1 //===--- CGRecordLayout.h - LLVM Record Layout Information ------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #ifndef LLVM_CLANG_LIB_CODEGEN_CGRECORDLAYOUT_H
11 #define LLVM_CLANG_LIB_CODEGEN_CGRECORDLAYOUT_H
12 
13 #include "clang/AST/CharUnits.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/Basic/LLVM.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/IR/DerivedTypes.h"
18 
19 namespace llvm {
20   class StructType;
21 }
22 
23 namespace clang {
24 namespace CodeGen {
25 
26 /// \brief Structure with information about how a bitfield should be accessed.
27 ///
28 /// Often we layout a sequence of bitfields as a contiguous sequence of bits.
29 /// When the AST record layout does this, we represent it in the LLVM IR's type
30 /// as either a sequence of i8 members or a byte array to reserve the number of
31 /// bytes touched without forcing any particular alignment beyond the basic
32 /// character alignment.
33 ///
34 /// Then accessing a particular bitfield involves converting this byte array
35 /// into a single integer of that size (i24 or i40 -- may not be power-of-two
36 /// size), loading it, and shifting and masking to extract the particular
37 /// subsequence of bits which make up that particular bitfield. This structure
38 /// encodes the information used to construct the extraction code sequences.
39 /// The CGRecordLayout also has a field index which encodes which byte-sequence
40 /// this bitfield falls within. Let's assume the following C struct:
41 ///
42 ///   struct S {
43 ///     char a, b, c;
44 ///     unsigned bits : 3;
45 ///     unsigned more_bits : 4;
46 ///     unsigned still_more_bits : 7;
47 ///   };
48 ///
49 /// This will end up as the following LLVM type. The first array is the
50 /// bitfield, and the second is the padding out to a 4-byte alignmnet.
51 ///
52 ///   %t = type { i8, i8, i8, i8, i8, [3 x i8] }
53 ///
54 /// When generating code to access more_bits, we'll generate something
55 /// essentially like this:
56 ///
57 ///   define i32 @foo(%t* %base) {
58 ///     %0 = gep %t* %base, i32 0, i32 3
59 ///     %2 = load i8* %1
60 ///     %3 = lshr i8 %2, 3
61 ///     %4 = and i8 %3, 15
62 ///     %5 = zext i8 %4 to i32
63 ///     ret i32 %i
64 ///   }
65 ///
66 struct CGBitFieldInfo {
67   /// The offset within a contiguous run of bitfields that are represented as
68   /// a single "field" within the LLVM struct type. This offset is in bits.
69   unsigned Offset : 16;
70 
71   /// The total size of the bit-field, in bits.
72   unsigned Size : 15;
73 
74   /// Whether the bit-field is signed.
75   unsigned IsSigned : 1;
76 
77   /// The storage size in bits which should be used when accessing this
78   /// bitfield.
79   unsigned StorageSize;
80 
81   /// The offset of the bitfield storage from the start of the struct.
82   CharUnits StorageOffset;
83 
CGBitFieldInfoCGBitFieldInfo84   CGBitFieldInfo()
85       : Offset(), Size(), IsSigned(), StorageSize(), StorageOffset() {}
86 
CGBitFieldInfoCGBitFieldInfo87   CGBitFieldInfo(unsigned Offset, unsigned Size, bool IsSigned,
88                  unsigned StorageSize, CharUnits StorageOffset)
89       : Offset(Offset), Size(Size), IsSigned(IsSigned),
90         StorageSize(StorageSize), StorageOffset(StorageOffset) {}
91 
92   void print(raw_ostream &OS) const;
93   void dump() const;
94 
95   /// \brief Given a bit-field decl, build an appropriate helper object for
96   /// accessing that field (which is expected to have the given offset and
97   /// size).
98   static CGBitFieldInfo MakeInfo(class CodeGenTypes &Types,
99                                  const FieldDecl *FD,
100                                  uint64_t Offset, uint64_t Size,
101                                  uint64_t StorageSize,
102                                  CharUnits StorageOffset);
103 };
104 
105 /// CGRecordLayout - This class handles struct and union layout info while
106 /// lowering AST types to LLVM types.
107 ///
108 /// These layout objects are only created on demand as IR generation requires.
109 class CGRecordLayout {
110   friend class CodeGenTypes;
111 
112   CGRecordLayout(const CGRecordLayout &) = delete;
113   void operator=(const CGRecordLayout &) = delete;
114 
115 private:
116   /// The LLVM type corresponding to this record layout; used when
117   /// laying it out as a complete object.
118   llvm::StructType *CompleteObjectType;
119 
120   /// The LLVM type for the non-virtual part of this record layout;
121   /// used when laying it out as a base subobject.
122   llvm::StructType *BaseSubobjectType;
123 
124   /// Map from (non-bit-field) struct field to the corresponding llvm struct
125   /// type field no. This info is populated by record builder.
126   llvm::DenseMap<const FieldDecl *, unsigned> FieldInfo;
127 
128   /// Map from (bit-field) struct field to the corresponding llvm struct type
129   /// field no. This info is populated by record builder.
130   llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
131 
132   // FIXME: Maybe we could use a CXXBaseSpecifier as the key and use a single
133   // map for both virtual and non-virtual bases.
134   llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
135 
136   /// Map from virtual bases to their field index in the complete object.
137   llvm::DenseMap<const CXXRecordDecl *, unsigned> CompleteObjectVirtualBases;
138 
139   /// False if any direct or indirect subobject of this class, when
140   /// considered as a complete object, requires a non-zero bitpattern
141   /// when zero-initialized.
142   bool IsZeroInitializable : 1;
143 
144   /// False if any direct or indirect subobject of this class, when
145   /// considered as a base subobject, requires a non-zero bitpattern
146   /// when zero-initialized.
147   bool IsZeroInitializableAsBase : 1;
148 
149 public:
CGRecordLayout(llvm::StructType * CompleteObjectType,llvm::StructType * BaseSubobjectType,bool IsZeroInitializable,bool IsZeroInitializableAsBase)150   CGRecordLayout(llvm::StructType *CompleteObjectType,
151                  llvm::StructType *BaseSubobjectType,
152                  bool IsZeroInitializable,
153                  bool IsZeroInitializableAsBase)
154     : CompleteObjectType(CompleteObjectType),
155       BaseSubobjectType(BaseSubobjectType),
156       IsZeroInitializable(IsZeroInitializable),
157       IsZeroInitializableAsBase(IsZeroInitializableAsBase) {}
158 
159   /// \brief Return the "complete object" LLVM type associated with
160   /// this record.
getLLVMType()161   llvm::StructType *getLLVMType() const {
162     return CompleteObjectType;
163   }
164 
165   /// \brief Return the "base subobject" LLVM type associated with
166   /// this record.
getBaseSubobjectLLVMType()167   llvm::StructType *getBaseSubobjectLLVMType() const {
168     return BaseSubobjectType;
169   }
170 
171   /// \brief Check whether this struct can be C++ zero-initialized
172   /// with a zeroinitializer.
isZeroInitializable()173   bool isZeroInitializable() const {
174     return IsZeroInitializable;
175   }
176 
177   /// \brief Check whether this struct can be C++ zero-initialized
178   /// with a zeroinitializer when considered as a base subobject.
isZeroInitializableAsBase()179   bool isZeroInitializableAsBase() const {
180     return IsZeroInitializableAsBase;
181   }
182 
183   /// \brief Return llvm::StructType element number that corresponds to the
184   /// field FD.
getLLVMFieldNo(const FieldDecl * FD)185   unsigned getLLVMFieldNo(const FieldDecl *FD) const {
186     FD = FD->getCanonicalDecl();
187     assert(FieldInfo.count(FD) && "Invalid field for record!");
188     return FieldInfo.lookup(FD);
189   }
190 
getNonVirtualBaseLLVMFieldNo(const CXXRecordDecl * RD)191   unsigned getNonVirtualBaseLLVMFieldNo(const CXXRecordDecl *RD) const {
192     assert(NonVirtualBases.count(RD) && "Invalid non-virtual base!");
193     return NonVirtualBases.lookup(RD);
194   }
195 
196   /// \brief Return the LLVM field index corresponding to the given
197   /// virtual base.  Only valid when operating on the complete object.
getVirtualBaseIndex(const CXXRecordDecl * base)198   unsigned getVirtualBaseIndex(const CXXRecordDecl *base) const {
199     assert(CompleteObjectVirtualBases.count(base) && "Invalid virtual base!");
200     return CompleteObjectVirtualBases.lookup(base);
201   }
202 
203   /// \brief Return the BitFieldInfo that corresponds to the field FD.
getBitFieldInfo(const FieldDecl * FD)204   const CGBitFieldInfo &getBitFieldInfo(const FieldDecl *FD) const {
205     FD = FD->getCanonicalDecl();
206     assert(FD->isBitField() && "Invalid call for non-bit-field decl!");
207     llvm::DenseMap<const FieldDecl *, CGBitFieldInfo>::const_iterator
208       it = BitFields.find(FD);
209     assert(it != BitFields.end() && "Unable to find bitfield info");
210     return it->second;
211   }
212 
213   void print(raw_ostream &OS) const;
214   void dump() const;
215 };
216 
217 }  // end namespace CodeGen
218 }  // end namespace clang
219 
220 #endif
221