArrayV2")
849     .Input("size: int32")
850     .Attr("dtype: type")
851     .Attr("element_shape: shape = { unknown_rank: true }")
852     .Attr("dynamic_size: bool = false")
853     .Attr("clear_after_read: bool = true")
854     .Attr("tensor_array_name: string = ''")
855     .Output("handle: string")
856     .SetIsStateful()
__anona2f81a441c02(InferenceContext* c) 857     .SetShapeFn([](InferenceContext* c) {
858       ShapeHandle unused;
859       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &unused));
860       c->set_output(0, c->Vector(2));
861       return Status::OK();
862     })
863     .Deprecated(26, "Use TensorArrayV3");
864 REGISTER_OP("TensorArrayGrad")
865     .Input("handle: string")
866     .Input("flow_in: float")
867     .Output("grad_handle: Ref(string)")
868     .Attr("source: string")
869     .SetIsStateful()
870     .SetShapeFn(shape_inference::UnknownShape)
871     .Deprecated(16, "Use TensorArrayGradV3");
872 REGISTER_OP("TensorArrayGradV2")
873     .Input("handle: string")
874     .Input("flow_in: float")
875     .Output("grad_handle: string")
876     .Attr("source: string")
877     .SetIsStateful()
__anona2f81a441d02(InferenceContext* c) 878     .SetShapeFn([](InferenceContext* c) {
879       ShapeHandle handle;
880       DimensionHandle unused_dim;
881       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle));
882       TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim));
883       c->set_output(0, c->Vector(2));
884       return Status::OK();
885     })
886     .Deprecated(26, "Use TensorArrayGradV3");
887 REGISTER_OP("TensorArrayWrite")
888     .Input("handle: Ref(string)")
889     .Input("index: int32")
890     .Input("value: T")
891     .Input("flow_in: float")
892     .Output("flow_out: float")
893     .Attr("T: type")
894     .SetShapeFn(shape_inference::UnknownShape)
895     .Deprecated(16, "Use TensorArrayWriteV3");
896 REGISTER_OP("TensorArrayWriteV2")
897     .Input("handle: string")
898     .Input("index: int32")
899     .Input("value: T")
900     .Input("flow_in: float")
901     .Output("flow_out: float")
902     .Attr("T: type")
__anona2f81a441e02(InferenceContext* c) 903     .SetShapeFn([](InferenceContext* c) {
904       ShapeHandle handle;
905       DimensionHandle unused_dim;
906       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle));
907       TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim));
908 
909       ShapeHandle unused;
910       TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused));
911       TF_RETURN_IF_ERROR(c->WithRank(c->input(3), 0, &unused));
912       return shape_inference::ScalarShape(c);
913     })
914     .Deprecated(26, "Use TensorArrayWriteV3");
915 REGISTER_OP("TensorArrayRead")
916     .Input("handle: Ref(string)")
917     .Input("index: int32")
918     .Input("flow_in: float")
919     .Output("value: dtype")
920     .Attr("dtype: type")
921     .SetShapeFn(shape_inference::UnknownShape)
922     .Deprecated(16, "Use TensorArrayReadV3");
923 REGISTER_OP("TensorArrayReadV2")
924     .Input("handle: string")
925     .Input("index: int32")
926     .Input("flow_in: float")
927     .Output("value: dtype")
928     .Attr("dtype: type")
__anona2f81a441f02(InferenceContext* c) 929     .SetShapeFn([](InferenceContext* c) {
930       ShapeHandle handle;
931       DimensionHandle unused_dim;
932       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle));
933       TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim));
934       ShapeHandle unused;
935       TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused));
936       TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 0, &unused));
937       return shape_inference::UnknownShape(c);
938     })
939     .Deprecated(26, "Use TensorArrayReadV3");
940 REGISTER_OP("TensorArrayPack")
941     .Input("handle: Ref(string)")
942     .Input("flow_in: float")
943     .Output("value: dtype")
944     .Attr("dtype: type")
945     .Attr("element_shape: shape = { unknown_rank: true }")
946     .SetShapeFn(shape_inference::UnknownShape)
947     .Deprecated(16, "Use TensorArrayGatherV3 with RangeOp");
948 REGISTER_OP("TensorArrayUnpack")
949     .Input("handle: Ref(string)")
950     .Input("value: T")
951     .Input("flow_in: float")
952     .Output("flow_out: float")
953     .Attr("T: type")
954     .SetShapeFn(shape_inference::UnknownShape)
955     .Deprecated(20, "Use TensorArrayScatterV3 with RangeOp");
956 REGISTER_OP("TensorArrayGather")
957     .Input("handle: Ref(string)")
958     .Input("indices: int32")
959     .Input("flow_in: float")
960     .Output("value: dtype")
961     .Attr("dtype: type")
962     .Attr("element_shape: shape = { unknown_rank: true }")
963     .SetShapeFn(shape_inference::UnknownShape)
964     .Deprecated(16, "Use TensorArrayGatherV3");
965 REGISTER_OP("TensorArrayGatherV2")
966     .Input("handle: string")
967     .Input("indices: int32")
968     .Input("flow_in: float")
969     .Output("value: dtype")
970     .Attr("dtype: type")
971     .Attr("element_shape: shape = { unknown_rank: true }")
__anona2f81a442002(InferenceContext* c) 972     .SetShapeFn([](InferenceContext* c) {
973       ShapeHandle unused;
974       DimensionHandle unused_dim;
975       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &unused));
976       TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &unused));
977       TF_RETURN_IF_ERROR(c->WithValue(c->Dim(c->input(0), 0), 2, &unused_dim));
978       TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 0, &unused));
979       return shape_inference::UnknownShape(c);
980     })
981     .Deprecated(26, "Use TensorArrayGatherV3");
982 REGISTER_OP("TensorArrayScatter")
983     .Input("handle: Ref(string)")
984     .Input("indices: int32")
985     .Input("value: T")
986     .Input("flow_in: float")
987     .Output("flow_out: float")
988     .Attr("T: type")
989     .SetShapeFn(shape_inference::UnknownShape)
990     .Deprecated(19, "Use TensorArrayGradV3");
991 REGISTER_OP("TensorArrayScatterV2")
992     .Input("handle: string")
993     .Input("indices: int32")
994     .Input("value: T")
995     .Input("flow_in: float")
996     .Output("flow_out: float")
997     .Attr("T: type")
__anona2f81a442102(InferenceContext* c) 998     .SetShapeFn([](InferenceContext* c) {
999       ShapeHandle unused;
1000       DimensionHandle unused_dim;
1001       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &unused));
1002       TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &unused));
1003       TF_RETURN_IF_ERROR(c->WithValue(c->Dim(c->input(0), 0), 2, &unused_dim));
1004       TF_RETURN_IF_ERROR(c->WithRank(c->input(3), 0, &unused));
1005       return shape_inference::ScalarShape(c);
1006     })
1007     .Deprecated(26, "Use TensorArrayScatterV3");
1008 REGISTER_OP("TensorArrayConcat")
1009     .Input("handle: Ref(string)")
1010     .Input("flow_in: float")
1011     .Output("value: dtype")
1012     .Output("lengths: int64")
1013     .Attr("dtype: type")
1014     .Attr("element_shape_except0: shape = { unknown_rank: true }")
1015     .SetShapeFn(shape_inference::UnknownShape)
1016     .Deprecated(16, "Use TensorArrayGradV3");
1017 REGISTER_OP("TensorArrayConcatV2")
1018     .Input("handle: string")
1019     .Input("flow_in: float")
1020     .Output("value: dtype")
1021     .Output("lengths: int64")
1022     .Attr("dtype: type")
1023     .Attr("element_shape_except0: shape = { unknown_rank: true }")
__anona2f81a442202(InferenceContext* c) 1024     .SetShapeFn([](InferenceContext* c) {
1025       ShapeHandle handle;
1026       DimensionHandle unused_dim;
1027       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle));
1028       TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim));
1029       ShapeHandle unused;
1030       TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused));
1031       c->set_output(0, c->UnknownShape());
1032       c->set_output(1, c->Vector(c->UnknownDim()));
1033       return Status::OK();
1034     });
1035 REGISTER_OP("TensorArraySplit")
1036     .Input("handle: Ref(string)")
1037     .Input("value: T")
1038     .Input("lengths: int64")
1039     .Input("flow_in: float")
1040     .Output("flow_out: float")
1041     .Attr("T: type")
1042     .SetShapeFn(shape_inference::UnknownShape)
1043     .Deprecated(16, "Use TensorArraySplitV3");
1044 REGISTER_OP("TensorArraySplitV2")
1045     .Input("handle: string")
1046     .Input("value: T")
1047     .Input("lengths: int64")
1048     .Input("flow_in: float")
1049     .Output("flow_out: float")
1050     .Attr("T: type")
__anona2f81a442302(InferenceContext* c) 1051     .SetShapeFn([](InferenceContext* c) {
1052       ShapeHandle handle;
1053       DimensionHandle unused_dim;
1054       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle));
1055       TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim));
1056       ShapeHandle unused;
1057       TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 1, &unused));
1058       TF_RETURN_IF_ERROR(c->WithRank(c->input(3), 0, &unused));
1059       return shape_inference::ScalarShape(c);
1060     })
1061     .Deprecated(26, "Use TensorArraySplitV3");
1062 REGISTER_OP("TensorArraySize")
1063     .Input("handle: Ref(string)")
1064     .Input("flow_in: float")
1065     .Output("size: int32")
1066     .SetShapeFn(shape_inference::UnknownShape)
1067     .Deprecated(16, "Use TensorArraySizeV3");
1068 REGISTER_OP("TensorArraySizeV2")
1069     .Input("handle: string")
1070     .Input("flow_in: float")
1071     .Output("size: int32")
__anona2f81a442402(InferenceContext* c) 1072     .SetShapeFn([](InferenceContext* c) {
1073       ShapeHandle handle;
1074       DimensionHandle unused_dim;
1075       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle));
1076       TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim));
1077       return shape_inference::ScalarShape(c);
1078     })
1079     .Deprecated(26, "Use TensorArraySizeV3");
1080 REGISTER_OP("TensorArrayClose")
1081     .Input("handle: Ref(string)")
__anona2f81a442502(InferenceContext* c) 1082     .SetShapeFn([](InferenceContext* c) { return Status::OK(); })
1083     .Deprecated(16, "Use TensorArrayCloseV3");
1084 REGISTER_OP("TensorArrayCloseV2")
1085     .Input("handle: string")
__anona2f81a442602(InferenceContext* c) 1086     .SetShapeFn([](InferenceContext* c) {
1087       ShapeHandle handle;
1088       DimensionHandle unused_dim;
1089       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle));
1090       TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim));
1091       return Status::OK();
1092     })
1093     .Deprecated(26, "Use TensorArrayCloseV3");
1094 
1095 // --------------------------------------------------------------------------
1096 
1097 REGISTER_OP("Barrier")
1098     .SetIsStateful()
1099     .Output("handle: Ref(string)")
1100     .Attr("component_types: list(type) >= 1")
1101     .Attr("shapes: list(shape) >= 0 = []")
1102     .Attr("capacity: int = -1")
1103     .Attr("container: string = ''")
1104     .Attr("shared_name: string = ''")
1105     .SetShapeFn(TwoElementOutput);
1106 
1107 REGISTER_OP("BarrierInsertMany")
1108     .Input("handle: Ref(string)")
1109     .Input("keys: string")
1110     .Input("values: T")
1111     .Attr("T: type")
1112     .Attr("component_index: int")
__anona2f81a442702(InferenceContext* c) 1113     .SetShapeFn([](InferenceContext* c) {
1114       ShapeHandle keys = c->input(1);
1115       ShapeHandle values = c->input(2);
1116       ShapeHandle handle;
1117       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle));
1118       DimensionHandle unused_dim;
1119       TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim));
1120       TF_RETURN_IF_ERROR(c->WithRank(keys, 1, &keys));
1121       TF_RETURN_IF_ERROR(c->WithRankAtLeast(values, 1, &values));
1122       TF_RETURN_IF_ERROR(c->Merge(keys, c->Vector(c->Dim(values, 0)), &handle));
1123       return Status::OK();
1124     });
1125 
1126 REGISTER_OP("BarrierTakeMany")
1127     .Input("handle: Ref(string)")
1128     .Input("num_elements: int32")
1129     .Output("indices: int64")
1130     .Output("keys: string")
1131     .Output("values: component_types")
1132     .Attr("component_types: list(type) >= 1")
1133     .Attr("allow_small_batch: bool = false")
1134     .Attr("wait_for_incomplete: bool = false")
1135     .Attr("timeout_ms: int = -1")
1136     .SetShapeFn(shape_inference::UnknownShape);
1137 
1138 REGISTER_OP("BarrierClose")
1139     .Input("handle: Ref(string)")
1140     .SetShapeFn(TwoElementVectorInputsAndScalarOutputs)
1141     .Attr("cancel_pending_enqueues: bool = false");
1142 
1143 REGISTER_OP("BarrierReadySize")
1144     .Input("handle: Ref(string)")
1145     .Output("size: int32")
1146     .SetShapeFn(TwoElementVectorInputsAndScalarOutputs);
1147 
1148 REGISTER_OP("BarrierIncompleteSize")
1149     .Input("handle: Ref(string)")
1150     .Output("size: int32")
1151     .SetShapeFn(TwoElementVectorInputsAndScalarOutputs);
1152 
1153 // --------------------------------------------------------------------------
1154 
1155 REGISTER_OP("GetSessionHandle")
1156     .Input("value: T")
1157     .Output("handle: string")
1158     .Attr("T: type")
1159     .SetIsStateful()
1160     .SetShapeFn(shape_inference::ScalarShape);
1161 
1162 REGISTER_OP("GetSessionHandleV2")
1163     .Input("value: T")
1164     .Output("handle: resource")
1165     .Attr("T: type")
1166     .SetIsStateful()
1167     .SetShapeFn(shape_inference::ScalarShape);
1168 
1169 REGISTER_OP("GetSessionTensor")
1170     .Input("handle: string")
1171     .Output("value: dtype")
1172     .Attr("dtype: type")
1173     .SetIsStateful()
__anona2f81a442802(InferenceContext* c) 1174     .SetShapeFn([](InferenceContext* c) {
1175       ShapeHandle unused;
1176       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &unused));
1177       return shape_inference::UnknownShape(c);
1178     });
1179 
1180 REGISTER_OP("DeleteSessionTensor")
1181     .Input("handle: string")
1182     .SetIsStateful()
__anona2f81a442902(InferenceContext* c) 1183     .SetShapeFn([](InferenceContext* c) {
1184       ShapeHandle unused;
1185       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &unused));
1186       return Status::OK();
1187     });
1188 
1189 REGISTER_OP("Stage")
1190     .Input("values: dtypes")
1191     .Attr("capacity: int >= 0 = 0")
1192     .Attr("memory_limit: int >= 0 = 0")
1193     .Attr("dtypes: list(type)")
1194     .Attr("container: string = ''")
1195     .Attr("shared_name: string = ''")
1196     .SetShapeFn(shape_inference::UnknownShape)
1197     .SetIsStateful();
1198 
1199 REGISTER_OP("Unstage")
1200     .Output("values: dtypes")
1201     .Attr("capacity: int >= 0 = 0")
1202     .Attr("memory_limit: int >= 0 = 0")
1203     .Attr("dtypes: list(type)")
1204     .Attr("container: string = ''")
1205     .Attr("shared_name: string = ''")
1206     .SetShapeFn(shape_inference::UnknownShape)
1207     .SetIsStateful();
1208 
1209 REGISTER_OP("StagePeek")
1210     .Input("index: int32")
1211     .Output("values: dtypes")
1212     .Attr("capacity: int >= 0 = 0")
1213     .Attr("memory_limit: int >= 0 = 0")
1214     .Attr("dtypes: list(type)")
1215     .Attr("container: string = ''")
1216     .Attr("shared_name: string = ''")
1217     .SetShapeFn(shape_inference::UnknownShape)
1218     .SetIsStateful();
1219 
1220 REGISTER_OP("StageSize")
1221     .Output("size: int32")
1222     .Attr("capacity: int >= 0 = 0")
1223     .Attr("memory_limit: int >= 0 = 0")
1224     .Attr("dtypes: list(type)")
1225     .Attr("container: string = ''")
1226     .Attr("shared_name: string = ''")
1227     .SetShapeFn(shape_inference::ScalarShape)
1228     .SetIsStateful();
1229 
1230 REGISTER_OP("StageClear")
1231     .Attr("capacity: int >= 0 = 0")
1232     .Attr("memory_limit: int >= 0 = 0")
1233     .Attr("dtypes: list(type)")
1234     .Attr("container: string = ''")
1235     .Attr("shared_name: string = ''")
1236     .SetShapeFn(shape_inference::UnknownShape)
1237     .SetIsStateful();
1238 
1239 // UnorderedMap
1240 REGISTER_OP("MapStage")
1241     .Input("key: int64")
1242     .Input("indices: int32")
1243     .Input("values: fake_dtypes")
1244     .Attr("capacity: int >= 0 = 0")
1245     .Attr("memory_limit: int >= 0 = 0")
1246     .Attr("dtypes: list(type)")
1247     .Attr("fake_dtypes: list(type)")
1248     .Attr("container: string = ''")
1249     .Attr("shared_name: string = ''")
1250     .SetShapeFn(tensorflow::shape_inference::NoOutputs)
1251     .SetIsStateful();
1252 
1253 REGISTER_OP("MapPeek")
1254     .Input("key: int64")
1255     .Input("indices: int32")
1256     .Output("values: dtypes")
1257     .Attr("capacity: int >= 0 = 0")
1258     .Attr("memory_limit: int >= 0 = 0")
1259     .Attr("dtypes: list(type)")
1260     .Attr("container: string = ''")
1261     .Attr("shared_name: string = ''")
1262     .SetShapeFn(tensorflow::shape_inference::UnknownShape)
1263     .SetIsStateful();
1264 
1265 REGISTER_OP("MapUnstage")
1266     .Input("key: int64")
1267     .Input("indices: int32")
1268     .Output("values: dtypes")
1269     .Attr("capacity: int >= 0 = 0")
1270     .Attr("memory_limit: int >= 0 = 0")
1271     .Attr("dtypes: list(type)")
1272     .Attr("container: string = ''")
1273     .Attr("shared_name: string = ''")
1274     .SetShapeFn(tensorflow::shape_inference::UnknownShape)
1275     .SetIsStateful();
1276 
1277 REGISTER_OP("MapUnstageNoKey")
1278     .Input("indices: int32")
1279     .Output("key: int64")
1280     .Output("values: dtypes")
1281     .Attr("capacity: int >= 0 = 0")
1282     .Attr("memory_limit: int >= 0 = 0")
1283     .Attr("dtypes: list(type)")
1284     .Attr("container: string = ''")
1285     .Attr("shared_name: string = ''")
1286     .SetShapeFn(tensorflow::shape_inference::UnknownShape)
1287     .SetIsStateful();
1288 
1289 REGISTER_OP("MapSize")
1290     .Output("size: int32")
1291     .Attr("capacity: int >= 0 = 0")
1292     .Attr("memory_limit: int >= 0 = 0")
1293     .Attr("dtypes: list(type)")
1294     .Attr("container: string = ''")
1295     .Attr("shared_name: string = ''")
1296     .SetShapeFn(tensorflow::shape_inference::ScalarShape)
1297     .SetIsStateful();
1298 
1299 REGISTER_OP("MapIncompleteSize")
1300     .Output("size: int32")
1301     .Attr("capacity: int >= 0 = 0")
1302     .Attr("memory_limit: int >= 0 = 0")
1303     .Attr("dtypes: list(type)")
1304     .Attr("container: string = ''")
1305     .Attr("shared_name: string = ''")
1306     .SetShapeFn(tensorflow::shape_inference::ScalarShape)
1307     .SetIsStateful();
1308 
1309 REGISTER_OP("MapClear")
1310     .Attr("capacity: int >= 0 = 0")
1311     .Attr("memory_limit: int >= 0 = 0")
1312     .Attr("dtypes: list(type)")
1313     .Attr("container: string = ''")
1314     .Attr("shared_name: string = ''")
1315     .SetShapeFn(tensorflow::shape_inference::NoOutputs)
1316     .SetIsStateful();
1317 
1318 // OrderedMap
1319 REGISTER_OP("OrderedMapStage")
1320     .Input("key: int64")
1321     .Input("indices: int32")
1322     .Input("values: fake_dtypes")
1323     .Attr("capacity: int >= 0 = 0")
1324     .Attr("memory_limit: int >= 0 = 0")
1325     .Attr("dtypes: list(type)")
1326     .Attr("fake_dtypes: list(type)")
1327     .Attr("container: string = ''")
1328     .Attr("shared_name: string = ''")
1329     .SetShapeFn(tensorflow::shape_inference::NoOutputs)
1330     .SetIsStateful();
1331 
1332 REGISTER_OP("OrderedMapPeek")
1333     .Input("key: int64")
1334     .Input("indices: int32")
1335     .Output("values: dtypes")
1336     .Attr("capacity: int >= 0 = 0")
1337     .Attr("memory_limit: int >= 0 = 0")
1338     .Attr("dtypes: list(type)")
1339     .Attr("container: string = ''")
1340     .Attr("shared_name: string = ''")
1341     .SetShapeFn(tensorflow::shape_inference::UnknownShape)
1342     .SetIsStateful();
1343 
1344 REGISTER_OP("OrderedMapUnstage")
1345     .Input("key: int64")
1346     .Input("indices: int32")
1347     .Output("values: dtypes")
1348     .Attr("capacity: int >= 0 = 0")
1349     .Attr("memory_limit: int >= 0 = 0")
1350     .Attr("dtypes: list(type)")
1351     .Attr("container: string = ''")
1352     .Attr("shared_name: string = ''")
1353     .SetShapeFn(tensorflow::shape_inference::UnknownShape)
1354     .SetIsStateful();
1355 
1356 REGISTER_OP("OrderedMapUnstageNoKey")
1357     .Input("indices: int32")
1358     .Output("key: int64")
1359     .Output("values: dtypes")
1360     .Attr("capacity: int >= 0 = 0")
1361     .Attr("memory_limit: int >= 0 = 0")
1362     .Attr("dtypes: list(type)")
1363     .Attr("container: string = ''")
1364     .Attr("shared_name: string = ''")
1365     .SetShapeFn(tensorflow::shape_inference::UnknownShape)
1366     .SetIsStateful();
1367 
1368 REGISTER_OP("OrderedMapSize")
1369     .Output("size: int32")
1370     .Attr("capacity: int >= 0 = 0")
1371     .Attr("memory_limit: int >= 0 = 0")
1372     .Attr("dtypes: list(type)")
1373     .Attr("container: string = ''")
1374     .Attr("shared_name: string = ''")
1375     .SetShapeFn(tensorflow::shape_inference::ScalarShape)
1376     .SetIsStateful();
1377 
1378 REGISTER_OP("OrderedMapIncompleteSize")
1379     .Output("size: int32")
1380     .Attr("capacity: int >= 0 = 0")
1381     .Attr("memory_limit: int >= 0 = 0")
1382     .Attr("dtypes: list(type)")
1383     .Attr("container: string = ''")
1384     .Attr("shared_name: string = ''")
1385     .SetShapeFn(tensorflow::shape_inference::ScalarShape)
1386     .SetIsStateful();
1387 
1388 REGISTER_OP("OrderedMapClear")
1389     .Attr("capacity: int >= 0 = 0")
1390     .Attr("memory_limit: int >= 0 = 0")
1391     .Attr("dtypes: list(type)")
1392     .Attr("container: string = ''")
1393     .Attr("shared_name: string = ''")
1394     .SetShapeFn(tensorflow::shape_inference::NoOutputs)
1395     .SetIsStateful();
1396 
1397 REGISTER_OP("RecordInput")
1398     .Output("records: string")
1399     .Attr("file_pattern: string")
1400     .Attr("file_random_seed: int = 301")
1401     .Attr("file_shuffle_shift_ratio: float = 0")
1402     .Attr("file_buffer_size: int = 10000")
1403     .Attr("file_parallelism: int = 16")
1404     .Attr("batch_size: int = 32")
1405     .Attr("compression_type: string = ''")
1406     .SetIsStateful()
1407     .SetShapeFn(shape_inference::UnknownShape);
1408 
1409 }  // namespace tensorflow
1410